JP2020038756A - Lithium ion secondary battery and lithium ion secondary battery system - Google Patents

Lithium ion secondary battery and lithium ion secondary battery system Download PDF

Info

Publication number
JP2020038756A
JP2020038756A JP2018164220A JP2018164220A JP2020038756A JP 2020038756 A JP2020038756 A JP 2020038756A JP 2018164220 A JP2018164220 A JP 2018164220A JP 2018164220 A JP2018164220 A JP 2018164220A JP 2020038756 A JP2020038756 A JP 2020038756A
Authority
JP
Japan
Prior art keywords
ion secondary
secondary battery
lithium ion
battery
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018164220A
Other languages
Japanese (ja)
Other versions
JP6967494B2 (en
Inventor
銭 朴
Boku Sen
朴 銭
智博 木下
Tomohiro Kinoshita
智博 木下
洋 酒井
Hiroshi Sakai
洋 酒井
照実 古田
Terumi Furuta
照実 古田
光幹 川合
Mitsumoto Kawai
光幹 川合
拓哉 谷内
Takuya Taniuchi
拓哉 谷内
淳 筒井
Atsushi Tsutsui
淳 筒井
優基 伊藤
Yuki Ito
優基 伊藤
嵩大 宮崎
Takahiro Miyazaki
嵩大 宮崎
智行 垣木
Tomoyuki Kakigi
智行 垣木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018164220A priority Critical patent/JP6967494B2/en
Publication of JP2020038756A publication Critical patent/JP2020038756A/en
Application granted granted Critical
Publication of JP6967494B2 publication Critical patent/JP6967494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a lithium ion secondary battery capable of grasping a deterioration status in real time during use, and a lithium ion secondary battery system.SOLUTION: A lithium ion secondary battery is configured by including a cell case, an electrolyte, a cathode and an anode. The lithium ion secondary battery comprises: a porous hollow tube which is disposed inside of the cell case and constituted of a material through which infrared light is transmissive, and that only a gas can pass; and two optical windows which are disposed correspondently to both ends of the porous hollow tube and through which infrared light is transmissive. In one of the two optical windows, infrared light from an infrared light source outside of the cell case is incident and in the other optical window, the infrared light is emitted toward a detector outside of the cell case.SELECTED DRAWING: Figure 3

Description

本発明は、リチウムイオン二次電池及びリチウムイオン二次電池システムに関する。   The present invention relates to a lithium ion secondary battery and a lithium ion secondary battery system.

近年、自動車、パソコン、携帯電話等の大小さまざまな電気・電子機器の普及により、高容量、高出力の電池の需要が急速に拡大している。各種電池の中でも高いエネルギー密度・出力を示すリチウムイオン二次電池はあらゆる電子機器に用いられるものとして広く普及しており、さらなる高性能化が求められる。現在普及しているリチウムイオン二次電池は、有機溶媒系の電解液が用いられるものが主流である。   2. Description of the Related Art In recent years, demand for high-capacity, high-output batteries has been rapidly expanding due to the spread of various sizes of electric and electronic devices such as automobiles, personal computers, and mobile phones. Among various types of batteries, lithium ion secondary batteries exhibiting high energy density and output are widely used for all kinds of electronic devices, and further higher performance is required. Currently, lithium ion secondary batteries that are widely used mainly use an organic solvent-based electrolyte.

ところで、有機溶媒系の電解液は、リチウムイオン電池の使用に伴い、電極と化学反応を引き起こすことが知られている。すなわち、充放電を繰り返すことで、この反応に起因して電解液および電極の態様が変化し、電池の容量が次第に劣化する(例えば、特許文献1参照)。   Incidentally, it is known that an organic solvent-based electrolytic solution causes a chemical reaction with an electrode with the use of a lithium ion battery. That is, by repeating charging and discharging, the form of the electrolytic solution and the electrodes changes due to this reaction, and the capacity of the battery gradually deteriorates (for example, see Patent Document 1).

従来、電池の劣化状況を把握するためには、あらかじめ劣化条件のマップを作成しておき、電池の使用履歴を記録してマップに当てはめる方法や、電池の容量、抵抗およびインピーダンスなどを実測して、状態を推定する方法などが提案されている(例えば、特許文献2参照)。   Conventionally, in order to grasp the state of deterioration of the battery, a map of the deterioration condition is created in advance, the usage history of the battery is recorded and applied to the map, and the capacity, resistance and impedance of the battery are measured. For example, a method of estimating a state has been proposed (for example, see Patent Document 2).

特開2015−56308号公報JP 2015-56308 A 国際公開2011/121692号公報International Publication No. 2011/121692

しかしながら、マップの作製には多大な時間、労力および多数の電池が必要となる上、その精度にも課題があった。また、実測値から状態を推定する場合、劣化はフル充放電容量の低下として現れるため、フル充放電の機会のない電池については正確な劣化状態の推定が難しかった。   However, the production of the map requires a great deal of time, labor and a large number of batteries, and there is also a problem in its accuracy. Further, when the state is estimated from the actually measured values, the deterioration appears as a decrease in the full charge / discharge capacity, so that it is difficult to accurately estimate the state of deterioration of the battery without the opportunity of the full charge / discharge.

本発明は上記に鑑みてなされたものであり、リチウムイオン二次電池の劣化に伴い発生するガスを分析することで、フル充放電を行わなくても電池の劣化状態が把握でき、またフルセルの状態判断ができるリチウムイオン二次電池及びリチウムイオン二次電池システムを提供することを目的とする。   The present invention has been made in view of the above, and by analyzing the gas generated due to the deterioration of a lithium ion secondary battery, the deterioration state of the battery can be grasped without performing full charge and discharge, and the full cell It is an object of the present invention to provide a lithium ion secondary battery and a lithium ion secondary battery system capable of determining a state.

(1) 本発明は、セルケース(例えば、後述のセルケース1)と、電解液(例えば、後述の電解液2)と、正極(例えば、後述の正極3)と、負極(例えば、後述の負極4)と、を含んで構成されるリチウムイオン二次電池(例えば、後述のリチウムイオン二次電池100)において、前記セルケースの内部に配置され、赤外光を透過可能な物質から構成されるとともに気体のみが通過可能な多孔質中空管(例えば、後述の多孔質中空管5)と、前記多孔質中空管の両端部に対応して配置され、赤外光を透過可能な2つの光学窓(例えば、後述の光学窓6)と、を備え、前記2つの光学窓は、一方においてセルケース外部の赤外光源からの赤外光を入射可能であるとともに、他方においてセルケース外部の検出器に向けて赤外光を出射可能である、リチウムイオン二次電池を提供する。   (1) The present invention provides a cell case (for example, a cell case 1 to be described later), an electrolytic solution (for example, an electrolytic solution 2 to be described later), a positive electrode (for example, a positive electrode 3 to be described later), and a negative electrode (for example, a And a negative electrode 4) (for example, a lithium ion secondary battery 100 to be described later), which is disposed inside the cell case and is made of a substance that can transmit infrared light. And a porous hollow tube (for example, a porous hollow tube 5 described later) through which only gas can pass, and are disposed corresponding to both ends of the porous hollow tube, and are capable of transmitting infrared light. Two optical windows (for example, an optical window 6 to be described later), and the two optical windows can receive infrared light from an infrared light source outside the cell case on the one hand, and on the other hand, receive the cell light on the other hand. Can emit infrared light to an external detector There, a lithium ion secondary battery.

リチウムイオン二次電池は、電極と電解液との間で発生する酸化還元反応のために、使用に伴って容量が劣化する。かかる反応の際にはCOやCHなどの気体が発生するため、発生した気体について定性・定量分析することで、電池の劣化状況を把握することができる。
本発明のリチウムイオン電池によれば、光学窓を介してセルケース内の気体を気体について定性・定量分析することで、使用中の電池の劣化状態をリアルタイムで把握し、電池状態を判定することができる。さらに、電池における将来の劣化状況を予測し、また将来の劣化を抑制するような制御を実施できる。
The capacity of a lithium ion secondary battery deteriorates with use due to an oxidation-reduction reaction generated between an electrode and an electrolytic solution. At the time of such a reaction, gas such as CO 2 and CH 4 is generated. Therefore, by performing qualitative and quantitative analysis on the generated gas, the deterioration state of the battery can be grasped.
According to the lithium ion battery of the present invention, the qualitative / quantitative analysis of the gas in the cell case via the optical window is performed to determine the deterioration state of the battery in use in real time and determine the battery state. Can be. Further, it is possible to predict a future deterioration state of the battery and perform control to suppress the future deterioration.

(2) (1)の発明において、前記光学窓は、さらに光ファイバー(例えば、後述の光ファイバー7)を着脱可能であってもよい。   (2) In the invention of (1), the optical window may further be detachable with an optical fiber (for example, an optical fiber 7 described later).

これにより、分析時に赤外分光分析装置の配置の自由度が向上するため、取扱いが容易になる。   Thereby, the degree of freedom of arrangement of the infrared spectroscopy analyzer at the time of analysis is improved, and the handling becomes easy.

(3) また本発明は、(1)または(2)の発明に係るリチウムイオン二次電池と、前記多孔質中空管に赤外線を入出射する赤外分光分析装置と、を備える、リチウムイオン二次電池システム(例えば、後述のリチウムイオン二次電池システム200)を提供する。   (3) The present invention further provides a lithium ion secondary battery according to (1) or (2), and an infrared spectrometer for inputting and outputting infrared light to and from the porous hollow tube. A secondary battery system (for example, a lithium ion secondary battery system 200 described below) is provided.

これにより、分析装置を別に用いなくとも電池システムのみで、電極の容量劣化状況を分析することができる。また、継時的または高頻度に電池状態を分析することが容易になり、例えば本システムを搭載する車両であれば、オンボードで劣化状況を把握することも可能となる。   Thus, the capacity deterioration state of the electrode can be analyzed only by the battery system without using an analyzer separately. In addition, it becomes easy to analyze the battery state over time or at a high frequency. For example, in the case of a vehicle equipped with the present system, it is also possible to grasp the deterioration state on-board.

(4) (3)の発明において、前記リチウムイオン二次電池システムはさらに、電池セルケース内に存在する気体を赤外分光分析により分析する分析部と、前記分析部で得られた定性・定量分析結果に基づいて、正負極の少なくともいずれか一方の容量劣化状態を取得する評価部と、前記評価部で得られた正負極の容量劣化状態に基づいて、電池状態を判定する判定部と、を有していてもよい。   (4) In the invention according to (3), the lithium ion secondary battery system further includes an analyzer for analyzing gas present in the battery cell case by infrared spectroscopy, and qualitative / quantitative information obtained by the analyzer. Based on the analysis result, an evaluation unit that acquires the capacity deterioration state of at least one of the positive and negative electrodes, and a determination unit that determines the battery state based on the capacity deterioration state of the positive and negative electrodes obtained by the evaluation unit, May be provided.

これにより、電池システム自身で電池状態を判定し、例えば本システムを搭載する車両であれば、判定結果を運転者が電池の劣化状況を正確かつ即座に把握し、交換等の処置を適時に行うことができる。   Thereby, the battery state is determined by the battery system itself, and, for example, in the case of a vehicle equipped with the present system, the driver can accurately and immediately grasp the state of deterioration of the battery based on the determination result, and take timely action such as replacement. be able to.

本発明によれば、フル充放電を行わなくても使用中の電池の劣化状態がリアルタイムで把握でき、またフルセルの状態判断ができるため、電池における将来の劣化状況を予測し、また将来の劣化を抑制するような制御を実施できる。   According to the present invention, the deterioration state of a battery in use can be grasped in real time without performing full charge and discharge, and the state of a full cell can be determined. Control can be implemented to suppress the above.

リチウムイオン二次電池の正負極およびフルセルの容量と電圧の関係を表すグラフである。5 is a graph showing the relationship between the capacity and voltage of positive and negative electrodes and a full cell of a lithium ion secondary battery. 正負極それぞれの、電解液との反応による劣化に伴う容量シフト量の大きさを表すグラフである。5 is a graph showing the magnitude of a capacity shift amount of each of the positive and negative electrodes due to deterioration due to reaction with an electrolytic solution. 本発明の実施形態に係るリチウムイオン二次電池100の電池セル10を表す正面図(図3(a))および側面図(図3(b))である。FIG. 3 is a front view (FIG. 3A) and a side view (FIG. 3B) illustrating the battery cell 10 of the lithium ion secondary battery 100 according to the embodiment of the present invention. 本発明の実施形態に係るリチウムイオン二次電池100の電池セル10において、光ファイバーを装着した様子を表す図である。It is a figure showing signs that an optical fiber was attached to battery cell 10 of lithium ion secondary battery 100 concerning an embodiment of the present invention. 本実施形態に係るリチウムイオン二次電池システム200を概略的に表す図である。FIG. 2 is a diagram schematically illustrating a lithium ion secondary battery system 200 according to the embodiment.

以下、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。   Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.

<リチウムイオン二次電池>
本発明のリチウムイオン二次電池100の電池セル10は、セルケース1と、電解液2と、正極3と、負極4と、を含んで構成される。セルケース1内部には、正極3と負極4とがセパレータを介して対向して配置されるとともに、気体のみが通過可能な多孔質中空管6が、セルケース1外部の赤外光源からの赤外光を入射および出射可能に配置される。セルケース1には、赤外線を透過可能な2つの光学窓6が前記多孔質中空管の両端部に対応して配置される。
<Lithium ion secondary battery>
The battery cell 10 of the lithium ion secondary battery 100 of the present invention includes a cell case 1, an electrolyte solution 2, a positive electrode 3, and a negative electrode 4. Inside the cell case 1, a positive electrode 3 and a negative electrode 4 are arranged to face each other with a separator interposed therebetween, and a porous hollow tube 6 through which only gas can pass is provided by an infrared light source outside the cell case 1. It is arranged so that infrared light can enter and exit. In the cell case 1, two optical windows 6 capable of transmitting infrared rays are arranged corresponding to both ends of the porous hollow tube.

セルケース1は、形状や材質等特に限定されるものではなく、一般的な液体リチウムイオン二次電池に用いられるものを用いることができる。ただし、セルケース1内で発生したガスの定量を行うため、密閉されていることが好ましい。   The cell case 1 is not particularly limited in shape, material, and the like, and a cell case 1 used for a general liquid lithium ion secondary battery can be used. However, in order to measure the amount of gas generated in the cell case 1, it is preferable that the cell case 1 is sealed.

電解液2は、特に限定されるものではなく、一般的な液体リチウムイオン二次電池に用いられる有機電解液を用いることができる。一般に液体リチウムイオン二次電池の有機電解液は、使用に伴って電極と電子の授受を行って反応し、分解されて気体を発生することが知られている。   The electrolytic solution 2 is not particularly limited, and an organic electrolytic solution used for a general liquid lithium ion secondary battery can be used. In general, it is known that an organic electrolyte of a liquid lithium ion secondary battery reacts by transferring electrons to and from an electrode as it is used, and is decomposed to generate a gas.

正極3は、特に限定されるものではなく、一般的な液体リチウムイオン二次電池に用いられる電極材料を用いることができる。正極3は、電池の使用に伴って電解液2の酸化反応を起こし、COなどの気体を発生する。 The positive electrode 3 is not particularly limited, and an electrode material used for a general liquid lithium ion secondary battery can be used. The positive electrode 3 causes an oxidation reaction of the electrolytic solution 2 as the battery is used, and generates a gas such as CO 2 .

負極4は、特に限定されるものではなく、一般的な液体リチウムイオン二次電池に用いられる電極材料を用いることができる。負極4は、電池の使用に伴って電解液2の還元反応を起こし、CHに代表される炭化水素などの気体を発生する。 The negative electrode 4 is not particularly limited, and an electrode material used for a general liquid lithium ion secondary battery can be used. The negative electrode 4 causes a reduction reaction of the electrolytic solution 2 with the use of the battery, and generates a gas such as a hydrocarbon represented by CH 4 .

多孔質中空管5は、気体のみが透過可能な多孔質構造を有し、例えばセラミックスや高分子材料によって構成される。多孔質中空管6は、両端部からの電解液2の侵入を防ぐため、電池セル10内で電解液2の液相部に接触しない気相部中に、セルケース1外部の赤外光源からの赤外光を入射および出射可能に配置される。また多孔質中空管5は、分析時に透過する赤外線の光路長を確保するため、セルケース1内で多孔質中空管5の全長が長くなるように配置されることが好ましい。   The porous hollow tube 5 has a porous structure that allows only gas to pass through, and is made of, for example, ceramics or a polymer material. The porous hollow tube 6 is provided with an infrared light source outside the cell case 1 in a gas phase portion that does not come into contact with the liquid phase portion of the electrolyte solution 2 in the battery cell 10 in order to prevent the electrolyte solution 2 from entering from both ends. Is arranged so as to be able to enter and emit infrared light. Further, the porous hollow tube 5 is preferably arranged in the cell case 1 such that the entire length of the porous hollow tube 5 becomes long in order to secure an optical path length of infrared light transmitted during analysis.

気体は管壁を自由に透過可能であるため、多孔質中空管5内の中空部には前記気相部と同じ組成の気体が充填されることになる。即ち、多孔質中空管5内の中空部の気体について定性・定量分析を行うことにより、電池セル10内で電極と電解液の反応により発生したガスの総量を求めることができる。   Since the gas can freely permeate through the tube wall, the hollow portion in the porous hollow tube 5 is filled with a gas having the same composition as the gas phase portion. That is, by performing qualitative / quantitative analysis on the gas in the hollow portion of the porous hollow tube 5, the total amount of gas generated by the reaction between the electrode and the electrolyte in the battery cell 10 can be obtained.

光学窓6は、赤外線を透過可能なものであればよく、KBr、NaCl、CaF、BaF、Si、Ge、ダイヤモンドなどを用いることができる。光学窓6は、若しくは多孔質中空管5の両端部に対応してセルケース1壁面に配置され、光学窓6を介して赤外線を入射・出射可能である。なお、光学窓6の上に、着脱可能な光ファイバー7をさらに備えていてもよい。これにより、赤外光の光源と検出器を一直線上に配置せずとも分析が可能となり、分光分析機器の配置の自由度が向上するために、分析時の取り扱いが容易になる。 The optical window 6 only needs to be able to transmit infrared rays, and may be made of KBr, NaCl, CaF 2 , BaF 2 , Si, Ge, diamond, or the like. The optical windows 6 are disposed on the wall surface of the cell case 1 corresponding to both ends of the porous hollow tube 5, and can receive and emit infrared rays through the optical windows 6. Note that a detachable optical fiber 7 may be further provided on the optical window 6. This enables analysis without arranging the infrared light source and the detector on a straight line, and improves the degree of freedom in the arrangement of the spectroscopic analyzer, thereby facilitating the analysis.

<電池容量減少>
上述したように、リチウムイオン二次電池は使用に伴って、電極と電解液との間で発生する反応により容量が低下する。これは、放電の際に負極から放出された電子が電解液の分解反応に消費されるほか、Liイオンが正極に戻らずに失活することに由来して起こる。即ち、各電極の容量が劣化するために、電池全体(フルセル)の容量が低下する。
<Battery capacity decrease>
As described above, the capacity of a lithium ion secondary battery decreases due to a reaction that occurs between an electrode and an electrolytic solution with use. This occurs because electrons emitted from the negative electrode at the time of discharge are consumed in a decomposition reaction of the electrolytic solution, and Li ions are deactivated without returning to the positive electrode. That is, since the capacity of each electrode is deteriorated, the capacity of the entire battery (full cell) is reduced.

図1は、正負極およびフルセルの、容量と電圧の関係を表すグラフである。
図1に示すグラフにおいて、フルセルの放電容量は、正極と負極の電位−容量曲線が重なる容量域の大きさによって定まる。そして、正極と負極の各容量は上記の反応によって劣化し、図1中でそれぞれの電位−容量曲線は左にシフトする。
FIG. 1 is a graph showing the relationship between capacity and voltage for positive and negative electrodes and full cells.
In the graph shown in FIG. 1, the discharge capacity of a full cell is determined by the size of the capacity region where the potential-capacity curves of the positive electrode and the negative electrode overlap. Then, the respective capacities of the positive electrode and the negative electrode are degraded by the above reaction, and the respective potential-capacity curves in FIG. 1 shift to the left.

図2は、正負極それぞれの、電解液との反応による劣化に伴う容量シフト量の大きさを表すグラフである。
劣化後のフルセルの放電容量は、シフト後の正極と負極の電位−容量曲線が重なる容量域の大きさによって定まるが、正負極それぞれのシフト量は、それぞれ図2のように表され、使用開始後一定の期間までは負極のシフト量のほうが大きい。即ち、使用開始後一定の期間までは、図1における正極と負極の電位−容量曲線が重なる容量域が縮小し、電池容量が減少する。
FIG. 2 is a graph showing the magnitude of the capacity shift amount due to the deterioration of each of the positive and negative electrodes due to the reaction with the electrolytic solution.
The discharge capacity of the full cell after deterioration is determined by the size of the capacity area where the potential-capacity curves of the positive electrode and the negative electrode after the shift overlap. The shift amount of each of the positive and negative electrodes is represented as shown in FIG. Until a certain period thereafter, the shift amount of the negative electrode is larger. That is, until a certain period after the start of use, the capacity region where the potential-capacity curve of the positive electrode and the negative electrode in FIG. 1 overlaps is reduced, and the battery capacity is reduced.

以上の知見から、使用中の電池の分析によって上記の反応の進行を観察し、正負極それぞれのシフト量をリアルタイムで把握できれば、観察時点におけるフルセルの容量を求め、さらにその後の劣化の傾向を予測することができる。   Based on the above findings, the progress of the above reaction was observed by analyzing the battery in use, and if the shift amount of each of the positive and negative electrodes could be grasped in real time, the capacity of the full cell at the time of observation was obtained, and further the tendency of deterioration was predicted. can do.

本発明のリチウムイオン二次電池100では、電池セル10内で電極と電解液2の反応により発生する気体を定性・定量分析することにより、各電極の劣化度合いを把握し、フルセルの容量を把握することができる。分析方法としては、赤外分光分析法を用いて、赤外吸収スペクトルの変化・分離によって分析を行うことができる。赤外分光分析装置は、一般的な分析機器として市販されているものを検査時に適宜用いてもよいし、継時的に電池状態を分析・判定するために、電池100の一部として備えられ、電池セル10と一体となっていてもよい。   In the lithium ion secondary battery 100 of the present invention, the degree of deterioration of each electrode is grasped and the capacity of the full cell is grasped by qualitatively and quantitatively analyzing the gas generated by the reaction between the electrode and the electrolyte solution 2 in the battery cell 10. can do. As an analysis method, an infrared spectroscopic analysis method can be used to perform analysis by changing / separating an infrared absorption spectrum. The infrared spectroscopy apparatus may be a commercially available general analysis instrument, which may be used as appropriate during the test, or may be provided as a part of the battery 100 in order to analyze and determine the battery state over time. , May be integrated with the battery cell 10.

正極3の反応を観察するには、例えば主として発生するCOについて定量すればよい。セルケース1内の気体中のCO濃度を定量することで、発生したCOの総量を算出し、反応の進行度を評価できる。評価した反応進行度に基づいて、図1に示す電位−容量曲線のシフト量を算出することで、正極3における反応劣化によるシフト後の電位−容量曲線を推定できる。 In order to observe the reaction of the positive electrode 3, for example, it is sufficient to quantify mainly the generated CO 2 . By quantifying the CO 2 concentration in the gas in the cell case 1, the total amount of generated CO 2 can be calculated, and the degree of progress of the reaction can be evaluated. By calculating the shift amount of the potential-capacity curve shown in FIG. 1 based on the evaluated degree of reaction progress, the potential-capacity curve after the shift due to the reaction deterioration in the positive electrode 3 can be estimated.

負極4の反応を観察するには、例えば主として発生するCHについて定量すればよい。セルケース1内の気体中のCH濃度を定量することで、発生したCHの総量を算出し、反応の進行度を評価できる。評価した反応進行度に基づいて、図1に示す電位−容量曲線のシフト量を算出することで、負極4における反応劣化によるシフト後の電位−容量曲線を推定できる。 In order to observe the reaction of the negative electrode 4, for example, it is sufficient to quantify mainly the generated CH 4 . By quantifying the CH 4 concentration in the gas in the cell case 1, the total amount of generated CH 4 can be calculated, and the degree of progress of the reaction can be evaluated. By calculating the shift amount of the potential-capacity curve shown in FIG. 1 based on the evaluated degree of reaction progress, the potential-capacity curve after the shift due to the reaction deterioration in the negative electrode 4 can be estimated.

なお実際には、両極から同じ気体が発生する場合も考えられる。例えば正極3のみならず、負極4からもCOが発生する場合がある。その場合には、あらかじめ使用する電解液2について起こる反応を想定したうえで、両極について反応進行度を算出することが好ましい。 Actually, the same gas may be generated from both electrodes. For example, CO 2 may be generated not only from the positive electrode 3 but also from the negative electrode 4. In that case, it is preferable to calculate the degree of reaction progress for both electrodes, assuming a reaction that occurs with respect to the electrolyte solution 2 to be used in advance.

両極のシフト後の電位−容量曲線を推定できれば、フルセルの容量を算出できる。詳しくは、両極の電位−容量曲線が重なる容量域の大きさがフルセルの容量となる。これは、電池が両極の電位の差分を算出できる容量域においてのみ起電力を有するためである。   If the potential-capacitance curve after the shift of both electrodes can be estimated, the capacity of the full cell can be calculated. Specifically, the size of the capacitance region where the potential-capacitance curves of both electrodes overlap is the capacity of the full cell. This is because the battery has an electromotive force only in a capacity region where the difference between the potentials of both electrodes can be calculated.

さらに、上述の反応進行度および容量を継時的に観察することによって、劣化の傾向を把握することができる。これにより、将来の劣化傾向を予測し、劣化状況に応じて適切な運転制御を行うこと等により電池の長寿命化を図ることができる。あるいは、機器のトラブル回避のために、電池の交換や検査を行う適切な時期を推定することもできる。   Furthermore, by observing the above-mentioned reaction progress and capacity over time, the tendency of deterioration can be grasped. As a result, the battery life can be extended by predicting the future deterioration tendency and performing appropriate operation control according to the deterioration state. Alternatively, it is also possible to estimate an appropriate time to replace or inspect the battery in order to avoid trouble of the device.

本発明のリチウムイオン二次電池100の状態判定は、赤外分光分析をオンボードでリアルタイムに行ってもよいし、あるいは車載電池に対して、車検や点検のタイミングで任意の時期に行ってもよい。また、実際の電池には複数のセルを有するものが少なくないが、すべてのセルが上記の構成の電池セル10であってもよいし、あるいはコスト上の観点から代表的なセルのみが上記の構成の電池セル10であってもよい。   The determination of the state of the lithium-ion secondary battery 100 of the present invention may be performed by real-time infrared spectroscopy analysis on-board, or may be performed on the vehicle-mounted battery at any time during vehicle inspection or inspection. Good. In addition, an actual battery often has a plurality of cells, but all the cells may be the battery cells 10 having the above-described configuration, or only a representative cell may be the above-described cell in terms of cost. The battery cell 10 having the configuration may be used.

<リチウムイオン二次電池システム>
本発明のリチウムイオン二次電池はさらに、電池セルケース内に存在する気体を赤外分光分析により分析する分析部と、前記分析部で得られた定性・定量分析結果に基づいて、正負極の少なくともいずれか一方の容量劣化状態を取得する評価部と、前記評価部で得られた正負極の容量劣化状態に基づいて、電池状態を判定する判定部と、を合わせて有する、リチウムイオン二次電池システム200として使用することができる。これにより、電池システム自身で電池状態を判定し、ユーザが電池状態を即座に把握し、劣化時にすぐに処置を行うことができる。
<Lithium ion secondary battery system>
The lithium ion secondary battery of the present invention further includes: an analysis unit that analyzes gas present in the battery cell case by infrared spectroscopy; and a qualitative / quantitative analysis result obtained by the analysis unit. An evaluation unit that acquires at least one of the capacity deterioration states, and a determination unit that determines the battery state based on the capacity deterioration states of the positive and negative electrodes obtained by the evaluation unit, It can be used as the battery system 200. Thus, the battery state is determined by the battery system itself, the user can immediately grasp the battery state, and can immediately take measures when the battery is deteriorated.

本発明のリチウムイオン二次電池システム200における分析部では、電池セルケース内に存在する気体を赤外分光分析法により分析する。分析は、セルケース1内に配置された多孔質中空管5中の気体に対して、光学窓6を介して赤外線を入射し、出射された赤外線を検出することによって、吸収スペクトルを解析して定性・定量分析を行う。   The analysis unit in the lithium ion secondary battery system 200 of the present invention analyzes the gas present in the battery cell case by infrared spectroscopy. In the analysis, the absorption spectrum is analyzed by irradiating infrared rays to the gas in the porous hollow tube 5 arranged in the cell case 1 through the optical window 6 and detecting the emitted infrared rays. Perform qualitative and quantitative analysis.

本発明のリチウムイオン二次電池システム200における評価部では、前記分析部で得られた定性・定量分析結果に基づいて、正負極の少なくともいずれか一方の容量劣化状態を評価する。正負極と電解液2の反応によって発生する気体を定量することにより、反応進行度を算出し、正負極の容量劣化状態を評価することができる。   The evaluation unit in the lithium ion secondary battery system 200 of the present invention evaluates the capacity deterioration state of at least one of the positive and negative electrodes based on the qualitative / quantitative analysis results obtained by the analysis unit. By quantifying the gas generated by the reaction between the positive and negative electrodes and the electrolytic solution 2, the degree of reaction progress can be calculated, and the capacity deterioration state of the positive and negative electrodes can be evaluated.

本発明のリチウムイオン二次電池システム200における判定部では、前記評価部で得られた正負極の容量劣化状態に基づいて、電池状態を判定する。前記の正負極の容量劣化状態に基づいて、両極のシフト後の電位−容量曲線を推定できれば、フルセルの容量を算出できる。   The determination unit in the lithium ion secondary battery system 200 of the present invention determines the battery state based on the capacity deterioration state of the positive and negative electrodes obtained by the evaluation unit. If the potential-capacitance curve after the shift of both electrodes can be estimated based on the capacity deterioration state of the positive and negative electrodes, the capacity of the full cell can be calculated.

また、本発明のリチウムイオン二次電池システム200は、判定部で得られた判定結果に基づいてリチウムイオン二次電池100の運転制御を行うような、制御部を備えていてもよい。これにより、例えば劣化を抑制するように出力を調節した運転制御を行うことでリチウムイオン二次電池100の長寿命化が可能になる。   Further, the lithium ion secondary battery system 200 of the present invention may include a control unit that controls the operation of the lithium ion secondary battery 100 based on the determination result obtained by the determination unit. Thus, for example, by performing operation control in which output is adjusted so as to suppress deterioration, the life of the lithium ion secondary battery 100 can be extended.

さらに、上述の反応進行度および容量を継時的に観察することによって、劣化の傾向を把握することができる。これにより、将来の劣化傾向を予測し、劣化状況に応じて適切な運転制御を行うこと等により電池の長寿命化を図ることができる。あるいは、機器のトラブル回避のために、電池の交換や検査を行う適切な時期を推定することもできる。   Furthermore, by observing the above-mentioned reaction progress and capacity over time, the tendency of deterioration can be grasped. As a result, the battery life can be extended by predicting the future deterioration tendency and performing appropriate operation control according to the deterioration state. Alternatively, it is also possible to estimate an appropriate time to replace or inspect the battery in order to avoid trouble of the device.

本発明のリチウムイオン二次電池システムでは、赤外分光分析をオンボードでリアルタイムに行ってもよいし、あるいは車載電池に対して、車検や点検のタイミングで任意の時期に行ってもよい。また、実際の電池には複数のセルを有するものが少なくないが、上記の分析はすべてのセルについて行ってもよいし、あるいはコスト上の観点から代表的なセルのみ抽出して行ってもよい。   In the lithium ion secondary battery system of the present invention, the infrared spectroscopy may be performed on-board in real time, or may be performed on the vehicle-mounted battery at any time during vehicle inspection or inspection. Further, although many actual batteries have a plurality of cells, the above analysis may be performed on all cells, or only representative cells may be extracted from the viewpoint of cost. .

以下に、本発明の実施形態について、図を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1実施形態)
図3は、本発明の第1実施形態に係るリチウムイオン二次電池100の電池セル10を表す正面図(図3(a))および側面図(図3(b))である。
リチウムイオン二次電池100の電池セル10は、密閉されたセルケース1中に、電解液2と、正極3と、負極4と、セパレータ8と、を有する。セルケース1内部には、正極3と負極4とがセパレータ8を介して対向して配置されるとともに、気体のみが通過可能な多孔質中空管6が、セルケース1外部の赤外光源からの赤外光を入射および出射可能に配置される。さらに電池セル10中で、多孔質中空管5の両端部又はセルケース1における多孔質中空管6の両端部に対応して、赤外線を透過可能な2つの光学窓6が配置される。
(1st Embodiment)
FIG. 3 is a front view (FIG. 3A) and a side view (FIG. 3B) showing the battery cell 10 of the lithium ion secondary battery 100 according to the first embodiment of the present invention.
The battery cell 10 of the lithium ion secondary battery 100 has an electrolyte solution 2, a positive electrode 3, a negative electrode 4, and a separator 8 in a sealed cell case 1. Inside the cell case 1, a positive electrode 3 and a negative electrode 4 are arranged to face each other with a separator 8 interposed therebetween, and a porous hollow tube 6 through which only gas can pass is provided from an infrared light source outside the cell case 1. Are arranged so as to be able to enter and emit infrared light. Further, in the battery cell 10, two optical windows 6 that can transmit infrared rays are arranged corresponding to both ends of the porous hollow tube 5 or both ends of the porous hollow tube 6 in the cell case 1.

電解液2は、電池の使用に伴って正極3と反応を起こし、COガスを発生する。また、同様に負極4と反応し、CHガスを発生する。 The electrolytic solution 2 reacts with the positive electrode 3 with the use of the battery to generate CO 2 gas. Further, similarly, it reacts with the negative electrode 4 to generate CH 4 gas.

多孔質中空管5は、気体のみが透過可能な多孔質構造を有し、高分子材料によって構成される。多孔質中空管6は、両端部からの電解液2の侵入を防ぐため、電池セル10内で電解液2の液相部に接触しない気相部中にセルケース1外部の赤外光源からの赤外光を入射および出射可能に配置される。また多孔質中空管5は図3に示すように、分析時に透過する赤外線の光路長を確保するため、直方体のセルケース1水平方向断面における長方形の長辺に沿って延びるように配置される。   The porous hollow tube 5 has a porous structure that allows only gas to pass through, and is made of a polymer material. In order to prevent the electrolyte solution 2 from entering from both ends, the porous hollow tube 6 is placed in a gas phase portion that does not come into contact with the liquid phase portion of the electrolyte solution 2 in the battery cell 10 from an infrared light source outside the cell case 1. Are arranged so as to be able to enter and emit infrared light. Further, as shown in FIG. 3, the porous hollow tube 5 is arranged so as to extend along a long side of a rectangular shape in a horizontal cross section of the rectangular parallelepiped cell case 1 in order to secure an optical path length of infrared light transmitted at the time of analysis. .

気体は多孔質中空管5の管壁を自由に透過可能であるため、管内と前記気相部中の気体の組成は同じである。即ち、多孔質中空管5内の気体について定性・定量分析を行うことにより、電池セル10内で電極と電解液の反応により発生したCOガスおよびCHガスの総量を求めることができる。 Since the gas can freely permeate the tube wall of the porous hollow tube 5, the composition of the gas in the tube and in the gas phase is the same. That is, by performing qualitative / quantitative analysis on the gas in the porous hollow tube 5, the total amount of CO 2 gas and CH 4 gas generated by the reaction between the electrode and the electrolyte in the battery cell 10 can be obtained.

光学窓6は、多孔質中空管5の両端部に対応してセルケース1に配置される。これにより、光学窓6を介して赤外線を入出射し、電池セル10内の気体を分析できる。   The optical windows 6 are arranged in the cell case 1 corresponding to both ends of the porous hollow tube 5. Thereby, infrared rays can be input / output through the optical window 6 and the gas in the battery cell 10 can be analyzed.

図4は、本実施形態に係る電池セル10において、光ファイバーを装着した様子を表す図である。
本実施形態では、セルケース1に固定された光学窓6の上に、さらに着脱可能な光ファイバー7を取り付けることが可能である。これにより、赤外光の光源と検出器を一直線上に配置せずとも分析が可能となり、分光分析機器の配置の自由度が向上するために、分析時の取り扱いが容易になる。
FIG. 4 is a diagram illustrating a state where an optical fiber is attached to the battery cell 10 according to the present embodiment.
In the present embodiment, a detachable optical fiber 7 can be attached on the optical window 6 fixed to the cell case 1. Accordingly, analysis can be performed without disposing the infrared light source and the detector on a straight line, and the degree of freedom of arrangement of the spectroscopic analyzer is improved, so that handling during analysis is facilitated.

(第2実施形態)
図5は、本実施形態に係るリチウムイオン二次電池システム200を概略的に表す図である。
本発明の第2実施形態に係るリチウムイオン二次電池システム200は、上記第1実施形態に係るリチウムイオン二次電池100と、電池セルケース内に存在する気体を赤外分光分析により分析する分析部と、前記分析部で得られた定性・定量分析結果に基づいて、正負極の少なくともいずれか一方の容量劣化状態を取得する評価部と、前記評価部で得られた正負極の容量劣化状態に基づいて、電池状態を判定する判定部と、を一体として使用するものである。これにより、電池システム自身で電池状態を判定し、ユーザが電池状態を即座に把握し、劣化時にすぐに処置を行うことができる。
(2nd Embodiment)
FIG. 5 is a diagram schematically illustrating the lithium-ion secondary battery system 200 according to the present embodiment.
The lithium-ion secondary battery system 200 according to the second embodiment of the present invention includes the lithium-ion secondary battery 100 according to the first embodiment and an analysis that analyzes gas present in the battery cell case by infrared spectroscopy. Unit, based on the qualitative / quantitative analysis results obtained in the analysis unit, an evaluation unit that acquires the capacity deterioration state of at least one of the positive and negative electrodes, and the capacity deterioration state of the positive and negative electrodes obtained in the evaluation unit And a determination unit that determines the battery state based on the above. Thus, the battery state is determined by the battery system itself, the user can immediately grasp the battery state, and can immediately take measures when the battery is deteriorated.

また、本発明のリチウムイオン二次電池システム200は、判定部で得られた判定結果に基づいてリチウムイオン二次電池100の運転制御を行う制御部を備える。これにより、劣化を抑制するように出力を調節した運転制御を行うことで、リチウムイオン二次電池100の長寿命化が可能になる。   Further, the lithium ion secondary battery system 200 of the present invention includes a control unit that controls the operation of the lithium ion secondary battery 100 based on the determination result obtained by the determination unit. Accordingly, by performing the operation control in which the output is adjusted so as to suppress the deterioration, the life of the lithium ion secondary battery 100 can be extended.

上記の電池セル10によれば、赤外分光分析によるCOガスおよびCHガスの定性・定量分析結果に基づき、電極と電解液との反応の進行度を評価し、各電極の劣化度合いおよびフルセルの容量を把握することができる。また本実施形態では、赤外分光分析装置は電池システム200の一部として、電池100と一体として用いられている。これにより、継時的に電池状態を分析・判定することが容易になる。 According to the above battery cell 10, the degree of progress of the reaction between the electrode and the electrolytic solution is evaluated based on the results of the qualitative and quantitative analysis of the CO 2 gas and the CH 4 gas by infrared spectroscopy. The capacity of the full cell can be grasped. In the present embodiment, the infrared spectroscopy device is used as a part of the battery system 200 and integrated with the battery 100. This facilitates the continuous analysis and determination of the battery state.

さらに本発明の電池セルおよび電池判定方法によれば、上述の反応進行度および容量を継時的に観察することによって、劣化の傾向を把握することができる。これにより、将来の劣化傾向を予測し、劣化状況に応じて適切な運転制御を行うこと等により電池の長寿命化を図ることができる。あるいは、機器のトラブル回避のために、電池の交換や検査を行う適切な時期を推定することもできる。   Further, according to the battery cell and the battery determination method of the present invention, the deterioration tendency can be grasped by observing the above-mentioned reaction progress and capacity over time. As a result, the battery life can be extended by predicting the future deterioration tendency and performing appropriate operation control according to the deterioration state. Alternatively, it is also possible to estimate an appropriate time to replace or inspect the battery in order to avoid trouble of the device.

電池100の長寿命化にあたっては、例えば、充放電量を抑制するなど適切に運転制御して劣化の速度を小さくする手法や、外部からリチウムイオンを補充して電池の容量を回復する手法等を用いてもよい。   In order to extend the life of the battery 100, for example, a method of reducing the rate of deterioration by appropriately controlling operation such as suppressing a charge / discharge amount, a method of replenishing lithium ions from the outside and a method of recovering the capacity of the battery, and the like. May be used.

1 …セルケース
2 …電解液
3 …正極
4 …負極
5 …多孔質中空管
6 …光学窓
7 …光ファイバー
8 …セパレータ
10 …電池セル
100…リチウムイオン二次電池
200…リチウムイオン二次電池システム
DESCRIPTION OF SYMBOLS 1 ... Cell case 2 ... Electrolyte solution 3 ... Positive electrode 4 ... Negative electrode 5 ... Porous hollow tube 6 ... Optical window 7 ... Optical fiber 8 ... Separator 10 ... Battery cell 100 ... Lithium ion secondary battery 200 ... Lithium ion secondary battery system

Claims (4)

セルケースと、電解液と、正極と、負極と、を含んで構成されるリチウムイオン二次電池において、
前記セルケースの内部に配置され、赤外光を透過可能な物質から構成されるとともに気体のみが通過可能な多孔質中空管と、
前記多孔質中空管の両端部に対応して配置され、赤外光を透過可能な2つの光学窓と、を備え、
前記2つの光学窓は、一方においてセルケース外部の赤外光源からの赤外光を入射可能であるとともに、他方においてセルケース外部の検出器に向けて赤外光を出射可能である、リチウムイオン二次電池。
In a lithium ion secondary battery including a cell case, an electrolytic solution, a positive electrode, and a negative electrode,
A porous hollow tube that is disposed inside the cell case and is made of a substance that can transmit infrared light and allows only gas to pass therethrough,
And two optical windows that are arranged corresponding to both ends of the porous hollow tube and can transmit infrared light,
The two optical windows, on the one hand, can receive infrared light from an infrared light source outside the cell case and, on the other hand, can emit infrared light toward a detector outside the cell case. Rechargeable battery.
前記光学窓は、光ファイバーを着脱可能である、請求項1に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the optical window is detachable with an optical fiber. 請求項1または2に記載のリチウムイオン二次電池と、
前記多孔質中空管に赤外線を入出射する赤外分光分析装置と、を備える、リチウムイオン二次電池システム。
A lithium ion secondary battery according to claim 1 or 2,
A lithium-ion secondary battery system, comprising: an infrared spectroscopy device that inputs and outputs infrared light to and from the porous hollow tube.
電池セルケース内に存在する気体を赤外分光分析により定性・定量分析する分析部と、
前記分析部で得られた定性・定量分析結果に基づいて、正負極の少なくともいずれか一方の容量劣化状態を取得する評価部と、
前記評価部で得られた正負極の容量劣化状態に基づいて、電池状態を判定する判定部と、をさらに備える、請求項3に記載のリチウムイオン二次電池システム。
An analysis unit for qualitatively and quantitatively analyzing the gas present in the battery cell case by infrared spectroscopy;
Based on the qualitative / quantitative analysis results obtained in the analysis unit, an evaluation unit that acquires the capacity deterioration state of at least one of the positive and negative electrodes,
The lithium ion secondary battery system according to claim 3, further comprising: a determination unit that determines a battery state based on the capacity deterioration state of the positive and negative electrodes obtained by the evaluation unit.
JP2018164220A 2018-09-03 2018-09-03 Lithium-ion secondary battery and lithium-ion secondary battery system Active JP6967494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018164220A JP6967494B2 (en) 2018-09-03 2018-09-03 Lithium-ion secondary battery and lithium-ion secondary battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018164220A JP6967494B2 (en) 2018-09-03 2018-09-03 Lithium-ion secondary battery and lithium-ion secondary battery system

Publications (2)

Publication Number Publication Date
JP2020038756A true JP2020038756A (en) 2020-03-12
JP6967494B2 JP6967494B2 (en) 2021-11-17

Family

ID=69738182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018164220A Active JP6967494B2 (en) 2018-09-03 2018-09-03 Lithium-ion secondary battery and lithium-ion secondary battery system

Country Status (1)

Country Link
JP (1) JP6967494B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485208A (en) * 2020-11-20 2021-03-12 国网四川省电力公司电力科学研究院 Method and system for detecting solution ion migration under electric field

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213724A (en) * 2012-04-02 2013-10-17 Fuji Electric Co Ltd Infrared gas analyzer
JP2014092379A (en) * 2012-10-31 2014-05-19 Mitsubishi Heavy Ind Ltd Device for measuring gas component concentration in flue gas
JP2015056308A (en) * 2013-09-12 2015-03-23 住友金属鉱山株式会社 Non-aqueous electrolyte secondary battery laminate cell for evaluation of produced gas, laminate cell holder, and method of evaluating produced gas of non-aqueous electrolyte secondary battery
US20160240897A1 (en) * 2015-02-12 2016-08-18 Battelle Memorial Institute Battery cell structure with limited cell penetrations
JP2017009539A (en) * 2015-06-25 2017-01-12 株式会社住化分析センター Gas analysis device and gas analysis method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213724A (en) * 2012-04-02 2013-10-17 Fuji Electric Co Ltd Infrared gas analyzer
JP2014092379A (en) * 2012-10-31 2014-05-19 Mitsubishi Heavy Ind Ltd Device for measuring gas component concentration in flue gas
JP2015056308A (en) * 2013-09-12 2015-03-23 住友金属鉱山株式会社 Non-aqueous electrolyte secondary battery laminate cell for evaluation of produced gas, laminate cell holder, and method of evaluating produced gas of non-aqueous electrolyte secondary battery
US20160240897A1 (en) * 2015-02-12 2016-08-18 Battelle Memorial Institute Battery cell structure with limited cell penetrations
JP2017009539A (en) * 2015-06-25 2017-01-12 株式会社住化分析センター Gas analysis device and gas analysis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485208A (en) * 2020-11-20 2021-03-12 国网四川省电力公司电力科学研究院 Method and system for detecting solution ion migration under electric field
CN112485208B (en) * 2020-11-20 2023-09-05 国网四川省电力公司电力科学研究院 Method and system for detecting solution ion migration under electric field

Also Published As

Publication number Publication date
JP6967494B2 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
Li et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review
Barcellona et al. Aging effect on the variation of Li-ion battery resistance as function of temperature and state of charge
Westerhoff et al. Electrochemical impedance spectroscopy based estimation of the state of charge of lithium-ion batteries
EP3145021B1 (en) Secondary-battery monitoring device and method for predicting capacity of secondary battery
US9995794B2 (en) Methods for testing a battery and devices configured to test a battery
KR101728495B1 (en) Apparatus for analyzing venting gas in secondary electric cell and method of analyzing the venting gas
Rouhi et al. Voltage behavior in lithium-ion batteries after electrochemical discharge and its implications on the safety of recycling processes
Elmahallawy et al. A comprehensive review of lithium-ion batteries modeling, and state of health and remaining useful lifetime prediction
Guha et al. Remaining useful life estimation of lithium-ion batteries based on the internal resistance growth model
Wang et al. Oxygen electrochemistry in Li‐O2 batteries probed by in situ surface‐enhanced raman spectroscopy
KR20120111080A (en) Gas analyzer for cell and gas analyzing method using the same
KR20220163736A (en) Method for detecting abnomal cells and estimating SOH in Lithium-Ion battery pack
Misiewicz et al. Online electrochemical mass spectrometry on large-format Li-ion cells
Schulz et al. Quantifying lithium in the solid electrolyte interphase layer and beyond using Lithium-Nuclear Reaction Analysis technique
CN102053084B (en) Method for analyzing and testing quality of storage battery
JP6967494B2 (en) Lithium-ion secondary battery and lithium-ion secondary battery system
Zech et al. Polysulfide driven degradation in lithium–sulfur batteries during cycling–quantitative and high time-resolution operando X-ray absorption study for dissolved polysulfides probed at both electrode sides
Teusner et al. Small angle neutron scattering and its application in battery systems
Vatani et al. State of health prediction of li-ion batteries using incremental capacity analysis and support vector regression
Roscher et al. Method and measurement setup for battery state determination using optical effects in the electrode material
US20140326043A1 (en) Energy store, system including the energy store, and method for ascertaining the state of health of an energy store
Rikka et al. Enhancing cycle life and usable energy density of fast charging LiFePO4-graphite cell by regulating electrodes’ lithium level
KR102276780B1 (en) Method of prredicting cell life of secondary batteries or fuel cells
JP5982663B2 (en) Infrared spectrometer for measuring electrolyte of lithium ion secondary battery and measuring method thereof
Yang et al. A real-time monitoring of pre-overcharge in high‑nickel lithium ion batteries via plasma emission spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211025

R150 Certificate of patent or registration of utility model

Ref document number: 6967494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150