JP2020038291A - Image heating device - Google Patents

Image heating device Download PDF

Info

Publication number
JP2020038291A
JP2020038291A JP2018165360A JP2018165360A JP2020038291A JP 2020038291 A JP2020038291 A JP 2020038291A JP 2018165360 A JP2018165360 A JP 2018165360A JP 2018165360 A JP2018165360 A JP 2018165360A JP 2020038291 A JP2020038291 A JP 2020038291A
Authority
JP
Japan
Prior art keywords
layer
heating
heat generating
region
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018165360A
Other languages
Japanese (ja)
Other versions
JP7158961B2 (en
Inventor
臼井 正武
Masatake Usui
正武 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018165360A priority Critical patent/JP7158961B2/en
Publication of JP2020038291A publication Critical patent/JP2020038291A/en
Application granted granted Critical
Publication of JP7158961B2 publication Critical patent/JP7158961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)

Abstract

To provide an image heating device of electromagnetic induction heating system which can achieve both prevention of the oxidation of metal of a heating layer and sufficient suppression of an excessive temperature rise when a crack, etc., occurs in a cylindrical heating rotor.SOLUTION: The image heating device comprises: a cylindrical rotor having a base layer, a heating layer and a protective layer in a radial direction, with the heating layer divided into multiple portions so as to be provided with a heating region and a non-heating region in a longitudinal direction in the order stated; a counter body facing the rotor; a nip part forming member for forming a nip part together with the counter body; and magnetic field generation means for forming an alternating magnetic field in a direction of revolving shaft of the rotor by sending an AC current and causing an induction current to occur in the circumferential direction of the rotor. The heating layer is composed of a first metal and the protective layer is composed of a second metal so as to cover the heating layer, electric resistance per unit length of a first region provided with the heating layer and the protective layer in the radial direction as the heating region is smaller than electric resistance per unit length of a second region provided not with the heating layer as the non-heating region but with the protective layer.SELECTED DRAWING: Figure 4

Description

本発明は、電子写真方式等の画像形成装置として複写機やプリンタ等に用いられる電磁誘導加熱方式の画像加熱装置に関する。   The present invention relates to an electromagnetic induction heating type image heating apparatus used for a copying machine, a printer, or the like as an image forming apparatus such as an electrophotographic method.

近年、画像加熱装置として、加熱回転体の発熱層を直接発熱させることができる電磁誘導加熱方式の画像加熱装置が提案されている(特許文献1)。そして、特許文献1では、筒状の加熱回転体にクラック等が生じた場合においても、加熱回転体の過昇温を抑制できるように、発熱層を回転軸方向で複数に分割することが記載されている。すなわち、特許文献1では、回転軸方向に直交する周回方向に電流が流れ、回転軸方向には電流がほとんど流れない(破損部端部に回り込んで流れる電流が少なくなる)ように、発熱層が回転軸方向で電気的に分割されている。   In recent years, as an image heating device, an electromagnetic induction heating type image heating device capable of directly generating heat from a heating layer of a heating rotator has been proposed (Patent Document 1). Patent Literature 1 describes that even when a crack or the like occurs in a cylindrical heating rotator, the heat generating layer is divided into a plurality of portions in the rotation axis direction so that excessive heating of the heating rotator can be suppressed. Have been. That is, in Patent Literature 1, the heat generation layer is formed so that the current flows in the rotation direction orthogonal to the rotation axis direction, and almost no current flows in the rotation axis direction (the current flowing around the end of the damaged portion decreases). Are electrically divided in the rotation axis direction.

特開2015−118232号公報JP-A-2015-118232

ここで、温度上昇を速くする観点から加熱回転体の発熱層の厚さを薄くして熱容量を下げることが望ましく、銅等の電気抵抗率の低い金属を採用する場合、銅が空気に触れることで酸化され、発熱層の抵抗上昇や剥離が発生する可能性がある。そのため、通気性のない金属材料で発熱層を覆い酸化を防ぐよう、ニッケルでメッキする方法が考えられる。   Here, from the viewpoint of speeding up the temperature rise, it is desirable to reduce the heat capacity by reducing the thickness of the heating layer of the heating rotator, and when a metal having a low electric resistivity such as copper is employed, copper may come into contact with air. , The resistance of the heat generating layer may be increased or peeling may occur. Therefore, a method of plating with nickel so as to cover the heat generating layer with a non-permeable metal material and prevent oxidation can be considered.

しかしながら、特許文献1で提案されている分割した発熱層を用いる場合、発熱層である銅を金属(ニッケル合金)で覆うことから、分割した銅が回転軸方向で短絡してしまい、分割の効果が薄れてしまう問題が考えられる。その為、発熱層の金属の酸化防止と、筒状の加熱回転体にクラック等が生じた場合の十分な過昇温抑制と、を両立させる必要があった。   However, when the divided heat generating layer proposed in Patent Document 1 is used, copper which is the heat generating layer is covered with a metal (nickel alloy), so that the divided copper is short-circuited in the rotation axis direction, and the effect of the division is obtained. The problem may be that the color fades. Therefore, it is necessary to achieve both the prevention of oxidation of the metal in the heat generating layer and the sufficient suppression of excessive temperature rise when a crack or the like occurs in the cylindrical heating rotator.

本発明の目的は、発熱層の金属の酸化防止と、筒状の加熱回転体にクラック等が生じた場合の十分な過昇温抑制と、を両立できる電磁誘導加熱方式の画像加熱装置を提供することにある。   An object of the present invention is to provide an image heating apparatus of an electromagnetic induction heating type capable of achieving both the prevention of oxidation of metal in a heat generating layer and sufficient suppression of excessive temperature rise when a crack or the like occurs in a cylindrical heating rotator. Is to do.

上記目的を達成するため、本発明に係る画像加熱装置は、径方向に基層と発熱層と保護層とを備え、長手方向で発熱領域と非発熱領域を順に備えるように前記発熱層が複数に分割された筒状の回転体と、前記回転体に対向する対向体と、前記対向体と共に、前記回転体を介してトナー画像を担持した記録材を挟持搬送するニップ部を形成するニップ部形成部材と、交流電流を流すことで前記回転体の回転軸方向に交番磁場を形成し前記回転体の周方向に誘導電流を生じさせる磁場発生手段と、を有し、前記発熱層は第1の金属で構成され、前記保護層は前記発熱層を覆うように前記第1の金属と異なる第2の金属で構成され、前記回転軸方向を含む断面において、前記発熱領域として径方向に前記発熱層および前記保護層を備えた第1の領域の単位長さあたりの電気抵抗は、前記非発熱領域として径方向に前記発熱層を備えず前記保護層を備えた第2の領域の単位長さあたりの電気抵抗よりも小さいことを特徴とする。   In order to achieve the above object, an image heating apparatus according to the present invention includes a base layer, a heat generating layer, and a protective layer in a radial direction, and the heat generating layer has a plurality of heat generating regions and a non-heat generating region in a longitudinal direction. Nip section formation for forming a divided cylindrical rotating body, an opposing body facing the rotating body, and a nip section for nipping and conveying the recording material carrying the toner image via the rotating body together with the opposing body A member, and a magnetic field generating means for forming an alternating magnetic field in a rotation axis direction of the rotating body by flowing an alternating current to generate an induced current in a circumferential direction of the rotating body; The protective layer is made of a metal, and the protective layer is made of a second metal different from the first metal so as to cover the heat generating layer. In a cross section including the rotation axis direction, the heat generating layer is formed in a radial direction as the heat generating region. And first region provided with the protective layer Unit electrical resistance per length, characterized in that the smaller than the electrical resistance per unit length of the second region having the protective layer without providing the heating layer in the radial direction as a non-heating area.

本発明によれば、発熱層の金属の酸化防止と、筒状の加熱回転体にクラック等が生じた場合の十分な過昇温抑制と、を両立できる電磁誘導加熱方式の画像加熱装置を提供することができる。   According to the present invention, there is provided an image heating apparatus of an electromagnetic induction heating type capable of both preventing oxidation of a metal in a heat generating layer and sufficiently suppressing excessive temperature rise when a crack or the like occurs in a cylindrical heating rotator. can do.

実施形態に係る画像加熱装置としての定着装置の断面図Sectional view of a fixing device as an image heating device according to an embodiment 実施形態に係る定着装置の正面図Front view of the fixing device according to the embodiment 発熱層の電磁誘導加熱を説明するための図Diagram for explaining electromagnetic induction heating of the heating layer 加熱回転体としてのフィルムの構成を説明するための図Diagram for explaining the configuration of a film as a heating rotator 発熱層の電流と磁場を表わした模式図Schematic diagram showing the current and magnetic field of the heating layer フィルムの発熱層が破損した場合の電流の流れ方の説明図Explanatory drawing of the current flow when the heating layer of the film is broken 非発熱部と発熱部の単位幅あたりの抵抗の比と破損部端部の温度のグラフGraph of resistance ratio per unit width between non-heating part and heating part and temperature at end of damaged part 実施形態に係る画像加熱装置を搭載した画像形成装置の断面図Sectional view of an image forming apparatus equipped with an image heating device according to an embodiment

以下、本発明の実施形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

《第1の実施形態》
(画像形成装置)
図8を参照して、本発明の実施形態に係る画像加熱装置を搭載した画像形成装置を説明する。図8は、画像形成装置100の一例として電子写真方式のモノクロプリンタの概略構成を表わす断面図である。
<< 1st Embodiment >>
(Image forming device)
Referring to FIG. 8, an image forming apparatus equipped with an image heating device according to an embodiment of the present invention will be described. FIG. 8 is a cross-sectional view illustrating a schematic configuration of an electrophotographic monochrome printer as an example of the image forming apparatus 100.

画像形成装置100において、記録材Pに未定着のトナー画像を形成する為、像担持体としての感光ドラム101と、帯電部材102と、レーザスキャナ103と、現像器104と、を有する。更に、感光ドラム101をクリーニングするクリーナ109と、転写部材108とを有する。以上の未定着のトナー画像形成の動作は周知であるので、詳細な説明は割愛する。   The image forming apparatus 100 includes a photosensitive drum 101 as an image carrier, a charging member 102, a laser scanner 103, and a developing device 104 for forming an unfixed toner image on the recording material P. Further, the image forming apparatus includes a cleaner 109 for cleaning the photosensitive drum 101 and a transfer member 108. Since the operation of forming an unfixed toner image is well known, a detailed description thereof will be omitted.

画像形成装置100内のカセット105に収納された記録紙等の記録材Pは、ローラ106の回転によって1枚ずつ繰り出される。その記録材Pは、ローラ107の回転によって感光ドラム101と転写部材108とで形成された転写ニップ部に搬送される。転写ニップ部でトナー画像が転写された記録材Pは、搬送ガイド110を介して画像加熱部としての定着部(以下、定着装置)Bに送られる。記録材Pに形成された未定着のトナー画像Tは、定着装置Bによって記録材上に加熱定着される。   The recording material P such as recording paper stored in a cassette 105 in the image forming apparatus 100 is fed one by one by rotation of a roller 106. The recording material P is conveyed to a transfer nip formed by the photosensitive drum 101 and the transfer member 108 by the rotation of the roller 107. The recording material P on which the toner image has been transferred at the transfer nip portion is sent to a fixing unit (hereinafter, a fixing device) B as an image heating unit via a conveyance guide 110. The unfixed toner image T formed on the recording material P is heated and fixed on the recording material by the fixing device B.

定着装置Bを出た記録材Pは、ローラ111、112の回転によってトレイ113に排出される。   The recording material P that has left the fixing device B is discharged to a tray 113 by rotation of rollers 111 and 112.

(画像加熱装置)
本実施形態における画像加熱装置としての定着装置Bは、電磁誘導加熱方式の装置である。図1は、本実施形態に係る定着装置Bの概略構成を示す断面図である。また、図2は定着装置Bを記録材Pの搬送方向Xの上流側から見たときの正面図である。
(Image heating device)
The fixing device B as an image heating device in the present embodiment is an electromagnetic induction heating type device. FIG. 1 is a cross-sectional view illustrating a schematic configuration of a fixing device B according to the present embodiment. FIG. 2 is a front view when the fixing device B is viewed from the upstream side in the transport direction X of the recording material P.

ここで、定着装置Bを構成する定着部材に関し、長手方向とは、記録材搬送方向および記録材厚さ方向に直交する方向である。すなわち、長手方向は図1に示すY方向である。図1で、ニップ部形成部材(バックアップ部材)としての摺動部材7が、加熱回転体(回転体)としてのフィルム1を介して、対向体としての加圧ローラ8の外周面(表面)に加圧される。これにより、加圧ローラ8は摺動部材7と共にフィルム1を介して所定幅のニップ部Nを形成し、ニップ部Nでトナー画像を担持した記録材Pを挟持搬送する。   Here, regarding the fixing member constituting the fixing device B, the longitudinal direction is a direction orthogonal to the recording material conveyance direction and the recording material thickness direction. That is, the longitudinal direction is the Y direction shown in FIG. In FIG. 1, a sliding member 7 as a nip portion forming member (backup member) is provided on an outer peripheral surface (surface) of a pressure roller 8 as an opposing member via a film 1 as a heating rotator (rotating member). Pressurized. As a result, the pressure roller 8 forms a nip portion N having a predetermined width through the film 1 together with the sliding member 7, and the nip portion N nips and conveys the recording material P carrying the toner image.

加圧ローラ8は、径方向で順に芯金8aと、その芯金の外周面上にローラ状に成形被覆させた弾性層8bと、この弾性層の外周面上(最表面)に設けられた離型層8cと、を有する。芯金8aの長手方向の両端部は、定着装置Bの左右の側板(不図示)に軸受けを介して回転可能に保持されている。弾性層8bは、シリコーンゴム、フッ素ゴム、フルオロシリコーンゴム等で耐熱性がよい材質が好ましい。   The pressure roller 8 is provided on a cored bar 8a in the radial direction, an elastic layer 8b formed in a roller shape on the outer peripheral surface of the cored bar, and on the outer peripheral surface (outermost surface) of the elastic layer. A release layer 8c. Both ends in the longitudinal direction of the cored bar 8a are rotatably held by left and right side plates (not shown) of the fixing device B via bearings. The elastic layer 8b is preferably made of a material having good heat resistance, such as silicone rubber, fluorine rubber, or fluorosilicone rubber.

離型層8cとしては、離型性かつ耐熱性のよい材質を選択することができる。例えば、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル樹脂)、PTFE(ポリテトラフルオロエチレン樹脂)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン樹脂)を選択することができる。あるいは、ETFE(テトラフルオロエチレン・エチレン樹脂)、ECTFE(クロロトリフルオエチレン・エチレン樹脂)等を選択することができる。   As the release layer 8c, a material having good releasability and heat resistance can be selected. For example, PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether resin), PTFE (polytetrafluoroethylene resin), and FEP (tetrafluoroethylene / hexafluoropropylene resin) can be selected. Alternatively, ETFE (tetrafluoroethylene / ethylene resin), ECTFE (chlorotrifluoroethylene / ethylene resin) or the like can be selected.

図1に示すZ軸方向で、加圧ローラ8に対向させて筒状の回転体としてのフィルム1が配置されている。フィルム1の中空部に挿通されたフィルムガイド(以下、ガイド)6上には、そのガイドを補強するための金属製のステイ5が配置されている。ガイド6は、耐熱性を有するPPS(ポリフェニレンサルファイド)樹脂等を用いて作製してある。   In the Z-axis direction shown in FIG. 1, a film 1 as a cylindrical rotating body is arranged so as to face the pressure roller 8. On a film guide (hereinafter referred to as a guide) 6 inserted into a hollow portion of the film 1, a metal stay 5 for reinforcing the guide is arranged. The guide 6 is made of a heat-resistant PPS (polyphenylene sulfide) resin or the like.

ステイ5の長手方向(Y方向)の両端部には、図2に示す耐熱樹脂製のフランジ9a、9bが外嵌されている。フランジ9aは、規制部材10aにより左側のフレームに固定されている。また、フランジ9bは、規制部材10bにより右側のフレームに固定されている。各フランジ9a,9bは、フィルム1の中空部に挿入された保持部(不図示)でフィルム1の長手方向の端部の内周面(内面)を保持している。更に、各フランジ9a、9bは、フィルム1の回転時にフィルム1側の規制面9a1、9b1でフィルム1の端部を受けてフィルム1のY軸方向に沿う寄り移動を規制する。   At both ends in the longitudinal direction (Y direction) of the stay 5, flanges 9a and 9b made of heat-resistant resin shown in FIG. The flange 9a is fixed to the left frame by a regulating member 10a. The flange 9b is fixed to the right frame by a regulating member 10b. Each of the flanges 9a and 9b holds an inner peripheral surface (inner surface) of a longitudinal end portion of the film 1 by a holding portion (not shown) inserted into a hollow portion of the film 1. Furthermore, when the film 1 rotates, the flanges 9a and 9b receive the ends of the film 1 on the regulating surfaces 9a1 and 9b1 on the film 1 side, and regulate the shift movement of the film 1 along the Y-axis direction.

図2で、ステイ5の長手方向の両端部と左右の側板側のバネ受け部材12a、12bとの間に、それぞれ加圧バネ11a、11bを縮設することで、ステイ5に押し下げ力を作用させている。本実施形態の定着装置Bでは、総圧約100N〜250N(約10kgf〜約25kgf)の押圧力をステイ5に与えている。その押圧力により、ガイド6の加圧ローラ8側の平坦面に保持させた板状の摺動部材7が、フィルム1を介して加圧ローラの外周面(表面)に加圧される。これにより、摺動部材7と加圧ローラは、フィルム1を介して所定幅のニップ部N(図1)を形成する。   In FIG. 2, pressing springs 11a and 11b are contracted between both ends in the longitudinal direction of the stay 5 and the spring receiving members 12a and 12b on the left and right side plates, so that a pressing force is applied to the stay 5. Let me. In the fixing device B of this embodiment, a pressing force of a total pressure of about 100 N to 250 N (about 10 kgf to about 25 kgf) is applied to the stay 5. By the pressing force, the plate-shaped sliding member 7 held on the flat surface of the guide 6 on the pressure roller 8 side is pressed through the film 1 to the outer peripheral surface (surface) of the pressure roller. As a result, the sliding member 7 and the pressure roller form a nip portion N (FIG. 1) having a predetermined width via the film 1.

加圧ローラ8は、駆動手段としてのモータMの駆動により図1の矢印方向に回転される。そして、フィルム1は、フィルム内面が摺動部材7の加圧ローラ8側の摺動面7aに摺動しながら、加圧ローラ8の回転に追従して回転する。フィルム1の回転動作中に、フィルム1の内面、及び摺動面7a相互の摺動摩擦力を低減するために、フィルム1の内面と摺動面7aとの間に耐熱性グリスなどの潤滑剤を介在させることができる。   The pressure roller 8 is rotated in a direction indicated by an arrow in FIG. 1 by driving a motor M as a driving unit. Then, the film 1 rotates following the rotation of the pressure roller 8 while the inner surface of the film slides on the sliding surface 7 a of the sliding member 7 on the pressure roller 8 side. During the rotation operation of the film 1, a lubricant such as heat-resistant grease is applied between the inner surface of the film 1 and the sliding surface 7a in order to reduce the sliding friction force between the inner surface of the film 1 and the sliding surface 7a. It can be interposed.

ガイド6の長手方向の両端部には、フィルム1の回転時に当該フィルム1の端部を受けてフィルム1の寄り移動を規制する規制部材としてのフランジ9a、9b(図2)が外嵌されている。   At both ends in the longitudinal direction of the guide 6, flanges 9a and 9b (FIG. 2) as restricting members for receiving the end of the film 1 when the film 1 rotates and restricting the shift of the film 1 are fitted outside. I have.

図3は、磁性芯材としての磁性コア(以下、コア)2と励磁コイル3による電磁誘導加熱を説明するための図である。コア2は、長手方向(Y軸方向)の長さLaの円柱形状をしており、不図示の固定手段によりフィルム1の中空部を貫通して配置されている。つまり、コア2はフィルム1の中空部に挿通され、フィルム1の回転軸線1o(Y軸方向)に沿って配置されている。そのコア2は、磁界発生手段(磁場発生手段)としての励磁コイル(以下、コイル)3にて生成された交流磁界(交流磁場)による磁力線(磁束)をフィルム1内部に誘導し、磁力線の通路(磁路)を形成する部材として機能する。   FIG. 3 is a diagram for explaining electromagnetic induction heating by a magnetic core (hereinafter, core) 2 as a magnetic core material and an exciting coil 3. The core 2 has a columnar shape with a length La in the longitudinal direction (Y-axis direction), and is arranged so as to penetrate through the hollow portion of the film 1 by fixing means (not shown). That is, the core 2 is inserted into the hollow portion of the film 1 and is arranged along the rotation axis 1o (Y-axis direction) of the film 1. The core 2 guides lines of magnetic force (magnetic flux) due to an alternating magnetic field (alternating magnetic field) generated by an exciting coil (hereinafter, a coil) 3 as a magnetic field generating means (magnetic field generating means) into the film 1, and passes the magnetic force lines. (Magnetic path).

コア2の材質は、ヒステリシス損が小さく、比透磁率の高い材料で形成されることが望ましい。例えば、焼成フェライト、フェライト樹脂、非晶質合金(アモルファス合金)、やパーマロイ等の高透磁率の酸化物や合金材質で構成される強磁性体である。また、好ましくは、筒形状部材であるフィルム1の内部に収納可能な範囲で極力断面積を大きくとることがよい。形状は円柱形状に限定されず、角柱形状なども選択できる。   The core 2 is desirably formed of a material having a small hysteresis loss and a high relative magnetic permeability. For example, it is a ferromagnetic material composed of an oxide or alloy material having high magnetic permeability such as fired ferrite, ferrite resin, amorphous alloy (amorphous alloy), and permalloy. Preferably, the cross-sectional area should be as large as possible within a range that can be accommodated in the film 1 which is a cylindrical member. The shape is not limited to a cylindrical shape, and a prism shape or the like can be selected.

コイル3は、通常の単一導線をフィルム1の中空部において、コア2に巻数約10巻〜40巻で螺旋状に巻き回して形成される。本実施形態では、コイル3を巻き数18回で構成している。コイル3は、フィルム1の内部にてフィルムの回転軸線1oに交差する方向に巻き回されている。このため、コイル3に高周波コンバータ13と給電接点部3a、3bを介して高周波電流(交流電流)を流すと、周期的に極性が反転する交番磁界(交番磁場)をフィルム1の回転軸方向であるY軸方向に発生させることが出来る。   The coil 3 is formed by spirally winding a normal single conductive wire around the core 2 in the hollow portion of the film 1 with about 10 to 40 turns. In the present embodiment, the coil 3 is configured with 18 turns. The coil 3 is wound inside the film 1 in a direction intersecting the rotation axis 1o of the film. Therefore, when a high-frequency current (alternating current) is applied to the coil 3 via the high-frequency converter 13 and the power supply contacts 3a and 3b, an alternating magnetic field (alternating magnetic field) whose polarity is periodically inverted is generated in the rotation axis direction of the film 1. It can be generated in a certain Y-axis direction.

図3で、制御回路14は、フィルム1の長手方向(Y軸方向)について、フィルム1の記録材Pが通過する通過領域(230mm)の中央に配設された温度検知素子4によって検出された温度を基に、高周波コンバータ13を制御する。これにより、フィルム1を電磁誘導加熱してフィルム1の表面温度を所定の目標温度に維持する。   In FIG. 3, the control circuit 14 detects the temperature in the longitudinal direction (Y-axis direction) of the film 1 by the temperature detection element 4 disposed at the center of the passage area (230 mm) of the film 1 through which the recording material P passes. The high frequency converter 13 is controlled based on the temperature. Thereby, the film 1 is heated by electromagnetic induction to maintain the surface temperature of the film 1 at a predetermined target temperature.

未定着のトナー画像Tを担持する記録材Pは、ニップ部Nで搬送されつつ加熱され、これによりトナー画像は記録材上に定着される。   The recording material P carrying the unfixed toner image T is heated while being conveyed in the nip N, whereby the toner image is fixed on the recording material.

(フィルム構成)
図4に、本実施形態のフィルム1の断面模式図を示す。図4(a)は、フィルム1の長手方向に直交する短手方向の断面図である。フィルム1は、直径10〜100mmの円筒形状である。フィルム1の層構成は、フィルム1の内面側から径方向に基層1a、基層1a表面と接する保護層1b、保護層1bに挟まれた発熱層1c、保護層1bを覆うように弾性層1dを積層し、その弾性層1dの外周面に離型層1eを積層した構成となっている。本実施形態では、フィルム1の外径を30mmとした。
(Film composition)
FIG. 4 shows a schematic cross-sectional view of the film 1 of the present embodiment. FIG. 4A is a cross-sectional view in the short direction orthogonal to the longitudinal direction of the film 1. The film 1 has a cylindrical shape with a diameter of 10 to 100 mm. The layer structure of the film 1 includes a base layer 1a, a protective layer 1b in contact with the surface of the base layer 1a, a heat generating layer 1c sandwiched between the protective layers 1b, and an elastic layer 1d covering the protective layer 1b in the radial direction from the inner surface side of the film 1. The elastic layer 1d is laminated, and the release layer 1e is laminated on the outer peripheral surface of the elastic layer 1d. In the present embodiment, the outer diameter of the film 1 is set to 30 mm.

本実施形態では、後に詳述するように、発熱層1cは、第1の金属として電気体積抵抗率の低い銅で構成され、発熱層1cを覆うように設けられる保護層1bは、第1の金属と異なる第2の金属としてニッケルを含む合金で構成される。   In the present embodiment, as will be described in detail later, the heat generating layer 1c is made of copper having a low electric volume resistivity as the first metal, and the protective layer 1b provided so as to cover the heat generating layer 1c is formed of the first metal. The second metal different from the metal is composed of an alloy containing nickel.

基層1aの材料は、体積電気抵抗率が高く、耐熱性に優れた物質が適している。例えば、PI(ポリイミド)、PAI(ポリアミドイミド)等に代表される耐熱性樹脂、CFRP(炭素繊維強化樹脂)やGFRP(ガラス繊維強化樹脂)等に代表される繊維強化樹脂等がある。   As the material of the base layer 1a, a substance having a high volume resistivity and excellent heat resistance is suitable. For example, there are heat-resistant resins represented by PI (polyimide), PAI (polyamideimide) and the like, and fiber-reinforced resins represented by CFRP (carbon fiber-reinforced resin) and GFRP (glass fiber-reinforced resin).

基層1aの厚みは、耐熱性の樹脂を用いる場合は、フィルム1の強度、フィルム1のニップ部Nによる摺動性、及びフィルム1の回転安定性の得られやすい厚さである20〜200μmが適している。本実施形態では、基層1aはPI(ポリイミド)樹脂で形成し、厚さは60μmとした。   When a heat-resistant resin is used, the thickness of the base layer 1a is preferably 20 to 200 μm, which is a thickness at which the strength of the film 1, the slidability due to the nip portion N of the film 1, and the rotational stability of the film 1 are easily obtained. Are suitable. In the present embodiment, the base layer 1a is formed of PI (polyimide) resin, and has a thickness of 60 μm.

保護層1bは、発熱層1cの酸化を防ぐために設けられ、発熱層1cが外気に触れることを防止している。保護層1bは、発熱層1cを覆うように基層1aの外面に形成される(図4(c))。保護層1bは通気性が無い金属材料が好ましく、本実施形態では、ニッケルリン合金を採用した。   The protective layer 1b is provided to prevent the heating layer 1c from being oxidized, and prevents the heating layer 1c from being exposed to the outside air. The protective layer 1b is formed on the outer surface of the base layer 1a so as to cover the heat generating layer 1c (FIG. 4C). The protective layer 1b is preferably made of a metal material having no air permeability. In this embodiment, a nickel-phosphorus alloy is used.

具体的な工程として、本実施形態では、先ず基層1a上に保護層1bとして、無電解メッキで、電気体積抵抗率2×10−6Ωmのニッケルリン合金を厚さ1μm形成した。そして、発熱層1cを、フィルム1の長手方向において発熱領域と非発熱領域を順に備えるように複数に分割して形成する。 As a specific process, in the present embodiment, a nickel phosphorus alloy having an electric volume resistivity of 2 × 10 −6 Ωm and a thickness of 1 μm is formed as a protective layer 1b on the base layer 1a by electroless plating. Then, the heat generating layer 1 c is divided into a plurality of portions so as to sequentially include a heat generating region and a non-heat generating region in the longitudinal direction of the film 1.

これに関しては、マスキングにより、長手方向の幅(長さ)で9.8mmの発熱層1cと隙間0.2mmの繰り返しパターンとして、23個に分割された長手方向が230mmの円筒形状の発熱層1cを形成した(図4(b))。そして、発熱層1cとして昇温速度を速くする為にごく薄く形成するように、電気メッキで電気体積抵抗率2×10−8Ωmの銅を厚さ1μmで形成した。 In this regard, by masking, a heating layer 1c having a width (length) of 9.8 mm in the longitudinal direction and a cylindrical heating layer 1c having a longitudinal direction of 230 mm divided into 23 pieces are formed as a repetitive pattern having a gap of 0.2 mm. Was formed (FIG. 4B). Then, copper having an electric volume resistivity of 2 × 10 −8 Ωm was formed to a thickness of 1 μm by electroplating so that the heat generating layer 1 c was formed to be extremely thin in order to increase the temperature rising rate.

そして、発熱層1cを形成した後に、更に保護層1bとして無電解メッキで電気体積抵抗率2×10−6Ωmのニッケルリン合金を厚さ1μmで形成する(すなわち、本実施形態では、保護層1bは径方向で発熱層1cの外側と内側に設けられる)。以上の工程を踏むことで、発熱層1cである銅の層を保護層1bであるニッケルリン層で覆い銅の酸化を防止している。 After the heat generating layer 1c is formed, a nickel phosphorus alloy having an electric volume resistivity of 2 × 10 −6 Ωm is formed to a thickness of 1 μm by electroless plating as a protective layer 1b (that is, in this embodiment, the protective layer 1b is formed). 1b is provided on the outside and inside of the heat generating layer 1c in the radial direction). By performing the above steps, the copper layer serving as the heat generating layer 1c is covered with the nickel phosphorus layer serving as the protective layer 1b to prevent oxidation of copper.

尚、図4(b)はフィルム1の長手方向断面の一部で、分割した発熱層1cを模式的に示している。図4(b)で、発熱層1cは長手方向に分割されているが、保護層1bは長手方向に分割されておらず、つながっている(図4(c))。図4(b)に示す発熱部(発熱領域)Rhは、保護層1bに覆われた発熱層1cを有する部分であり、発熱層1cを分割している部分は含んでいない。図4(b)に示すh1−h1で切ったフィルム1の短手方向の断面は、図4(a)に相当する。   FIG. 4B schematically shows a divided heat generating layer 1c in a part of the longitudinal section of the film 1. In FIG. 4B, the heat generating layer 1c is divided in the longitudinal direction, but the protective layer 1b is not divided in the longitudinal direction and is connected (FIG. 4C). The heat-generating portion (heat-generating region) Rh shown in FIG. 4B is a portion having the heat-generating layer 1c covered with the protective layer 1b, and does not include a portion dividing the heat-generating layer 1c. A cross section in the lateral direction of the film 1 cut along h1-h1 shown in FIG. 4B corresponds to FIG. 4A.

図4(c)は、図4(b)の分割された発熱層1cの隙間部分を拡大した図であり、この部分は、発熱層1cを含んでいない非発熱部(非発熱領域)Rpとなる。図4(b)に示すp1−p1で切ったフィルム1の短手方向の断面は、図4(d)に相当する。非発熱部Rpは、非発熱と称したが、微少に電流が流れ発熱する場合もある。但し、定着を行う為の熱源としての機能はしない程度の発熱である。   FIG. 4C is an enlarged view of a gap portion of the divided heat generating layer 1c in FIG. 4B, and includes a non-heat generating portion (non-heat generating region) Rp not including the heat generating layer 1c. Become. A cross section in the short direction of the film 1 cut along p1-p1 shown in FIG. 4B corresponds to FIG. 4D. The non-heat-generating portion Rp is referred to as non-heat-generating. However, a small amount of current may flow and generate heat. However, heat is generated to such an extent that it does not function as a heat source for fixing.

弾性層1dは、保護層1bを覆うように形成した。本実施形態では、弾性層1dはスプレーコート法により硬度が20度(JIS−A、9.8N(1kgf)荷重)のシリコーンゴムを厚み300μmで形成した。   The elastic layer 1d was formed so as to cover the protective layer 1b. In the present embodiment, the elastic layer 1d is formed of a silicone rubber having a hardness of 20 degrees (JIS-A, 9.8 N (1 kgf) load) with a thickness of 300 μm by a spray coating method.

離型層1eは、フィルム1表面へのトナーの付着、及び画像不良の発生を防止する為に設ける。離型層1eは、弾性層1dの外面に形成する。離型層1eは非粘着性に優れた材料が適しており、例えばPTFE、PFA、FEP、ETFE、ECTFE等が適している。本実施形態では、離型層1eとして、厚さ15μmのPFAを用いた。   The release layer 1e is provided in order to prevent toner from adhering to the surface of the film 1 and prevent image defects. The release layer 1e is formed on the outer surface of the elastic layer 1d. For the release layer 1e, a material having excellent non-adhesiveness is suitable, and for example, PTFE, PFA, FEP, ETFE, ECTFE and the like are suitable. In the present embodiment, PFA having a thickness of 15 μm is used as the release layer 1e.

(フィルム1の発熱原理)
図5(a)は発熱層1cの電流(誘導電流)と磁場を表わした短手方向(記録材搬送方向)の断面模式図であり、図5(b)は発熱層1cの電流と磁場を表わした長手方向の模式図である。図5(a)は、発熱層1cの中心からコア2とコイル3と発熱層1cを同心円状に配置したものである。図中、Y軸方向について、紙面奥行き方向に向かう矢印磁力線をBin(丸印の中に×印)で模擬し、紙面手前方向に向かう矢印磁力線をBout(丸印の中に黒丸印)で模擬している。
(Principle of heat generation of film 1)
FIG. 5A is a schematic cross-sectional view showing the current (induction current) and the magnetic field of the heat generating layer 1c in the lateral direction (recording material conveyance direction). FIG. 5B shows the current and the magnetic field of the heat generating layer 1c. FIG. 3 is a schematic view in the longitudinal direction shown. FIG. 5A shows a configuration in which the core 2, the coil 3, and the heat generating layer 1c are arranged concentrically from the center of the heat generating layer 1c. In the drawing, in the Y-axis direction, an arrow magnetic force line heading in the depth direction of the paper is simulated by Bin (x in a circle), and an arrow magnetic force line heading in the front direction of the paper is simulated by Bout (a black circle in a circle). are doing.

図5(a)で、コイル3の中に矢印Iの向きに電流が増加している瞬間は、磁路の中に紙面奥行き方向に向かう矢印(図中の×印)のように磁力線が形成される。すなわち、発熱層1cの内側であるコア2の中を紙面奥行き方向に向かう磁力線Binと、発熱層1cの外側を紙面手前方向に帰ってくる磁力線Boutが同数形成される。実際に交番磁界を形成した時には、このように形成された磁力線を打ち消すように、発熱層1cの周方向全域に誘導起電力がかかり、矢印Jのように発熱層1cを周回する周回電流Jが流れる。   In FIG. 5A, at the moment when the current is increasing in the direction of arrow I in the coil 3, magnetic lines of force are formed in the magnetic path as indicated by the arrow (marked by x in the drawing) directed in the direction of the depth of the paper. Is done. That is, the same number of magnetic lines of force Bin that go in the depth direction of the paper inside the core 2 inside the heat generating layer 1c and the magnetic lines of force Bout that return outside of the heat generating layer 1c toward the front of the paper are formed. When an alternating magnetic field is actually formed, an induced electromotive force is applied to the entire circumferential direction of the heat generating layer 1c so as to cancel the magnetic field lines thus formed, and a circulating current J circling the heat generating layer 1c as indicated by an arrow J. Flows.

誘導起電力は発熱層1cの周方向にかかっているので、周回電流Jは分割された発熱層1cそれぞれの内部を一様に流れる。そして、磁力線は高周波電流により生成消滅と方向反転を繰り返すため、周回電流Jは高周波電流と同期して生成消滅と方向反転を繰り返し流れる。発熱層1cに電流が流れると、発熱層1cの電気抵抗によりジュール熱が生じる。   Since the induced electromotive force is applied in the circumferential direction of the heat generating layer 1c, the circulating current J flows uniformly in each of the divided heat generating layers 1c. Since the lines of magnetic force repeat generation and disappearance and direction reversal by the high-frequency current, the circulating current J repeatedly flows through generation and disappearance and direction reversal in synchronization with the high-frequency current. When a current flows through the heating layer 1c, Joule heat is generated due to the electric resistance of the heating layer 1c.

このジュール発熱の発熱量Peは以下の式(1)で表される。   The heat value Pe of the Joule heat is expressed by the following equation (1).

Figure 2020038291
Figure 2020038291

Pe:発熱量
t:厚み
Bm:最大磁束密度
ρ:抵抗率
ke:比例定数
(フィルム1の破損による過昇温に関する比較例との比較)
以下、本実施形態におけるフィルム1の破損による過昇温の検討を行う。先ず本実施形態に対する比較例を以下のように定めて、比較例との比較を行う。
Pe: Heat value t: Thickness Bm: Maximum magnetic flux density ρ: Resistivity ke: Proportional constant (Comparison with comparative example regarding excessive temperature rise due to breakage of film 1)
Hereinafter, an examination will be made of an excessive temperature increase due to breakage of the film 1 in the present embodiment. First, a comparative example with respect to the present embodiment is determined as follows, and a comparison with the comparative example is performed.

1)比較例
本実施形態と同じPI(ポリイミド)樹脂で形成した基層1a上に、本実施形態とは異なる保護層1bとして、電気ニッケルメッキで、電気体積抵抗率9×10−8Ωmのニッケルを厚さ5μm形成した。
1) Comparative Example On a base layer 1a formed of the same PI (polyimide) resin as in the present embodiment, nickel having an electric volume resistivity of 9 × 10 −8 Ωm was formed by electro-nickel plating as a protective layer 1b different from the present embodiment. Was formed to a thickness of 5 μm.

次に発熱層1cは、本実施形態と同様に、電気メッキで、電気体積抵抗率2×10−8Ωmの銅を厚さ1μmで形成した。そして、本実施形態と同様に、マスキングにより、長手方向の幅(長さ)で9.8mmの発熱層1cと隙間0.2mmの繰り返しパターンとして、23個に分割された長手方向が230mmの円筒形状の発熱層1cを形成した(図4(b))。 Next, the heat generating layer 1c was formed by electroplating copper having an electric volume resistivity of 2 × 10 −8 Ωm to a thickness of 1 μm, as in the present embodiment. Then, similarly to the present embodiment, as a repetition pattern of a heating layer 1c having a width (length) of 9.8 mm in the longitudinal direction and a gap of 0.2 mm, a cylinder divided into 23 pieces having a longitudinal direction of 230 mm is formed in the same manner as in the present embodiment. A heating layer 1c having a shape was formed (FIG. 4B).

そして、発熱層1cを形成した後に、更に、本実施形態とは異なる保護層1bとして上述したような電気メッキで電気体積抵抗率9×10−8Ωmのニッケルを厚さ5μm形成した。 Then, after the heat generating layer 1c was formed, nickel having an electric volume resistivity of 9 × 10 −8 Ωm was formed to a thickness of 5 μm as the protective layer 1b different from the present embodiment by electroplating as described above.

図6は、フィルム1の発熱層1cが破損した場合の電流の流れ方の説明図である。図6(a)(b)は、本実施形態の発熱層1cが破損した長さが異なる場合の電流の流れ方の例を示している。また、図6(c)(d)は、比較例の発熱層1cが破損した長さが異なる場合の電流の流れ方の例を示している。図6(a)乃至(d)で、破損部端部Cに電流が多く流れるか否かは、発熱部Rhと非発熱部Rpの単位幅あたりの抵抗の大小関係、すなわち発熱部Rhと非発熱部Rpの単位幅あたりの抵抗の比で決まる。   FIG. 6 is an explanatory diagram of a current flow when the heat generating layer 1c of the film 1 is damaged. FIGS. 6A and 6B show an example of the flow of current when the heating layer 1c of the present embodiment is damaged at different lengths. FIGS. 6C and 6D show examples of the current flow when the heat generating layer 1c of the comparative example is damaged at different lengths. In FIGS. 6A to 6D, whether a large amount of current flows to the end portion C of the damaged portion is determined by the magnitude relation of the resistance per unit width between the heat generating portion Rh and the non-heat generating portion Rp, that is, the non-heat generating portion R It is determined by the ratio of the resistance per unit width of the heat generating portion Rp.

2)抵抗測定方法
本実施形態における抵抗の比を検証する為の抵抗測定方法について、以下説明する。抵抗測定は、低抵抗率計(三菱化学アナリテック株式会社製ロレスタ−GP)を用いて求めた。測定は、フィルム1を切り開き、電極を当接する部分の弾性層1d及び離形層1eを削除した試験片を作成した。作成した試験片を用い、4探針法により抵抗の測定を行った。4本の針状の電極を間隔1.5mmで直線状に配置したプローブを金属面に押し当て、外側の二探針間に一定電流を流し、内側の二探針間に生じる電位差を測定し抵抗を求めた。
2) Resistance Measurement Method A resistance measurement method for verifying the resistance ratio in the present embodiment will be described below. The resistance was measured using a low resistivity meter (Loresta-GP manufactured by Mitsubishi Chemical Analytech Co., Ltd.). For the measurement, a test piece was prepared by cutting open the film 1 and removing the elastic layer 1d and the release layer 1e at the portions in contact with the electrodes. Using the prepared test piece, the resistance was measured by the four probe method. A probe in which four needle-shaped electrodes are linearly arranged at an interval of 1.5 mm is pressed against a metal surface, a constant current flows between two outer probes, and a potential difference generated between the two inner probes is measured. The resistance was determined.

非発熱部Rpをまたがない場合の抵抗Rrhと、非発熱部Rpをまたぐ場合の抵抗Rrh+pの抵抗測定を行った。非発熱部Rpをまたがない場合の抵抗Rrhは発熱部Rhの抵抗であり、非発熱部Rpをまたぐ場合の抵抗Rrh+pは発熱部Rhと非発熱部Rpの合成抵抗である。 And resistor R rh when not cross the non-heat generating portion Rp, the resistance measurement of the resistance R rh + p when straddling the non-heating portions Rp was performed. The resistance R rh when not straddling the non-heating part Rp is the resistance of the heating part Rh, and the resistance R rh + p when straddling the non-heating part Rp is the combined resistance of the heating part Rh and the non-heating part Rp.

発熱部Rhの単位幅(長手方向の単位長さ)当りの抵抗rは、非発熱部Rpをまたがない場合の抵抗Rrh測定と電極間隔w(本実施形態では、電極間隔wは1.5mm)から求まり、式(2)で表される。 Resistance r h per unit width of the heat generating portion Rh (unit length in the longitudinal direction), the resistance R rh measurement and electrode spacing w h (present embodiment in which does not cross the non-heat generating portion Rp, electrode spacing w h Is obtained from 1.5 mm), and is represented by equation (2).

Figure 2020038291
Figure 2020038291

非発熱部Rpの単位幅当りの抵抗rは、非発熱部Rpをまたぐ場合の抵抗Rrh+p測定と電極間隔w及び、非発熱部幅w(本実施形態では、非発熱部幅wは0.2mm)から求まり、式(3)で表される。 Resistance r p per unit width of the non-heat generating portion Rp is the resistance R rh + p measurement and electrode spacing w h and when straddling the non-heat generating portion Rp, a non-heating portion width w p (the present embodiment, the non-heating portion width w p is obtained from 0.2 mm) and is expressed by the following equation (3).

Figure 2020038291
Figure 2020038291

非発熱部Rpの単位幅あたりの抵抗rと、発熱部Rhの単位幅あたりの抵抗rとの比r/rは、式(4)で表される。 A resistor r p per unit width of the non-heat generating portion Rp, the ratio r p / r h of the resistance r h per unit width of the heat generating portion Rh is expressed by Equation (4).

Figure 2020038291
Figure 2020038291

本実施形態において、非発熱部Rpと発熱部Rhの単位幅あたりの抵抗の比r/rは100であり、非発熱部Rpの単位幅あたりの抵抗が高い構成となっている。一方、比較例では、非発熱部Rpと発熱部Rhの単位幅あたりの抵抗の比r/rは0.9であり、非発熱部Rpの単位幅あたりの抵抗が低い構成となっている。このため、比較例においても本実施形態のフィルム1に対応させる為に非発熱Rpと称しているが、比較例の非発熱部Rpは、発熱部Rhと同様に発熱する。 In this embodiment, the ratio r p / r h of the resistance per unit width of the non-heat generating portion Rp and the heating unit Rh is 100, per unit width of the non-heat generating portion Rp resistor is a high structure. On the other hand, in the comparative example, the ratio r p / r h of the resistance per unit width of the non-heat generating portion Rp and the heating unit Rh is 0.9, per unit width of the non-heat generating portion Rp resistance is lower structure I have. For this reason, in the comparative example, the non-heat-generating portion Rp is referred to as the non-heat-generating portion Rp in order to correspond to the film 1 of the present embodiment.

図6の(a)、(b)、(c)、(d)において、「Za1」、「Zb1」、「Zc1」、「Zd1」及び、「Za2」、「Zc2」は破損の無い領域である。破損の無い領域では、磁性コア2を貫く、フィルム1の回転軸線1oであるY軸方向と平行な方向の磁束によって発熱層1cに誘導起電力が生じ、矢印で示したようにフィルム1の周回方向に周回電流Jが流れる。実際には、交流電圧を印加するので、矢印の逆方向にも流れる。   In (a), (b), (c), and (d) of FIG. 6, “Za1”, “Zb1”, “Zc1”, “Zd1”, and “Za2” and “Zc2” are areas without damage. is there. In a region where there is no damage, an induced electromotive force is generated in the heat generating layer 1c by a magnetic flux penetrating the magnetic core 2 and in a direction parallel to the Y-axis direction which is the rotation axis 1o of the film 1, and as shown by the arrow, the induced electromotive force A circulating current J flows in the direction. Actually, since an AC voltage is applied, the current flows in the direction opposite to the arrow.

図6(a)の本実施形態、図6(c)の比較例のように、破損領域が発熱層1cの長手幅以内である場合、非発熱部Rpをまたいでいない為、実施形態、比較例で破損部端部Cがある領域「Za3」、「Zc3」に回り込んで流れる電流に差が出ていない。しかし、発熱層1cの長手幅よりも破損幅が大きくなって、非発熱部Rpをまたぐ様になると、本実施形態と比較例で差が出てくる。   As in the present embodiment of FIG. 6A and the comparative example of FIG. 6C, when the damaged area is within the longitudinal width of the heat generating layer 1c, the damaged area does not straddle the non-heat generating portion Rp. In the example, there is no difference in the current flowing around the areas "Za3" and "Zc3" where the end portion C of the damaged portion is located. However, if the damage width becomes larger than the longitudinal width of the heat generating layer 1c and the heat generating layer 1c straddles the non-heat generating portion Rp, a difference appears between the present embodiment and the comparative example.

すなわち、図6(b)に示す本実施形態では、非発熱部Rpの単位幅あたりの抵抗rが、発熱部Rhの単位幅あたりの抵抗rよりも大きい為、保護層には周回方向に流れる電流が迂回することがない。この為、全幅が破損している「Zb3」の領域には電流が流れない。また、破損部端部Cがある「Zb2」の領域は、「Zb2」の領域のみで回り込んで流れる電流が発生する。その為、回り込み電流の総量が少なく、過昇温を許容レベルに抑制できる。 That is, in this embodiment shown in FIG. 6 (b), the resistance r p per unit width of the non-heat generating portion Rp is larger than the resistance r h per unit width of the heat generating portion Rh, circumferential direction on the protective layer The current flowing through is not bypassed. Therefore, no current flows in the area of “Zb3” where the entire width is damaged. In addition, in the area of “Zb2” where the end portion C of the damaged portion is present, a current flowing around only the area of “Zb2” is generated. Therefore, the total amount of the sneak current is small, and the excessive temperature rise can be suppressed to an allowable level.

これに対し、比較例である図6(d)の場合、非発熱部Rpの単位幅あたりの抵抗rが、発熱部Rhの単位幅あたりの抵抗rと同等に低い為、非発熱部Rpを導通経路の一部として周回方向に流れる電流が迂回する。これによって、破損部端部Cに破損領域「Zd2」及び、「Zd3」の電流が回り込むように流れる為、破損部端部Cに電流が多く流れ、他の領域に比べ過昇温となる。 In contrast, if 6 of (d) is a comparative example, the resistance r p per unit width of the non-heat generating portion Rp is equally as low as the resistance r h per unit width of the heat generating portion Rh, non-heat generating portion The current flowing in the circumferential direction bypasses Rp as a part of the conduction path. As a result, the currents in the damaged areas “Zd2” and “Zd3” flow around the damaged portion end C so that a large amount of current flows in the damaged portion end C, and the temperature becomes excessively high as compared with other regions.

表1は、本実施形態の効果を確認する為、定着装置Bに本実施形態(実施例1)と比較例のフィルム1を装着した場合のそれぞれに対して、実際に加熱定着処理動作を行った際の温度測定結果を示す。この温度測定結果は、発熱層1cの破損部端部Cの温度を放射温度計で測定したものである。具体的には、投入最大電力900W、回転速度300mm/secという条件下で、フィルム1を室温(23℃)から目標温度160℃まで加熱、昇温させる実験を行い、破損幅(長手方向の幅)を振った場合の破損部端部Cの温度を計測した。   Table 1 shows that, in order to confirm the effect of the present embodiment, the heat fixing operation was actually performed for each of the case where the film 1 of the present embodiment (Example 1) and the comparative example 1 were attached to the fixing device B. The result of the temperature measurement at the time of this is shown. The temperature measurement result is obtained by measuring the temperature of the end portion C of the damaged portion of the heat generating layer 1c with a radiation thermometer. Specifically, an experiment was conducted in which the film 1 was heated and heated from room temperature (23 ° C.) to a target temperature of 160 ° C. under the conditions of a maximum input power of 900 W and a rotation speed of 300 mm / sec. ) Was measured for the temperature at the end portion C of the damaged portion when shaking.

Figure 2020038291
Figure 2020038291

表1に示すように、発熱層1cの長手幅9.8mm以内である破損幅8mmまでは、本実施形態(実施例1)、比較例で破損部温度に差が出ていない。しかし、発熱層1cの長手幅よりも破損幅が大きくなると、比較例では破損部端部Cの温度が高くなり、破損幅が18mmとなると270℃に達する。すなわち、フィルムの破損幅が大きくなると、破損端に向かって回り込む電流が多くなり、破損部端部Cの発熱量が多くなって温度は270℃まで上昇する。   As shown in Table 1, there is no difference in the temperature of the damaged portion between the present embodiment (Example 1) and the comparative example up to a damage width of 8 mm, which is within 9.8 mm in the longitudinal width of the heat generating layer 1c. However, when the damage width is larger than the longitudinal width of the heat generating layer 1c, in the comparative example, the temperature of the end portion C of the damaged portion increases, and when the damage width reaches 18 mm, the temperature reaches 270 ° C. In other words, when the width of the damage of the film increases, the amount of current flowing toward the damaged end increases, the amount of heat generated at the damaged end C increases, and the temperature rises to 270 ° C.

一方、本実施形態(実施例1)では、破損幅8mmのときの温度220℃が最も高い温度である。発熱層1cの長手幅よりも破損幅が大きくなると、発熱層1cの長手幅全域が破損した部分には電流が流れなくなる為、比較例に比べ回り込む電流が少なく、過昇温は抑制できることが分かる。   On the other hand, in the present embodiment (Example 1), the temperature of 220 ° C. when the damage width is 8 mm is the highest temperature. When the damage width is larger than the longitudinal width of the heat generating layer 1c, current does not flow to the portion where the entire longitudinal width of the heat generating layer 1c is damaged, so that less current flows as compared with the comparative example, and it can be seen that excessive temperature rise can be suppressed. .

上記実験においては、比較例のように、過昇温が270℃以上となった場合、画像不良が顕著となるとともに、熱劣化によりフィルムの耐久性が著しく低下した。本実施形態(実施例1)のように、過昇温が220℃以下である場合は、画像不良も軽微であり、また、熱劣化によるフィルムの耐久性も問題ないレベルであった。   In the above experiment, when the excessive temperature rise was 270 ° C. or higher as in the comparative example, image defects became remarkable, and the durability of the film was significantly reduced due to thermal deterioration. As in the present embodiment (Example 1), when the excessive temperature was 220 ° C. or less, the image defect was slight, and the durability of the film due to thermal deterioration was at a level without any problem.

また、本実施形態(実施例1)と比較例では、電力投入直後のフィルム1の温度分布で違いが観測できる。表面温度分布測定には、サーモグラフィ(NEC Avio社製TVS−8500)を用いた。室温(23℃)の状態から電力を投入すると、本実施形態のフィルム1は、発熱部Rhが先に温度上昇し、遅れて、発熱部からの熱伝導により非発熱部Rpの温度が上昇する。これは、本実施形態では、抵抗の比r/rが大きく、発熱部Rhが発熱している為である。 Further, a difference can be observed between the present embodiment (Example 1) and the comparative example in the temperature distribution of the film 1 immediately after the power is turned on. Thermography (TVS-8500 manufactured by NEC Avio) was used for the surface temperature distribution measurement. When power is applied from a room temperature (23 ° C.) state, in the film 1 of the present embodiment, the temperature of the non-heat generating portion Rp of the film 1 of the present embodiment rises first, and the temperature of the non-heat generating portion Rp increases later due to heat conduction from the heat generating portion. . This is, in the present embodiment, the ratio r p / r h of the resistor is large, is because the heat generating unit Rh is generating heat.

一方、比較例は、発熱部Rh、非発熱部Rpとも温度上昇する。比較例の場合、抵抗の比r/rが小さく、非発熱部Rpでも発熱する為である。 On the other hand, in the comparative example, the temperature of both the heat generating portion Rh and the non-heat generating portion Rp rises. In Comparative Example, the ratio r p / r h of the resistor is small, is to heat generation or non-heat generating portion Rp.

ここで、非発熱部Rpと発熱部Rhの単位幅あたりの抵抗の比r/rを変えた時の破損部端部Cの温度を、図7に示す。図7に示す破損部端部Cの温度は、表1に示した温度測定結果をもとに計算で見積もった結果である。非発熱部Rpと発熱部Rhの単位幅あたりの抵抗の比r/rは、10以上(10倍以上)の領域においては、破損部端部Cの温度がほとんど変わらない。この抵抗の比r/rの数値が大きい程、電流が非発熱部Rpを経由して回り込む電流がなくなる為、抵抗の比r/rに上限はない。 Here, the temperature of the damaged portion end C when varying the ratio r p / r h of the resistance per unit width of the non-heat generating portion Rp and the heating unit Rh, shown in FIG. The temperature of the end portion C of the damaged portion shown in FIG. 7 is a result estimated by calculation based on the temperature measurement results shown in Table 1. In a region where the ratio of resistance per unit width r p / r h between the non-heat generating portion Rp and the heat generating portion Rh is 10 or more (10 times or more), the temperature of the damaged portion end portion C hardly changes. The larger value of the ratio r p / r h of the resistor, since the current is a current which flows around through the non-heat generating portion Rp disappears, there is no upper limit to the ratio r p / r h of the resistor.

しかし、抵抗の比r/rが10を下回ると破損部端部Cの温度が上昇し始める。これは先に説明したとおり、電流が非発熱部Rpの一部を経由して回り込む電流が発生する為である。熱劣化の観点から、定常的に使用するフィルムの温度は230℃程度以下とするのが一般的である。定着温度制御の振れ、バラツキを考慮すると、抵抗の比r/rは、破損部端部Cの温度が変わらない領域で使用することが望ましいことから、抵抗の比r/rは10以上とすることがより望ましい。 However, the temperature of the ratio r p / r h of resistance is below 10 damaged portion end C starts to rise. This is because, as described above, a current flows around the non-heat-generating portion Rp. From the viewpoint of thermal deterioration, the temperature of the film used regularly is generally set to about 230 ° C. or less. Deflection of the fixing temperature control, considering the variation, the ratio r p / r h resistors, since it is desirable for use in areas where the temperature of the damaged portion end C is unchanged, the ratio r p / r h resistors It is more desirable to be 10 or more.

本実施形態では、非発熱部Rpと発熱部Rhの単位幅あたりの抵抗の比r/rは、100としたが、10以上であれば、電流が非発熱部Rpに流れにくくなり、過昇温を許容レベルに抑制する事が容易となる。 In this embodiment, the ratio r p / r h of the resistance per unit width of the non-heat generating portion Rp and the heating unit Rh is set to 100, if 10 or more, a current hardly flows in the non-heat generating portions Rp, It becomes easy to suppress the excessive temperature rise to an allowable level.

なお、抵抗の比r/rが1より大きければ、破損幅(長手方向の幅)が小さい場合に用いることができる。 Incidentally, if the ratio r p / r h of the resistor is greater than 1, it may be used if damaged width (longitudinal width) is small.

上述した本実施形態では、フィルム1の発熱層1cに電気抵抗率の低い銅を採用する構成であるため、金属層である発熱層1cをより薄くすることができる。したがって、フィルム1の熱容量を小さくすることができ、より昇温速度が速くクイックスタート性に優れ、プリント待ち時間短縮に有利な構成となる。そして、フィルム1にクラック等が生じた場合においても、過昇温を抑制できるとともに、発熱層1cである銅の酸化を抑えることが可能となる。   In the above-described embodiment, since the heat generating layer 1c of the film 1 has a configuration in which copper having a low electric resistivity is adopted, the heat generating layer 1c as a metal layer can be made thinner. Therefore, the heat capacity of the film 1 can be reduced, the temperature rising speed is faster, the quick start property is excellent, and the configuration is advantageous for shortening the print waiting time. Then, even when a crack or the like occurs in the film 1, it is possible to suppress excessive temperature rise and to suppress oxidation of copper which is the heat generating layer 1c.

本実施形態では、発熱層1cとして銅を用いたが、銅合金、銀、銀パラジウム等酸化しやすい金属を発熱層1cに使用する場合も同様に効果を得ることが出来る。また、保護層1bは、ニッケル合金以外でも、厚みを調整することで所望の抵抗を得られれば、ニッケル、硬質クロムメッキ等でもよい。   In the present embodiment, copper is used for the heat generating layer 1c. However, the same effect can be obtained when a metal that is easily oxidized such as a copper alloy, silver, or silver palladium is used for the heat generating layer 1c. The protective layer 1b may be made of a material other than a nickel alloy, such as nickel or hard chrome plating, as long as a desired resistance can be obtained by adjusting the thickness.

また、本実施形態では、弾性層1cを有しているが、定着が満足できれば、弾性層1dは無くてもよく、保護層1cの表面に離形層1eを直接形成する構成としてもよい。   In the present embodiment, the elastic layer 1c is provided, but if the fixing is satisfactory, the elastic layer 1d may not be provided, and the release layer 1e may be directly formed on the surface of the protective layer 1c.

上述した実施形態は、本発明における最良の実施形態の一例ではあるものの、本発明はこれに限定されるものではなく、本発明の思想の範囲内において種々の構成を他の公知の構成に置き換えることが可能である。   Although the above-described embodiment is an example of the best embodiment of the present invention, the present invention is not limited to this, and various configurations are replaced with other known configurations within the scope of the concept of the present invention. It is possible.

1・・フィルム、1a・・基層、1b・・保護層、1c・・発熱層、3・・励磁コイル、6・・フィルムガイド、8・・加圧ローラ 1. Film, 1a .. Base layer, 1b .. Protective layer, 1c .. Heating layer, 3 ... Exciting coil, 6 ... Film guide, 8 ... Pressure roller

Claims (9)

径方向に基層と発熱層と保護層とを備え、長手方向で発熱領域と非発熱領域を順に備えるように前記発熱層が複数に分割された筒状の回転体と、
前記回転体に対向する対向体と、
前記対向体と共に、前記回転体を介してトナー画像を担持した記録材を挟持搬送するニップ部を形成するニップ部形成部材と、
交流電流を流すことで前記回転体の回転軸方向に交番磁場を形成し前記回転体の周方向に誘導電流を生じさせる磁場発生手段と、
を有し、
前記発熱層は第1の金属で構成され、前記保護層は前記発熱層を覆うように前記第1の金属と異なる第2の金属で構成され、
前記回転軸方向を含む断面において、前記発熱領域として径方向に前記発熱層および前記保護層を備えた第1の領域の単位長さあたりの電気抵抗は、前記非発熱領域として径方向に前記発熱層を備えず前記保護層を備えた第2の領域の単位長さあたりの電気抵抗よりも小さいことを特徴とする画像加熱装置。
A cylindrical rotating body including a base layer, a heating layer, and a protection layer in a radial direction, and the heating layer divided into a plurality of portions so as to sequentially include a heating region and a non-heating region in a longitudinal direction,
An opposing body facing the rotating body,
A nip portion forming member that forms a nip portion that sandwiches and conveys a recording material carrying a toner image via the rotating body,
Magnetic field generating means for forming an alternating magnetic field in the rotation axis direction of the rotating body by flowing an alternating current to generate an induced current in the circumferential direction of the rotating body,
Has,
The heating layer is made of a first metal, and the protective layer is made of a second metal different from the first metal so as to cover the heating layer.
In a cross section including the rotation axis direction, the electric resistance per unit length of the first region including the heat generating layer and the protective layer in the radial direction as the heat generating region is the heat generation in the radial direction as the non-heat generating region. An image heating apparatus, wherein the second region provided with the protective layer without a layer has a smaller electrical resistance per unit length than the second region.
前記第2の領域の単位長さあたりの電気抵抗は、前記第1の領域の単位長さあたりの電気抵抗の10倍以上であることを特徴とする請求項1に記載の画像加熱装置。   2. The image heating apparatus according to claim 1, wherein the electric resistance per unit length of the second region is at least 10 times the electric resistance per unit length of the first region. 3. 前記磁場発生手段は前記回転体の中空部に挿通された励磁コイルを備え、前記励磁コイルの内側に前記交番磁場の磁力線を前記回転体の内部に誘導するための磁性コアを有することを特徴とする請求項1または2に記載の画像加熱装置。   The magnetic field generating means includes an exciting coil inserted into a hollow portion of the rotating body, and has a magnetic core for inducing magnetic field lines of the alternating magnetic field inside the rotating body inside the exciting coil. The image heating device according to claim 1 or 2, wherein 径方向で、前記保護層は前記発熱層の外側に設けられることを特徴とする請求項1乃至3のいずれか1項に記載の画像加熱装置。   The image heating apparatus according to claim 1, wherein the protective layer is provided outside the heat generating layer in a radial direction. 径方向で、前記保護層は前記発熱層の外側と内側に設けられることを特徴とする請求項4に記載の画像加熱装置。   The image heating apparatus according to claim 4, wherein the protective layer is provided outside and inside the heat generating layer in a radial direction. 前記第1の金属は、銅で構成されることを特徴とする請求項1乃至5のいずれか1項に記載の画像加熱装置。   The image heating apparatus according to claim 1, wherein the first metal is made of copper. 前記第2の金属は、ニッケルを含む合金で構成されることを特徴とする請求項1乃至6のいずれか1項に記載の画像加熱装置。   The image heating apparatus according to claim 1, wherein the second metal is made of an alloy containing nickel. 前記回転体は、径方向で最表面に離型層を有することを特徴とする請求項1乃至7のいずれか1項に記載の画像加熱装置。   The image heating apparatus according to claim 1, wherein the rotating body has a release layer on an outermost surface in a radial direction. 前記回転体は、径方向で前記保護層と前記離型層の間に弾性層を有することを特徴とする請求項8に記載の画像加熱装置。
The image heating apparatus according to claim 8, wherein the rotating body has an elastic layer between the protective layer and the release layer in a radial direction.
JP2018165360A 2018-09-04 2018-09-04 Image heating device and rotating body Active JP7158961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018165360A JP7158961B2 (en) 2018-09-04 2018-09-04 Image heating device and rotating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018165360A JP7158961B2 (en) 2018-09-04 2018-09-04 Image heating device and rotating body

Publications (2)

Publication Number Publication Date
JP2020038291A true JP2020038291A (en) 2020-03-12
JP7158961B2 JP7158961B2 (en) 2022-10-24

Family

ID=69738513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018165360A Active JP7158961B2 (en) 2018-09-04 2018-09-04 Image heating device and rotating body

Country Status (1)

Country Link
JP (1) JP7158961B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071998A (en) * 2004-09-02 2006-03-16 Fuji Xerox Co Ltd Fixing belt, fixing device, and image forming apparatus
WO2011013824A1 (en) * 2009-07-31 2011-02-03 シンジーテック株式会社 Electromagnetic induction heating element and fixing belt
JP2013068788A (en) * 2011-09-22 2013-04-18 Fuji Xerox Co Ltd Fixing belt, method of manufacturing fixing belt, fixing device, and image forming apparatus
JP2013228708A (en) * 2012-03-30 2013-11-07 Tokai Rubber Ind Ltd Heating member
JP2014085527A (en) * 2012-10-24 2014-05-12 Fuji Xerox Co Ltd Fixing belt, fixing device, image forming apparatus, and manufacturing method of fixing belt
JP2015118232A (en) * 2013-12-18 2015-06-25 キヤノン株式会社 Image heating device
JP2018070819A (en) * 2016-11-01 2018-05-10 東芝テック株式会社 Thermally conductive rubber material, belt for image formation device, and image formation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071998A (en) * 2004-09-02 2006-03-16 Fuji Xerox Co Ltd Fixing belt, fixing device, and image forming apparatus
WO2011013824A1 (en) * 2009-07-31 2011-02-03 シンジーテック株式会社 Electromagnetic induction heating element and fixing belt
JP2013068788A (en) * 2011-09-22 2013-04-18 Fuji Xerox Co Ltd Fixing belt, method of manufacturing fixing belt, fixing device, and image forming apparatus
JP2013228708A (en) * 2012-03-30 2013-11-07 Tokai Rubber Ind Ltd Heating member
JP2014085527A (en) * 2012-10-24 2014-05-12 Fuji Xerox Co Ltd Fixing belt, fixing device, image forming apparatus, and manufacturing method of fixing belt
JP2015118232A (en) * 2013-12-18 2015-06-25 キヤノン株式会社 Image heating device
JP2018070819A (en) * 2016-11-01 2018-05-10 東芝テック株式会社 Thermally conductive rubber material, belt for image formation device, and image formation device

Also Published As

Publication number Publication date
JP7158961B2 (en) 2022-10-24

Similar Documents

Publication Publication Date Title
JP5365908B2 (en) Fixing apparatus and image forming apparatus
JP6366264B2 (en) Image heating apparatus and image forming apparatus
US9915897B2 (en) Fixing device
JP6270457B2 (en) Image heating device
JP2011191471A (en) Fixing device and image forming apparatus
US8116672B2 (en) Image fixing device and image forming apparatus
JP5298427B2 (en) Laminated body, endless belt, fixing device and image forming apparatus
US10452012B2 (en) Cylindrical fixing member, fixing device and image forming apparatus
JP2007114524A (en) Fixing device and method for determining deterioration of fixing belt
JP4711003B2 (en) Fixing device and image forming apparatus
JP7158961B2 (en) Image heating device and rotating body
JP4929879B2 (en) Fixing belt, fixing device, and image forming apparatus
JP2013041223A (en) Fixing device and image forming apparatus
JP2010231106A (en) Fixing device and image forming apparatus
US20130251426A1 (en) Fixing belt, fixing device, and image-forming apparatus
US11194271B2 (en) Cylindrical film and image heating apparatus
JP5754658B2 (en) Fixing apparatus and image forming apparatus
JP2017223819A (en) Fixing device
JP2010231099A (en) Image forming apparatus
JP2018133157A (en) Heating rotation body, manufacturing method thereof, and image heating device having heating rotation body
US20200073303A1 (en) Image heating apparatus
JP2016212214A (en) Fixing device and image forming apparatus
JP2016212215A (en) Fixing device and image forming apparatus
JP2020038351A (en) Image heating device
JP6140639B2 (en) Fixing apparatus and image forming apparatus having the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20181116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221012

R151 Written notification of patent or utility model registration

Ref document number: 7158961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151