JP2020038790A - Organic electronic device and substrate for organic electronic device - Google Patents

Organic electronic device and substrate for organic electronic device Download PDF

Info

Publication number
JP2020038790A
JP2020038790A JP2018165275A JP2018165275A JP2020038790A JP 2020038790 A JP2020038790 A JP 2020038790A JP 2018165275 A JP2018165275 A JP 2018165275A JP 2018165275 A JP2018165275 A JP 2018165275A JP 2020038790 A JP2020038790 A JP 2020038790A
Authority
JP
Japan
Prior art keywords
organic electronic
electronic device
insulating layer
substrate
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018165275A
Other languages
Japanese (ja)
Other versions
JP7066578B2 (en
Inventor
範洋 慈幸
Norihiro Jiko
範洋 慈幸
陽子 村田
Yoko Murata
陽子 村田
水野 雅夫
Masao Mizuno
雅夫 水野
山本 哲也
Tetsuya Yamamoto
哲也 山本
平野 康雄
Yasuo Hirano
康雄 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018165275A priority Critical patent/JP7066578B2/en
Priority to PCT/JP2019/029850 priority patent/WO2020049898A1/en
Publication of JP2020038790A publication Critical patent/JP2020038790A/en
Application granted granted Critical
Publication of JP7066578B2 publication Critical patent/JP7066578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide an organic electronic device which has a superior manufacture yield by suppressing element short-circuiting, and a substrate for the organic electronic device.SOLUTION: The present invention relates to an organic electronic device comprising a substrate and an organic electronic element laminated on one surface of the substrate, in which the substrate has a metal layer and an insulation layer laminated on at least one surface side of the metal layer and consisting principally of synthetic resin, and the area ratio of a peak at a wave number of 910 cmof an absorption spectrum, obtained by measuring the insulation layer by a Fourier transformation infrared absorption spectrophotometer, to a peak at a wave number of 1,730 cmis 0.017 or less.SELECTED DRAWING: Figure 1

Description

本発明は、有機電子デバイス及び有機電子デバイス用基板に関する。   The present invention relates to an organic electronic device and a substrate for an organic electronic device.

有機半導体を利用した有機電子デバイスは、柔軟で薄型化でき、さらに省電力であるため有機EL(エレクトロルミネッセンス)照明や太陽電池等への応用が期待されている。有機EL照明は、少なくとも有機半導体を含む発光層が必要であり、さらに発光効率を高めるため電荷注入層や電荷輸送層等を備える。また、太陽電池は、電子供与体、電子受容体等を備える。   2. Description of the Related Art Organic electronic devices using organic semiconductors are expected to be applied to organic EL (electroluminescence) lighting, solar cells, and the like because they are flexible and thin and can save power. The organic EL lighting requires a light emitting layer containing at least an organic semiconductor, and further includes a charge injection layer, a charge transport layer, and the like in order to increase luminous efficiency. Further, the solar cell includes an electron donor, an electron acceptor, and the like.

ところで、有機半導体は電荷移動度が低いため、極薄い膜状で利用されることが多く、数十nmから数μmの厚さの層に形成されることが一般的である。そのため、有機半導体を積層する基板(下地材料)に凹凸があると素子短絡の原因になり、製造歩留りを低下させる。   By the way, organic semiconductors are often used in the form of an extremely thin film due to low charge mobility, and are generally formed in a layer having a thickness of several tens nm to several μm. For this reason, if the substrate (base material) on which the organic semiconductor is laminated has irregularities, it causes a short circuit of the element, and lowers the production yield.

そこで、基板の異常突起を平坦化するため、ポリッシングを行ったガラス基板上に膜厚0.1μm〜数十μmの樹脂塗膜を塗装する有機EL素子が提案されている(特開2000−21563号公報参照)。しかしながら、ガラス基板を用いた有機電子デバイスは、曲面への設置に適さず、用途が限定される。   Therefore, in order to flatten abnormal protrusions on the substrate, an organic EL element has been proposed in which a resin film having a thickness of 0.1 μm to several tens μm is applied on a polished glass substrate (Japanese Patent Application Laid-Open No. 2000-21563). Reference). However, an organic electronic device using a glass substrate is not suitable for installation on a curved surface, and its use is limited.

これに対し、可撓性を有する金属板又は金属箔を基材とし、有機系樹脂からなる膜厚1〜40μm、表面粗さRa≦0.5μm、Rmax≦1.5μmの絶縁層を基材表面に形成する有機EL素子用絶縁基板が提案されている(特開2002−25763号公報参照)。しかしながら、本発明者らの検証によれば、有機EL素子形成前に絶縁層の表面粗さを制御しても、有機EL素子形成中に上記絶縁層の表面粗さが増大し、素子短絡が発生する場合があり、有機EL素子形成前の絶縁層の表面粗さを規定するのみでは基板の平坦性の担保が不十分であることがわかった。   On the other hand, an insulating layer having a thickness of 1 to 40 μm, a surface roughness Ra ≦ 0.5 μm, and a surface roughness Rmax ≦ 1.5 μm made of an organic resin is used as a base material. An organic EL element insulating substrate formed on the surface has been proposed (see JP-A-2002-25763). However, according to the verification of the present inventors, even if the surface roughness of the insulating layer is controlled before forming the organic EL element, the surface roughness of the insulating layer increases during the formation of the organic EL element, and a short circuit of the element occurs. In some cases, it was found that ensuring the surface roughness of the insulating layer before forming the organic EL element was not enough to ensure the flatness of the substrate.

特開2000−21563号公報JP-A-2000-21563 特開2002−25763号公報JP-A-2002-25763

本発明は、上述のような事情に基づいてなされたものであり、素子短絡の発生を抑制することで製造歩留りに優れる有機電子デバイス及び有機電子デバイス用基板の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an organic electronic device and an organic electronic device substrate that are excellent in manufacturing yield by suppressing occurrence of element short circuit.

本発明者らが鋭意検討したところ、絶縁層の主成分である合成樹脂に含まれる未硬化の炭素−炭素二重結合の割合が高い(硬化度が低い)場合、有機EL素子形成中に絶縁層の表面粗さが増大し、素子短絡が発生し易くなるとの結論に達した。そして、本発明者らは、絶縁層中の炭素−炭素二重結合の割合、つまり硬化度を特定する指標として、フーリエ変換赤外線吸収分光光度計で測定して得られる吸収スペクトルの波数1730cm−1にあるピークに対する波数910cm−1にあるピークの面積比が有効であることを見出し、本発明を完成させた。 The present inventors have conducted intensive studies and found that when the ratio of uncured carbon-carbon double bonds contained in the synthetic resin as the main component of the insulating layer is high (the degree of curing is low), the insulating during the formation of the organic EL element is performed. It has been concluded that the surface roughness of the layer is increased and the short circuit of the element is likely to occur. The present inventors have determined that the ratio of the carbon-carbon double bond in the insulating layer, that is, as an index for specifying the degree of curing, is a wavenumber of 1730 cm −1 of an absorption spectrum obtained by measurement with a Fourier transform infrared absorption spectrophotometer. The present inventors have found that the area ratio of the peak at the wave number of 910 cm -1 to the peak at the above is effective, and completed the present invention.

すなわち、上記課題を解決するためになされた発明は、基板及びこの基板の一方の面に積層される有機電子素子を備える有機電子デバイスであって、上記基板が、金属層と、この金属層の少なくとも一方の面側に積層され、合成樹脂を主成分とする絶縁層とを有し、上記絶縁層をフーリエ変換赤外線吸収分光光度計で測定して得られる吸収スペクトルの波数1730cm−1にあるピークに対する波数910cm−1にあるピークの面積比が0.017以下である。 That is, the invention made in order to solve the above-mentioned problem is an organic electronic device including a substrate and an organic electronic element laminated on one surface of the substrate, wherein the substrate has a metal layer and a metal layer. A peak at 1730 cm -1 of an absorption spectrum obtained by measuring the insulating layer with a Fourier transform infrared absorption spectrophotometer, the insulating layer being laminated on at least one surface side and having an insulating layer mainly composed of a synthetic resin. peak area ratio in the wave number 910 cm -1 for is 0.017 or less.

当該有機電子デバイスは、基板の絶縁層のフーリエ変換赤外線吸収分光光度計で測定して得られる上記面積比を上記上限以下とするので、絶縁層の主成分である合成樹脂に含まれる未硬化の炭素−炭素二重結合の割合が低く、絶縁層が適度に硬化している。このため、有機EL素子形成中に絶縁層の表面粗さが増大することによる素子短絡が発生し難い。従って、当該有機電子デバイスは、製造歩留りに優れる。   The organic electronic device, since the area ratio obtained by measuring with a Fourier transform infrared absorption spectrophotometer of the insulating layer of the substrate is not more than the upper limit, uncured contained in the synthetic resin that is the main component of the insulating layer. The ratio of carbon-carbon double bonds is low, and the insulating layer is appropriately cured. For this reason, element short-circuiting due to an increase in the surface roughness of the insulating layer during the formation of the organic EL element is unlikely to occur. Therefore, the organic electronic device is excellent in production yield.

上記面積比としては、0.003以上が好ましい。このように上記面積比を0.003以上とすることで、絶縁層の可撓性を確保し易く、当該有機電子デバイスを容易に曲面へ設置できる。   The area ratio is preferably 0.003 or more. When the area ratio is 0.003 or more, the flexibility of the insulating layer can be easily secured, and the organic electronic device can be easily installed on a curved surface.

上記合成樹脂が熱硬化性アクリル樹脂又は熱硬化性不飽和ポリエステルの硬化物を含むとよい。このように上記合成樹脂に熱硬化性アクリル樹脂又は熱硬化性不飽和ポリエステルの硬化物を含めることで、有機EL素子形成中に絶縁層の表面粗さが増大することを抑止しつつ、絶縁層をより容易に形成できる。   It is preferable that the synthetic resin contains a cured product of a thermosetting acrylic resin or a thermosetting unsaturated polyester. As described above, by including a cured product of a thermosetting acrylic resin or a thermosetting unsaturated polyester in the synthetic resin, it is possible to prevent the surface roughness of the insulating layer from increasing during the formation of the organic EL element and to increase the insulating layer. Can be formed more easily.

上記絶縁層が熱硬化剤を用いて硬化された合成樹脂を含むとよい。このように上記絶縁層に熱硬化剤を用いて硬化された合成樹脂を含めることで、絶縁層の硬化の制御性が高められ、上記面積比の制御がし易い。   The insulating layer may include a synthetic resin cured using a thermosetting agent. By including a synthetic resin cured by using a thermosetting agent in the insulating layer, the controllability of the curing of the insulating layer is enhanced, and the area ratio can be easily controlled.

上記絶縁層が顔料を含有するとよい。このように上記絶縁層に顔料を含有させることで、樹脂の収縮の抑制等により表面の平坦化を促進できる。   The insulating layer preferably contains a pigment. By including the pigment in the insulating layer, flattening of the surface can be promoted by suppressing shrinkage of the resin and the like.

上記顔料が無機顔料であるとよく、顔料の平均粒径としては300nm以下が好ましく、絶縁層における顔料の含有量としては50質量%以下が好ましい。このように平均粒径が300nm以下の無機顔料を50質量%以下含有させることで、絶縁層表面への突起の発生を抑制できるので、表面の平坦化をより促進できる。   The pigment is preferably an inorganic pigment. The average particle size of the pigment is preferably 300 nm or less, and the content of the pigment in the insulating layer is preferably 50% by mass or less. By containing 50% by mass or less of the inorganic pigment having an average particle size of 300 nm or less in this manner, the occurrence of protrusions on the surface of the insulating layer can be suppressed, and the surface flattening can be further promoted.

上記金属層が鉄、チタン、又はこれらの合金を主成分とするとよい。このように金属層の主成分をこれらの金属とすることで、強度や耐性に優れる基材を容易かつ確実に形成できる。   The metal layer may be mainly composed of iron, titanium, or an alloy thereof. By using these metals as the main components of the metal layer, a substrate having excellent strength and durability can be easily and reliably formed.

当該有機電子デバイスは、有機EL照明又は有機太陽電池に用いられるとよい。当該有機電子デバイスは、上述のように製造歩留りに優れるため、有機EL照明又は有機太陽電池に好適に用いることができる。   The organic electronic device may be used for organic EL lighting or an organic solar cell. Since the organic electronic device has excellent production yield as described above, it can be suitably used for organic EL lighting or organic solar cells.

上記課題を解決するためになされた別の発明は、金属層と、この金属層の少なくとも一方の面側に積層され、合成樹脂を主成分とする絶縁層とを有し、上記絶縁層をフーリエ変換赤外線吸収分光光度計で測定して得られる吸収スペクトルの波数1730cm−1にあるピークに対する波数910cm−1にあるピークの面積比が0.017以下である有機電子デバイス用基板である。 Another invention made to solve the above problem has a metal layer, and an insulating layer laminated on at least one surface side of the metal layer and containing a synthetic resin as a main component. peak area ratio in the wave number 910 cm -1 to a peak at the wave number 1730 cm -1 of the absorption spectrum obtained by measuring with transform infrared absorption spectrometer is an organic electronic device substrate is 0.017 or less.

当該有機電子デバイス用基板は、絶縁層のフーリエ変換赤外線吸収分光光度計で測定して得られる上記面積比を上記上限以下とするので、絶縁層の主成分である合成樹脂に含まれる未硬化の炭素−炭素二重結合の割合が低い。このため、当該有機電子デバイス用基板に有機EL素子を形成する際に、絶縁層の表面粗さが増大することによる素子短絡が発生し難い。従って、当該有機電子デバイス用基板を用いた有機電子デバイスは、製造歩留りに優れる。   The organic electronic device substrate, since the area ratio of the insulating layer obtained by measuring with a Fourier transform infrared absorption spectrophotometer is not more than the upper limit, the uncured non-cured resin contained in the main component of the insulating layer. Low percentage of carbon-carbon double bonds. For this reason, when forming an organic EL element on the organic electronic device substrate, an element short circuit due to an increase in the surface roughness of the insulating layer hardly occurs. Therefore, an organic electronic device using the organic electronic device substrate has an excellent manufacturing yield.

ここで、「主成分」とは最も多く含有される成分であり、例えば50質量%以上含まれる成分をいう。また、フーリエ変換赤外線吸収分光光度計で測定して得られる吸収スペクトルの「ピーク」は、特定の原子間結合に起因するものであるが、絶縁層の種類等によりそのピークの波数シフトが生じる場合がある。このため、「波数1730cm−1にあるピーク」及び「波数910cm−1にあるピーク」には、それぞれ±10cm−1以内で波数シフトしたピークを含むものとする。 Here, the “main component” is a component contained most, for example, a component contained at 50% by mass or more. The `` peak '' of the absorption spectrum obtained by measuring with a Fourier transform infrared absorption spectrophotometer is due to a specific interatomic bond. There is. Thus, the "peak in the wave number 1730 cm -1" and "peak at the wave number 910 cm -1" shall each containing a peak wavenumber shifts within ± 10 cm -1.

また、「平均粒径」とは、一般的な粒度分布計によって粒子の粒度分布を測定し、その測定結果に基づいて算出される小粒径側からの体積積算値50%の粒度(D50)を意味する。かかる粒度分布は、粒子に光を当てることにより生じる回折や散乱の強度パターンによって測定することができ、この様な粒度分布計としては、例えば日機装社製の「マイクロトラック9220FRA」や「マイクロトラックHRA」等が例示される。   The “average particle size” is a particle size distribution (D50) of 50% of the volume integrated value from the small particle size calculated based on the measurement result of the particle size distribution of the particles by a general particle size distribution meter. Means Such a particle size distribution can be measured by a diffraction or scattering intensity pattern generated by irradiating the particles with light. Examples of such a particle size distribution meter include “Microtrack 9220FRA” and “Microtrack HRA” manufactured by Nikkiso Co., Ltd. And the like.

以上説明したように、本発明の有機電子デバイス及び有機電子デバイス用基板は、基板に有機EL素子を形成する際の素子短絡の発生を抑制することで製造歩留りに優れる。   As described above, the organic electronic device and the substrate for an organic electronic device of the present invention are excellent in the production yield by suppressing the occurrence of the element short circuit when forming the organic EL element on the substrate.

本発明の一実施形態の有機電子デバイスを示す模式的断面図である。1 is a schematic sectional view illustrating an organic electronic device according to an embodiment of the present invention. 図1とは異なる本発明の一実施形態の有機電子デバイスを示す模式的断面図である。FIG. 2 is a schematic cross-sectional view illustrating an organic electronic device according to an embodiment of the present invention, which is different from FIG. 1. 図1及び図2とは異なる本発明の一実施形態の有機電子デバイスを示す模式的断面図である。FIG. 3 is a schematic cross-sectional view illustrating an organic electronic device according to an embodiment of the present invention, which is different from FIGS. 1 and 2. フーリエ変換赤外線吸収分光光度計で測定して得られる吸収スペクトルの例を示すグラフである。It is a graph which shows the example of the absorption spectrum obtained by measuring with a Fourier-transform infrared absorption spectrophotometer. 光学顕微鏡により観察した実施例1の有機電子デバイス用基板表面の写真である。3 is a photograph of the surface of the substrate for an organic electronic device of Example 1 observed with an optical microscope. 光学顕微鏡により観察した比較例1の有機電子デバイス用基板表面の写真である。5 is a photograph of the surface of the substrate for an organic electronic device of Comparative Example 1 observed by an optical microscope. ATFにより観察した実施例3の有機電子デバイス用基板表面の写真である。9 is a photograph of the surface of the substrate for an organic electronic device of Example 3 observed by ATF. ATFにより観察した比較例1の有機電子デバイス用基板表面の写真である。4 is a photograph of the surface of the substrate for an organic electronic device of Comparative Example 1 observed by ATF.

以下、適宜図面を参照しつつ本発明の有機電子デバイス及び有機電子デバイス用基板の実施形態を詳説する。   Hereinafter, embodiments of an organic electronic device and a substrate for an organic electronic device of the present invention will be described in detail with reference to the drawings as appropriate.

図1に示す有機電子デバイスは、基板1及びこの基板1の一方の面に積層される有機電子素子2を備える。   The organic electronic device shown in FIG. 1 includes a substrate 1 and an organic electronic element 2 laminated on one surface of the substrate 1.

<基板>
基板1は、本発明の一実施形態である有機電子デバイス用基板であって、金属層1aと、この金属層1aの少なくとも一方の面(有機電子素子積層面)側に積層される絶縁層1bとを有する。
<Substrate>
The substrate 1 is a substrate for an organic electronic device according to an embodiment of the present invention, and includes a metal layer 1a and an insulating layer 1b laminated on at least one surface (the organic electronic element laminated surface) of the metal layer 1a. And

(金属層)
金属層1aは、金属を主成分とする層であり、この金属としては、鉄、チタン、又はこれらの合金が用いられる。具体的には、金属層1aとしては、冷延鋼板、溶融純亜鉛めっき鋼板(GI)、合金化溶融Zn−Feめっき鋼板(GA)、合金化溶融Zn−5%Alめっき鋼板(GF)、電気純亜鉛めっき鋼板(EG)、電気Zn−Niめっき鋼板、チタン板、ガルバリウム鋼板(登録商標)等の金属板を使用できる。
(Metal layer)
The metal layer 1a is a layer containing a metal as a main component, and as the metal, iron, titanium, or an alloy thereof is used. Specifically, as the metal layer 1a, a cold-rolled steel sheet, a hot-dip galvanized steel sheet (GI), an alloyed hot-dip Zn-Fe coated steel sheet (GA), an alloyed hot-dip Zn-5% Al-plated steel sheet (GF), Metal plates such as electric pure galvanized steel plate (EG), electric Zn-Ni plated steel plate, titanium plate, and galvalume steel plate (registered trademark) can be used.

上記金属板としては、ノンクロメート処理をしたものが好ましいが、クロメート処理をしたもの又は無処理のものも使用可能である。   The metal plate is preferably a non-chromate-treated one, but a chromate-treated one or an untreated one can also be used.

図2に示すように、金属層1aの有機電子素子積層面側、つまり金属層1aと絶縁層1bとの間にリン酸系化成処理により形成された反応層1cが積層されていてもよい。特に亜鉛めっき系の金属板の場合、コロイダルシリカとリン酸アルミニウム塩化合物とを含む酸性水溶液によって化成処理を施して形成された反応層1cが好ましい。コロイダルシリカとリン酸アルミニウム塩化合物とを含む酸性水性液を化成処理液として使用すると、酸性水性液によって亜鉛系めっき層の表面がエッチングされる。これと同時に、亜鉛系めっき層の表面にリン酸アルミニウムの中でも難溶性の(水又はアルカリ性水溶液に溶け難い)AlPOやAl(HPO主体の反応層1cが形成される。この反応層1cにシリカ微粒子が沈着して取り込まれることでリン酸アルミニウムとシリカ微粒子とが複合一体化する。また、エッチングにより粗面化された亜鉛系めっき層との間で緻密な反応層1cが形成され、この反応層1cの上に形成される絶縁層1bとの結合も緻密で強固なものとなる。また、上記酸性水溶液にポリアクリル酸等の水溶性樹脂を含有させておくと、得られる反応層1c中のシリカ微粒子の沈着状態を一層強固なものとすることができる。 As shown in FIG. 2, a reaction layer 1c formed by a phosphoric acid-based chemical conversion treatment may be laminated on the metal layer 1a side of the organic electronic element lamination surface, that is, between the metal layer 1a and the insulating layer 1b. In particular, in the case of a galvanized metal plate, the reaction layer 1c formed by performing a chemical conversion treatment with an acidic aqueous solution containing colloidal silica and an aluminum phosphate compound is preferable. When an acidic aqueous solution containing colloidal silica and an aluminum phosphate compound is used as a chemical conversion treatment solution, the surface of the zinc-based plating layer is etched by the acidic aqueous solution. At the same time, a reaction layer 1c mainly composed of AlPO 4 or Al 2 (HPO 4 ) 3 which is hardly soluble in aluminum phosphate (slightly soluble in water or an alkaline aqueous solution) is formed on the surface of the zinc-based plating layer. By depositing and incorporating silica fine particles into the reaction layer 1c, aluminum phosphate and silica fine particles are combined and integrated. Further, a dense reaction layer 1c is formed between the zinc-based plating layer roughened by etching, and the bonding with the insulating layer 1b formed on the reaction layer 1c is also dense and strong. . When the acidic aqueous solution contains a water-soluble resin such as polyacrylic acid, the deposition state of the silica fine particles in the obtained reaction layer 1c can be further strengthened.

また、図3に示すように金属層1aの両面に防錆層1dを設けてもよい。このように防錆層1dを設けることで、基板1の耐久性が向上し、長期間の利用が可能になる。防錆層1dを金属層1aの有機電子素子積層面側に設ける場合、反応層1cはこの防錆層1dの有機電子素子積層面側に積層される。なお、防錆層1dは金属層1aの片面、特に有機電子素子積層面側のみに積層してもよい。   Further, as shown in FIG. 3, rust prevention layers 1d may be provided on both surfaces of the metal layer 1a. By providing the rust prevention layer 1d in this way, the durability of the substrate 1 is improved, and the substrate 1 can be used for a long time. When the rust-proof layer 1d is provided on the organic electronic element laminated surface side of the metal layer 1a, the reaction layer 1c is laminated on the organic electronic element laminated surface side of the rust-proof layer 1d. The rust prevention layer 1d may be laminated on one side of the metal layer 1a, especially on only the organic electronic element laminated surface side.

金属層1aの平均厚さは特に限定されないが、0.3mm以上2.0mm以下とすることができる。   The average thickness of the metal layer 1a is not particularly limited, but can be 0.3 mm or more and 2.0 mm or less.

(絶縁層)
絶縁層1bは、絶縁性を有する層であり、合成樹脂を主成分とする。この絶縁層1bは熱硬化性樹脂又は光硬化性樹脂等の硬化物や熱可塑性樹脂とできる。なお、上記熱可塑性樹脂は架橋されていてもよい。
(Insulating layer)
The insulating layer 1b is a layer having an insulating property, and has a synthetic resin as a main component. The insulating layer 1b can be a cured product such as a thermosetting resin or a photocurable resin or a thermoplastic resin. In addition, the said thermoplastic resin may be crosslinked.

これらの中でも熱硬化性樹脂の硬化物が好ましい。このように絶縁層1bの主成分を熱硬化性樹脂の硬化物とすることで、絶縁層1b形成時の硬化の制御性が高められ、絶縁層1bをより容易に形成できる。上記熱硬化性樹脂としては、特に限定されるものではなく、例えばアクリル樹脂、ポリエステル、フェノール樹脂、エポキシ樹脂、ユリア樹脂、メラミン樹脂、ジアリルフタレート樹脂等を挙げることができるが、絶縁層1bの合成樹脂としては熱硬化性アクリル樹脂及び熱硬化性不飽和ポリエステルの硬化物を含むことが好ましい。このように絶縁層1bの合成樹脂に熱硬化性アクリル樹脂又は熱硬化性不飽和ポリエステルの硬化物を含めることで、有機EL素子形成中に絶縁層1bの表面粗さが増大することを抑止しつつ、絶縁層1bをより容易に形成できる。   Among these, a cured product of a thermosetting resin is preferable. By using the thermosetting resin as the main component of the insulating layer 1b as described above, the controllability of curing when forming the insulating layer 1b is enhanced, and the insulating layer 1b can be formed more easily. The thermosetting resin is not particularly limited, and examples thereof include an acrylic resin, a polyester, a phenol resin, an epoxy resin, a urea resin, a melamine resin, and a diallyl phthalate resin. The resin preferably contains a cured product of a thermosetting acrylic resin and a thermosetting unsaturated polyester. As described above, by including the cured product of the thermosetting acrylic resin or the thermosetting unsaturated polyester in the synthetic resin of the insulating layer 1b, it is possible to prevent the surface roughness of the insulating layer 1b from increasing during the formation of the organic EL element. In addition, the insulating layer 1b can be formed more easily.

上記熱硬化性アクリル樹脂は、アクリル酸エステル又はメタクリル酸エステルの重合反応によって得られるものである。上記熱硬化性アクリル樹脂の原料としては、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロへキシル、メタクリル酸エチルへキシル、メタクリル酸ラウリル、アクリル酸メチル、アクリル酸エチル等が挙げられる。また、上記熱硬化性アクリル樹脂としては、種々の市販品を好適に用いることができ、例えば久保孝ペイント株式会社製の4timesレベルコート等を挙げることができる。   The thermosetting acrylic resin is obtained by a polymerization reaction of an acrylic ester or a methacrylic ester. Examples of the raw material of the thermosetting acrylic resin include, for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, ethyl hexyl methacrylate, lauryl methacrylate, methyl acrylate, ethyl acrylate, and the like. Can be Further, as the thermosetting acrylic resin, various commercially available products can be suitably used, and for example, 4-times level coat manufactured by Takashi Kubo Paint Co., Ltd. can be mentioned.

上記熱硬化性不飽和ポリエステルは、二塩基酸等の多塩基酸と多価アルコール類との縮合反応によって得られるものである。上記熱硬化性不飽和ポリエステルの原料として用いられる多塩基酸としては、例えばマレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸等のα,β−不飽和二塩基酸等が挙げられる。上記熱硬化性不飽和ポリエステルの原料として用いられる多価アルコール類としては、例えばエチレングリコール、ジエチレングリコール、ポリエチレングリコール等のエチレングリコール類、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール等のプロピレングリコール類等が挙げられる。また、上記熱硬化性不飽和ポリエステルとしては、種々の市販品を好適に用いることができ、例えば例えばバイロン(登録商標)23CS、バイロン(登録商標)29CS、バイロン(登録商標)29XS、バイロン(登録商標)20SS、バイロン(登録商標)29SS(以上、東洋紡社製)等を挙げることができる。   The thermosetting unsaturated polyester is obtained by a condensation reaction between a polybasic acid such as a dibasic acid and a polyhydric alcohol. Examples of the polybasic acid used as a raw material of the thermosetting unsaturated polyester include α, β-unsaturated dibasic acids such as maleic acid, maleic anhydride, fumaric acid, itaconic acid and itaconic anhydride. . Examples of the polyhydric alcohols used as a raw material of the thermosetting unsaturated polyester include ethylene glycols such as ethylene glycol, diethylene glycol and polyethylene glycol, and propylene glycols such as propylene glycol, dipropylene glycol and polypropylene glycol. Can be Various commercially available products can be suitably used as the thermosetting unsaturated polyester. For example, Byron (registered trademark) 23CS, Byron (registered trademark) 29CS, Byron (registered trademark) 29XS, and Byron (registered trademark) Trademark) 20SS, Byron (registered trademark) 29SS (all manufactured by Toyobo Co., Ltd.) and the like.

絶縁層1bにおける合成樹脂の含有量の下限としては、50.0質量%が好ましく、60.0質量%がより好ましい。一方、合成樹脂の含有量の上限としては80.0質量%が好ましく、56.3質量%がより好ましい。このような合成樹脂の含有量とすることで、基板1に好適な絶縁層1bを形成できる。なお、合成樹脂の含有量は、絶縁層1b中の固形分(合成樹脂、熱硬化剤、顔料等)の合計質量に対する合成樹脂の含有量の比率を指す。後述の熱硬化剤等の含有量も同様である。   The lower limit of the content of the synthetic resin in the insulating layer 1b is preferably 50.0% by mass, and more preferably 60.0% by mass. On the other hand, the upper limit of the content of the synthetic resin is preferably 80.0% by mass, and more preferably 56.3% by mass. With such a content of the synthetic resin, the insulating layer 1b suitable for the substrate 1 can be formed. Note that the content of the synthetic resin indicates a ratio of the content of the synthetic resin to the total mass of the solid components (synthetic resin, thermosetting agent, pigment, and the like) in the insulating layer 1b. The same applies to the content of a later-described thermosetting agent and the like.

絶縁層1bは、熱硬化剤を含有させて硬化させることが好ましい。つまり、絶縁層1bは熱硬化剤を用いて硬化された合成樹脂を含むことが好ましい。絶縁層1bは有機溶媒には溶解しないものとされるが、成形時に用いる溶媒が層内に浸入して膨潤等の変質が生じるおそれがある。これを抑制するため、所定量の熱硬化剤を含有させることによって、絶縁層1bの硬化度(架橋密度)を高めることが有効となる。また、熱硬化剤により硬化度が制御し易くなるため、後述するフーリエ変換赤外線吸収分光光度計で測定して得られる吸収スペクトルの波数1730cm−1にあるピークに対する波数910cm−1にあるピークの面積比の制御がし易い。 It is preferable that the insulating layer 1b be cured by containing a thermosetting agent. That is, the insulating layer 1b preferably contains a synthetic resin cured using a thermosetting agent. Although the insulating layer 1b does not dissolve in the organic solvent, there is a possibility that the solvent used during molding may enter the layer and deteriorate such as swelling. In order to suppress this, it is effective to increase the degree of curing (crosslink density) of the insulating layer 1b by including a predetermined amount of a thermosetting agent. Further, it becomes easy to control the degree of curing by heat curing agent, the area of the peak in the wave number 910 cm -1 to a peak at the wave number 1730 cm -1 of the absorption spectrum obtained by measuring Fourier transform infrared absorption spectrometer to be described later The ratio can be easily controlled.

上記熱硬化剤としては、特に限定されるものではないが、熱硬化性樹脂との相溶性がよく、熱硬化性樹脂を架橋させることができ、さらに液安定性のよいものが好ましい。   The thermosetting agent is not particularly limited, but is preferably one that has good compatibility with the thermosetting resin, can crosslink the thermosetting resin, and has good liquid stability.

硬化前の絶縁層1bにおける熱硬化剤の含有量の下限としては、10.0質量%が好ましく、20.0質量%がより好ましい。一方、熱硬化剤の含有量の上限としては、50.0質量%が好ましい。このような熱硬化剤の含有量とすることで、絶縁層1bを容易かつ確実に形成できる。   As a minimum of content of a thermosetting agent in insulating layer 1b before hardening, 10.0 mass% is preferred and 20.0 mass% is more preferred. On the other hand, the upper limit of the content of the thermosetting agent is preferably 50.0% by mass. With such a content of the thermosetting agent, the insulating layer 1b can be easily and reliably formed.

硬化前の絶縁層1bにおける合成樹脂に対する熱硬化剤の質量比の下限としては、0.3が好ましく、0.4がより好ましく、0.65がさらに好ましい。一方、上記質量比の上限としては、1.0が好ましい。上記質量比が上記下限未満であると、熱硬化剤の効果を十分に得られないおそれがある。逆に、上記質量比が上記上限を超えると、硬化が急激に起こり絶縁層1bにヒビや割れが発生するおそれや、熱硬化剤が過剰となり製造コストが上昇するおそれがある。   The lower limit of the mass ratio of the thermosetting agent to the synthetic resin in the insulating layer 1b before curing is preferably 0.3, more preferably 0.4, and even more preferably 0.65. On the other hand, the upper limit of the mass ratio is preferably 1.0. When the mass ratio is less than the lower limit, the effect of the thermosetting agent may not be sufficiently obtained. Conversely, if the mass ratio exceeds the upper limit, curing may occur rapidly, causing cracks or cracks in the insulating layer 1b, or an excessive amount of the thermosetting agent may increase the production cost.

また、絶縁層1bは顔料を含有することが好ましい。合成樹脂を主成分とする絶縁層1bでは、硬化時に体積収縮が生じたり溶剤揮発ガス成分の影響で表面形状が大きくうねったり、凹凸ができたりする場合がある。そこで、顔料を絶縁層1bに含有させることで、合成樹脂の収縮の抑制や溶剤ガス脱離を促進することができるため表面形状を平坦化することができる。一方で、顔料の含有により、表面粗さが大きくなって表面に突起が多く形成され得る。この突起の形成を抑制するため、添加する顔料の種類、粒径、含有量を調整するとよい。   Further, the insulating layer 1b preferably contains a pigment. In the insulating layer 1b containing a synthetic resin as a main component, volume shrinkage may occur at the time of curing, or the surface shape may be largely undulated or uneven due to the influence of a solvent volatile gas component. Therefore, by containing the pigment in the insulating layer 1b, the shrinkage of the synthetic resin can be suppressed and the solvent gas desorption can be promoted, so that the surface shape can be flattened. On the other hand, due to the inclusion of the pigment, the surface roughness increases, and many protrusions can be formed on the surface. In order to suppress the formation of the protrusions, the type, particle size, and content of the pigment to be added may be adjusted.

上記顔料としては、有機顔料及び無機顔料が挙げられるが、本発明における顔料添加の目的は表面形状の制御であるため、無機顔料を用いることが好ましい。上記無機顔料としては、酸化チタン、炭酸カルシウム、酸化亜鉛、硫酸バリウム、リトポン、鉛白等の白色顔料、カーボンブラック、鉄黒等の黒色顔料などを挙げることができる。   Examples of the pigment include an organic pigment and an inorganic pigment. However, since the purpose of adding the pigment in the present invention is to control the surface shape, it is preferable to use an inorganic pigment. Examples of the inorganic pigment include white pigments such as titanium oxide, calcium carbonate, zinc oxide, barium sulfate, lithopone, and lead white, and black pigments such as carbon black and iron black.

上記顔料の平均粒径としては、100nm以上300nm以下が好ましい。また、絶縁層1bにおける上記顔料の含有量としては、30質量%以上50質量%以下が好ましい。上記顔料の平均粒径が上記下限未満である場合、又は上記顔料の含有量が上記下限未満である場合、顔料添加による絶縁層1bの表面の平坦化効果が不十分となるおそれがある。逆に、上記顔料の平均粒径が上記上限を超える場合、又は上記顔料の含有量が上記上限を超える場合、顔料の含有に起因して絶縁層1bの面粗さが大きくなるおそれがある。   The average particle size of the pigment is preferably 100 nm or more and 300 nm or less. The content of the pigment in the insulating layer 1b is preferably 30% by mass or more and 50% by mass or less. If the average particle size of the pigment is less than the lower limit, or if the content of the pigment is less than the lower limit, the effect of adding the pigment to the surface of the insulating layer 1b may not be sufficient. Conversely, when the average particle size of the pigment exceeds the upper limit or when the content of the pigment exceeds the upper limit, the surface roughness of the insulating layer 1b may be increased due to the pigment.

上記顔料としては、上述した好ましい平均粒径を満足すれば、市販品を使用しても良く、例えばテイカ社製のJR−806(平均粒径250nm)、石原産業社製のタイペーク(登録商標)CR−50(平均粒径250nm)、R930(平均粒径250nm)等が挙げられる。   As the pigment, a commercially available product may be used as long as it satisfies the preferable average particle size described above. For example, JR-806 (average particle size: 250 nm) manufactured by Teica Co., Ltd .; CR-50 (average particle diameter 250 nm), R930 (average particle diameter 250 nm) and the like.

なお、顔料の偏析を抑制するために、絶縁層1bには顔料分散剤を含有させてもよい。好適な顔料分散剤は、水溶性アクリル樹脂、水溶性スチレンアクリル樹脂、ノニオン系界面活性剤、又はこれらの組合せである。   In order to suppress segregation of the pigment, the insulating layer 1b may contain a pigment dispersant. Suitable pigment dispersants are water-soluble acrylic resins, water-soluble styrene acrylic resins, nonionic surfactants, or combinations thereof.

絶縁層1bの平均厚さの下限としては、5μmが好ましく、10μmがより好ましい。一方、絶縁層1bの平均厚さの上限としては、30μmが好ましく、20μmがより好ましい。絶縁層1bの平均厚さが上記下限未満であると、基板1の絶縁性が不十分となるおそれがある。逆に、絶縁層1bの平均厚さが上記上限を超えると、基板1の可撓性が不十分となるおそれがある。   The lower limit of the average thickness of the insulating layer 1b is preferably 5 μm, more preferably 10 μm. On the other hand, the upper limit of the average thickness of the insulating layer 1b is preferably 30 μm, more preferably 20 μm. When the average thickness of the insulating layer 1b is less than the above lower limit, the insulating property of the substrate 1 may be insufficient. Conversely, if the average thickness of the insulating layer 1b exceeds the above upper limit, the flexibility of the substrate 1 may be insufficient.

絶縁層1bの抵抗率としては、1010Ωcm以上が好ましい。なお、「抵抗率」とは、JIS−K−7194(1994年)に準拠して測定される値である。 The resistivity of the insulating layer 1b is preferably 10 10 Ωcm or more. The “resistivity” is a value measured according to JIS-K-7194 (1994).

(ピーク面積比)
当該有機電子デバイスでは、電子デバイス用基板1の絶縁層1bのフーリエ変換赤外線吸収分光光度計で測定して得られる吸収スペクトルの波数1730cm−1にあるピークに対する波数910cm−1にあるピークの面積比(以下、単に「ピーク面積比」ともいう)を所定値以下とする。
(Peak area ratio)
In the organic electronic device, the peak area ratio in the wave number 910 cm -1 to a peak at the wave number 1730 cm -1 of the absorption spectrum obtained by measuring Fourier transform infrared absorption spectrophotometer of the insulating layer 1b of the substrate for the electronic device 1 (Hereinafter, also simply referred to as “peak area ratio”) is set to a predetermined value or less.

ここで、「ピークの面積」とは、図4に示すように、例えば吸収スペクトルの波数1730cm−1にあるピークを例に説明すると、フーリエ変換赤外線吸収分光光度計で測定して得られる吸収スペクトルの波数1730cm−1にあるピークを形成する波形と、ベースラインBとにより囲まれる斜線部の面積をいう。 Here, as shown in FIG. 4, the term “peak area” refers to, for example, a peak at a wave number of 1730 cm −1 of an absorption spectrum, and an absorption spectrum obtained by measurement with a Fourier transform infrared absorption spectrophotometer. Of the waveform forming a peak at the wave number of 1730 cm -1 and the area of the hatched portion surrounded by the base line B.

上述のピークのうち、波数910cm−1にあるピークは、合成樹脂の化学構造において、枝別れのないオレフィンCH基の面外変角振動に由来し、このピークの面積は、絶縁層1bの構成成分のうち、硬化反応に関与する未硬化の炭素−炭素二重結合の総量に相当する。一方、波数1730cm−1にあるピークは、エステル結合(CとOとの二重結合)の伸縮振動に由来し、硬化反応の進行に対して不変である。つまり、波数1730cm−1にあるピークの面積は、絶縁層1bの総量に相当する。従って、上記面積ピーク比は、絶縁層1bにおける合成樹脂の硬化度を示す指標として機能し、小さいほど硬化が進行していることを意味する。 Among the above-mentioned peaks, the peak at the wave number of 910 cm −1 is derived from out-of-plane bending vibration of an unbranched olefin CH group in the chemical structure of the synthetic resin, and the area of this peak depends on the configuration of the insulating layer 1 b. Of the components, it corresponds to the total amount of uncured carbon-carbon double bonds involved in the curing reaction. On the other hand, the peak at the wave number of 1730 cm −1 is derived from the stretching vibration of the ester bond (double bond between C and O) and is invariant to the progress of the curing reaction. That is, the area of the peak at the wave number of 1730 cm -1 corresponds to the total amount of the insulating layer 1b. Therefore, the area peak ratio functions as an index indicating the degree of curing of the synthetic resin in the insulating layer 1b, and the smaller the value, the more the curing progresses.

上記ピークの面積比の上限としては、0.017であり、0.010がより好ましい。一方、上記ピークの面積比の下限としては、0.003が好ましく、0.005がより好ましい。上記ピークの面積比が上記上限を超えると、合成樹脂の硬化が不十分であるため、有機電子素子2の形成中に変形が発生し、絶縁層1bの表面粗さが増大するおそれがある。逆に、上記ピークの面積比が上記下限未満であると、合成樹脂の硬化が進み過ぎるため基板1の可撓性が低下するおそれや、合成樹脂が過度に収縮するため絶縁層1bに割れが発生するおそれがある。   The upper limit of the peak area ratio is 0.017, more preferably 0.010. On the other hand, the lower limit of the peak area ratio is preferably 0.003, and more preferably 0.005. If the area ratio of the peaks exceeds the upper limit, the synthetic resin is insufficiently cured, so that deformation may occur during the formation of the organic electronic element 2 and the surface roughness of the insulating layer 1b may increase. Conversely, if the peak area ratio is less than the lower limit, the curing of the synthetic resin proceeds excessively, and the flexibility of the substrate 1 may be reduced, or the insulating layer 1b may be cracked due to excessive shrinkage of the synthetic resin. May occur.

<有機電子素子>
有機電子素子2としては、例えば有機EL素子、太陽電池素子、液晶表示素子、薄膜トランジスタ、タッチパネル素子、電子ペーパー素子等が挙げられる。
<Organic electronic device>
Examples of the organic electronic element 2 include an organic EL element, a solar cell element, a liquid crystal display element, a thin film transistor, a touch panel element, and an electronic paper element.

上記有機EL素子としては、例えば陽極と有機発光層と陰極とがこの順で積層されたものが挙げられる。上記有機EL素子は、これ以外の電子注入層、電子輸送層、ホール輸送層等が適時積層されてもよい。上記有機EL素子を構成する要素は、公知のものを用いることができる。上記陽極としては、例えば酸化インジウムスズ(ITO)を用いた透明電極を用いることができる。上記陰極としては、例えば金属や、酸化インジウム亜鉛(IZO)を用いた電極を用いることができる。上記有機発光層の主成分としては、ナフチル置換ジアミン誘導体(α−NPD)を用いることができる。   Examples of the organic EL element include an element in which an anode, an organic light emitting layer, and a cathode are laminated in this order. In the organic EL element, an electron injection layer, an electron transport layer, a hole transport layer, and the like other than the above may be appropriately laminated. Known elements can be used as the elements constituting the organic EL element. As the anode, for example, a transparent electrode using indium tin oxide (ITO) can be used. As the cathode, for example, an electrode using metal or indium zinc oxide (IZO) can be used. As a main component of the organic light emitting layer, a naphthyl-substituted diamine derivative (α-NPD) can be used.

有機電子素子2として上述のような有機EL素子を用いることで、当該有機電子デバイスは有機EL照明に好適に用いることができる。   By using the organic EL element as described above as the organic electronic element 2, the organic electronic device can be suitably used for organic EL lighting.

また、有機電子素子2として、例えば陽極、電子供与体、電子受容体、陰極がこの順に積層された太陽電池素子を用いることで、当該有機電子デバイスは有機太陽電池に好適に用いることができる。   Further, by using a solar cell element in which an anode, an electron donor, an electron acceptor, and a cathode are stacked in this order, for example, as the organic electronic element 2, the organic electronic device can be suitably used for an organic solar cell.

<製造方法>
当該有機電子デバイスは、例えば基板1を用意する工程と、基板1の一方の面に有機電子素子2を積層する工程とを備える製造方法により得ることができる。
<Production method>
The organic electronic device can be obtained by a manufacturing method including, for example, a step of preparing the substrate 1 and a step of laminating the organic electronic element 2 on one surface of the substrate 1.

(基板用意工程)
本工程では、金属層1aの有機電子素子積層面側への絶縁層形成用組成物の塗布及び加熱により、絶縁層1bを積層し、基板1を形成する。この絶縁層形成用組成物は液状であることが好ましい。つまり、絶縁層形成用組成物は溶媒を含むことが好ましい。
(Substrate preparation process)
In this step, the insulating layer 1b is laminated by applying and heating the composition for forming an insulating layer on the side of the metal layer 1a on which the organic electronic element is laminated, and the substrate 1 is formed. The composition for forming an insulating layer is preferably in a liquid state. That is, the composition for forming an insulating layer preferably contains a solvent.

絶縁層形成用組成物に用いる溶媒は、絶縁層形成用組成物が含有すべき各成分を溶解又は分散させ得るものであれば、特に制限はない。上記溶媒としては、例えばメタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、エチレングリコール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;トルエン、ベンゼン、キシレン、ソルベッソ(登録商標)100(エクソンモービル社製)、ソルベッソ(登録商標)150(エクソンモービル社製)等の芳香族炭化水素類;ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類;酢酸エチル、酢酸ブチル等のエステル類などが挙げられる。絶縁層形成用組成物は、こういった溶媒を用いて固形分を調整することができる。   The solvent used for the composition for forming an insulating layer is not particularly limited as long as it can dissolve or disperse each component to be contained in the composition for forming an insulating layer. Examples of the solvent include alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, and ethylene glycol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; toluene, benzene, xylene, Aromatic hydrocarbons such as Solvesso (registered trademark) 100 (manufactured by ExxonMobil) and Solvesso (registered trademark) 150 (manufactured by ExxonMobil); aliphatic hydrocarbons such as hexane, heptane, and octane; ethyl acetate, acetic acid And esters such as butyl. The solid content of the insulating layer forming composition can be adjusted using such a solvent.

絶縁層形成用組成物の固形分濃度の下限としては、20質量%が好ましく、40質量%がより好ましい。一方、絶縁層形成用組成物の固形分濃度の上限としては、80質量%が好ましく、70質量%がより好ましい。固形分濃度が上記下限未満である、すなわち溶媒が多過ぎると、加熱時に溶媒が大量に蒸発し、その結果、金属層1aの表面近傍において気化した溶媒による対流が発生し易くなり、絶縁層1bの表面の平滑性が損なわれるおそれがある。逆に、固形分濃度が上記上限を超えると、絶縁層形成用組成物の塗布が困難になるおそれがある。   As a minimum of solid concentration of a constituent for insulating layer formation, 20 mass% is preferred and 40 mass% is more preferred. On the other hand, the upper limit of the solid concentration of the composition for forming an insulating layer is preferably 80% by mass, and more preferably 70% by mass. If the solid concentration is less than the lower limit, that is, if the amount of the solvent is too large, a large amount of the solvent evaporates at the time of heating. The surface smoothness may be impaired. Conversely, if the solid content exceeds the upper limit, application of the composition for forming an insulating layer may be difficult.

絶縁層形成用組成物の塗布及び加熱(乾燥並びに焼付)方法は、特に制限されず、既知の方法を適宜採用することができる。上記塗布方法としては、例えばバーコーター法、ロールコーター法、カーテンフローコーター法、スプレー法、スプレーリンガー法等を挙げることができ、これらの中でも、コスト等の観点からバーコーター法、ロールコーター法、及びスプレーリンガー法が好ましい。   The method for applying and heating (drying and baking) the composition for forming an insulating layer is not particularly limited, and a known method can be appropriately employed. Examples of the coating method include a bar coater method, a roll coater method, a curtain flow coater method, a spray method, a spray ringer method, and the like. Among these, from the viewpoint of cost and the like, a bar coater method, a roll coater method, And the spray ringer method are preferred.

絶縁層形成用組成物の加熱温度の下限としては、200℃が好ましく、210℃がより好ましい。一方、加熱温度の上限としては、250℃が好ましく、240℃がより好ましい。加熱温度が上記下限未満であると、絶縁層1bの強度が不十分となるおそれがある。逆に、加熱温度が上記上限を超えると、溶媒が激しく蒸発し、その結果絶縁層1bの表面の平滑性が損なわれるおそれがある。なお、加熱温度とは、到達板温(Peak Metal Temperature:PMT)を指す。   The lower limit of the heating temperature of the composition for forming an insulating layer is preferably 200 ° C, more preferably 210 ° C. On the other hand, the upper limit of the heating temperature is preferably 250 ° C, more preferably 240 ° C. If the heating temperature is lower than the above lower limit, the strength of the insulating layer 1b may be insufficient. Conversely, when the heating temperature exceeds the upper limit, the solvent evaporates violently, and as a result, the surface smoothness of the insulating layer 1b may be impaired. Note that the heating temperature refers to a peak metal temperature (PMT).

絶縁層形成用組成物の加熱時間の下限としては、3.0分間が好ましく、3.5分間がより好ましく、4.0分間がさらに好ましい。一方、絶縁層形成用組成物の加熱時間の上限としては、20分間が好ましく、15分間がより好ましく、10分間がさらに好ましい。絶縁層形成用組成物の加熱時間が上記下限未満であると、合成樹脂の硬化が不十分となり易く、有機電子素子2の形成中に変形が発生し、絶縁層1bの表面粗さが増大するおそれがある。逆に、絶縁層形成用組成物の加熱時間が上記上限を超えると、合成樹脂の硬化が進み過ぎるため基板1の可撓性が低下するおそれや、合成樹脂が過度に収縮するため絶縁層1bに割れが発生するおそれがある。なお、絶縁層形成用組成物を塗布して加熱した後、いったん室温まで戻った基板1を再度加熱することで合成樹脂の硬化を進めてもよい。この場合、絶縁層形成用組成物の加熱時間とは、絶縁層形成用組成物の塗布時の加熱時間も含めた総加熱時間を指す。   The lower limit of the heating time of the composition for forming an insulating layer is preferably 3.0 minutes, more preferably 3.5 minutes, and even more preferably 4.0 minutes. On the other hand, the upper limit of the heating time of the composition for forming an insulating layer is preferably 20 minutes, more preferably 15 minutes, and still more preferably 10 minutes. If the heating time of the composition for forming an insulating layer is less than the above lower limit, the curing of the synthetic resin is likely to be insufficient, and deformation occurs during the formation of the organic electronic element 2, and the surface roughness of the insulating layer 1b increases. There is a risk. Conversely, if the heating time of the composition for forming an insulating layer exceeds the above upper limit, the curing of the synthetic resin proceeds excessively, and the flexibility of the substrate 1 may be reduced, or the insulating layer 1b may be excessively shrunk by the synthetic resin. Cracks may occur. After the composition for forming an insulating layer is applied and heated, the substrate 1 that has once returned to room temperature may be heated again to advance the curing of the synthetic resin. In this case, the heating time of the insulating layer forming composition refers to the total heating time including the heating time at the time of applying the insulating layer forming composition.

合成樹脂の硬化度は、主に絶縁層形成用組成物の加熱温度及び加熱時間により決まる。従って、絶縁層形成用組成物の加熱温度及び加熱時間は、ピーク面積比が0.017以下となるように決定される。   The degree of curing of the synthetic resin is mainly determined by the heating temperature and the heating time of the composition for forming an insulating layer. Therefore, the heating temperature and the heating time of the composition for forming an insulating layer are determined so that the peak area ratio is 0.017 or less.

なお、上述のように、金属層1aに絶縁層形成用組成物を塗付する前に、反応層1cを形成してもよい。また、金属層1aの表面に防錆層1dを設けてもよい。   As described above, the reaction layer 1c may be formed before applying the composition for forming an insulating layer to the metal layer 1a. Further, a rust prevention layer 1d may be provided on the surface of the metal layer 1a.

また、平坦性を高めるため、基板1の有機電子素子積層面(絶縁層1bの表面)に研磨処理を施しても良い。研磨法としては、化学研磨(CMP)、電解研磨、機械研磨等が挙げられる。これらの中でも、微細な凹凸を除去する観点から、研磨剤に例えばシリカ、アルミナ、セリア、チタニア、ジルコニア、ゲルマニア等を用いた化学電解研磨法が好ましい。   Further, in order to enhance the flatness, the surface of the substrate 1 on which the organic electronic elements are laminated (the surface of the insulating layer 1b) may be subjected to polishing. Examples of the polishing method include chemical polishing (CMP), electrolytic polishing, mechanical polishing, and the like. Among these, from the viewpoint of removing fine irregularities, a chemical electrolytic polishing method using, for example, silica, alumina, ceria, titania, zirconia, germania, or the like as an abrasive is preferable.

(有機電子素子積層工程)
本工程では、基板1の有機電子素子積層面に有機電子素子2を積層する。この積層方法としては、従来公知の方法を使用することができる。
(Organic electronic device lamination process)
In this step, the organic electronic element 2 is laminated on the organic electronic element laminated surface of the substrate 1. As the lamination method, a conventionally known method can be used.

<利点>
当該有機電子デバイス及び当該電子デバイス用基板は、基板1の絶縁層1bのフーリエ変換赤外線吸収分光光度計で測定して得られる吸収スペクトルの波数1730cm−1にあるピークに対する波数910cm−1にあるピークの面積比を0.017以下とするので、絶縁層1bの主成分である合成樹脂に含まれる未硬化の炭素−炭素二重結合の割合が低く、絶縁層1bが適度に硬化している。このため、有機EL素子形成中に絶縁層1bの表面粗さが増大することによる素子短絡が発生し難い。従って、当該電子デバイス用基板を用いた当該有機電子デバイスは、製造歩留りに優れる。
<Advantages>
The organic electronic device and the substrate for the electronic device, a peak in the wave number 910 cm -1 to a peak at the wave number 1730 cm -1 of the absorption spectrum obtained by measuring Fourier transform infrared absorption spectrophotometer of the insulating layer 1b of the substrate 1 Is 0.017 or less, the ratio of uncured carbon-carbon double bonds contained in the synthetic resin that is the main component of the insulating layer 1b is low, and the insulating layer 1b is appropriately cured. For this reason, element short-circuiting due to an increase in the surface roughness of the insulating layer 1b during the formation of the organic EL element is unlikely to occur. Therefore, the organic electronic device using the electronic device substrate has an excellent manufacturing yield.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.

(実施例1)
金属層として、板厚0.8mm、金属板両面における各面当たりの亜鉛めっき付着量が20g/mの電気亜鉛めっき金属板(EG)を用意した。この金属板の一方の面に、熱硬化性アクリル樹脂塗料(久保孝ペイント株式会社製の4timesレベルコート、標準タイプ/クリア)をスプレー塗布し、到達板温(PMT)が220℃となるように2分間加熱し、平均厚さが15μmの絶縁層を形成し、基板を得た。
(Example 1)
As a metal layer, an electrogalvanized metal plate (EG) having a plate thickness of 0.8 mm and a zinc plating adhesion amount of 20 g / m 2 on both surfaces of the metal plate was prepared. On one surface of this metal plate, a thermosetting acrylic resin paint (4times level coat, standard type / clear, manufactured by Takashi Kubo Paint Co., Ltd.) is applied by spraying so that the ultimate plate temperature (PMT) becomes 220 ° C. Heating was performed for 2 minutes to form an insulating layer having an average thickness of 15 μm, thereby obtaining a substrate.

後硬化として、上記基板をさらに240℃の大気中で1.5分間の条件で加熱し、絶縁層の硬化を施した。従って、総加熱時間は3.5分間である。   As post-curing, the substrate was further heated in the atmosphere at 240 ° C. for 1.5 minutes to cure the insulating layer. Therefore, the total heating time is 3.5 minutes.

次に、上記基板に対し化学機械研磨行うことによって、絶縁層の表面を平滑にした。具体的には、研磨装置の基板取り付け用吸着パッドを貼り付けたホルダーに基板をセットし、絶縁層を下側にして研磨装置の定盤に取り付けた研磨パッドの上にセットした。研磨剤として粒状のアルミナ(平均粒径は約100nm)を用い、圧力65g/cm、1周当たりの回転距離を1m、基板と定盤との各回転速度を50rpmとし、10分間化学機械研磨を行った。なお、研磨深さは、研磨量換算で6μmとした。 Next, the surface of the insulating layer was smoothed by subjecting the substrate to chemical mechanical polishing. Specifically, the substrate was set on a holder of the polishing apparatus to which a suction pad for mounting a substrate was attached, and was set on a polishing pad mounted on a surface plate of the polishing apparatus with the insulating layer facing downward. Granular alumina (average particle size: about 100 nm) is used as an abrasive, pressure is 65 g / cm 2 , rotation speed per rotation is 1 m, each rotation speed between the substrate and the platen is 50 rpm, and chemical mechanical polishing is performed for 10 minutes. Was done. The polishing depth was 6 μm in terms of polishing amount.

このようにして実施例1の有機電子デバイス用基板を得た。   Thus, a substrate for an organic electronic device of Example 1 was obtained.

(実施例2)
後硬化の条件を230℃の大気中で3分間とした以外は実施例1と同様にして実施例2の有機電子デバイス用基板を得た。
(Example 2)
A substrate for an organic electronic device of Example 2 was obtained in the same manner as in Example 1, except that the post-curing conditions were set to 3 minutes in the air at 230 ° C.

(実施例3)
後硬化の条件を220℃の大気中で6分間とした以外は実施例1と同様にして実施例3の有機電子デバイス用基板を得た。
(Example 3)
A substrate for an organic electronic device of Example 3 was obtained in the same manner as in Example 1 except that the post-curing conditions were set to 6 minutes in the air at 220 ° C.

(比較例1)
後硬化を行わなかった以外は実施例1と同様にして比較例1の有機電子デバイス用基板を得た。
(Comparative Example 1)
A substrate for an organic electronic device of Comparative Example 1 was obtained in the same manner as in Example 1 except that post-curing was not performed.

<ピーク面積比>
実施例1〜実施例3及び比較例1の有機電子デバイス用基板に対し、フーリエ変換赤外線吸収分光光度計で測定して得られる吸収スペクトルの波数1730cm−1にあるピークに対する波数910cm−1にあるピークの面積比を求めた。
<Peak area ratio>
To the organic electronic device substrate of Example 1 to Example 3 and Comparative Example 1, in the wave number 910 cm -1 to a peak at the wave number 1730 cm -1 of the absorption spectrum obtained by measuring Fourier transform infrared absorption spectrometer The area ratio of the peak was determined.

フーリエ変換赤外線吸収分光光度計としては、Varian社製の3100FT−IR/600UMAマイクロスコープ赤外顕微鏡システムを用い、顕微ATRモード、分解能4cm−1で測定した。結果を表1に示す。 As a Fourier transform infrared absorption spectrophotometer, a 3100FT-IR / 600UMA microscope infrared microscope system manufactured by Varian was used, and measurement was performed in a micro ATR mode at a resolution of 4 cm -1 . Table 1 shows the results.

Figure 2020038790
Figure 2020038790

表1で、参考例1は、使用した熱硬化性アクリル樹脂塗料を測定した結果である。   In Table 1, Reference Example 1 is the result of measuring the thermosetting acrylic resin paint used.

<評価>
実施例1〜実施例3及び比較例1の有機電子デバイス用基板上にスパッタリング法によりITO膜(平均膜厚200nm)を成膜し、表面の観察を行った。
<Evaluation>
An ITO film (average film thickness: 200 nm) was formed on the organic electronic device substrates of Examples 1 to 3 and Comparative Example 1 by a sputtering method, and the surface was observed.

ITO膜の成膜は、株式会社島津製作所製のHSM−542を用い、利用ターゲットをITOターゲットとして行った。スパッタリング時の導入ガスは、Arガス20sccm及びOガス0.5sccmの混合ガスとし、ガス圧1.34mTorr(0.179Pa)、成膜パワー150Wとした。 The formation of the ITO film was performed using HSM-542 manufactured by Shimadzu Corporation with the target used as the ITO target. The introduced gas at the time of sputtering was a mixed gas of Ar gas 20 sccm and O 2 gas 0.5 sccm, the gas pressure was 1.34 mTorr (0.179 Pa), and the film formation power was 150 W.

ITO膜を成膜した有機電子デバイス用基板の表面を光学顕微鏡により倍率10倍で観察した。その結果、実施例1〜実施例3の有機電子デバイス用基板では、表面に皺が観測されず平坦であった。光学顕微鏡により観察された実施例1の有機電子デバイス用基板の表面の写真を図5に示す。一方、比較例1の有機電子デバイス用基板では、図6に示すように表面に皺が観測された。   The surface of the organic electronic device substrate on which the ITO film was formed was observed at a magnification of 10 times with an optical microscope. As a result, the substrates for organic electronic devices of Examples 1 to 3 were flat with no wrinkles observed on the surface. FIG. 5 shows a photograph of the surface of the substrate for an organic electronic device of Example 1 observed by an optical microscope. On the other hand, in the organic electronic device substrate of Comparative Example 1, wrinkles were observed on the surface as shown in FIG.

また、実施例3及び比較例1の有機電子デバイス用基板の表面をAFM(原子間力顕微鏡)を用いて観察し、表面粗さを算出した。なお、測定は1辺100μmの正方形に対して行った。AFMにより観察された実施例3の有機電子デバイス用基板の表面の写真及び比較例1の有機電子デバイス用基板の表面の写真を、それぞれ図7及び図8に示す。実施例3の表面粗さは3.4nmであり、比較例1の表面粗さは121nmであった。   Further, the surfaces of the organic electronic device substrates of Example 3 and Comparative Example 1 were observed using an AFM (atomic force microscope), and the surface roughness was calculated. The measurement was performed on a square having a side of 100 μm. FIGS. 7 and 8 show photographs of the surface of the substrate for an organic electronic device of Example 3 and photographs of the surface of the substrate for an organic electronic device of Comparative Example 1 observed by AFM, respectively. The surface roughness of Example 3 was 3.4 nm, and the surface roughness of Comparative Example 1 was 121 nm.

以上の結果から、フーリエ変換赤外線吸収分光光度計で測定して得られる吸収スペクトルのピーク面積比が0.017以下である実施例1〜実施例3は、ITO膜形成後においても絶縁層の表面粗さが低い。これに対し、比較例1ではピーク面積比が0.017超であるため、ITO膜形成中に、絶縁層の表面粗さが増大したと考えられる。従って、ピーク面積比を0.017以下とすることで、有機EL素子形成中に絶縁層の表面粗さが増大することによる素子短絡を抑制できると言える。   From the above results, in Examples 1 to 3 in which the peak area ratio of the absorption spectrum obtained by measurement with a Fourier transform infrared absorption spectrophotometer was 0.017 or less, the surface of the insulating layer was formed even after the ITO film was formed. Low roughness. On the other hand, in Comparative Example 1, since the peak area ratio was more than 0.017, it is considered that the surface roughness of the insulating layer increased during the formation of the ITO film. Therefore, by setting the peak area ratio to 0.017 or less, it can be said that short-circuiting of the device due to an increase in surface roughness of the insulating layer during formation of the organic EL device can be suppressed.

以上説明したように、本発明の有機電子デバイス及び有機電子デバイス用基板は、基板に有機EL素子を形成する際の素子短絡の発生を抑制することで製造歩留りに優れるため、種々の用途に好適に用いることができる。   As described above, the organic electronic device and the substrate for an organic electronic device of the present invention are excellent in manufacturing yield by suppressing the occurrence of element short-circuiting when forming an organic EL element on the substrate, and thus are suitable for various uses. Can be used.

1 基板
1a 金属層
1b 絶縁層
1c 反応層
1d 防錆層
2 有機電子素子
DESCRIPTION OF SYMBOLS 1 Substrate 1a Metal layer 1b Insulation layer 1c Reaction layer 1d Rust prevention layer 2 Organic electronic element

Claims (9)

基板及びこの基板の一方の面に積層される有機電子素子を備える有機電子デバイスであって、
上記基板が、金属層と、この金属層の少なくとも一方の面側に積層され、合成樹脂を主成分とする絶縁層とを有し、
上記絶縁層をフーリエ変換赤外線吸収分光光度計で測定して得られる吸収スペクトルの波数1730cm−1にあるピークに対する波数910cm−1にあるピークの面積比が0.017以下である有機電子デバイス。
An organic electronic device comprising a substrate and an organic electronic element laminated on one surface of the substrate,
The substrate, a metal layer, laminated on at least one surface side of the metal layer, having an insulating layer mainly composed of synthetic resin,
The organic electronic device area ratio of peaks at a wavenumber of 910 cm -1 to a peak in the insulating layer at a wavenumber of 1730 cm -1 of the absorption spectrum obtained by measuring Fourier transform infrared absorption spectrometer is 0.017 or less.
上記面積比が0.003以上である請求項1に記載の有機電子デバイス。   The organic electronic device according to claim 1, wherein the area ratio is 0.003 or more. 上記合成樹脂が熱硬化性アクリル樹脂又は熱硬化性不飽和ポリエステルの硬化物を含む請求項1又は請求項2に記載の有機電子デバイス。   3. The organic electronic device according to claim 1, wherein the synthetic resin includes a cured product of a thermosetting acrylic resin or a thermosetting unsaturated polyester. 上記絶縁層が熱硬化剤を用いて硬化された合成樹脂を含む請求項1、請求項2又は請求項3に記載の有機電子デバイス。   The organic electronic device according to claim 1, wherein the insulating layer includes a synthetic resin cured using a thermosetting agent. 上記絶縁層が顔料を含有する請求項1から請求項4のいずれか1項に記載の有機電子デバイス。   The organic electronic device according to claim 1, wherein the insulating layer contains a pigment. 上記顔料が無機顔料であり、顔料の平均粒径が300nm以下、絶縁層における顔料の含有量が50質量%以下である請求項5に記載の有機電子デバイス。   The organic electronic device according to claim 5, wherein the pigment is an inorganic pigment, the average particle size of the pigment is 300 nm or less, and the content of the pigment in the insulating layer is 50% by mass or less. 上記金属層が鉄、チタン、又はこれらの合金を主成分とする請求項1から請求項6のいずれか1項に記載の有機電子デバイス。   The organic electronic device according to any one of claims 1 to 6, wherein the metal layer contains iron, titanium, or an alloy thereof as a main component. 有機EL照明又は有機太陽電池に用いられる請求項1から請求項7のいずれか1項に記載の有機電子デバイス。   The organic electronic device according to any one of claims 1 to 7, which is used for organic EL lighting or an organic solar cell. 金属層と、この金属層の少なくとも一方の面側に積層され、合成樹脂を主成分とする絶縁層とを有し、
上記絶縁層をフーリエ変換赤外線吸収分光光度計で測定して得られる吸収スペクトルの波数1730cm−1にあるピークに対する波数910cm−1にあるピークの面積比が0.017以下である有機電子デバイス用基板。
A metal layer, having an insulating layer laminated on at least one surface side of the metal layer and containing a synthetic resin as a main component,
The organic electronic device substrate area ratio of the peaks in the wave number 910 cm -1 to a peak in the insulating layer at a wavenumber of 1730 cm -1 of the absorption spectrum obtained by measuring Fourier transform infrared absorption spectrometer is 0.017 or less .
JP2018165275A 2018-09-04 2018-09-04 Organic electronic devices and substrates for organic electronic devices Active JP7066578B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018165275A JP7066578B2 (en) 2018-09-04 2018-09-04 Organic electronic devices and substrates for organic electronic devices
PCT/JP2019/029850 WO2020049898A1 (en) 2018-09-04 2019-07-30 Organic electronic device and substrate for organic electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018165275A JP7066578B2 (en) 2018-09-04 2018-09-04 Organic electronic devices and substrates for organic electronic devices

Publications (2)

Publication Number Publication Date
JP2020038790A true JP2020038790A (en) 2020-03-12
JP7066578B2 JP7066578B2 (en) 2022-05-13

Family

ID=69723141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018165275A Active JP7066578B2 (en) 2018-09-04 2018-09-04 Organic electronic devices and substrates for organic electronic devices

Country Status (2)

Country Link
JP (1) JP7066578B2 (en)
WO (1) WO2020049898A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330793A (en) * 1996-06-11 1997-12-22 Idemitsu Kosan Co Ltd Multicolor luminescent device nd manufacture thereof
JP2012204019A (en) * 2011-03-23 2012-10-22 Panasonic Corp Organic electroluminescent element
JP2013122903A (en) * 2011-11-10 2013-06-20 Nitto Denko Corp Organic el device and method for manufacturing the same
JP2014208479A (en) * 2013-03-28 2014-11-06 株式会社神戸製鋼所 Metallic substrate
JP2016193512A (en) * 2015-03-31 2016-11-17 株式会社神戸製鋼所 Metal substrate
JP2016225091A (en) * 2015-05-28 2016-12-28 株式会社神戸製鋼所 Organic electronic device and substrate for organic electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330793A (en) * 1996-06-11 1997-12-22 Idemitsu Kosan Co Ltd Multicolor luminescent device nd manufacture thereof
JP2012204019A (en) * 2011-03-23 2012-10-22 Panasonic Corp Organic electroluminescent element
JP2013122903A (en) * 2011-11-10 2013-06-20 Nitto Denko Corp Organic el device and method for manufacturing the same
JP2014208479A (en) * 2013-03-28 2014-11-06 株式会社神戸製鋼所 Metallic substrate
JP2016193512A (en) * 2015-03-31 2016-11-17 株式会社神戸製鋼所 Metal substrate
JP2016225091A (en) * 2015-05-28 2016-12-28 株式会社神戸製鋼所 Organic electronic device and substrate for organic electronic device

Also Published As

Publication number Publication date
WO2020049898A1 (en) 2020-03-12
JP7066578B2 (en) 2022-05-13

Similar Documents

Publication Publication Date Title
JP6342895B2 (en) Manufacturing method of substrate having concavo-convex structure
JP6438678B2 (en) Film member having an uneven structure
JP5755662B2 (en) Manufacturing method of mold for transferring fine pattern, manufacturing method of diffraction grating using the same, and manufacturing method of organic EL element having the diffraction grating
JP5715721B2 (en) Metal substrate
JP6125564B2 (en) Organic electronic device and substrate for organic electronic device
TW201313477A (en) Multi-layered plastic substrate and method for manufacturing the same
JP2010082899A (en) Flexible substrate, method of manufacturing flexible substrate, and product
JPWO2015098401A1 (en) Light emitting element
JP5695608B2 (en) Method for producing concavo-convex substrate using sol-gel method, sol solution used therefor, method for producing organic EL device using the same, and organic EL device obtained therefrom
JP5741489B2 (en) Gas barrier film and electronic device
WO2020049898A1 (en) Organic electronic device and substrate for organic electronic device
JP6201807B2 (en) Method for manufacturing organic light emitting device and organic light emitting device
JPWO2016190284A6 (en) Gas barrier film and method for producing the same
JP2007046081A (en) Method for producing transparent gas barrier film, and transparent gas barrier film obtained thereby
WO2016158678A1 (en) Metal substrate
WO2017047346A1 (en) Electronic device and method for sealing electronic device
US11919825B2 (en) Artificial marble
JP2013116622A (en) Method for producing concave-convex substrate using sol-gel method, sol solution used in same, method for producing organic el element using same, and organic el element obtained thereby
JP6767945B2 (en) Metal substrate for electronic devices
JP2016068258A (en) Moistureproof sheet
JP2016195162A (en) Metal substrate
JP6793083B2 (en) Insulation film laminated metal plate and metal substrate
JP2017177490A (en) Metal substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220427

R150 Certificate of patent or registration of utility model

Ref document number: 7066578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150