JP2020041233A - Anti-bacterial fiber - Google Patents
Anti-bacterial fiber Download PDFInfo
- Publication number
- JP2020041233A JP2020041233A JP2018169365A JP2018169365A JP2020041233A JP 2020041233 A JP2020041233 A JP 2020041233A JP 2018169365 A JP2018169365 A JP 2018169365A JP 2018169365 A JP2018169365 A JP 2018169365A JP 2020041233 A JP2020041233 A JP 2020041233A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- antibacterial
- washing
- vinyl monomer
- absorbance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Description
本発明は、天然繊維、再生繊維、半合成繊維、合成繊維に代表される衣料用繊維の表面に極性ビニルモノマーを特定の条件でグラフト重合させた改質繊維であって、特に洗濯耐久性に優れた抗菌性能を有する抗菌繊維に関する。 The present invention is a modified fiber obtained by graft-polymerizing a polar vinyl monomer on the surface of clothing fibers represented by natural fibers, regenerated fibers, semi-synthetic fibers, and synthetic fibers under specific conditions. The present invention relates to an antibacterial fiber having excellent antibacterial performance.
従来より、洗濯耐久性に優れた抗菌性繊維は、界面活性剤系、アルコール系、フェノール系、ビグアナイド系、アニリド系、イミダゾール・チアゾール系、イソチアゾロン系、ニトリル系、有機金属系、無機金属系など多種多様な抗菌剤を処理したものが提案されている。特に第4級アンモニウムカチオンの抗菌効果を利用した抗菌剤や銀、銅、亜鉛などの金属イオンを用いた抗菌剤、及びグルコン酸クロルヘキシジンなどのハロゲン族原子を含む抗菌剤など様々なものが広く用いられている。 Conventionally, antibacterial fibers with excellent washing durability include surfactant-based, alcohol-based, phenol-based, biguanide-based, anilide-based, imidazole / thiazole-based, isothiazolone-based, nitrile-based, organic metal-based, and inorganic metal-based fibers. A variety of antibacterial agents have been proposed. In particular, antibacterial agents utilizing the antibacterial effect of quaternary ammonium cations, antibacterial agents using metal ions such as silver, copper and zinc, and antibacterial agents containing halogen atoms such as chlorhexidine gluconate are widely used. Have been.
通常、これらの抗菌剤は、繊維中への練込みや吸尽法、パッドドライキュア法等の公知の方法により処方される。抗菌剤成分は、繊維内に均一分散している必要はなく、繊維表面に偏在していてもよいが、洗濯耐久性等の一般消費性能に優れたものであることが望まれる。 Usually, these antibacterial agents are formulated by a known method such as kneading into fibers, an exhaustion method, and a pad dry cure method. The antimicrobial agent component does not need to be uniformly dispersed in the fiber, and may be unevenly distributed on the fiber surface. However, it is desired that the antibacterial agent component has excellent general consumption performance such as washing durability.
例えば特許文献1にはアクリル系繊維の湿式紡糸の際、第4級アンモニウム塩を延伸後に付与し乾燥させる方法が提案されている。この方法によれば、繊維表面の微細凹凸に抗菌剤を保持させることができるが、抗菌剤が繰り返しの洗濯によって徐々に脱落してしまい、長期間にわたり、十分な抗菌性能を確保できるものにはならない。 For example, Patent Document 1 proposes a method of applying a quaternary ammonium salt after stretching and drying the same during wet spinning of an acrylic fiber. According to this method, the antibacterial agent can be held on the fine irregularities on the fiber surface, but the antibacterial agent gradually drops off due to repeated washing, and for a long time, sufficient antibacterial performance can be secured. No.
また、特許文献2にはジンクピリチオン(ピリチオン亜鉛、ZPT)等に例示されるピリジン誘導体を繊維に吸尽処理させる方法が提案されている。この方法によれば、比較的低濃度の抗菌剤であっても十分な抗菌性を得ることができるが、優れた性能を保持するが故の問題として皮膚刺激性が強く、衣料用途への適用では処方量を十分に考慮する必要がある。 Patent Document 2 proposes a method of exhausting a fiber with a pyridine derivative exemplified by zinc pyrithione (zinc pyrithione, ZPT) and the like. According to this method, sufficient antibacterial properties can be obtained even with a relatively low concentration of antibacterial agent, but as a problem due to maintaining excellent performance, skin irritation is strong, and application to clothing applications Then it is necessary to consider the prescription amount enough.
更に、特許文献3にはセルロース系繊維をリンゴ酸やクエン酸のような有機酸で処理することによって抗菌繊維が得られることが提案されている。しかしながら、この方法は、レーヨンを除くセルロース系繊維に限定されるものであり、ポリエステルやポリアミドなどの汎用合成繊維への応用は期待できない。 Further, Patent Document 3 proposes that an antibacterial fiber can be obtained by treating a cellulosic fiber with an organic acid such as malic acid or citric acid. However, this method is limited to cellulosic fibers excluding rayon, and cannot be expected to be applied to general-purpose synthetic fibers such as polyester and polyamide.
また、銀、銅、亜鉛等の金属イオンを担持させた抗菌繊維も数多く提案されている。例えば特許文献4〜6のように銀イオンを担持させる方法では、優れた抗菌性能、制菌性能を保持できるが、酸化や硫化等によって繊維自体が経時変色する可能性が高く、蛍光白染品や極淡色染品への適用が難しいという問題を抱えている。 Many antibacterial fibers carrying metal ions such as silver, copper, and zinc have also been proposed. For example, in the method of supporting silver ions as disclosed in Patent Documents 4 to 6, excellent antibacterial performance and bacteriostatic performance can be maintained, but the fiber itself is highly likely to change color over time due to oxidation or sulfurization, and is a fluorescent white dyed product And it is difficult to apply it to ultra-light colored products.
一方、ポリエステル繊維の改質方法として、特許文献7にはポリエステル繊維表面に親水性を有するビニルモノマーをグラフト率5〜25%でグラフト重合によって導入せしめた吸湿性に優れたポリエステル繊維が提案されている。この方法では、着用快適性及び吸湿性に優れた布帛が得られるが、変退色や性能低下を起こさずに洗濯耐久性のある抗菌性が得られる方法までは提案していない。 On the other hand, as a method for modifying polyester fibers, Patent Document 7 proposes a polyester fiber having excellent hygroscopicity in which a vinyl monomer having hydrophilicity is introduced into the polyester fiber surface by graft polymerization at a graft ratio of 5 to 25%. I have. According to this method, a fabric excellent in wearing comfort and hygroscopicity can be obtained, but no method has been proposed which can provide antibacterial properties with washing durability without causing discoloration or deterioration in performance.
また、特許文献8には不飽和ジカルボン酸を有するポリエステル繊維にラジカル重合性化合物を放射線グラフト重合法により耐久性よく付与する方法が提案されている。この方法では、吸水性、吸湿性、制電性に優れた布帛が得られるが、やはり洗濯耐久性のある抗菌性が得られる方法までは提案していない。 Patent Document 8 proposes a method of imparting a radically polymerizable compound to a polyester fiber having an unsaturated dicarboxylic acid with high durability by a radiation graft polymerization method. According to this method, a fabric excellent in water absorption, moisture absorption, and antistatic properties can be obtained, but no method has been proposed yet that can provide antibacterial properties with washing durability.
さらに、特許文献9にはカルボン酸系ビニル系モノマーをグラフト重合したセルロース繊維を含む織物であって、アルカリ金属及び/又は二価金属の含有割合やカルボン酸とカルボン酸金属塩のそれぞれに由来する各吸光度の比率を好適化することによって消臭性を向上させたものが提案されている。しかし、この方法では、消臭性は向上するが、抗菌性の向上を目的としていないため、洗濯耐久性のある抗菌性が得られていない。 Further, Patent Document 9 discloses a woven fabric containing cellulose fibers graft-polymerized with a carboxylic acid-based vinyl monomer, which is derived from the content ratio of alkali metal and / or divalent metal and carboxylic acid and metal salt of carboxylic acid. The thing which improved the deodorizing property by optimizing the ratio of each light absorbency is proposed. However, in this method, although the deodorizing property is improved, the antibacterial property with the washing durability is not obtained because the aim is not to improve the antibacterial property.
本発明は、かかる従来技術の現状に鑑み創案されたものであり、その目的は、抗菌性に関して優れた洗濯耐久性を持つ繊維を提供することにあり、特に皮膚刺激等、人体に及ぼす影響が少なく、尚且つ経時変退色などの消費性能低下が生じることのない、洗濯耐久性に優れた抗菌繊維を提供することにある。 The present invention has been made in view of the state of the art, and an object of the present invention is to provide a fiber having excellent washing durability with respect to antibacterial properties. It is an object of the present invention to provide an antibacterial fiber which is small in amount and does not cause deterioration in consumption performance such as discoloration with time and has excellent washing durability.
本発明者は、上記目的を達成するために洗濯耐久性のある抗菌性を持つ繊維について鋭意検討した結果、カルボン酸由来の吸収ピークの吸光度Aに対するカルボン酸アルカリ金属塩由来の吸収ピークの吸光度Bの吸光度比B/Aを消臭性を目的としたものに比べて低めの特定の範囲にしたうえで極性ビニルモノマーを繊維にグラフト重合させることによって、衣料用としての欠点を生じさせずに洗濯耐久性のある抗菌性を繊維に付与できることを見出し、本発明の完成に至った。 The inventor of the present invention has conducted intensive studies on fibers having antibacterial properties which are durable for washing in order to achieve the above-mentioned object. As a result, the absorbance A of the absorption peak derived from the alkali metal carboxylate relative to the absorbance A of the absorption peak derived from the carboxylic acid is shown. By making the absorbance ratio B / A in the specific range lower than that for the purpose of deodorization and graft polymerizing a polar vinyl monomer to the fiber, washing without causing defects for clothing They have found that durable antibacterial properties can be imparted to fibers, and have completed the present invention.
即ち、本発明は、以下の(1)〜(8)の構成を有するものである。
(1)極性ビニルモノマーを繊維にグラフト重合させた繊維であって、赤外分光分析法による、カルボン酸に由来する吸収ピークの吸光度Aに対するカルボン酸アルカリ金属塩に由来する吸収ピークの吸光度Bの吸光度比B/Aが0.01〜0.04であること、及びJIS L 1902(2015)に記載される菌液吸収法、混釈平板培養法に基づき、試験菌株としてスタフィロコッカス・アウレウス(黄色ぶどう球菌)NBRC12732株を使用した抗菌性評価において、未洗濯、及びJIS L 1930(2014)付属書Fの洗濯方法C4Mに準じ10回洗濯処理した後の抗菌活性値がいずれも2.2〜6.5であることを特徴とする抗菌繊維。
(2)極性ビニルモノマーが、アクリル酸、メタクリル酸、及びそれらの誘導体からなる群から選択される少なくとも1種を含むことを特徴とする(1)に記載の抗菌繊維。
(3)繊維にグラフト重合させた極性ビニルモノマーの重合比率が繊維重量比換算で12〜60%であることを特徴とする(1)又は(2)に記載の抗菌繊維。
(4)繊維中の極性ビニルモノマー残留量が5μg/g未満であることを特徴とする(1)〜(3)のいずれかに記載の抗菌繊維。
(5)繊維中に含まれるアルカリ金属元素として、ナトリウム及び/またはカリウムを含むことを特徴とする(1)〜(4)のいずれかに記載の抗菌繊維。
(6)誘電結合プラズマ質量分析法(ICP−MS)によるアルカリ金属元素の含有量が1000μg/g超、8000μg/g以下であることを特徴とする(5)に記載の抗菌繊維。
(7)繊維の水による抽出液pHが3.0以上、8.0未満であることを特徴とする(1)〜(6)のいずれかに記載の抗菌繊維。
(8)試験菌株としてスタフィロコッカス・アウレウス(黄色ぶどう球菌)NBRC12732株を使用した抗菌性評価において、未洗濯、及びJIS L 1930(2014)付属書Fの洗濯方法C4Mに準じ10回洗濯処理した後の抗菌活性値がいずれも3.0〜6.0であることを特徴とする(1)〜(7)のいずれかに記載の抗菌繊維。
That is, the present invention has the following configurations (1) to (8).
(1) A fiber obtained by graft-polymerizing a polar vinyl monomer onto a fiber, wherein the absorbance B of the absorption peak derived from the alkali metal carboxylate to the absorbance B of the absorption peak derived from the carboxylic acid is determined by infrared spectroscopy. Based on the absorbance ratio B / A of 0.01 to 0.04, and the bacterial solution absorption method and the pour plate method described in JIS L 1902 (2015), Staphylococcus aureus (test strain) In the evaluation of antibacterial activity using Staphylococcus aureus) NBRC12732 strain, the antibacterial activity values after washing 10 times in accordance with JIS L 1930 (2014) Appendix F, washing method C4M, were 2.2 to 2.2. An antibacterial fiber characterized by being 6.5.
(2) The antibacterial fiber according to (1), wherein the polar vinyl monomer contains at least one selected from the group consisting of acrylic acid, methacrylic acid, and derivatives thereof.
(3) The antibacterial fiber according to (1) or (2), wherein the polymerization ratio of the polar vinyl monomer graft-polymerized to the fiber is 12 to 60% in terms of fiber weight ratio.
(4) The antibacterial fiber according to any one of (1) to (3), wherein the residual amount of the polar vinyl monomer in the fiber is less than 5 μg / g.
(5) The antibacterial fiber according to any one of (1) to (4), wherein sodium and / or potassium is contained as an alkali metal element contained in the fiber.
(6) The antibacterial fiber according to (5), wherein the content of the alkali metal element measured by inductively coupled plasma mass spectrometry (ICP-MS) is more than 1000 µg / g and 8000 µg / g or less.
(7) The antibacterial fiber according to any one of (1) to (6), wherein the pH of the extract of the fiber with water is not less than 3.0 and less than 8.0.
(8) In the antibacterial evaluation using Staphylococcus aureus (Staphylococcus aureus) NBRC 12732 strain as a test strain, the cells were not washed and washed 10 times according to the washing method C4M of JIS L 1930 (2014) Appendix F. The antibacterial fiber according to any one of (1) to (7), wherein the subsequent antibacterial activity values are 3.0 to 6.0.
本発明の抗菌繊維は、洗濯耐久性に優れた抗菌性を有し、しかも皮膚刺激も少なく、衣料用、資材用を問わず、広い分野で使用することができる。また、本発明の抗菌性繊維は、銀や銅などの金属を含まないため、酸化や硫化等による変退色、性能低下を引き起こす心配がないという利点を有する。 The antibacterial fiber of the present invention has an antibacterial property having excellent washing durability, has less skin irritation, and can be used in a wide variety of fields, regardless of whether it is for clothing or materials. Further, since the antibacterial fiber of the present invention does not contain metals such as silver and copper, there is an advantage that there is no fear of causing discoloration and deterioration in performance due to oxidation and sulfide.
本発明の抗菌繊維について以下に詳細に説明する。原料繊維としては、ポリエステル、ポリアミド、ポリオレフィン、ポリアクリロニトリル、ポリ塩化ビニル、ビニロン、ポリ塩化ビニリデン、ポリ乳酸などの合成繊維、綿、麻、獣毛、絹などの天然繊維、レーヨン、ポリノジック、キュプラ、リヨセル、モダールなどの再生繊維、セルロースアセテート、プロミックスなどの半合成繊維などが挙げられる。特に綿、レーヨン、リヨセル、ポリエステルなどの衣料用の汎用繊維が好ましく用いられる。 The antimicrobial fiber of the present invention will be described in detail below. As raw material fibers, polyester, polyamide, polyolefin, polyacrylonitrile, polyvinyl chloride, vinylon, polyvinylidene chloride, synthetic fibers such as polylactic acid, natural fibers such as cotton, hemp, animal hair, silk, rayon, polynosic, cupra, Regenerated fibers such as lyocell and modal; and semi-synthetic fibers such as cellulose acetate and promix. In particular, general-purpose fibers for clothing such as cotton, rayon, lyocell, and polyester are preferably used.
原料繊維として合成繊維、半合成繊維、再生繊維を用いた場合の断面形状は、特に限定されず、公知のものを使用することができる。また、必要に応じて艶消剤や顔料、酸化防止剤、紫外線吸収剤等の機能加工剤を混練して用いることも可能である。また、単糸繊度についても特に限定されない。 The cross-sectional shape when synthetic fibers, semi-synthetic fibers, or regenerated fibers are used as the raw material fibers is not particularly limited, and known cross-sectional shapes can be used. If necessary, it is also possible to knead and use a functional processing agent such as a matting agent, a pigment, an antioxidant, and an ultraviolet absorber. Also, the single yarn fineness is not particularly limited.
本発明の抗菌繊維中のアルカリ金属元素の含有量は、誘電結合プラズマ質量分析法(ICP−MS)を用いて定量評価すると、1000μg/g超、8000μg/g以下、好ましくは2000μg/g超、7000μg/g以下、更に好ましくは3000μg/g超、6500μg/g以下の範囲である。アルカリ金属元素の含有量が上記範囲を超過すると、良好な吸湿特性が得られるものの、生地pHが高くなり、結果としてカルボキシラートアニオンが安定化する酸性領域にならず、安定した高い抗菌性を得ることが難しい。また、上記範囲以下では、衣料に用いた場合に皮膚に直接触れたときの刺激が強いとともに抗菌性も低下する。 When the content of the alkali metal element in the antibacterial fiber of the present invention is quantitatively evaluated by using inductively coupled plasma mass spectrometry (ICP-MS), the content is more than 1000 μg / g, not more than 8000 μg / g, preferably more than 2000 μg / g, The range is 7000 μg / g or less, more preferably 3000 μg / g or more and 6500 μg / g or less. If the content of the alkali metal element exceeds the above range, good moisture absorption properties can be obtained, but the dough pH increases, and as a result, a stable high antibacterial property is obtained without being in an acidic region where the carboxylate anion is stabilized. It is difficult. In addition, below the above range, when used in clothing, the irritation when directly touching the skin is strong and the antibacterial properties are also reduced.
アルカリ金属元素とは、周期表における水素を除く第1族に属する典型元素である、ナトリウム、カリウム、リチウムなどが挙げられ、特にナトリウム及び/またはカリウムを含むことが好ましい。本発明の繊維に含まれるアルカリ金属元素がナトリウムである場合、本発明の抗菌繊維は、好ましいアルカリ金属元素含有量と同様の理由から、誘電結合プラズマ質量分析法(ICP−MS)の定量評価によるナトリウム含有量が2000μg/g超、8000μg/g以下であることが好ましい。 Examples of the alkali metal element include sodium, potassium, and lithium, which are typical elements belonging to Group 1 excluding hydrogen in the periodic table, and particularly preferably include sodium and / or potassium. When the alkali metal element contained in the fiber of the present invention is sodium, the antibacterial fiber of the present invention is subjected to quantitative evaluation by inductively coupled plasma mass spectrometry (ICP-MS) for the same reason as the preferable alkali metal element content. It is preferable that the sodium content is more than 2000 μg / g and 8000 μg / g or less.
本発明の抗菌繊維は、赤外分光分析法による、カルボン酸に由来する吸収ピークの吸光度Aに対するカルボン酸アルカリ金属塩に由来する吸収ピークの吸光度Bから算出される、吸光度比B/Aが0.01〜0.04、好ましくは0.013〜0.037の範囲である。吸光度比B/Aが上記範囲を超過する範囲、即ちカルボン酸アルカリ金属塩の割合が多い系では吸湿性に富むものの、ゲル化が著しく、湿潤時の力学的強度を保持することができない。また上記範囲未満では特に疎水性繊維にグラフト重合させた場合、吸湿性に乏しいものとなり、繊維製品とした場合の風合いや着心地、着用感の観点より好ましくない。 The antimicrobial fiber of the present invention has an absorbance ratio B / A of 0, which is calculated from the absorbance A of the absorption peak derived from the alkali metal carboxylate with respect to the absorbance A of the absorption peak derived from the carboxylic acid by infrared spectroscopy. 0.01 to 0.04, preferably 0.013 to 0.037. In a range where the absorbance ratio B / A exceeds the above-mentioned range, that is, in a system in which the ratio of the alkali metal carboxylate is large, although the system has a high hygroscopic property, the gelation is remarkable and the mechanical strength at the time of moistening cannot be maintained. In addition, if the amount is less than the above range, particularly when graft polymerization is performed on hydrophobic fibers, the resulting fibers have poor hygroscopicity, which is not preferable from the viewpoints of texture, comfort, and wearing feeling when the fibers are used.
本発明の抗菌繊維は、JIS L 1902(2015)に記載される菌液吸収法、混釈平板培養法に基づき、試験菌株としてスタフィロコッカス・アウレウス(黄色ぶどう球菌)NBRC12732株を使用した抗菌性評価において、未洗濯、及びJIS L 1930(2014)付属書Fの洗濯方法C4Mに準じ10回洗濯処理した後の抗菌活性値がいずれも2.2〜6.5、さらには3.0〜6.0、さらには4.0〜6.0を達成することができる。 The antibacterial fiber of the present invention is based on the bacterial solution absorption method and the pour plate culture method described in JIS L 1902 (2015), and has the antibacterial activity using Staphylococcus aureus (Staphylococcus aureus) NBRC 12732 as a test strain. In the evaluation, the antibacterial activity value after washing 10 times according to the washing method C4M of Annex F of JIS L 1930 (2014) Appendix F was 2.2 to 6.5, and further 3.0 to 6 And even 4.0 to 6.0 can be achieved.
本発明の抗菌繊維は、抗菌性能としては、スタフィロコッカス・アウレウス(黄色ぶどう球菌)や肺炎球菌に代表されるグラム陽性菌に対する抗菌効果があるばかりか、肺炎桿菌、大腸菌、緑膿菌などグラム陰性菌にも効果が期待できる。本発明のように極性ビニルモノマーを重合した繊維が抗菌性を発揮する理由は、ある一定の生地pH域にコントロールされている状態において、カルボキシラートアニオンが細菌類に対して抗菌作用を発揮するためと考えられる。 The antibacterial fiber of the present invention has an antibacterial effect not only on the antibacterial effect against Gram-positive bacteria represented by Staphylococcus aureus (Staphylococcus aureus) and pneumococcus, but also on Gram-like bacteria such as Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa. The effect can be expected for negative bacteria. The reason why the fiber obtained by polymerizing a polar vinyl monomer as in the present invention exhibits antibacterial properties is that the carboxylate anion exerts an antibacterial action on bacteria in a state where it is controlled in a certain fabric pH range. it is conceivable that.
本発明における抗菌性は、JIS L 1902(2015)に記載される菌液吸収法、混釈平板培養法に基づき、試験菌株としてスタフィロコッカス・アウレウス(黄色ぶどう球菌)NBRC12732株を使用して評価するものであり、一般社団法人繊維評価技術協議会が規定するSEKマーク繊維製品認証基準(文書管理番号JEC301、平成30年4月1日改訂版)にも同菌株が指定されている。 The antibacterial activity in the present invention was evaluated based on the bacterial solution absorption method and the pour plate culture method described in JIS L 1902 (2015), using Staphylococcus aureus (Staphylococcus aureus) NBRC12732 as a test strain. The strain is also specified in the SEK Mark Textile Product Certification Standard (Document Control No. JEC301, revised on April 1, 2018) specified by the Textile Evaluation Technology Council of Japan.
洗濯方法、特に家庭洗濯についての規格は、1995年度版JIS L0217 付表1に記載される103法が一般的に利用されていたが、2014年度版JIS L0001、及び2014年度版JIS L1930発行にあたり、上記103法に近似する洗濯作用力を有する方法としてJIS L1930付属書Fに規定される洗濯方法C4Mに基づく洗濯評価方法が一般化されつつある。 The washing method, especially the standard for home washing, generally used the 103 method described in Appendix 1 of the 1995 edition of JIS L0217. However, when the 2014 edition of JIS L0001 and the 2014 edition of JIS L1930 were issued, A washing evaluation method based on a washing method C4M specified in JIS L1930 Appendix F is being generalized as a method having a washing action force similar to the 103 method.
本発明の抗菌繊維は、上記洗濯方法C4M法にて10回洗濯実施した後の抗菌活性値、及び未洗濯での抗菌活性値がいずれも2.2〜6.5、さらには3.0〜6.0、さらには4.0〜6.0を達成することができる。抗菌活性値が上記範囲未満では優れた抗菌性能を発揮できず、逆に抗菌活性値が上記範囲を超えると、皮膚表面の常在菌にまで影響を及ぼすばかりか、皮膚刺激性が強すぎるため、皮膚障害の懸念が生じる可能性が高くなる。 The antibacterial fiber of the present invention has an antibacterial activity value after washing 10 times by the above-mentioned washing method C4M method and an antibacterial activity value without washing in each case of 2.2 to 6.5, and more preferably 3.0 to 3.0. 6.0, and even 4.0 to 6.0 can be achieved. If the antibacterial activity value is less than the above range, excellent antibacterial performance cannot be exhibited, and if the antibacterial activity value exceeds the above range, on the contrary, it not only affects the resident bacteria on the skin surface, but the skin irritation is too strong However, there is a high possibility that skin disorders will occur.
本発明の抗菌繊維は、極性ビニルモノマーを繊維にグラフト重合した繊維であるが、極性ビニルモノマーは、アクリル酸、メタクリル酸、及びそれらの誘導体からなる群から選択される少なくとも1種を含むことが好ましい。繊維製品に抗菌性を付与するにあたり、従来より第1級アミド、第2級アミド、第3級アミド、第4級アンモニウムカチオン等を配合した抗菌剤は広く活用されており、優れた抗菌性を有することは既に公知である。本発明の抗菌繊維は、上記の従来のアミド、アンモニウムカチオン等を含まずとも、抗菌性を有することを特徴とするが、従来公知の抗菌剤の併用も妨げるものではない。また、極性ビニルモノマーは、単一組成である必要はなく、適宜必要に応じて複数種の極性ビニルモノマーと共重合しても構わないし、その他の反応性モノマーと共重合させてもよい。 The antimicrobial fiber of the present invention is a fiber obtained by graft-polymerizing a polar vinyl monomer to the fiber, and the polar vinyl monomer may include at least one selected from the group consisting of acrylic acid, methacrylic acid, and derivatives thereof. preferable. In imparting antibacterial properties to textile products, antibacterial agents containing a primary amide, a secondary amide, a tertiary amide, a quaternary ammonium cation and the like have been widely used, and excellent antibacterial properties have been used. It is already known to have. The antimicrobial fiber of the present invention is characterized by having antimicrobial properties even without the above-mentioned conventional amide, ammonium cation, etc., but does not prevent the use of conventionally known antimicrobial agents. Further, the polar vinyl monomer does not need to have a single composition, and may be copolymerized with a plurality of types of polar vinyl monomers as necessary, or may be copolymerized with another reactive monomer.
本発明の抗菌繊維は、繊維中の極性ビニルモノマー残留量(すなわちグラフト重合時に未反応で残存する極性ビニルモノマー、及びグラフト重合後、加水分解等によって解重合された極性ビニルモノマー、及びその変性物の総量)が繊維の総重量に対して5μg/g未満であることが望ましい。極性ビニルモノマー残留量は、繊維試料をエタノールで超音波抽出し、得られたエタノール溶液をガスクロマトグラフ質量分析装置(GCMS)によって評価するものであり、現状では5μg/g未満という数値は、当該方法での検出下限値未満と同義である。得られる抗菌繊維の皮膚刺激性の観点から、当該極性ビニルモノマー残留量が少ないほど好ましい。 The antibacterial fiber of the present invention comprises a residual amount of the polar vinyl monomer in the fiber (that is, a polar vinyl monomer that remains unreacted during graft polymerization, and a polar vinyl monomer depolymerized by hydrolysis or the like after graft polymerization, and a modified product thereof). Is preferably less than 5 μg / g based on the total weight of the fiber. The residual amount of the polar vinyl monomer is obtained by ultrasonically extracting a fiber sample with ethanol and evaluating the obtained ethanol solution by a gas chromatograph mass spectrometer (GCMS). Is synonymous with less than the lower limit of detection. From the viewpoint of the skin irritation of the obtained antibacterial fiber, the smaller the residual amount of the polar vinyl monomer, the better.
繊維中の極性ビニルモノマー残留量を少なくするための方策としては、仕込みモノマーを必要以上に過剰量投入としないことは勿論のこと、グラフト重合加工後の高温排液、繰り返し湯洗い、オーバーフロー水洗を組合せ、生地へのモノマー残留量を低減させることが挙げられる。グラフト重合加工後は、未反応モノマー及びその分解物、分散剤や開始剤等の助剤及びその分解物などが処理溶液中に残存しており、より具体的には浴温が70〜85℃の範囲、好ましくは75〜80℃の範囲の高温で排液することによって、繊維中の極性ビニルモノマー残留量を低減させることができる。 As a measure for reducing the residual amount of the polar vinyl monomer in the fiber, it is obvious that the charged monomer should not be excessively charged, and high-temperature drainage after graft polymerization, repeated hot water washing, and overflow water washing. Combination, reducing the amount of residual monomer in the dough. After the graft polymerization, unreacted monomers and their decomposed products, auxiliaries such as dispersants and initiators and their decomposed products remain in the treatment solution, and more specifically, the bath temperature is 70 to 85 ° C. , Preferably 75 to 80 ° C., it is possible to reduce the residual amount of the polar vinyl monomer in the fiber.
また、繰り返し湯洗いについても浴温80〜100℃で繰り返し洗浄し、繊維中のモノマーを浴中に排出させたうえ、同様に浴温が70〜85℃の範囲、好ましくは75〜80℃の範囲の高温で排液するとよい。繰り返し回数は、2回以上の複数回が望ましい。繰り返し湯洗いを実施した後、浴温40〜60℃でオーバーフロー水洗すると更に残留量の低減が可能となる。また、極性ビニルモノマーの排出を促進させるため、アニオン系またはノニオン系の界面活性剤を併用することも可能である。 In addition, with respect to repeated hot water washing, washing is repeatedly performed at a bath temperature of 80 to 100 ° C., and the monomers in the fibers are discharged into the bath. Similarly, the bath temperature is in the range of 70 to 85 ° C., preferably 75 to 80 ° C. It is advisable to drain at a high temperature in the range. The number of repetitions is desirably two or more times. After repeated hot water washing, overflow water washing at a bath temperature of 40 to 60 ° C. can further reduce the residual amount. In order to promote the discharge of the polar vinyl monomer, an anionic or nonionic surfactant may be used in combination.
極性ビニルモノマーを繊維にグラフト重合する場合、重合開始剤を使用するが、重合開始剤としては、アゾ化合物であるアゾビスイソブチロニトリル(AIBN)、有機過酸化物である過酸化ベンゾイル(BPO)などの一元開始剤や、過酸化水素と鉄(II)塩、過硫酸塩と亜硫酸水素ナトリウムなど酸化剤と還元剤の組合せによる二元開始剤(レドックス開始剤)等を用いることができる。 When a polar vinyl monomer is graft-polymerized to a fiber, a polymerization initiator is used. As the polymerization initiator, azobisisobutyronitrile (AIBN) which is an azo compound and benzoyl peroxide (BPO) which is an organic peroxide are used. ), A dual initiator (redox initiator) based on a combination of an oxidizing agent and a reducing agent, such as hydrogen peroxide and iron (II) salt, and a persulfate and sodium bisulfite.
極性ビニルモノマーを繊維にグラフト重合させる方法としては、短繊維にオーバーマイヤー染色機などの高圧容器を用いてバッチ処理する方法、紡績糸やフィラメントの状態でソフトワインドし、オーバーマイヤー染色機などの高圧容器を用いてバッチ処理する方法、織物や編物、不織布などのシート状物とし、高圧パッドスチーマーなどで連続処理する方法、若しくはジッカ―染色機などを用いてバッチ処理する方法が例示される。特に短繊維にオーバーマイヤー染色機などの高圧容器を用いてバッチ処理する方法が、後続の紡績工程において、他繊維との混用による更なる機能性の付与や風合いの観点で好ましい。 The method of graft polymerization of polar vinyl monomer to fibers includes the method of batch processing short fibers using a high-pressure container such as an Overmeyer dyeing machine, the method of soft-winding spun yarn and filaments, and the method of high-pressure Examples of the method include a method of performing batch processing using a container, a method of forming a sheet such as a woven fabric, a knitted fabric, or a non-woven fabric, and performing a continuous processing using a high-pressure pad steamer or the like, or a method of performing a batch processing using a zicker-dyeing machine or the like. In particular, a method in which short fibers are batch-processed using a high-pressure container such as an Over-Meier dyeing machine in the subsequent spinning step is preferable from the viewpoint of imparting further functionality and texture by mixing with other fibers.
繊維にグラフト重合させた極性ビニルモノマーの重合比率(グラフト率)は、好ましくは繊維重量比換算で12〜60%、より好ましくは15〜45%の範囲である。重合比率が上記範囲未満でも抗菌性能を発揮し得るが、洗濯耐久性の観点で不十分である可能性がある。また、重合比率が上記範囲を超過すると、繊維強伸度の低下、各種染色堅牢度の低下、抗菌繊維の硬化を引き起こすおそれがある。 The polymerization ratio (graft ratio) of the polar vinyl monomer graft-polymerized to the fiber is preferably in the range of 12 to 60%, more preferably 15 to 45% in terms of fiber weight ratio. Although the antibacterial performance can be exhibited even when the polymerization ratio is less than the above range, it may be insufficient from the viewpoint of washing durability. On the other hand, when the polymerization ratio exceeds the above range, there is a possibility that a decrease in fiber strength and elongation, a decrease in various color fastness, and curing of the antibacterial fiber may occur.
極性ビニルモノマーは、アクリル酸、メタクリル酸、及びそれらの誘導体からなる群から選択される少なくとも1種を含むことが好ましい。即ち、カルボキシ基を有するビニルモノマーであることが好ましい。但し極性ビニルモノマーは、単一組成のモノマーである必要はなく、メタクリル酸とアクリル酸の組合せ、メタクリル酸と塩化ビニル、メタクリル酸とスチレンの組合せなど、得られる性能に応じて適宜共重合量を調整すればよい。極性ビニルモノマーの中では、特にメタクリル酸が好適に用いられる。 The polar vinyl monomer preferably contains at least one selected from the group consisting of acrylic acid, methacrylic acid, and derivatives thereof. That is, a vinyl monomer having a carboxy group is preferable. However, the polar vinyl monomer does not need to be a monomer having a single composition, and the copolymerization amount may be appropriately adjusted according to the performance to be obtained, such as a combination of methacrylic acid and acrylic acid, a combination of methacrylic acid and vinyl chloride, and a combination of methacrylic acid and styrene. Adjust it. Of the polar vinyl monomers, methacrylic acid is particularly preferably used.
繊維に極性ビニルモノマーをグラフト重合させるとき、極性ビニルモノマーがカルボキシ基の場合、反応液のpHは2.8〜4.0に調整することが好ましい。より好ましくは3.0〜3.5である。このpH領域から外れると、グラフト重合反応の効率が低下して、目的のグラフト重合率を得られにくくなり易い。グラフト重合加工した直後では、繊維に導入されたカルボキシ基の殆どが酸型(−COOH)の形態になっており、酸性が強い。そのまま使用すると抗菌性は高くとも人体への負担が大きくなってしまうので、中和操作を行うことが好ましい。中和は、水やアルカリ性化合物を使ってカルボキシ基の水素の一部を水酸基やアルカリ金属塩に置換することができる。より好ましい中和方法は、アルカリ性化合物を使わずに水及び又はお湯を使ってグラフト後の繊維を中和することである。 When a polar vinyl monomer is graft-polymerized to a fiber, when the polar vinyl monomer is a carboxy group, the pH of the reaction solution is preferably adjusted to 2.8 to 4.0. More preferably, it is 3.0 to 3.5. When the pH is out of the pH range, the efficiency of the graft polymerization reaction decreases, and it becomes difficult to obtain a desired graft polymerization rate. Immediately after the graft polymerization, most of the carboxy groups introduced into the fiber are in the form of an acid type (—COOH), and are strongly acidic. If used as it is, even if the antibacterial property is high, the burden on the human body increases, so it is preferable to perform a neutralization operation. In the neutralization, a part of hydrogen of the carboxy group can be replaced with a hydroxyl group or an alkali metal salt using water or an alkaline compound. A more preferred neutralization method is to neutralize the grafted fiber using water and / or hot water without using an alkaline compound.
尚、繊維の中和処理は、グラフト重合加工の直後で行っても良いし、糸、織編物、不織布、衣料品等の最終製品までのどの段階で行っても良く、最終製品が販売されて消費段階に行く前に適正な抽出pH領域になっていればよい。 Incidentally, the fiber neutralization treatment may be performed immediately after the graft polymerization process, or may be performed at any stage up to the final product such as yarn, woven or knitted fabric, nonwoven fabric, or clothing, and the final product is sold. It suffices that the pH is in the proper extraction pH range before going to the consumption stage.
しかし、カルボキシ基の一部をアルカリ金属塩にすることで、消臭性や吸湿性、pHコントロール性等の抗菌性以外の機能が得られるため、抗菌性が得られる範囲内で、カルボキシ基をアルカリ金属塩に置換してもよい。用いるアルカリ化合物は、水に可溶で、その水溶液がアルカリ性を呈するアルカリ金属化合物が好ましく用いられる。アルカリ金属化合物としては、アルカリ金属の水酸化物、炭酸塩、リン酸塩などが挙げられ、具体的には水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、リン酸ナトリウム、リン酸カリウム、リン酸リチウムなどが挙げられる。 However, by converting a part of the carboxy group into an alkali metal salt, functions other than antibacterial properties such as deodorizing property, moisture absorbing property, pH control property, etc. can be obtained. It may be replaced with an alkali metal salt. As the alkali compound to be used, an alkali metal compound which is soluble in water and whose aqueous solution exhibits alkalinity is preferably used. Examples of the alkali metal compound include hydroxides, carbonates, and phosphates of alkali metals. Specific examples thereof include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, and phosphorus phosphate. Sodium acid, potassium phosphate, lithium phosphate and the like can be mentioned.
前述のグラフト加工及び中和処理により得られた糸又はワタ、生地の水による抽出液pH(水素イオン指数)は3.0以上、8.0未満になるようにすることが好ましい。カルボキシラートアニオンが細菌類に対して抗菌性を有すると考えると、安定した高い抗菌性を得るには、カルボキシラートアニオンがより安定化する酸性領域でコントロールすることが望ましい。そのため、上記のように3.0以上、8.0未満、好ましくは4.0以上、7.0未満、更に好ましくは4.5以上、6.5未満の酸性域のpHに管理するのがよい。抽出液pHが上記範囲未満になると、前述のように皮膚に対する刺激が強くなる。また抽出液pHが上記範囲を越えると、淡色染色品の黄変など変退色が生じ易くなる懸念があるばかりか、繊維の抗菌性が低下しやすくなる。 It is preferable that the pH of the extract (hydrogen ion index) of the yarn, cotton, or dough obtained by the above-described grafting and neutralization treatment with water is 3.0 or more and less than 8.0. Considering that the carboxylate anion has an antibacterial property against bacteria, it is desirable to control the carboxylate anion in an acidic region where the carboxylate anion is more stabilized in order to obtain a stable and high antibacterial property. Therefore, as described above, it is preferable to control the pH in an acidic region of 3.0 or more and less than 8.0, preferably 4.0 or more and less than 7.0, and more preferably 4.5 or more and less than 6.5. Good. When the pH of the extract is below the above range, irritation to the skin is increased as described above. When the pH of the extract exceeds the above range, not only is there a concern that discoloration such as yellowing of the light-colored dyed product is likely to occur, but also the antibacterial property of the fiber is likely to be reduced.
本発明の抗菌繊維中に含まれるアルカリ金属元素含有量は、極性ビニルモノマーを繊維にグラフト重合した後のアルカリ金属化合物での処理によりコントロールすることができる。アルカリ金属元素含有量は、アルカリ金属化合物の水溶液濃度、繊維に対するアルカリ金属化合物の使用濃度、浴比(繊維と処理液の重量比率)、処理温度、処理時間等でコントロールすることができる。 The alkali metal element content contained in the antimicrobial fiber of the present invention can be controlled by a treatment with an alkali metal compound after graft polymerization of a polar vinyl monomer onto the fiber. The alkali metal element content can be controlled by the concentration of the aqueous solution of the alkali metal compound, the concentration of the alkali metal compound used with respect to the fiber, the bath ratio (weight ratio between the fiber and the treatment liquid), the treatment temperature, the treatment time, and the like.
本発明の抗菌繊維は、カルボキシ基を有するビニルモノマーで繊維にグラフト重合を行い、その後、カルボキシ基の一部を中和することで得ることができる。得られた抗菌繊維は、カルボン酸アルカリ金属塩の吸光度/カルボン酸の吸光度とする吸光度比を0.010〜0.040のように低めとすることで十分な抗菌性を発揮することができる。より好ましくは0.014〜0.037である。 The antibacterial fiber of the present invention can be obtained by performing graft polymerization on the fiber with a vinyl monomer having a carboxy group, and then neutralizing a part of the carboxy group. The obtained antibacterial fiber can exhibit sufficient antibacterial properties by setting the absorbance ratio of the absorbance of the alkali metal carboxylate / the absorbance of the carboxylic acid as low as 0.010 to 0.040. More preferably, it is 0.014 to 0.037.
本発明の抗菌繊維は、単独、若しくは適宜他繊維と混用して混繊、混紡、交織編など公知の方法で織編物として用いるのみならず、単独、若しくは適宜他繊維と混用し、カードウェッブとした後、ニードルパンチングやサーマルボンド法等の方法で絡合させた不織布としてもよいし、得られた不織布を数枚合わせてなる積層物としてもよい。また、得られたそれら二次元シート物を用い、樹脂コーティング、フィルムラミネート、ボンディングなど更に高次加工して用いることも可能である。また、言うまでもなく、単独、若しくは適宜他繊維と混用し、布団やクッション、椅子等の詰めワタとして使用することもできる。 The antimicrobial fiber of the present invention is used alone or as appropriate as a woven or knitted material by a known method such as mixing and blending with other fibers, blending, and weaving, as well as being used alone or as appropriate with other fibers to form a card web. After that, the nonwoven fabric may be entangled by a method such as needle punching or thermal bonding, or may be a laminate formed by combining several obtained nonwoven fabrics. Further, using the obtained two-dimensional sheet material, it is also possible to use a higher-order processing such as resin coating, film lamination, bonding and the like. Needless to say, they can be used alone or as appropriate in combination with other fibers to be used as padding cotton for futons, cushions, chairs and the like.
以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれら実施例に限定されるものではなく、本文中及び実施例中に示す主旨を逸脱しない範囲で適宜変更実施できることは言うまでもない。なお、本発明の実施例および比較例における性能評価は下記に基づくものである。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples, and can be appropriately modified and implemented without departing from the gist shown in the text and the examples. Needless to say. The performance evaluation in Examples and Comparative Examples of the present invention is based on the following.
〔グラフト重合率〕
グラフト重合前の原料繊維の絶乾重量をWa、グラフト重合後の繊維を105℃の乾燥機で3時間以上乾燥処理し、20℃環境下のデシケータにて20分以上冷却した後の絶乾重量をWbとし、以下の式に基づきグラフト重合率(G)を算出した。
G(質量%)=100×(Wb−Wa)/Wa
(Graft polymerization rate)
The absolute dry weight of the raw fibers before the graft polymerization was Wa, the absolute dry weight of the fibers after the graft polymerization was dried in a dryer at 105 ° C for 3 hours or more, and cooled in a desiccator under a 20 ° C environment for 20 minutes or more. Is Wb, and the graft polymerization rate (G) was calculated based on the following equation.
G (% by mass) = 100 × (Wb−Wa) / Wa
〔残留モノマー量の定量〕
試料0.3gを精秤後、エチルアルコール15mlに浸漬し、30分間の超音波抽出を実施した後、得られたエチルアルコール溶液をガスクロマトグラフ質量分析装置を用い、下記の条件に従い、残留モノマーの同定及び定量を実施した。
(ガスクロマトグラフ質量分析条件(GC−MS))
・装置:島津製作所社製QP−2010型
・カラム:Stabllwax(長さ30m、内径0.25mm、膜厚0.25μm)
・注入口温度:240℃
・カラム線速度:40cm/秒
(Quantification of residual monomer amount)
After precisely weighing 0.3 g of the sample, immersing it in 15 ml of ethyl alcohol and performing ultrasonic extraction for 30 minutes, the obtained ethyl alcohol solution was subjected to the following conditions using a gas chromatograph mass spectrometer according to the following conditions. Identification and quantification were performed.
(Gas chromatograph mass spectrometry conditions (GC-MS))
・ Apparatus: Model QP-2010 manufactured by Shimadzu Corporation ・ Column: Stabllwax (length 30 m, inner diameter 0.25 mm, film thickness 0.25 μm)
・ Inlet temperature: 240 ° C
-Column linear velocity: 40 cm / sec
〔抗菌性評価〕
2015年度版JIS L1902「繊維製品の抗菌性試験方法及び抗菌効果」に規定されるa)菌液吸収法、混釈平板培養法による定量試験を実施した。試験菌株は独立行政法人製品評価技術基盤機構バイオテクノロジーセンターから供給を受けるスタフィロコッカス・アウレウス(Staphylococcus aureus/黄色ぶどう球菌)NBRC12732株を使用し、評価した。
(Antibacterial evaluation)
A) Quantitative tests were carried out by the bacteria solution absorption method and the pour plate culture method specified in JIS L1902 “Test method and antibacterial effect of textile products” in the 2015 edition. The test strain was evaluated using Staphylococcus aureus (Staphylococcus aureus / Staphylococcus aureus) NBRC 12732 strain, which was supplied by the National Institute of Technology and Evaluation Biotechnology Center.
〔繊維中の金属濃度の測定〕
繊維中の金属濃度の測定は、蛍光X線分析法により含有金属の一次スクリーニングを行って金属濃度の概算を求めた後、誘電結合プラズマ質量分析法により、繊維中のアルカリ金属(Na、K、Li)の精密な濃度を求めた。
(Measurement of metal concentration in fiber)
The measurement of the metal concentration in the fiber is performed by performing a primary screening of the contained metal by a fluorescent X-ray analysis method to obtain an approximate value of the metal concentration, and then, by an inductively coupled plasma mass spectrometry method, an alkali metal (Na, K, The precise concentration of Li) was determined.
蛍光X線分析法によって繊維中の金属濃度の測定を実施した。繊維中に存在する既知の金属(二酸化チタンとしてのチタン原子)の濃度に基づき、検出された元素の蛍光X線照射強度から濃度の概算値を求めた。
〔蛍光X線分析(XRF)〕
・装置:日本電子社製JSX−1000S型
・雰囲気:真空
・電圧:50kV
・測定範囲:ナトリウム〜ウラン(ロジウムを除く)
The metal concentration in the fiber was measured by X-ray fluorescence analysis. Based on the concentration of a known metal (titanium atom as titanium dioxide) present in the fiber, an approximate value of the concentration was determined from the intensity of the fluorescent X-ray irradiation of the detected element.
[X-ray fluorescence analysis (XRF)]
-Equipment: JSX-1000S type manufactured by JEOL Ltd.-Atmosphere: vacuum-Voltage: 50 kV
-Measurement range: sodium to uranium (excluding rhodium)
〔繊維中の金属濃度の測定〕
(測定試料の調製)
硝酸(1+1)と過酸化水素の混合溶液(硝酸(1+1):過酸化水素の容積比で4:1)を溶媒とし、200℃条件でマイクロウェーブ分解法(密閉容器内における加圧酸分解法)によって繊維試料を分解し、溶液サンプルとした。
定量試験は一次スクリーニングによって検出された元素について下記の誘電結合プラズマ質量分析法(ICP−MS法)に基づき元素含有量(μg/g)を定量して、アルカリ金属塩の含有量を調べた。
(Measurement of metal concentration in fiber)
(Preparation of measurement sample)
Using a mixed solution of nitric acid (1 + 1) and hydrogen peroxide (volume ratio of nitric acid (1 + 1): hydrogen peroxide 4: 1) as a solvent, microwave decomposition method (pressurized acid decomposition method in a closed container) at 200 ° C. ) To decompose the fiber sample to obtain a solution sample.
In the quantitative test, the element content (μg / g) of the element detected by the primary screening was determined based on the following inductively coupled plasma mass spectrometry (ICP-MS method), and the content of the alkali metal salt was examined.
〔誘電結合プラズマ質量分析条件(ICP−MS)〕
・装置:アジレント・テクノロジー社製7700x型
・キャリアガス流量:1.07L/分
・プラズマガス流量:15L/分
・補助ガス流量:0.9L/分
[Inductively coupled plasma mass spectrometry conditions (ICP-MS)]
-Equipment: 7700x type manufactured by Agilent Technologies-Carrier gas flow rate: 1.07 L / min-Plasma gas flow rate: 15 L / min-Auxiliary gas flow rate: 0.9 L / min
〔赤外分光分析(FT−IR)〕
(試験試料の準備)
繊維試料をよく解した後、圧力をかけてフィルム状に成型し、顕微透過法によって赤外分光スペクトルを測定した。
[Infrared spectroscopy (FT-IR)]
(Preparation of test sample)
After the fiber sample was thoroughly unraveled, it was molded into a film by applying pressure, and the infrared spectrum was measured by a microscopic transmission method.
(吸光度比の求め方)
波長1709cm−1付近のピークの吸収より高波長側の最初の谷付近と波長1545cm−1付近のピークの吸収より低波長側の最初の谷付近を結ぶ接線をベースラインとし、波長1709cm−1付近のピークトップにおけるベースラインからの高さAを波長1711cm−1(カルボン酸に由来する吸収)の吸光度を求める。次に、波長1545cm−1付近のピークトップにおけるベースラインからの高さBを波長1558cm−1(カルボン酸アルカリ金属塩に由来する吸収)の吸光度とする。なお、カルボン酸アルカリ金属塩としては、ナトリウム塩、カリウム塩、リチウム塩などが想定されるが、それらがそれぞれ混合されていたとしても吸光度のピークはそれぞれが分岐することなく、ブロードなピーク形状になるので、そのピークトップの高さを測ればよい。また、明確な吸収ピークが観測されない場合は、波長1711cm−1若しくは波長1545cm−1の位置でのベースラインの高さをその吸収の吸光度とし、以下の数式にて吸光度比を求める。
吸光度比(B/A)=カルボン酸アルカリ金属塩の吸光度/カルボン酸の吸光度
(How to determine the absorbance ratio)
Tangential line connecting the first valley near the lower wavelength side of the absorption peak around the first valley near the wavelength 1545 cm -1 on the high wavelength side of the absorption peak near a wavelength of 1709 cm -1 and a baseline, wavelength 1709 cm around -1 The height A from the baseline at the peak top is determined as the absorbance at a wavelength of 1711 cm -1 (absorption derived from carboxylic acid). Next, the height B from the baseline at the peak top near the wavelength of 1545 cm −1 is defined as the absorbance at the wavelength of 1558 cm −1 (absorption derived from the alkali metal carboxylate). As the alkali metal carboxylate, a sodium salt, a potassium salt, a lithium salt, and the like are supposed, but even if they are mixed, the absorbance peaks do not branch, and have a broad peak shape. It is sufficient to measure the height of the peak top. If a clear absorption peak is not observed, the height of the baseline at the position of wavelength 1711 cm -1 or 1545 cm -1 is taken as the absorbance of the absorption, and the absorbance ratio is calculated by the following formula.
Absorbance ratio (B / A) = absorbance of alkali metal carboxylate / absorbance of carboxylic acid
〔赤外分光分析(FT−IR)条件〕
・装置:サーモフィッシャーサイエンティフィック社製Nicolet iN10型
・測定波長:4000〜500cm−1
・検出器:MCT検出器
・分解能:8cm−1
・ビームスプリッター:KBr(臭化カリウム)
[Infrared spectroscopy (FT-IR) conditions]
-Apparatus: Nicolet iN10 type manufactured by Thermo Fisher Scientific Inc.-Measurement wavelength: 4000 to 500 cm -1
・ Detector: MCT detector ・ Resolution: 8cm -1
・ Beam splitter: KBr (potassium bromide)
〔繊維の水による抽出液pH〕
JIS L1096:2010抽出液のpH(8.37)A法(JIS法)の条件にて測定した。但し、測定試料が、繊維、糸の場合は、試料を5.0g±0.1g秤量して、そのまま抽出試験に供する。
(PH of fiber extract with water)
It was measured under the conditions of JIS L1096: 2010 extract pH (8.37) method A (JIS method). However, when the measurement sample is a fiber or a yarn, the sample is weighed to 5.0 g ± 0.1 g and subjected to the extraction test as it is.
〔洗濯試験〕
2014年度版JIS L1930「繊維製品の家庭洗濯試験方法」付属書Fに規定されるC4Mの方法に準じて洗濯処理を実施した。標準洗剤はJAFET標準配合洗剤を用い9.4項の表1に規定される1.33g/Lを投入して実施した。また、洗濯時はグラフトされた繊維をナイロンネットに入れ、それぞれの原料繊維に基づく、負荷布(付属書Hに規定)を組合せ、被洗物重量が約2kg(洗濯浴比1:20)となるように洗濯・脱水処理を実施した。脱水処理後はナイロンネットから取り出し、繊維を軽く手で解し、吸取紙で軽く水分を除去した上、標準状態にて24時間以上乾燥し、抗菌性評価に供した。
(Washing test)
The washing treatment was performed according to the C4M method specified in Appendix F of the 2014 edition of JIS L1930 "Testing method for home laundry of textile products". As the standard detergent, 1.33 g / L specified in Table 1 of 9.4 was used by using a JAFET standard combination detergent. At the time of washing, the grafted fiber is put into a nylon net, and a load cloth (as defined in Appendix H) based on each raw material fiber is combined, and the weight of the object to be washed is about 2 kg (washing bath ratio 1:20). Laundry and dehydration treatments were implemented. After the dehydration treatment, the fibers were taken out of the nylon net, the fibers were loosened by hand, lightly removed with blotter paper, dried under standard conditions for 24 hours or more, and subjected to antibacterial evaluation.
〔皮膚パッチ試験〕
表面グラフト重合させた繊維を用い、48時間の閉塞貼付試験を実施した。被験者(健康な日本人男性および女性23名)に対し、背中部位(傍脊椎部)に検体(表面グラフト重合させた繊維)及び対照物質(大塚製薬社製生理食塩水、大塚製薬社製注射用蒸留水、日興リカ社製白色ワセリンをそれぞれ脱脂綿に含ませたもの)を48時間、空気が触れない状態で閉塞貼付した。
(Skin patch test)
Using the fiber subjected to the surface graft polymerization, a 48-hour obstruction sticking test was performed. For a subject (23 healthy Japanese men and women), a specimen (surface graft polymerized fiber) and a control substance (physiological saline, Otsuka Pharmaceutical Co., Otsuka Pharmaceutical Co., Ltd.) Distilled water and white vaseline manufactured by Nikko Rica Co., Ltd. were respectively contained in absorbent cotton) and occluded and applied for 48 hours without air contact.
48時間経過後、貼付した試料を剥がし、貼付した試料を剥がした直後(貼付48時間後)、及び貼付72時間後(48時間後に貼付した試料を剥がし、24時間が経過した後)の皮膚状態を皮膚科専門医に目視判定頂き、皮膚刺激性を評価した。
上記閉塞貼付試験に使用するパッチテストユニットの構成は下記の通りである。
・Finn Chamber(EPITEST,Finland)
・Scanpor Tape(NORGESPLASTER,Norway)
After 48 hours, the attached sample was peeled off, and the skin condition immediately after peeling off the pasted sample (after 48 hours from pasting) and 72 hours after pasting (after 24 hours after peeling off the sample pasted after 48 hours) Was visually judged by a dermatologist to evaluate skin irritation.
The configuration of the patch test unit used for the obstruction sticking test is as follows.
・ Finn Chamber (EPITEST, Finland)
・ Scanor Tape (NORGESPLASTER, Norway)
皮膚刺激指数の算定方法は、48時間後及び72時間後の何れか高い方の反応に評点を与え、各被験物質の評点総和を被験者数で除した値を百分率化する。
判定基準は表1の通りであり、皮膚刺激指数は下記の数式より導出する。
皮膚刺激指数=評点総和/被験者数×100
In the method of calculating the skin irritation index, a score is given to the higher response after 48 hours or 72 hours, and the value obtained by dividing the total score of each test substance by the number of subjects is expressed as a percentage.
The criteria are as shown in Table 1, and the skin irritation index is derived from the following equation.
Skin irritation index = total score / number of subjects x 100
得られた皮膚刺激指数より、表2に示す「香粧品の皮膚刺激指数による分類」によって安全性を評価する。尚、当該安全性判定の根拠は日本香粧品科学会誌19(臨時増刊)49〜56頁に記載の「香粧品と安全性」(須貝哲郎)に基づく。 From the obtained skin irritation index, safety is evaluated by “classification of cosmetics by skin irritation index” shown in Table 2. The basis for the safety judgment is based on “Cosmetics and Safety” (Tetsuro Sugai) described in Journal of the Japan Cosmetic Science Association 19 (extra edition), pp. 49-56.
(実施例1〜8)及び(比較例1〜4)
使用する原料繊維として、レンチング社製リヨセルステープルファイバー(繊度1.3デシテックス38ミリカット品)、レンチング社製レーヨン(モダール)ステープルファイバー(繊度1.1デシテックス39ミリカット品)、中国石油化工集団儀征化繊社製ポリエステルセミダルステープルファイバー(繊度6.6デシテックス64ミリカット品)の3種類を用い、日阪製作所社製オーバーマイヤー染色機に浴比1:10の条件で詰め込み、80℃の浴温条件で精練を実施した。排液、湯洗、水洗を繰り返した後、表1に示すpH調整剤以外の薬剤を仕込み、浴比が1:10、表3に示す処理温度×時間の条件にて繊維表面へのグラフト重合を進めた。
(Examples 1 to 8) and (Comparative Examples 1 to 4)
As raw material fibers used, Lyocell staple fiber (1.3 dtex, 38 mm cut product) manufactured by Lentung, rayon (Modal) staple fiber (1.1 dtex, 39 mm cut product) manufactured by Lentung, China Petrochemical Industry Group Using three types of polyester semi-dal staple fiber (fineness: 6.6 decitex, 64 mm cut), packed into a Hisaka Seisakusho Overmeyer dyeing machine at a bath ratio of 1:10 and scouring at a bath temperature of 80 ° C Was carried out. After repeating drainage, hot water washing, and water washing, chemicals other than the pH adjuster shown in Table 1 were charged, and a graft ratio to the fiber surface was set at a bath ratio of 1:10 and a treatment temperature × time shown in Table 3. Advanced.
排液後、70℃×10分の条件で湯洗い処理を行った。この湯洗い処理の繰り返し回数を変えることで、表1の繊維の抽出液pHになるようにコントロールした。尚、pH調整剤(アルカリ化合物)を用いて中和する場合は、湯洗繰り返しの途中でその処理を行い、更に湯洗を繰り返す。pH調整剤を使うときの条件は浴比1:10でPH調整剤を所定濃度使用し、60℃×30分の条件で行う。排液後に紡績用油剤(竹本油脂社製ホノールMGR)4g/L投入し、浴比1:10、80℃×10分間の浴液循環処理を実施した。排液後に脱水乾燥、開繊を行い、各原料繊維からなる抗菌繊維(ステープルファイバー)を得た。得られた性能は表4に示す通りであった。 After draining, a hot water washing treatment was performed at 70 ° C. × 10 minutes. By changing the number of repetitions of the hot water washing treatment, the pH of the fiber extract was controlled so as to be as shown in Table 1. In the case of neutralization using a pH adjuster (alkali compound), the treatment is performed in the middle of repeated hot water washing, and the hot water washing is further repeated. The conditions for using the pH adjuster are a bath ratio of 1:10, a predetermined concentration of the PH adjuster, and a condition of 60 ° C. × 30 minutes. After draining, 4 g / L of spinning oil (Honol MGR manufactured by Takemoto Yushi Co., Ltd.) was added, and a bath liquid circulation treatment was performed at a bath ratio of 1:10 at 80 ° C. for 10 minutes. After drainage, dehydration drying and fiber opening were performed to obtain an antibacterial fiber (staple fiber) composed of each raw material fiber. The performance obtained was as shown in Table 4.
本発明の抗菌繊維は、皮膚刺激等、人体に及ぼす影響が少なく、尚且つ経時変退色などの消費性能低下が生じることのない、洗濯耐久性に優れた抗菌繊維であり、インナー、スポーツ、ユニフォーム、ワーキング等の衣料用途やカーテン、シーツ、壁紙等の生活資材用途等として好適である。 The antibacterial fiber of the present invention is an antibacterial fiber excellent in washing durability that has little effect on the human body such as skin irritation and does not cause deterioration in consumption performance such as discoloration with time, and has innerwear, sports and uniforms. It is suitable for use in clothing such as working, and for living materials such as curtains, sheets, and wallpapers.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018169365A JP6998847B2 (en) | 2018-09-11 | 2018-09-11 | Antibacterial fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018169365A JP6998847B2 (en) | 2018-09-11 | 2018-09-11 | Antibacterial fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020041233A true JP2020041233A (en) | 2020-03-19 |
JP6998847B2 JP6998847B2 (en) | 2022-01-18 |
Family
ID=69797727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018169365A Active JP6998847B2 (en) | 2018-09-11 | 2018-09-11 | Antibacterial fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6998847B2 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6385173A (en) * | 1986-09-19 | 1988-04-15 | 東レ株式会社 | Modification of synthetic fiber product |
JPH05230765A (en) * | 1992-02-14 | 1993-09-07 | Unitika Ltd | Method for modifying yarn of synthetic fiber |
JPH06128877A (en) * | 1992-10-14 | 1994-05-10 | Unitika Ltd | Antimicrobial deodorizing synthetic yarn |
JP2000226765A (en) * | 1999-02-01 | 2000-08-15 | Toyobo Co Ltd | Modified polyester-based fiber product and its production |
US6454814B1 (en) * | 2000-09-19 | 2002-09-24 | Hong Kong Polytechnic University | Treatment of fabrics |
JP2004324008A (en) * | 2003-04-24 | 2004-11-18 | Toyobo Co Ltd | Polyester-based synthetic fiber having excellent moisture absorption, and method for producing polyester-based synthetic fiber fabric having excellent moisture absorption |
CN101532249A (en) * | 2009-04-16 | 2009-09-16 | 浙江好运来数码纺织股份有限公司 | Method for weight-increasing and antimicrobial treatment of silk fiber |
JP2012251265A (en) * | 2011-06-06 | 2012-12-20 | Toyobo Specialties Trading Co Ltd | Deodorant cellulose fiber woven or knitted fabric and method for producing the same |
-
2018
- 2018-09-11 JP JP2018169365A patent/JP6998847B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6385173A (en) * | 1986-09-19 | 1988-04-15 | 東レ株式会社 | Modification of synthetic fiber product |
JPH05230765A (en) * | 1992-02-14 | 1993-09-07 | Unitika Ltd | Method for modifying yarn of synthetic fiber |
JPH06128877A (en) * | 1992-10-14 | 1994-05-10 | Unitika Ltd | Antimicrobial deodorizing synthetic yarn |
JP2000226765A (en) * | 1999-02-01 | 2000-08-15 | Toyobo Co Ltd | Modified polyester-based fiber product and its production |
US6454814B1 (en) * | 2000-09-19 | 2002-09-24 | Hong Kong Polytechnic University | Treatment of fabrics |
JP2004324008A (en) * | 2003-04-24 | 2004-11-18 | Toyobo Co Ltd | Polyester-based synthetic fiber having excellent moisture absorption, and method for producing polyester-based synthetic fiber fabric having excellent moisture absorption |
CN101532249A (en) * | 2009-04-16 | 2009-09-16 | 浙江好运来数码纺织股份有限公司 | Method for weight-increasing and antimicrobial treatment of silk fiber |
JP2012251265A (en) * | 2011-06-06 | 2012-12-20 | Toyobo Specialties Trading Co Ltd | Deodorant cellulose fiber woven or knitted fabric and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP6998847B2 (en) | 2022-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5786282A (en) | Opened wet processed intermediate natural fiber product suitable for formation into end use fiber products with long-lasting antimicrobial properties and method | |
WO1998012369A1 (en) | Chitosan-containing acrylic fibers and process for preparing the same | |
DE112013007131T5 (en) | Process for treating textiles during wet washing | |
JPH0813341A (en) | Method for processing cellulosic fabric | |
JP6998847B2 (en) | Antibacterial fiber | |
CN101153460B (en) | Ecological antimicrobial fabric and method for producing the same | |
JP7179270B2 (en) | Fiber with alginate coating and method for producing same | |
Teli et al. | Nanosilver containing grafted bamboo rayon as antibacterial material | |
Teli et al. | Study of grafted silver nanoparticle containing durable antibacterial bamboo rayon | |
JP2013129938A (en) | Functional fiber fabric and method for producing the same | |
JP3783334B2 (en) | Polyester filament warp knitted fabric | |
JP5721523B2 (en) | Method for producing antibacterial cellulosic nonwoven fabric | |
JP6763765B2 (en) | Fiber treatment agent and how to use the fiber treatment agent | |
JP6391552B2 (en) | Functional fiber product and manufacturing method thereof | |
JP2019085688A (en) | Hygroscopic acrylonitrile-based fiber, method for producing the same and fiber structure containing the same | |
JP2000314035A (en) | Antimicrobial textile product | |
JP2015190086A (en) | Antimicrobial woven fabric | |
JP2018104836A (en) | Polyester fiber, and fiber structure | |
JP3518148B2 (en) | Hygroscopic fiber structure | |
JP3387618B2 (en) | Method for producing modified polyester fiber material | |
Palaniappan | Study on the antimicrobial efficacy of fabrics finished with nano zinc oxide particles | |
JPS58191275A (en) | Production of fabric having water repellent property and water absorbability | |
JPS6385163A (en) | Polyester fiber | |
RU2776057C1 (en) | Method for producing antimicrobial silver-containing material | |
JP2000314083A (en) | Antimicrobial acrylonitrile-based fiber and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180911 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201019 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210816 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211006 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6998847 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |