JP2020041112A - Covalent organic structure, covalent organic structure composition and method for producing covalent organic structure composition - Google Patents

Covalent organic structure, covalent organic structure composition and method for producing covalent organic structure composition Download PDF

Info

Publication number
JP2020041112A
JP2020041112A JP2018171950A JP2018171950A JP2020041112A JP 2020041112 A JP2020041112 A JP 2020041112A JP 2018171950 A JP2018171950 A JP 2018171950A JP 2018171950 A JP2018171950 A JP 2018171950A JP 2020041112 A JP2020041112 A JP 2020041112A
Authority
JP
Japan
Prior art keywords
organic structure
covalent organic
formula
structure composition
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018171950A
Other languages
Japanese (ja)
Other versions
JP6991116B2 (en
Inventor
成之 梅澤
Nariyuki Umezawa
成之 梅澤
幸治 吉川
Koji Yoshikawa
幸治 吉川
剛 堂浦
Go Doura
剛 堂浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiwa Electric Mfg Co Ltd
Original Assignee
Seiwa Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiwa Electric Mfg Co Ltd filed Critical Seiwa Electric Mfg Co Ltd
Priority to JP2018171950A priority Critical patent/JP6991116B2/en
Publication of JP2020041112A publication Critical patent/JP2020041112A/en
Application granted granted Critical
Publication of JP6991116B2 publication Critical patent/JP6991116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a covalent organic structure that can cause the switching phenomenon of discoloring due to external action, a covalent organic structure composition and a method of producing the same.SOLUTION: The present invention relates to a covalent organic structure of formula (A), a covalent organic structure of formula (B), and a covalent organic structure of formula (C), and a covalent organic structure composition that comprises these structures and changes in its equilibrium state by the action of heat and/or light and a method for producing the same.SELECTED DRAWING: Figure 1

Description

本発明は、外的作用により変色するスイッチング現象を有する共有結合性有機構造体および共有結合性有機構造体組成物と、共有結合性有機構造体組成物の製造方法とに関するものである。   The present invention relates to a covalent organic structure and a covalent organic structure composition having a switching phenomenon that changes color by an external action, and a method for producing the covalent organic structure composition.

従来より、規則正しい細孔を形成することができる多孔質材料として、ホウ素含有化合物とアルコール類またはアルデヒド類の縮合物を熱処理して得られる共有結合性有機構造体が提案されている(特許文献1参照)。   Conventionally, as a porous material capable of forming regular pores, a covalent organic structure obtained by heat-treating a condensate of a boron-containing compound and an alcohol or aldehyde has been proposed (Patent Document 1). reference).

特開2017−155120号公報JP 2017-155120 A

このような多孔質材料は、規則正しく、かつ、大きい比表面積を利用して、燃料貯蔵材料、温室効果ガスの分離・貯蔵材料、水質浄化材料として期待されている。しかし、上記従来のホウ素を含有した共有結合性有機構造体の場合、熱処理によって酸化ホウ素を生じることが懸念され、このような酸化ホウ素は、多孔質材料の空隙を閉じてしまうこととなり、熱処理前後で比表面積が大きく変化してしまうこととなり、良好な多孔質材料が得られない。   Such a porous material is expected as a fuel storage material, a greenhouse gas separation / storage material, and a water purification material by using a regular and large specific surface area. However, in the case of the conventional boron-containing covalent organic structure described above, there is a concern that boron oxide may be generated by the heat treatment, and such boron oxide will close the voids of the porous material, and before and after the heat treatment. As a result, the specific surface area changes greatly, and a good porous material cannot be obtained.

また、上記従来の共有結合性有機構造体は、空隙に水分を吸着させた場合、加水分解されてしまうことがあり、その後に水分を脱着させたり、再度、水分を吸着させたりして反復利用することができなくなることが懸念される。また、加熱、光照射などの外的作用を加えたりしても、当該共有結合性有機構造体自体が色変化するようなことはなく、これらの外的作用を認識することはできなかった。   In addition, the above-mentioned conventional covalent organic structure may be hydrolyzed when moisture is adsorbed in the voids, and then desorb the water or adsorb the water again to repeatedly use the organic structure. There is a concern that you will not be able to do so. In addition, even when an external action such as heating or light irradiation was applied, the covalent organic structure itself did not change color, and these external actions could not be recognized.

本発明は、係る実情に鑑みてなされたものであって、外的作用により変色するスイッチング現象を起こすことができる共有結合性有機構造体、共有結合性有機構造体組成物およびその製造方法を提供することを目的としている。   The present invention has been made in view of the above circumstances, and provides a covalent organic structure, a covalent organic structure composition, and a method of manufacturing the same, which are capable of causing a switching phenomenon that changes color by an external action. It is intended to be.

上記課題を解決するための本発明に係る共有結合性有機構造体は、下記式(A)からなるものである。   A covalent organic structure according to the present invention for solving the above-mentioned problems is represented by the following formula (A).

上記共有結合性有機構造体は、下記式(B)からなるものであってもよい。   The above-mentioned covalent organic structure may have the following formula (B).

上記共有結合性有機構造体は、下記式(C)からなるものであってもよい。   The covalent organic structure may be represented by the following formula (C).

上記課題を解決するための本発明に係る共有結合性有機構造体組成物は、式(A)の共有結合性有機構造体と、式(B)の共有結合性有機構造体と、式(C)の共有結合性有機構造体とからなる共有結合性有機構造体組成物であって、光や熱の作用により平衡状態が変化するものである。   In order to solve the above-mentioned problems, a covalent organic structure composition according to the present invention includes a covalent organic structure of the formula (A), a covalent organic structure of the formula (B), and a compound of the formula (C) ), Wherein the equilibrium state is changed by the action of light or heat.

上記共有結合性有機構造体組成物は、式(A)の共有結合性有機構造体および式(B)の共有結合性有機構造体からなる共有結合性有機構造体組成物と、式(C)の共有結合性有機構造体および式(B)の共有結合性有機構造体からなる共有結合性有機構造体組成物との間において、水分の有無により平衡状態が変化するものであってもよい。   The above-mentioned covalent organic structure composition comprises a covalent organic structure composition comprising a covalent organic structure of the formula (A) and a covalent organic structure of the formula (B); The equilibrium state may be changed depending on the presence or absence of water between the covalent organic structure of formula (1) and the covalent organic structure composition comprising the covalent organic structure of formula (B).

上記共有結合性有機構造体組成物は、平衡状態が変化して変色するもであってもよい。   The covalent organic structure composition may change its equilibrium state and change color.

上記課題を解決するための本発明に係る共有結合性有機構造体組成物の製造方法は、下記2ヒドロキシ1,3,5−ベンゼントリカルボキシアルデヒド(以下、HBTAという)と、1,4−ジアミノベンゼン(以下、DABという)とを、1,4−ジオキサンの溶媒に加えた後、加熱反応させることによって得られるものである。   In order to solve the above-mentioned problems, a method for producing a covalent organic structure composition according to the present invention comprises the following 2-hydroxy-1,3,5-benzenetricarboxaldehyde (hereinafter, referred to as HBTA) and 1,4-diamino. It is obtained by adding benzene (hereinafter, referred to as DAB) to a solvent of 1,4-dioxane and subjecting it to a heating reaction.

上記式(A)、式(B)、式(C)に示す共有結合性有機構造体は、それぞれ異性体であって、図1に示すように、3種類が混合された共有結合性有機構造体組成物の形で製造することができる。   The covalent organic structures represented by the above formulas (A), (B) and (C) are isomers, respectively, and as shown in FIG. It can be manufactured in the form of a body composition.

このうち、式(A)に示すエノールフォームの共有結合性有機構造体は、式(B)に示すシスケトフォームの共有結合性有機構造体から吸熱する、または、式(C)に示すトランスケトフォームの共有結合性有機構造体を加熱することによって得ることができる。式(B)に示すシスケトフォームの共有結合性有機構造体は、式(A)に示すエノールフォームの共有結合性有機構造体を加熱する、または、式(C)に示すトランスケトフォームの共有結合性有機構造体が発光することによって得ることができる。式(C)に示すトランスケトフォームの共有結合性有機構造体は、式(A)に示す共有結合性有機構造体が吸光する、または、式(B)に示すシスケトフォームの共有結合性有機構造体が吸光することによって得ることができる。   Among these, the covalent organic structure of the enol foam represented by the formula (A) absorbs heat from the covalent organic structure of the cisketoform represented by the formula (B), or the transketoform represented by the formula (C) Can be obtained by heating the covalent organic structure. The covalent organic structure of the cisketo form represented by the formula (B) is obtained by heating the covalent organic structure of the enol form represented by the formula (A) or the covalent bond of the transketo form represented by the formula (C). It can be obtained by emitting light from the conductive organic structure. The covalent organic structure of the transketoform represented by the formula (C) is obtained by absorption of the covalent organic structure represented by the formula (A) or the covalent organic structure of the cisketoform represented by the formula (B) It can be obtained by light absorption by the body.

このように、上記した3種類の異性体を構成する共有結合性有機構造体は、加熱、吸熱、発光、吸光といった熱および/または光の作用により変化可能な平衡状態を保って混合された共有結合性有機構造体組成物を構成している。   As described above, the covalent organic structures constituting the above three types of isomers are mixed while maintaining an equilibrium state that can be changed by the action of heat and / or light, such as heating, endothermic, luminescent, and light absorption. It constitutes the binding organic structure composition.

また、上記式(A)、式(B)、式(C)に示す共有結合性有機構造体は、それぞれ異性体であって、図2に示すように、式(A)に示すエノールフォームの共有結合性有機構造体および式(B)に示すシスケトフォームの共有結合性有機構造体からなる共有結合性有機構造体組成物と、式(C)に示すトランスケトフォームの共有結合性有機構造体および式(B)に示すシスケトフォームの共有結合性有機構造体からなる共有結合性有機構造体組成物との間で、水分の有無により平衡状態が変化する共有結合性有機構造体組成物の形で製造することができる。   Further, the covalent organic structures shown in the above formulas (A), (B) and (C) are isomers, respectively, and as shown in FIG. A covalent organic structure composition comprising a covalent organic structure and a cisketoform covalent organic structure of formula (B), and a transketoform covalent organic structure of formula (C) And the form of the covalent organic structure composition whose equilibrium changes depending on the presence or absence of moisture between the covalent organic structure composition and the covalent organic structure composition of the cisketo foam represented by the formula (B). Can be manufactured.

この際、図3(a)に示すように、水分が無い場合は、式(A)に示すエノールフォームの共有結合性有機構造体および式(B)に示すシスケトフォームの共有結合性有機構造体からなる共有結合性有機構造体組成物を構成し、赤褐色の色を呈する。また、図3(b)に示すように、水分を吸収した場合は、式(C)に示すトランスケトフォームの共有結合性有機構造体および式(B)に示すシスケトフォームの共有結合性有機構造体からなる共有結合性有機構造体組成物を構成し、黒色の色を呈する。   At this time, as shown in FIG. 3 (a), when there is no moisture, the covalent organic structure of the enol foam represented by the formula (A) and the covalent organic structure of the cisketo foam represented by the formula (B) And forms a reddish brown color. Further, as shown in FIG. 3 (b), when moisture is absorbed, the covalent organic structure of the transketoform represented by the formula (C) and the covalent organic structure of the cisketoform represented by the formula (B) are obtained. It constitutes a covalent organic structure composition consisting of a body and exhibits a black color.

このように、平衡状態の変化に伴って色の変化を生じるスイッチング現象を起こすので、上記した共有結合性有機構造体組成物は、高い比表面積を利用した材料としてだけでなく、このスイッチング現象を利用した各種材料として利用できる。したがって、例えば、可視可能なガス吸着センサ(水分吸着状態は黒、水分放出状態は赤褐色の粉末)を構成したり、樹脂に練り混ぜてガスバリア性の樹脂材料を構成したり、特定サイズのガスは吸着・透過させるが、ある特定以上の大きさのガスは通さない選択的ガス吸着を行うガス篩を構成したり、湿度によって変色する湿度計を構成したり、水分吸着剤(乾燥剤)として構成したりすることができる。また、水を加えると黒変し、アセトンを加えると赤褐色に変色するので、どの溶媒を吸着したのかを判断する(選択的溶媒分子の貯蓄を行う)材料として利用したりすることができる。さらに、シス型とトランス型との間の変化で細孔のサイズが大きくなったり小さくなったり変化するので、この異性体の変化による細孔のサイズ変化のスイッチング現象を利用して特定のガスをトラップしたり放出させたりする材料として利用したりすることができる。すなわち、細孔が大きい状態で特定のガスをトラップし、その後、細孔を小さく変化させてその構造を維持することで、特定のガスをトラップすることができる。また、細孔が大きい状態で特定のガスを吸着させた後、細孔を小さく変化させた状態を維持すると、細孔が小さくなり、吸着したガスがかなりの時間をかけないと細孔外に放出されなくなるので、これを利用してトラップした特定のガスの放出速度を制御する材料として利用したりすることができる。   As described above, since a switching phenomenon that causes a color change in accordance with a change in the equilibrium state occurs, the above-described covalent organic structure composition is not only a material using a high specific surface area, but also this switching phenomenon. It can be used as various materials used. Therefore, for example, a visible gas adsorption sensor (water adsorption state is black, water release state is red-brown powder), or a resin material having gas barrier properties by mixing with resin, Constructs a gas sieve that performs selective gas adsorption that adsorbs and permeates but does not allow gas of a certain size or larger to pass, configures a hygrometer that changes color depending on humidity, or configures as a moisture adsorbent (drying agent) Or you can. Further, when water is added, the color changes to black, and when acetone is added, the color changes to reddish brown, so that it can be used as a material for judging which solvent is adsorbed (selective storage of solvent molecules). Further, since the pore size changes depending on the change between the cis-form and the trans-form, the specific gas is utilized by utilizing the switching phenomenon of the pore size change due to the change of the isomer. It can be used as a trapping or releasing material. That is, a specific gas can be trapped by trapping a specific gas in a state where the pores are large, and then changing the pores to a small size and maintaining the structure. In addition, after a specific gas is adsorbed in a state where the pores are large, if the state in which the pores are changed to a small value is maintained, the pores become small, and the adsorbed gas cannot be taken out of the pores without taking a considerable time. Since it is no longer released, it can be used as a material for controlling the release rate of the trapped specific gas by using this.

上記共有結合性有機構造体組成物の製造方法において、合成工程での反応条件としては、上記したHBTAとDABとを、1,4−ジオキサンの溶媒に加えた後、加熱反応させることによって、共有結合を有する有機構造体組成物を構成することができるものであれば、特に限定されるものではなく、必要に応じて加熱、加圧、減圧、攪拌、冷却等の操作が行われる。これらは、複数の操作を組み合わせる場合も、段階的に行う場合も含む。共有結合性有機構造体組成物としては、格子状、六角形状等の規則性のある環状の構造体が連なった形状のものを形成するものであれば、特に限定されるものではなく、有機多孔体(COF:Covalent Organic Framework)の一般的な形状を形成するものは含まれる。例えば、50〜250℃程度の温度で、3〜100時間程度の反応を行うことによって形成される。温度は段階的に昇温および/または冷却する場合も含む。また、圧力は、段階的に加圧および/または減圧する場合も含む。   In the method for producing the covalent organic structure composition, the reaction conditions in the synthesis step are as follows. The HBTA and DAB are added to a solvent of 1,4-dioxane, and then heated to cause a reaction. The material is not particularly limited as long as it can constitute the organic structure composition having a bond, and operations such as heating, pressurizing, depressurizing, stirring, and cooling are performed as necessary. These include a case where a plurality of operations are combined and a case where the operations are performed stepwise. The covalent organic structure composition is not particularly limited as long as it forms a shape in which a cyclic structure having regularity such as a lattice or a hexagon is formed. Those that form the general shape of the body (COF: Covalent Organic Framework) are included. For example, it is formed by performing a reaction at a temperature of about 50 to 250 ° C. for about 3 to 100 hours. The temperature includes a case where the temperature is raised and / or cooled stepwise. The pressure also includes a case where the pressure is increased and / or reduced stepwise.

ただし、上記した各共有結合性有機構造体の異性体は、反応条件等によってバランスが異なるため、反応条件は適宜調整される。   However, the isomers of the above-described covalent organic structures have different balances depending on the reaction conditions and the like, so that the reaction conditions are appropriately adjusted.

本発明に係る共有結合性有機構造体組成物は、焼成して共有結合性有機構造体組成物焼成体(以下、単に焼成体という。)にしてから利用するものであってもよい。   The covalent organic structure composition according to the present invention may be used after firing to form a covalent organic structure composition fired body (hereinafter simply referred to as a fired body).

以上述べたように、本発明の共有結合性有機構造体によると、水分の存在の有無により平衡状態が変化して変色する共有結合性有機構造体組成物を構成したり、熱および/または光の作用により平衡状態が変化して変色する共有結合性有機構造体組成物を構成したりするので、比表面積が大きい多孔質材料としてのみならず、これらのスイッチング現象を利用した各種製品の原料として利用できる。   As described above, according to the covalent organic structure of the present invention, a covalent organic structure composition that changes its equilibrium state and changes its color depending on the presence or absence of moisture, or has heat and / or light Or the composition of the covalent organic structure, which changes color by changing the equilibrium state, not only as a porous material with a large specific surface area, but also as a raw material for various products utilizing these switching phenomena. Available.

本発明に係る共有結合性有機構造体組成物における各異性体の平衡状態と外的作用との関係を示す概略図である。FIG. 3 is a schematic diagram showing a relationship between an equilibrium state of each isomer and an external action in the covalent organic structure composition according to the present invention. 本発明に係る共有結合性有機構造体組成物における他の異性体の平衡状態と他の外的作用との関係を示す概略図である。FIG. 4 is a schematic diagram showing a relationship between an equilibrium state of another isomer and another external action in the covalent organic structure composition according to the present invention. 図2に係る共有結合性有機構造体組成物の平衡状態が変化した際の画像データであって、(a)は水分が無い場合、(b)は水分が有る場合の各状態を示す画像データである。2A and 2B are image data when the equilibrium state of the covalent organic structure composition according to FIG. 2 changes, wherein FIG. 2A shows image data showing each state when there is no moisture, and FIG. It is. 本発明に係る実施例1の共有結合性有機構造体組成物の電子顕微鏡写真を示す画像データである。5 is image data showing an electron micrograph of the covalent organic structure composition of Example 1 according to the present invention. 本発明に係る実施例1の共有結合性有機構造体組成物の粉末X線回折の回折データを示すグラフである。4 is a graph showing diffraction data of powder X-ray diffraction of the covalent organic structure composition of Example 1 according to the present invention. 本発明に係る実施例1の共有結合性有機構造体組成物の窒素吸着等温曲線を示すグラフである。4 is a graph showing a nitrogen adsorption isotherm of the covalent organic structure composition of Example 1 according to the present invention. 本発明に係る実施例1の共有結合性有機構造体組成物の水分の有無による色変化を確認する画像データである。4 is image data for confirming a color change of the covalent organic structure composition of Example 1 according to the present invention depending on the presence or absence of moisture.

以下、本発明に係る実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described.

[実施例1]
(粉末(合成材料))
下記式(1)で表される分子構造の2ヒドロキシ1,3,5−ベンゼントリカルボキシアルデヒド(以下、HBTAという)と、下記式(2)で表される分子構造の1,4−ジアミノベンゼン(以下、DABという)の2種類の粉末を使用した。
[Example 1]
(Powder (synthetic material))
2-hydroxy-1,3,5-benzenetricarboxaldehyde (hereinafter referred to as HBTA) having a molecular structure represented by the following formula (1) and 1,4-diaminobenzene having a molecular structure represented by the following formula (2) (Hereinafter referred to as DAB).

(触媒)
1,4−ジオキサンを溶媒として使用した。
(catalyst)
1,4-dioxane was used as a solvent.

(共有結合性有機構造体組成物の合成)
HBTA:0.048g、DAB:0.048g、1,4−ジオキサン:3mLを、50mL用水熱合成容器(HU−50:三愛科学株式会社製)内に入れたものを6セット作製した。その後、それら6セットの50mL用水熱合成容器(以下、水熱合成容器という)を30分間超音波分散させた後、120℃で72時間加熱して共有結合性有機構造体組成物の合成(脱水縮合による合成)を行った。合成後、上澄みを捨てて、新たに低水分アセトン800ミリリットルを加えて、10分程度50℃で加熱攪拌し、7日間放置した。7日後、上澄み液を回収し、粉末を120℃で20時間減圧下で乾燥させた。
このようにして得られた共有結合性有機構造体組成物は、赤褐色であった。
(Synthesis of Covalent Organic Structure Composition)
Six sets were prepared by placing 0.048 g of HBTA, 0.048 g of DAB, and 3 mL of 1,4-dioxane in a 50 mL hydrothermal synthesis vessel (HU-50: manufactured by San-ai Science Co., Ltd.). Thereafter, the six sets of 50 mL hydrothermal synthesis vessels (hereinafter referred to as hydrothermal synthesis vessels) are ultrasonically dispersed for 30 minutes, and then heated at 120 ° C. for 72 hours to synthesize (dehydrate) the covalent organic structure composition. Synthesis by condensation). After the synthesis, the supernatant was discarded, 800 ml of low-moisture acetone was newly added, and the mixture was heated and stirred at 50 ° C. for about 10 minutes and left for 7 days. After 7 days, the supernatant was collected and the powder was dried under reduced pressure at 120 ° C. for 20 hours.
The covalent organic structure composition thus obtained was reddish brown.

(電子顕微鏡写真)
上記で得られた共有結合性有機構造体組成物の電子顕微鏡写真を撮影した。
撮影条件は下記の通りである。結果を図4に示す。
測定機種:JSM-6010LA(日本電子株式会社製)
測定条件:加速電圧15kV、ワーキングディスタンス11mm、スポットサイズ30、測定倍率:1000倍、5000倍、10000倍
その結果、真球に近い複数の球体の集合体のような共有結合性有機構造体組成物が得られていることが確認できた。
(Electron micrograph)
An electron micrograph of the covalent organic structure composition obtained above was taken.
The photographing conditions are as follows. FIG. 4 shows the results.
Measurement model: JSM-6010LA (manufactured by JEOL Ltd.)
Measurement conditions: acceleration voltage 15 kV, working distance 11 mm, spot size 30, measurement magnification: 1000 ×, 5000 ×, 10000 × As a result, a covalent organic structure composition such as an aggregate of a plurality of spheres close to a true sphere Was confirmed to have been obtained.

(粉末X線回折)
上記で得られた共有結合性有機構造体組成物を赤褐色の状態および黒色の状態で、それぞれの粉末約0.02gを、サンプルホルダーに乗せて整地し、回折を行った。測定機種、測定条件などは下記の通りである。結果を図5に示す。
測定機種:X線回折装置RINT-Ultima+(株式会社リガク製)
測定条件:測定角度の範囲は2θ=2°〜40°
スキャンスピード4°/min
(Powder X-ray diffraction)
About 0.02 g of each powder of the covalent organic structure composition obtained above was placed in a sample holder in a reddish-brown state and a black state, and diffraction was performed. The measurement models and measurement conditions are as follows. FIG. 5 shows the results.
Measurement model: X-ray diffractometer RINT-Ultima + (manufactured by Rigaku Corporation)
Measurement conditions: The range of the measurement angle is 2θ = 2 ° to 40 °
Scan speed 4 ° / min

(窒素吸着測定(比表面積/細孔分布測定))
上記で得られた共有結合性有機構造体組成物を200℃で5時間減圧乾燥させ、室温雰囲気中で当該共有結合性有機構造体組成物に吸着した水分を脱着させて赤褐色にした後、当該共有結合性有機構造体組成物の粉末0.02gをサンプル管に入れ、液体窒素雰囲気下で比表面積/細孔分布測定装置(BELLSORP-miniII:マイクロトラックベル株式会社)
によって窒素吸着等温曲線を測定した。また、同装置の解析プログラム(I型(ISO9277
)BET自動解析)により比表面積を算出した。結果を図6に示す。
(Nitrogen adsorption measurement (specific surface area / pore distribution measurement))
The covalent organic structure composition obtained above is dried under reduced pressure at 200 ° C. for 5 hours, and the water adsorbed on the covalent organic structure composition is desorbed in a room temperature atmosphere to turn red-brown. 0.02 g of the powder of the covalent organic structure composition is placed in a sample tube, and the specific surface area / pore distribution measuring device (BELLSORP-miniII: Microtrack Bell Co., Ltd.) is placed in a liquid nitrogen atmosphere.
The nitrogen adsorption isotherm was measured by the method. In addition, the analysis program (type I (ISO9277
) BET automatic analysis) to calculate the specific surface area. FIG. 6 shows the results.

(水分の有無による考察)
このようにして得られた共有結合性有機構造体組成物を入れたガラスビンの蓋を開けたまま、室温環境の雰囲気下に放置しておいたところ、空気中の水分を吸湿して約10分程で黒色に変化した。
この黒色に変化した共有結合性有機構造体組成物が入ったガラスビンをヒーターにかけて90℃で加熱したところ、共有結合性有機構造体組成物は、元の赤褐色に戻り、加熱過程では、加熱によって放出された水分がガラスビンの上部に付着していた。この経過を図7に示す。
(Consideration based on the presence or absence of water)
The glass bottle containing the thus obtained covalent organic structure composition was left open in an atmosphere of a room temperature environment with the lid open, and it absorbed moisture in the air for about 10 minutes. The color changed to black.
When the glass bottle containing the covalent organic structure composition that turned black was heated at 90 ° C. with a heater, the covalent organic structure composition returned to the original reddish brown color and was released by heating in the heating process. The drained water adhered to the upper part of the glass bottle. This process is shown in FIG.

以上の結果から、本発明に係る共有結合性有機構造体組成物は、水分の有無により平衡状態が変化して可逆的に色が変化することが確認できた。また、990m2/gの高い比表面積が得られていることが確認できた。 From the above results, it was confirmed that the covalent organic structure composition according to the present invention changed the equilibrium state depending on the presence or absence of moisture and changed color reversibly. It was also confirmed that a high specific surface area of 990 m 2 / g was obtained.

なお、本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲に属する変形や変更は、全て本発明の範囲内のものである。   Note that the present invention can be embodied in various other forms without departing from the spirit or main characteristics thereof. Therefore, the above-described embodiment is merely an example in all aspects, and should not be construed as limiting. The scope of the present invention is defined by the claims, and is not limited by the text of the specification. Further, all modifications and changes belonging to the claims are within the scope of the present invention.

Claims (7)

下記式(A)からなることを特徴とする共有結合性有機構造体。
A covalent organic structure comprising the following formula (A):
下記式(B)からなることを特徴とする共有結合性有機構造体。
A covalent organic structure comprising the following formula (B):
下記式(C)からなることを特徴とする共有結合性有機構造体。
A covalent organic structure comprising the following formula (C):
式(A)の共有結合性有機構造体と、式(B)の共有結合性有機構造体と、式(C)の共有結合性有機構造体とからなる共有結合性有機構造体組成物であって、熱および/または光の作用により平衡状態が変化することを特徴とする共有結合性有機構造体組成物。   A covalent organic structure composition comprising a covalent organic structure of formula (A), a covalent organic structure of formula (B), and a covalent organic structure of formula (C). Wherein the equilibrium state is changed by the action of heat and / or light. 式(A)の共有結合性有機構造体および式(B)の共有結合性有機構造体からなる共有結合性有機構造体組成物と、式(C)の共有結合性有機構造体および式(B)の共有結合性有機構造体からなる共有結合性有機構造体組成物との間において、水分の有無により平衡状態が変化することを特徴とする共有結合性有機構造体組成物。   A covalent organic structure composition comprising a covalent organic structure of formula (A) and a covalent organic structure of formula (B); a covalent organic structure of formula (C); A covalent organic structure composition characterized in that an equilibrium state changes with the covalent organic structure composition comprising the covalent organic structure according to (1) depending on the presence or absence of water. 平衡状態が変化して変色する請求項4または5に記載の共有結合性有機構造体組成物。   The covalent organic structure composition according to claim 4 or 5, wherein the composition changes color by changing the equilibrium state. 請求項5に記載の共有結合性有機構造体組成物の製造方法であって、
2ヒドロキシ1,3,5−ベンゼントリカルボキシアルデヒドと、1,4−ジアミノベンゼンとを、1,4−ジオキサンの溶媒に加えた後、加熱反応させることによって得られる共有結合性有機構造体組成物の製造方法。
It is a manufacturing method of the covalent organic structure composition of Claim 5, Comprising:
Covalently bonding organic structure composition obtained by adding 2-hydroxy 1,3,5-benzenetricarboxaldehyde and 1,4-diaminobenzene to a solvent of 1,4-dioxane and then subjecting the mixture to a heating reaction. Manufacturing method.
JP2018171950A 2018-09-13 2018-09-13 Covalent organic framework composition and method for producing the same Active JP6991116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018171950A JP6991116B2 (en) 2018-09-13 2018-09-13 Covalent organic framework composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018171950A JP6991116B2 (en) 2018-09-13 2018-09-13 Covalent organic framework composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2020041112A true JP2020041112A (en) 2020-03-19
JP6991116B2 JP6991116B2 (en) 2022-01-12

Family

ID=69797667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018171950A Active JP6991116B2 (en) 2018-09-13 2018-09-13 Covalent organic framework composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP6991116B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114106276A (en) * 2021-12-07 2022-03-01 中国科学院兰州化学物理研究所 Preparation method of shape-controllable covalent organic framework material
CN116178646A (en) * 2022-12-11 2023-05-30 三峡大学 Preparation method of high-entropy covalent organic framework compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332347A (en) * 2001-05-09 2002-11-22 Toshio Masuda Salicylideneaniline polymer, its production method, and multicolor luminescent material using the polymer
CN104927048A (en) * 2015-05-22 2015-09-23 上海交通大学 Microwave auxiliary preparation method of keto-enamine covalently linked organic framework
US20150266885A1 (en) * 2012-10-12 2015-09-24 Council Of Scientific & Industrial Research Porous crystalline frameworks, process for the preparation therof and their mechanical delamination to covalent organic nanosheets (cons)
JP2020040857A (en) * 2018-09-12 2020-03-19 星和電機株式会社 Fired body of covalent organic framework and producing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332347A (en) * 2001-05-09 2002-11-22 Toshio Masuda Salicylideneaniline polymer, its production method, and multicolor luminescent material using the polymer
US20150266885A1 (en) * 2012-10-12 2015-09-24 Council Of Scientific & Industrial Research Porous crystalline frameworks, process for the preparation therof and their mechanical delamination to covalent organic nanosheets (cons)
CN104927048A (en) * 2015-05-22 2015-09-23 上海交通大学 Microwave auxiliary preparation method of keto-enamine covalently linked organic framework
JP2020040857A (en) * 2018-09-12 2020-03-19 星和電機株式会社 Fired body of covalent organic framework and producing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAN-YUAN DING ET AL.: "Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki-Miyaura Coupling Rea", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 133, JPN7021004973, 2011, pages 19816 - 19822, ISSN: 0004649229 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114106276A (en) * 2021-12-07 2022-03-01 中国科学院兰州化学物理研究所 Preparation method of shape-controllable covalent organic framework material
CN116178646A (en) * 2022-12-11 2023-05-30 三峡大学 Preparation method of high-entropy covalent organic framework compound
CN116178646B (en) * 2022-12-11 2024-01-16 三峡大学 Preparation method of high-entropy covalent organic framework compound

Also Published As

Publication number Publication date
JP6991116B2 (en) 2022-01-12

Similar Documents

Publication Publication Date Title
Minelli et al. Characterization of novel geopolymer–zeolite composites as solid adsorbents for CO2 capture
JP4134031B2 (en) Method for the synthesis of mesoporous zeolite
JP4576616B2 (en) Amorphous aluminum silicate with excellent moisture absorption and desorption characteristics in medium humidity range
Liu et al. Engineering surface functional groups on mesoporous silica: towards a humidity-resistant hydrophobic adsorbent
CN104475019B (en) Graphene-porous ceramics composite adsorbing material and preparation method and application
Zhang et al. Synthesis and thermal properties of a capric acid-modified expanded vermiculite phase change material
CN112844326B (en) Magneto-thermal composite material, preparation method and application thereof
JP2020041112A (en) Covalent organic structure, covalent organic structure composition and method for producing covalent organic structure composition
Zhao et al. Efficient porous carbon-supported MgO catalysts for the transesterification of dimethyl carbonate with diethyl carbonate
CN109761216A (en) A kind of general, method that porous carbon materials are prepared based on organic zinc salt
CN103586011B (en) Sintering-free forming and coating method of MIL-101 material with ultrahigh specific surface area
Zhang et al. Inorganic composite adsorbent CaCl 2/MWNT for water vapor adsorption
CN107827108A (en) A kind of pole micro-pore carbon material and preparation method thereof
JP2016097359A (en) Temperature-responsive moisture absorption material and its manufacturing method
JP2012066157A (en) Regenerative moisture absorbent
JP6426213B2 (en) Amorphous aluminum silicate and method for producing the same
CN107840334A (en) A kind of atomic hole porous carbon materials and preparation method thereof
CN107311590B (en) diatomite molding composition with moisture absorption and deodorization functions and preparation method thereof
KR100803938B1 (en) Mesoporous silica material for adsorbent of water in low temperature
Onyestyák et al. Novel biomorphous zeolite/carbon composite having honeycomb structure
Chen et al. Hierarchical diffusion pathways into VOC adsorption films by direct ink writing and ammonium carbonate treatment
Zhu et al. Synthesis and characterization of mesoporous alumina, and adsorption performance for n-butane
Fardjaoui et al. Modulation of inorganic matrices for functional nanoarchitectures fabrication: The simultaneous effect of moisture and temperature in the preparation of metakaolin based geopolymers
JP2001219059A (en) Moisture conditioning/deodorizing material using siliceous shale
JPH02153818A (en) Production of zeolite moldings

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R150 Certificate of patent or registration of utility model

Ref document number: 6991116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150