JP2020032358A - Filtration membrane, manufacturing method of filtration membrane, and surface treatment agent - Google Patents

Filtration membrane, manufacturing method of filtration membrane, and surface treatment agent Download PDF

Info

Publication number
JP2020032358A
JP2020032358A JP2018160846A JP2018160846A JP2020032358A JP 2020032358 A JP2020032358 A JP 2020032358A JP 2018160846 A JP2018160846 A JP 2018160846A JP 2018160846 A JP2018160846 A JP 2018160846A JP 2020032358 A JP2020032358 A JP 2020032358A
Authority
JP
Japan
Prior art keywords
filtration membrane
membrane
cationic polymer
polyamide
polymer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018160846A
Other languages
Japanese (ja)
Other versions
JP7239140B2 (en
Inventor
寛 山村
Hiroshi Yamamura
寛 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo University
Original Assignee
Chuo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo University filed Critical Chuo University
Priority to JP2018160846A priority Critical patent/JP7239140B2/en
Publication of JP2020032358A publication Critical patent/JP2020032358A/en
Application granted granted Critical
Publication of JP7239140B2 publication Critical patent/JP7239140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

To provide a filtration membrane, a manufacturing method of the filtration membrane, and a surface treatment agent which suppress deterioration of a salt rejection rate by oxidation treatment for dissolution of membrane fouling, can recover the salt rejection rate even when the salt rejection rate is deteriorated, and can maintain effect of suppression of the deterioration of the salt rejection rate for a long period of time.SOLUTION: A filtration membrane includes a polyamide filtration membrane, and a cationic polymer layer which is fixed to at least one surface of the polyamide filtration membrane.SELECTED DRAWING: Figure 2

Description

本発明は、ろ過膜、ろ過膜の製造方法及び表面処理剤に関する。   The present invention relates to a filtration membrane, a method for producing a filtration membrane, and a surface treatment agent.

海水淡水化施設では、逆浸透膜が用いられている。逆浸透膜のろ過膜は、長期間の使用に伴って、膜の目詰まり(すなわち、膜ファウリング)により透水性能が低下する他、膜を定期的に洗浄することによって、脱塩率が低下する。透水性能や脱塩率が低下した逆浸透膜の多くは、廃棄されて焼却又は埋め立てされており、近年の地球環境保護の観点から好ましくなかった。廃棄された逆浸透膜の一部を、膜エレメントごと用排水処理に転用される場合も見られるが、微生物の付着により膜表面にバイオフィルムが形成することで透水性能が著しく低下する「バイオファウリング」が急速に進行することが、廃棄された逆浸透膜のリサイクルやリユースを妨げる大きな課題となっていた。   Reverse osmosis membranes are used in seawater desalination facilities. Reverse osmosis membranes reduce the water permeability due to membrane clogging (ie, membrane fouling) with long-term use, and reduce the desalination rate by periodically cleaning the membrane. I do. Many of the reverse osmosis membranes having reduced water permeability and desalination rate are discarded and incinerated or buried, which is not preferable from the viewpoint of global environmental protection in recent years. A part of the discarded reverse osmosis membrane may be diverted to wastewater treatment for the entire membrane element.However, biofilm formation on the membrane surface due to the adhesion of microorganisms significantly reduces the water permeability, The rapid progress of the "ring" has been a major issue that has hindered the recycling and reuse of discarded reverse osmosis membranes.

これまでバイオファウリングの抑制のために、ろ過膜の表面を次亜塩素酸ナトリウム等の酸化剤で洗浄することが行われている。しかしながら、次亜塩素酸ナトリウム等の酸化剤を用いた逆浸透膜の洗浄は、逆浸透膜に多用されているポリアミド系ろ過膜の表面性状を酸化劣化させ、脱塩率をさらに低下させる原因となるため、逆浸透膜では利用が限られる。膜表面に耐バイオフィルム形成機能を逆浸透膜に付与するために、ろ過膜の表面に、耐バイオフィルム性能を有するカチオン性高分子の層を形成させた研究も存在する(特許文献1)。しかしながら、特許文献1のカチオン性高分子は、ろ過膜の表面に吸着により付着しているので付着力が弱く、淡水化操業中に、膜表面に常時かかる強いクロスフロー水流によりカチオン性高分子がろ過膜表面から分離し、カチオン性高分子の効果が長続きしないことが課題となっている。   Until now, in order to suppress biofouling, the surface of a filtration membrane has been washed with an oxidizing agent such as sodium hypochlorite. However, washing a reverse osmosis membrane using an oxidizing agent such as sodium hypochlorite causes oxidative deterioration of the surface properties of a polyamide-based filtration membrane often used for a reverse osmosis membrane, and further reduces the desalination rate. Therefore, its use is limited in reverse osmosis membranes. In order to provide a reverse osmosis membrane with a function of forming a biofilm on the membrane surface, there is a study in which a layer of a cationic polymer having biofilm resistance is formed on the surface of a filtration membrane (Patent Document 1). However, the cationic polymer of Patent Document 1 is weakly attached because it is attached to the surface of the filtration membrane by adsorption, and the strong cross-flow water flow constantly applied to the membrane surface during desalination operation causes The problem is that the polymer is separated from the surface of the filtration membrane and the effect of the cationic polymer does not last long.

ろ過膜の表面とポリマーとが、化学反応により結合している逆浸透膜がある(特許文献2)。化学反応とは具体的には直接的又は間接的な共有結合のこととされている。かかる逆浸透膜は、強固な共有結合よりポリマーがクロスフロー水流により分離するおそれは少ない。しかしながら、化学反応の処理は、スパイラル型のような膜エレメントに組み込む前の逆浸透膜に限られ、一旦、膜エレメントに組み込まれた逆浸透膜を化学反応させることはできない。よって、特許文献2の技術は、ろ過膜の表面を次亜塩素酸ナトリウム等の酸化剤で洗浄した後のろ過膜に適用することはできなかった。   There is a reverse osmosis membrane in which the surface of a filtration membrane and a polymer are bonded by a chemical reaction (Patent Document 2). Specifically, a chemical reaction is a direct or indirect covalent bond. In such a reverse osmosis membrane, the polymer is less likely to be separated by a cross-flow water stream than a strong covalent bond. However, the treatment of the chemical reaction is limited to the reverse osmosis membrane before being incorporated in the membrane element such as a spiral type, and the reverse osmosis membrane once incorporated in the membrane element cannot be chemically reacted. Therefore, the technique of Patent Document 2 cannot be applied to a filtration membrane after the surface of the filtration membrane has been washed with an oxidizing agent such as sodium hypochlorite.

特開2006−110520号公報JP 2006-110520 A 特開2016−101582号公報JP-A-2006-101582

本発明は、上述の問題を有利に解決するものであり、逆浸透膜のファウリングを脱塩率の低下を伴わずに効果的に抑制し、さらには廃棄された膜に対してもその効果を付与でき、それによって廃棄された逆浸透膜を用排水処理にリユースやリサイクルできる、ろ過膜、ろ過膜の製造方法及び表面処理剤を提供することを目的とする。   The present invention advantageously solves the above-mentioned problem, effectively suppresses the fouling of the reverse osmosis membrane without lowering the desalination rate, and furthermore, has an effect on the discarded membrane. It is an object of the present invention to provide a filtration membrane, a method for producing a filtration membrane, and a surface treatment agent, which can give a reverse osmosis membrane to wastewater treatment for wastewater treatment.

本発明のろ過膜は、ポリアミド系ろ過膜と、該ポリアミド系ろ過膜の少なくとも一表面に固着されたカチオンポリマー層と、を備えたものである。   The filtration membrane of the present invention includes a polyamide filtration membrane and a cationic polymer layer fixed to at least one surface of the polyamide filtration membrane.

本発明のろ過膜においては、上記ポリアミド系ろ過膜と上記カチオンポリマー層とが、少なくとも水素結合により固着されていることが好ましい。また、上記ポリアミド系ろ過膜が、表面にカルボキシル基及びアミド基のうちの少なくとも一つの官能基を有するものであることが好ましい。さらに、上記カチオンポリマー層に重ねて、機能性粒子層を備えることが、より好ましい。上記機能性粒子層は、抗菌性ナノ粒子であることが好ましい。また、ろ過膜は、逆浸透膜又は限外ろ過膜にできる。   In the filtration membrane of the present invention, the polyamide-based filtration membrane and the cationic polymer layer are preferably fixed at least by hydrogen bonding. Further, it is preferable that the polyamide-based filtration membrane has at least one functional group of a carboxyl group and an amide group on the surface. Further, it is more preferable to provide a functional particle layer on the cationic polymer layer. The functional particle layer is preferably an antibacterial nanoparticle. Also, the filtration membrane can be a reverse osmosis membrane or an ultrafiltration membrane.

本発明のろ過膜の製造方法は、ポリアミド系ろ過膜の少なくとも一表面に、酸化剤を接触させた後にカチオンポリマーを含む液状の表面処理剤を被覆して上記ポリアミド系ろ過膜の表面上に上記カチオンポリマー層を固着させることを特徴とする。   The method for producing a filtration membrane of the present invention is characterized in that at least one surface of the polyamide-based filtration membrane is coated with a liquid surface treatment agent containing a cationic polymer after the oxidizing agent is brought into contact with the surface of the polyamide-based filtration membrane. It is characterized in that the cationic polymer layer is fixed.

本発明のろ過膜の製造方法においては、上記カチオンポリマー層上に、機能性粒子層を形成することが好ましい。   In the method for producing a filtration membrane of the present invention, it is preferable to form a functional particle layer on the cationic polymer layer.

本発明の表面処理剤は、ポリアミド系ろ過膜の少なくとも一表面にカチオンポリマー層を固着させるための表面処理剤であって、カチオンポリマーを含む処理液を有することを特徴とする。   The surface treatment agent of the present invention is a surface treatment agent for fixing a cationic polymer layer on at least one surface of a polyamide-based filtration membrane, and has a treatment liquid containing a cationic polymer.

本発明の表面処理剤においては、上記カチオンポリマーを含む処理液と、機能性粒子を含む処理剤とを有することが好ましく、当該機能性粒子が、抗菌性ナノ粒子であることが好ましい。   The surface treatment agent of the present invention preferably has a treatment solution containing the cationic polymer and a treatment agent containing functional particles, and the functional particles are preferably antibacterial nanoparticles.

本発明によれば、逆浸透膜のファウリングを脱塩率の低下を伴わずに効果的に抑制し、さらには廃棄された膜に対してもその効果を付与でき、それによって廃棄された逆浸透膜を用排水処理にリユースやリサイクルでき、ひいては使用済みの膜エレメント中のろ過膜の性能を復活させ、製品を長寿命化させ、商品価値を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the fouling of a reverse osmosis membrane can be effectively suppressed, without reducing the desalination rate, and also the effect can be given to a discarded membrane, whereby the discarded reverse osmosis membrane can be provided. The osmosis membrane can be reused or recycled for wastewater treatment, and thus the performance of the filtration membrane in the used membrane element can be restored, the product can have a longer life, and the commercial value can be improved.

実施例における膜表面のゼータ電位を示すグラフである。4 is a graph showing zeta potential on the membrane surface in an example. 実施例における脱塩率を示すグラフである。It is a graph which shows the desalination rate in an Example. 実施例におけるフラックスを示すグラフである。It is a graph which shows the flux in an example.

以下、本発明のろ過膜、ろ過膜の製造方法及び表面処理剤の実施形態について、より具体的に説明する。   Hereinafter, embodiments of the filtration membrane, the method for producing the filtration membrane, and the surface treatment agent of the present invention will be described more specifically.

[ろ過膜]
(実施形態1)
本発明のろ過膜の一実施形態は、ポリアミド系ろ過膜と、該ポリアミド系ろ過膜の少なくとも一表面に固着されたカチオンポリマー層と、を備えたものである。
[Filtration membrane]
(Embodiment 1)
One embodiment of the filtration membrane of the present invention includes a polyamide filtration membrane, and a cationic polymer layer fixed to at least one surface of the polyamide filtration membrane.

ポリアミド系ろ過膜の少なくとも一表面にカチオンポリマーが層状に固着されていることにより、このカチオンポリマー自体が、ポリアミド系ろ過膜の保護層となり、酸化処理や膜ファウリングによるポリアミド系ろ過膜の性能低下を抑制することができる。また、後で詳しく述べるようにカチオンポリマー層に重ねて機能性粒子層を形成させることもでき、この場合、機能性粒子としての例えば抗菌性ナノ粒子を、カチオンポリマー層上に静電力により付着させることにより、バイオファウリングをより抑制することができる。   Since the cationic polymer is fixed in a layer form on at least one surface of the polyamide-based filtration membrane, the cationic polymer itself becomes a protective layer of the polyamide-based filtration membrane, and the performance of the polyamide-based filtration membrane deteriorates due to oxidation treatment or membrane fouling. Can be suppressed. It is also possible to form a functional particle layer on the cationic polymer layer as described in detail later. In this case, for example, antibacterial nanoparticles as functional particles are attached to the cationic polymer layer by electrostatic force. Thereby, biofouling can be further suppressed.

ろ過膜は、膜ファウリングが問題となる限外ろ過膜や逆浸透膜(ナノろ過膜を含む)を主要な対象とする。ポリアミド系ろ過膜は、限外ろ過膜や逆浸透膜に用いられる公知のろ過膜であって、ポリアミド系の材料を用いることができ、例えば芳香族ポリアミドや無機材料を含んだ複合ポリアミド膜等を用いることができる。   Filtration membranes are mainly targeted at ultrafiltration membranes and reverse osmosis membranes (including nanofiltration membranes) where membrane fouling is a problem. The polyamide-based filtration membrane is a known filtration membrane used for an ultrafiltration membrane or a reverse osmosis membrane, and a polyamide-based material can be used, such as a composite polyamide membrane containing an aromatic polyamide or an inorganic material. Can be used.

ポリアミド系ろ過膜の一表面に、カチオンポリマー層が固着されている。ここにいう固着とは、ファンデルワールス力による吸着の場合を超える付着力を有することをいう。カチオンポリマー層が固着されていることにより、カチオンポリマーが吸着されている従来技術のろ過膜に比べて、カチオンポリマー層が強固に付着している。したがって、ろ過膜を含む膜エレメントが取り付けられた膜モジュールの使用中に、例えばクロスフロー水流により、カチオンポリマー層や、さらには当該カチオンポリマー層上に付着している機能性粒子が、ポリアミド系ろ過膜から分離することを抑制することができる。   A cationic polymer layer is fixed on one surface of the polyamide-based filtration membrane. The term "adhesion" as used herein means having an adhesive force exceeding the case of adsorption by van der Waals force. Due to the fixation of the cationic polymer layer, the cationic polymer layer adheres more firmly than the conventional filtration membrane in which the cationic polymer is adsorbed. Therefore, during the use of the membrane module to which the membrane element including the filtration membrane is attached, for example, the cross-flow water flow causes the cationic polymer layer and further the functional particles adhering on the cationic polymer layer to form a polyamide-based filter. Separation from the membrane can be suppressed.

ポリアミド系ろ過膜とカチオンポリマー層との固着は、両層が少なくとも一部は水素結合されることにより実現される。   The fixation between the polyamide-based filtration membrane and the cationic polymer layer is realized by at least a part of both layers being hydrogen-bonded.

水素結合により固着されるために、ポリアミド系ろ過膜は、表面にカルボキシル基及びアミド基のうちの少なくとも一つの官能基を有するものであることが好ましい。ポリアミド系ろ過膜の表面にカルボキシル基及びアミド基のうちの少なくとも一つの官能基を有することは、XPS等により確認することができる。カルボキシル基及びアミド基のうちの少なくとも一つの官能基を有するためには、ポリアミド系ろ過膜の表面が酸化処理されることが好ましい。   In order to be fixed by hydrogen bonding, the polyamide-based filtration membrane preferably has at least one functional group of a carboxyl group and an amide group on the surface. The presence of at least one functional group of a carboxyl group and an amide group on the surface of the polyamide-based filtration membrane can be confirmed by XPS or the like. In order to have at least one functional group of a carboxyl group and an amide group, the surface of the polyamide-based filtration membrane is preferably oxidized.

この酸化処理は、より具体的には、ポリアミド系ろ過膜又はそれを組み込んだ膜エレメントを、酸化剤、例えば次亜塩素酸ナトリウムを含む溶液に浸漬させることにより実施することができる。また、ポリアミド系ろ過膜が組み込まれた膜エレメントを膜モジュールに取り付けた後は、次亜塩素酸ナトリウムを含む溶液を、当該膜モジュールに接触させることにより実施できる。酸化剤は、次亜塩素酸ナトリウムに限定されず、過酸化水素、過マンガン酸カリウム水溶液などで処理することもできる。   More specifically, this oxidation treatment can be performed by immersing the polyamide-based filtration membrane or a membrane element incorporating the same in a solution containing an oxidizing agent, for example, sodium hypochlorite. After the membrane element in which the polyamide-based filtration membrane is incorporated is attached to the membrane module, it can be carried out by bringing a solution containing sodium hypochlorite into contact with the membrane module. The oxidizing agent is not limited to sodium hypochlorite, and can be treated with hydrogen peroxide, an aqueous solution of potassium permanganate, or the like.

ポリアミド系ろ過膜を次亜塩素酸ナトリウム等で酸化処理すると、ポリアミド系ろ過膜が加水分解されて表面にカルボキシル基が形成される。これらのカルボキシル基と、カチオンポリマー層の正の電荷を有するアミン基とが水素結合することにより、ポリアミド系ろ過膜とカチオンポリマー層とが固着されるのである。酸化処理をするほど、ポリアミド系ろ過膜表面が加水分解され、カルボキシル基の量が増えるので、カチオンポリマー層をより強固に固着することができる。酸化処理後のポリアミド系ろ過膜とカチオンポリマー層とが水素結合していることは、酸化処理の進行に伴って膜表面のゼータ電位が減少したにもかかわらず、カチオンポリマーを被覆させた後には膜表面ゼータ電位が増大したことによって確認することができる。静電気力が主な固着力となる場合には、膜表面のゼータ電位が減少するに伴って、被覆されるカチオンポリマーの量も低下し、ゼータ電位も低減するが、膜表面を酸化したポリアミド系ろ過膜の場合には、ゼータ電位と関係なく酸化の程度が進むに伴って固着するカチオンポリマーの量が増大する傾向が観察された。   When the polyamide-based filtration membrane is oxidized with sodium hypochlorite or the like, the polyamide-based filtration membrane is hydrolyzed to form a carboxyl group on the surface. By hydrogen bonding between these carboxyl groups and the amine group having a positive charge of the cationic polymer layer, the polyamide-based filtration membrane and the cationic polymer layer are fixed. The more the oxidation treatment is performed, the more the surface of the polyamide-based filtration membrane is hydrolyzed and the amount of the carboxyl group increases, so that the cationic polymer layer can be more firmly fixed. Hydrogen bonding between the polyamide-based filtration membrane and the cationic polymer layer after the oxidation treatment indicates that the zeta potential on the membrane surface decreased with the progress of the oxidation treatment, but after coating with the cationic polymer. This can be confirmed by an increase in the membrane surface zeta potential. When the electrostatic force is the main fixing force, as the zeta potential on the membrane surface decreases, the amount of the cationic polymer to be coated decreases, and the zeta potential also decreases. In the case of the filtration membrane, it was observed that the amount of the cationic polymer fixed increases as the degree of oxidation progressed regardless of the zeta potential.

膜モジュールを用いた海水淡水化等の操業中は、通常、次亜塩素酸ナトリウムを用いた洗浄により、膜ファウリングを抑制することが行われている。この通常の洗浄によりポリアミド系ろ過膜の表面を酸化することができる。したがって、洗浄された後のポリアミド系ろ過膜は、必ずしも別途に酸化処理を実施する必要はない。このことは、ポリアミド系ろ過膜を膜エレメントに組み込み、さらに膜モジュールとして実際のろ過操業を行った後のろ過膜であっても、ろ過膜洗浄とろ過膜表面へのカチオンポリマーの形成により、本実施形態のろ過膜の構成とすることができることを意味し、更に、脱塩率が低下して廃棄又は下水処理に転用されるようなろ過膜であっても、そのろ過膜表面へのカチオンポリマーの形成により、本実施形態発明のろ過膜の構成とすることができることを意味する。   During operations such as seawater desalination using a membrane module, membrane fouling is generally suppressed by washing with sodium hypochlorite. This normal washing can oxidize the surface of the polyamide-based filtration membrane. Therefore, it is not always necessary to separately perform an oxidation treatment on the washed polyamide-based filtration membrane. This is due to the fact that the filtration membrane is washed and the cationic polymer is formed on the surface of the filtration membrane even after the filtration membrane has been installed as a membrane module and the actual filtration operation has been performed as a membrane module. It means that the configuration of the filtration membrane of the embodiment can be adopted, and further, even if the filtration membrane is such that the desalination rate is reduced and is diverted to disposal or sewage treatment, the cationic polymer on the filtration membrane surface Means that the configuration of the filtration membrane of the present invention can be obtained.

また、ポリアミド系ろ過膜のみからなる従来のろ過膜は、洗浄により脱塩率が低下していたのに対して、本実施形態のろ過膜は、ろ過膜の表面に固着されたカチオンポリマーが、より小さい膜孔を形成し、ろ過膜表面構造をより緻密にして洗浄直後に比べて脱塩率を高めることができる。   Further, the conventional filtration membrane consisting only of a polyamide-based filtration membrane, the desalination rate was reduced by washing, whereas the filtration membrane of the present embodiment, the cationic polymer fixed on the surface of the filtration membrane, By forming smaller membrane pores, the surface structure of the filtration membrane can be made more dense, and the desalting rate can be increased as compared with immediately after washing.

カチオンポリマーは、分子構造にアミンなどの正の電荷を有する官能基を含むポリマーのことをいい、ゲル電気泳動において負の電極に向けて移動するポリマーであることが好ましい。カチオンポリマーは、例えば、ポリエチレンイミン、PDMA(メタクリルアミドプロピルアンモニウムクロリド・ジメチルジアリルアンモニウムクロリド・アクリルアミド共重合体)、メタクリル酸エステル(メタクリル酸メチル等)等を1種又は2種以上を挙げることができる。なかでも、ポリエチレンイミンは、最も電荷密度が高いポリマーであるために好ましい。   The cationic polymer refers to a polymer including a functional group having a positive charge such as an amine in a molecular structure, and is preferably a polymer that moves toward a negative electrode in gel electrophoresis. Examples of the cationic polymer include one or more of polyethyleneimine, PDMA (methacrylamidopropylammonium chloride / dimethyldiallylammonium chloride / acrylamide copolymer), and methacrylic acid ester (eg, methyl methacrylate). . Among them, polyethyleneimine is preferable because it is the polymer having the highest charge density.

(実施形態2)
本発明のろ過膜の別の実施態様においては、上述したカチオンポリマー層に重ねて、機能性粒子層を備えている。ろ過膜が、機能性粒子層を最表層に備えることにより、この最表層の機能性粒子が、その機能を発揮させることかでき、例えば抗菌性ナノ粒子の場合は抗菌性を発揮させて、ろ過膜の寿命を延長させることができる。
(Embodiment 2)
In another embodiment of the filtration membrane of the present invention, a functional particle layer is provided on the above-mentioned cationic polymer layer. By providing the filtration membrane with a functional particle layer on the outermost layer, the functional particles on the outermost layer can exert their functions.For example, in the case of antibacterial nanoparticles, they exhibit antibacterial properties and are filtered. The life of the membrane can be extended.

また、機能性粒子は、負の帯電をしていることが多い。したがって、カチオンポリマー層に機能性粒子層を形成することにより、カチオンポリマー層の正の電荷と、機能性粒子層の負の電荷とが、静電力で付着する。この機能性粒子層の静電力による付着力は、ポリアミド系ろ過膜に直接、機能性粒子層を付着させる場合に比べて大きい。その理由は、ポリアミド系ろ過膜の表面は、負に帯電している傾向にあり、特に酸化処理後のポリアミド系ろ過膜表面は、カルボキシル基やアミド基が形成されているので、負の帯電量が大きいことから、直接に付着させようとしても、負の帯電をしている機能性粒子が付着し難いからである。よって、本実施形態において、カチオンポリマー層は、いわば機能性粒子層を静電的に付着させるためのバインダー層としての効果を有し、最表層の機能性粒子層を確実に付着させることができる。機能性粒子は、粒径が小さいほど好ましい。例えば5〜500nm程度の粒径の機能性粒子が好ましい。   Further, the functional particles are often negatively charged. Therefore, by forming the functional particle layer on the cationic polymer layer, the positive charge of the cationic polymer layer and the negative charge of the functional particle layer adhere with electrostatic force. The adhesive force of the functional particle layer due to electrostatic force is larger than when the functional particle layer is directly attached to the polyamide-based filtration membrane. The reason is that the surface of the polyamide-based filtration membrane tends to be negatively charged, and in particular, the surface of the polyamide-based filtration membrane after the oxidation treatment is formed with a carboxyl group or an amide group. This is because the negatively charged functional particles are unlikely to adhere even if the particles are directly attached. Therefore, in the present embodiment, the cationic polymer layer has a so-called effect as a binder layer for electrostatically adhering the functional particle layer, and can reliably adhere the outermost functional particle layer. . The smaller the particle size of the functional particles, the better. For example, functional particles having a particle size of about 5 to 500 nm are preferable.

機能性粒子層は、好ましくは抗菌性ナノ粒子を含む。ろ過膜が、抗菌性ナノ粒子を含む機能性粒子層を最表層に備えることにより、この抗菌性ナノ粒子が微生物の付着を抑制するので、バイオファウリングを抑制することができ、ひいては、ろ過膜の寿命を延ばすことができる。   The functional particle layer preferably contains antimicrobial nanoparticles. Since the filtration membrane is provided with a functional particle layer containing antibacterial nanoparticles on the outermost layer, the antibacterial nanoparticles suppress the attachment of microorganisms, so that biofouling can be suppressed. Life can be extended.

抗菌性ナノ粒子は、銅ナノ粒子、銀ナノ粒子、金ナノ粒子、ニッケルナノ粒子、カーボンナノチューブ粒子等を例示することができる。これらの粒子はいずれも負の帯電をする粒子である。   Examples of the antibacterial nanoparticles include copper nanoparticles, silver nanoparticles, gold nanoparticles, nickel nanoparticles, and carbon nanotube particles. These particles are all negatively charged particles.

[製造方法]
本発明のろ過膜の製造方法の実施形態は、ポリアミド系ろ過膜の少なくとも一表面に、カチオンポリマーを含む液状の表面処理剤を被覆して前記ポリアミド系ろ過膜の表面上に前記カチオンポリマー層を固着させる。好ましくは、当該カチオンポリマー層上に、機能性粒子層を形成する。
[Production method]
An embodiment of the method for producing a filtration membrane of the present invention comprises coating at least one surface of a polyamide-based filtration membrane with a liquid surface treatment agent containing a cationic polymer to form the cationic polymer layer on the surface of the polyamide-based filtration membrane. Fix it. Preferably, a functional particle layer is formed on the cationic polymer layer.

ポリアミド系ろ過膜に、カチオンポリマーを固着させるには、酸化処理後の又は表面が酸化されているポリアミド系ろ過膜又はそれを組み込んだ膜エレメントを、カチオンポリマーを含む溶液中に浸漬させることにより実施することができる。また、ポリアミド系ろ過膜が組み込まれた膜エレメントを膜モジュールに取り付けた後は、必要に応じて次亜塩素酸ナトリウム等の酸化剤により酸化処理をした後に、カチオンポリマーを含む溶液を、当該膜モジュールに接触させることにより実施できる。   The cationic polymer is fixed to the polyamide-based filtration membrane by immersing the oxidized polyamide-based filtration membrane whose surface is oxidized or a membrane element incorporating the same, in a solution containing the cationic polymer. can do. After the membrane element incorporating the polyamide-based filtration membrane is attached to the membrane module, if necessary, after oxidizing treatment with an oxidizing agent such as sodium hypochlorite, a solution containing a cationic polymer is added to the membrane module. This can be done by contacting the module.

機能性粒子層の形成は、より具体的には、カチオンポリマー層を形成したポリアミド系ろ過膜又はそれを組み込んだ膜エレメントを、機能性粒子を分散させた液に浸漬させることにより実施することができる。また、ポリアミド系ろ過膜が組み込まれた膜エレメントを膜モジュールに取り付けた後は、機能性粒子を分散させた液を、当該膜モジュールに接触させることにより実施できる。   More specifically, the formation of the functional particle layer can be performed by immersing the polyamide-based filtration membrane formed with the cationic polymer layer or a membrane element incorporating the same in a liquid in which the functional particles are dispersed. it can. After the membrane element in which the polyamide-based filtration membrane is incorporated is attached to the membrane module, it can be carried out by bringing the liquid in which the functional particles are dispersed into contact with the membrane module.

[表面処理剤]
本発明の表面処理剤の一実施形態は、ポリアミド系ろ過膜の少なくとも一表面にカチオンポリマー層を固着させるための表面処理剤であって、カチオンポリマーを含む処理液を有する。このカチオンポリマーを含む処理液を、本明細書では後述の処理剤と区別して「第1処理剤」ともいう。
[Surface treatment agent]
One embodiment of the surface treatment agent of the present invention is a surface treatment agent for fixing a cationic polymer layer on at least one surface of a polyamide-based filtration membrane, and has a treatment liquid containing a cationic polymer. In the present specification, the treatment liquid containing the cationic polymer is also referred to as a “first treatment agent” to be distinguished from a treatment agent described later.

カチオンポリマーは、前述したように正の電荷を有するポリマーのことをいい、ゲル電気泳動において負の電極に向けて移動するポリマーであることが好ましい。カチオンポリマーは、例えば、ポリエチレンイミン、PDMA(メタクリルアミドプロピルアンモニウムクロリド・ジメチルジアリルアンモニウムクロリド・アクリルアミド共重合体)、メタクリル酸エステル(メタクリル酸メチル等)等を1種又は2種以上を挙げることができる。なかでも、ポリエチレンイミンは、最も電荷密度が高いポリマーであるために好ましい。   The cationic polymer refers to a polymer having a positive charge as described above, and is preferably a polymer that moves toward a negative electrode in gel electrophoresis. Examples of the cationic polymer include one or more of polyethyleneimine, PDMA (methacrylamidopropylammonium chloride / dimethyldiallylammonium chloride / acrylamide copolymer), and methacrylic acid ester (eg, methyl methacrylate). . Among them, polyethyleneimine is preferable because it is the polymer having the highest charge density.

カチオンポリマーを含む処理液は、その後に希釈するカチオンポリマーそのものの液でもよいし、カチオンポリマーが溶媒で希釈された液でもよい。例えばポリエチレンイミンを、純水とイソプロピルアルコールとの1:1溶媒に加えて濃度1%(W/v)にすることができる。希釈したときのカチオンポリマーの好ましい濃度は0.1〜5%である。   The treatment liquid containing the cationic polymer may be a liquid of the cationic polymer itself, which is subsequently diluted, or a liquid in which the cationic polymer is diluted with a solvent. For example, polyethyleneimine can be added to a 1: 1 solvent of pure water and isopropyl alcohol to a concentration of 1% (W / v). The preferred concentration of the cationic polymer when diluted is 0.1-5%.

本発明の表面処理剤の別の実施形態は、上述の第1処理剤と、機能性粒子を含む処理剤(上述の第1処理剤と区別して「第2処理剤」ともいう。)との二剤からなるものとすることができる。   In another embodiment of the surface treatment agent of the present invention, the first treatment agent described above and a treatment agent containing functional particles (also referred to as a “second treatment agent” in distinction from the first treatment agent). It can consist of two agents.

機能性粒子は、前述した銅ナノ粒子、銀ナノ粒子、金ナノ粒子、ニッケルナノ粒子、カーボンナノチューブ粒子等を例示することができる。   Examples of the functional particles include the aforementioned copper nanoparticles, silver nanoparticles, gold nanoparticles, nickel nanoparticles, and carbon nanotube particles.

第2処理剤は、例えばその後に懸濁させる銅ナノ粒子そのものでもよいし、銅ナノ粒子を、純水に懸濁させた懸濁液でもよい。懸濁液の濃度は例えば0.01%(W/v)とすることができる。機能性粒子の好ましい濃度は粒子によって異なるが、一般的には0.0001〜0.1%である。   The second treating agent may be, for example, copper nanoparticles themselves to be suspended thereafter, or a suspension of copper nanoparticles in pure water. The concentration of the suspension can be, for example, 0.01% (W / v). The preferred concentration of the functional particles varies depending on the particles, but is generally 0.0001 to 0.1%.

(実験1)
海水用逆浸透膜(ポリアミドろ過膜)に500ppmのNaOClを用いて表面酸化した。この表面酸化の際に酸化の程度を種々に変えて、脱塩率がそれぞれ85%、75%及び65%の複数の逆浸透膜の試料を用意した。
(Experiment 1)
The surface of the reverse osmosis membrane for seawater (polyamide filtration membrane) was oxidized using 500 ppm of NaOCl. A plurality of reverse osmosis membrane samples having desalination rates of 85%, 75% and 65%, respectively, were prepared by varying the degree of oxidation during the surface oxidation.

酸化後の当該逆浸透膜を、純水とイソプロピルアルコールとの1:1(容積比)の溶媒にポリエチレンイミン(Mw25000、Mn10000)を加えて濃度1%(w/v)とした70℃の溶液に60min浸漬させて、ポリエチレンイミン層を膜表面に固着させたろ過膜を得た。かかるろ過膜の表面の化学構造をFT−IRで調べた。また、膜表面ゼータ電位を測定した。さらに、脱塩率を調べた。   A solution at 70 ° C., in which the reverse osmosis membrane after oxidation is made 1% (w / v) by adding polyethyleneimine (Mw25000, Mn10000) to a 1: 1 (volume ratio) solvent of pure water and isopropyl alcohol. For 60 minutes to obtain a filtration membrane having a polyethylene imine layer fixed to the membrane surface. The chemical structure of the surface of the filtration membrane was examined by FT-IR. The zeta potential of the membrane surface was measured. Further, the desalting rate was examined.

FT−IRの計測の結果、ポリエチレンイミンをコーティングした膜では、3265cm−1のアミン基の吸収ピークが出現し、遊離アミン基が膜表面に付着されたことを示した。それにより、ポリエチレンイミンが付着されたことが確認できた。 As a result of FT-IR measurement, an absorption peak of an amine group at 3265 cm −1 appeared in the polyethyleneimine-coated film, indicating that free amine groups were attached to the film surface. Thereby, it was confirmed that polyethyleneimine was attached.

図1に、膜表面ゼータ電位を測定した結果をグラフで示す。なお、図1において膜表面ゼータ電位は、各試料3個の平均値である。図1から、酸化処理を未処理の試料(脱塩率99%)に比べて、酸化処理をして脱塩率が、それぞれ85%、75%及び65%だった各試料は、酸化処理後(図1中に「NaClO」と表記)は膜表面のゼータ電位が減少したにもかかわらず、カチオンポリマーを被覆させた後(図1中に「NaClO+PEI」と表記)は膜表面ゼータ電位が増大しており、ポリエチレンイミンのアミン基が、水素結合によりポリアミドろ過膜のカルボキシル基と接合していることが分かった。   FIG. 1 is a graph showing the results of measuring the zeta potential of the membrane surface. In FIG. 1, the zeta potential of the membrane surface is an average value of three samples. As shown in FIG. 1, the samples that had been subjected to the oxidation treatment and had a desalination rate of 85%, 75%, and 65%, respectively, compared with the sample not subjected to the oxidation treatment (desalting rate: 99%), (Indicated as "NaClO" in FIG. 1), the zeta potential of the membrane surface increased after coating with the cationic polymer (described as "NaClO + PEI" in FIG. 1) even though the zeta potential on the membrane surface decreased. It was found that the amine group of polyethyleneimine was bonded to the carboxyl group of the polyamide filtration membrane by hydrogen bonding.

(実験2)
海水用逆浸透膜(ポリアミドろ過膜)に500ppmのNaOClを用いて表面酸化して脱塩率が、それぞれ95%、85%、75%、65%及び45%だった各試料の膜表面に、ポリエチレンイミンを実験1と同様にして固着させた。次に、ポリエチレンイミンを固着後のろ過膜を、純水中に銅ナノ粒子(粒径25nm)を加えて超音波振動で分散させた23℃の懸濁液(濃度0.01wt%)中に30min浸漬して銅ナノ粒子層を表面に付着させたろ過膜を得た。かかるろ過膜の脱塩率を調べた結果を図2にグラフで示す。
(Experiment 2)
The surface of the reverse osmosis membrane (polyamide filtration membrane) for seawater was oxidized with 500 ppm of NaOCl, and the desalination rate was 95%, 85%, 75%, 65% and 45%, respectively. Polyethyleneimine was fixed in the same manner as in Experiment 1. Next, the filtration membrane after fixing the polyethyleneimine was placed in a suspension (concentration: 0.01 wt%) at 23 ° C. in which copper nanoparticles (particle diameter: 25 nm) were added to pure water and dispersed by ultrasonic vibration. By immersing for 30 minutes, a filtration membrane having a copper nanoparticle layer adhered to the surface was obtained. FIG. 2 is a graph showing the results of examining the desalting rate of the filtration membrane.

図2から、ポリアミドイミン層を形成したろ過膜(図2中に「CuNPs−改質前」と表記)の脱塩率に比べて、さらに銅ナノ粒子層を形成したろ過膜(図2中に「CuNPs−改質後」と表記)の脱塩率が高かった。   From FIG. 2, it can be seen that, compared to the desalting rate of the filtration membrane formed with a polyamide imine layer (indicated as “CuNPs-before modification” in FIG. 2), the filtration membrane further formed with a copper nanoparticle layer (FIG. The desalting rate of “CuNPs-modified” was high.

(実験3)
上述した実験2のポリアミドイミン層を形成したろ過膜と、さらに銅ナノ粒子層を形成したろ過膜との各々について、フラックスを調べた結果を図3に示す。図3からポリアミドイミン層を形成したろ過膜(図3中に「CuNPs−改質前」と表記)に比べて、さらに銅ナノ粒子層を形成したろ過膜(図3中に「CuNPs−改質後」と表記)は、フラックスが増加していた。
(Experiment 3)
FIG. 3 shows the results of examining the flux of each of the filtration membrane in which the polyamide imine layer was formed and the filtration membrane in which the copper nanoparticle layer was formed in Experiment 2 described above. As compared with the filtration membrane having a polyamide imine layer formed therein (referred to as “CuNPs-modified” in FIG. 3), the filtration membrane further formed with a copper nanoparticle layer (“CuNPs-modified in FIG. 3”). After), the flux was increasing.

以上、本発明のろ過膜、ろ過膜の製造方法及び表面処理剤を実施例に基づいて説明したが、本発明はこれらの実施例や図面の記載に限定されず、本発明の趣旨を逸脱しない範囲で幾多の変形が可能であることは言うまでもない。   As described above, the filtration membrane of the present invention, the method for producing the filtration membrane and the surface treatment agent have been described based on the examples. However, the present invention is not limited to these examples and the drawings, and does not depart from the gist of the present invention. It goes without saying that many variations are possible in the range.

Claims (11)

ポリアミド系ろ過膜と、該ポリアミド系ろ過膜の少なくとも一表面に固着されたカチオンポリマー層と、を備えたことを特徴とするろ過膜。   A filtration membrane comprising: a polyamide filtration membrane; and a cationic polymer layer fixed to at least one surface of the polyamide filtration membrane. 前記ポリアミド系ろ過膜と前記カチオンポリマー層とが、少なくとも水素結合により固着されている請求項1記載のろ過膜。   The filtration membrane according to claim 1, wherein the polyamide-based filtration membrane and the cationic polymer layer are fixed at least by hydrogen bonding. 前記ポリアミド系ろ過膜が、表面にカルボキシル基及びアミド基のうちの少なくとも一つの官能基を有するものである請求項1又は2記載のろ過膜。   The filtration membrane according to claim 1 or 2, wherein the polyamide-based filtration membrane has at least one functional group of a carboxyl group and an amide group on the surface. 前記カチオンポリマー層に重ねて、機能性粒子層を備える請求項1〜3のいずれか一項に記載のろ過膜。   The filtration membrane according to any one of claims 1 to 3, further comprising a functional particle layer overlying the cationic polymer layer. 前記機能性粒子が、抗菌性ナノ粒子である請求項4記載のろ過膜。   The filtration membrane according to claim 4, wherein the functional particles are antibacterial nanoparticles. 逆浸透膜又は限外ろ過膜である請求項1〜5のいずれか一項に記載のろ過膜。   The filtration membrane according to any one of claims 1 to 5, which is a reverse osmosis membrane or an ultrafiltration membrane. ポリアミド系ろ過膜の少なくとも一表面に、酸化剤を接触させた後にカチオンポリマーを含む液状の表面処理剤を被覆して前記ポリアミド系ろ過膜の表面上に前記カチオンポリマー層を固着させることを特徴とするろ過膜の製造方法。   At least one surface of the polyamide-based filtration membrane, after contacting an oxidizing agent with a liquid surface treatment agent containing a cationic polymer, and fixing the cationic polymer layer on the surface of the polyamide-based filtration membrane. Method for producing a filtration membrane. 前記カチオンポリマー層上に、機能性粒子層を形成する請求項7記載のろ過膜の製造方法。   The method for producing a filtration membrane according to claim 7, wherein a functional particle layer is formed on the cationic polymer layer. ポリアミド系ろ過膜の少なくとも一表面にカチオンポリマー層を固着させるための表面処理剤であって、カチオンポリマーを含む処理液を有することを特徴とする表面処理剤。   A surface treating agent for fixing a cationic polymer layer on at least one surface of a polyamide-based filtration membrane, comprising a treating solution containing a cationic polymer. 更に、機能性粒子を含む処理剤を有する請求項9記載の表面処理剤。   The surface treating agent according to claim 9, further comprising a treating agent containing functional particles. 前記機能性粒子が、抗菌性ナノ粒子である請求項10記載の表面処理剤。   The surface treating agent according to claim 10, wherein the functional particles are antibacterial nanoparticles.
JP2018160846A 2018-08-29 2018-08-29 Filtration Membrane, Method for Manufacturing Filtration Membrane, and Surface Treatment Agent Active JP7239140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018160846A JP7239140B2 (en) 2018-08-29 2018-08-29 Filtration Membrane, Method for Manufacturing Filtration Membrane, and Surface Treatment Agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018160846A JP7239140B2 (en) 2018-08-29 2018-08-29 Filtration Membrane, Method for Manufacturing Filtration Membrane, and Surface Treatment Agent

Publications (2)

Publication Number Publication Date
JP2020032358A true JP2020032358A (en) 2020-03-05
JP7239140B2 JP7239140B2 (en) 2023-03-14

Family

ID=69666411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018160846A Active JP7239140B2 (en) 2018-08-29 2018-08-29 Filtration Membrane, Method for Manufacturing Filtration Membrane, and Surface Treatment Agent

Country Status (1)

Country Link
JP (1) JP7239140B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111992042A (en) * 2020-09-10 2020-11-27 德州学院 Method for improving water flux of polyelectrolyte nanofiltration membrane
CN113634133A (en) * 2021-08-05 2021-11-12 宁波水艺膜科技发展有限公司 High-yield semipermeable membrane and preparation method thereof
WO2022113604A1 (en) * 2020-11-26 2022-06-02 Agc株式会社 Liquid separation membrane and method for producing same
CN116688779A (en) * 2023-05-06 2023-09-05 中山大学 Super-smooth multi-mechanism anti-pollution anti-scaling separation membrane and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341943B2 (en) * 1982-02-05 1988-08-19 Pall Corp
JP2008302324A (en) * 2007-06-08 2008-12-18 Kurita Water Ind Ltd Blocking rate improvement method of permeation membrane, permeation membrane with improved blocking rate, and permeation membrane treatment method and apparatus
JP2009034673A (en) * 2007-07-12 2009-02-19 Nitto Denko Corp Composite semipermeable membrane
US20140319044A1 (en) * 2011-05-27 2014-10-30 Yale University Nanoparticle-functionalized membranes, methods of making same, and uses of same
JP2016101582A (en) * 2014-11-29 2016-06-02 ライプニッツ−インスティチュート フュア ポリマーフォルシュング ドレスデン エーファウLeibniz−Institut fuer Polymerforschung Dresden e.V. Reverse osmosis membrane or nano-filtration membrane and manufacturing method of them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341943B2 (en) * 1982-02-05 1988-08-19 Pall Corp
JP2008302324A (en) * 2007-06-08 2008-12-18 Kurita Water Ind Ltd Blocking rate improvement method of permeation membrane, permeation membrane with improved blocking rate, and permeation membrane treatment method and apparatus
JP2009034673A (en) * 2007-07-12 2009-02-19 Nitto Denko Corp Composite semipermeable membrane
US20140319044A1 (en) * 2011-05-27 2014-10-30 Yale University Nanoparticle-functionalized membranes, methods of making same, and uses of same
JP2016101582A (en) * 2014-11-29 2016-06-02 ライプニッツ−インスティチュート フュア ポリマーフォルシュング ドレスデン エーファウLeibniz−Institut fuer Polymerforschung Dresden e.V. Reverse osmosis membrane or nano-filtration membrane and manufacturing method of them

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111992042A (en) * 2020-09-10 2020-11-27 德州学院 Method for improving water flux of polyelectrolyte nanofiltration membrane
WO2022113604A1 (en) * 2020-11-26 2022-06-02 Agc株式会社 Liquid separation membrane and method for producing same
CN113634133A (en) * 2021-08-05 2021-11-12 宁波水艺膜科技发展有限公司 High-yield semipermeable membrane and preparation method thereof
CN113634133B (en) * 2021-08-05 2023-11-07 宁波水艺膜科技发展有限公司 High-water-yield semipermeable membrane and preparation method thereof
CN116688779A (en) * 2023-05-06 2023-09-05 中山大学 Super-smooth multi-mechanism anti-pollution anti-scaling separation membrane and preparation method and application thereof
CN116688779B (en) * 2023-05-06 2024-01-05 中山大学 Super-smooth multi-mechanism anti-pollution anti-scaling separation membrane and preparation method and application thereof

Also Published As

Publication number Publication date
JP7239140B2 (en) 2023-03-14

Similar Documents

Publication Publication Date Title
JP7239140B2 (en) Filtration Membrane, Method for Manufacturing Filtration Membrane, and Surface Treatment Agent
Miller et al. Surface modification of water purification membranes
Ronen et al. Electroconductive and electroresponsive membranes for water treatment
Wang et al. Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions
Xu et al. Performance of a ceramic ultrafiltration membrane system in pretreatment to seawater desalination
US10239021B2 (en) Fouling resistant coating for filtration membranes and methods of producing and using same
KR102120689B1 (en) Composite semipermeable membrane and manufacturing method thereof
WO2014115631A1 (en) Fouling inhibitor, filtration membrane and method for producing same
JP2006110520A (en) Agent and method for improving blocking rate of permeation membrane, permeation membrane and water treating method
Gonzales et al. Ammonium enrichment and recovery from synthetic and real industrial wastewater by amine-modified thin film composite forward osmosis membranes
CN102179191A (en) Method for manufacturing anti-chloride polyamide reverse osmosis composite membrane with high flux
Yasir et al. Poly (amido amine) dendrimer based membranes for wastewater treatment–A critical review
KR20190077969A (en) Method for restoration of compromised water treatment membrane using surface functionalized silica microparticles
KR20150069786A (en) Good with Antiviral and antibacterial Filter cartridgeand method of manufacturing them
KR100626321B1 (en) Low fouling membrane and processes for preparing the same
Senusi et al. Recent advancement in membrane technology for water purification
Turken et al. Determination of filtration performances of nanocomposite hollow fiber membranes with silver nanoparticles
CN106587462A (en) Treatment method for nanofiltration membrane central water purification system
Liu et al. Influence of nanoparticle inclusions on the performance of reverse osmosis membranes
KR20140110337A (en) Spiral wound water-treatment filter including conductive spacer
Kochkodan Reduction of membrane fouling by polymer surface modification
Gupta et al. Interplay of graphene oxide and interfacial polymerized polyamide-crosslinked thin-film composite membranes for enhanced performance during reverse osmosis
KR101599112B1 (en) Positive electric charge-coating agent for antivirus media, Antivirus media using that and Preparing method thereof
KR20160080537A (en) Cartridge filter for water purifier, Preparing method thereof and the Cartridge for water purifier containing the same
CN102284254B (en) Method for manufacturing chlorine-resistant polyamide reverse osmosis composite film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230222

R150 Certificate of patent or registration of utility model

Ref document number: 7239140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150