JP2020031548A - Method for producing three-dimensional myocardial tissue - Google Patents

Method for producing three-dimensional myocardial tissue Download PDF

Info

Publication number
JP2020031548A
JP2020031548A JP2018159015A JP2018159015A JP2020031548A JP 2020031548 A JP2020031548 A JP 2020031548A JP 2018159015 A JP2018159015 A JP 2018159015A JP 2018159015 A JP2018159015 A JP 2018159015A JP 2020031548 A JP2020031548 A JP 2020031548A
Authority
JP
Japan
Prior art keywords
extracellular matrix
cardiomyocytes
tissue
myocardial tissue
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018159015A
Other languages
Japanese (ja)
Other versions
JP7176727B2 (en
Inventor
明石 満
Mitsuru Akashi
満 明石
佳也 塚本
Yoshiya Tsukamoto
佳也 塚本
隆美 赤木
Takami Akagi
隆美 赤木
芳樹 澤
Yoshiki Sawa
芳樹 澤
繁 宮川
Shigeru Miyagawa
繁 宮川
江上 正樹
Masaki Egami
正樹 江上
小田 淳志
Atsushi Oda
淳志 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Osaka University NUC
Original Assignee
NTN Corp
Osaka University NUC
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, Osaka University NUC, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2018159015A priority Critical patent/JP7176727B2/en
Priority to PCT/JP2019/007718 priority patent/WO2020044615A1/en
Publication of JP2020031548A publication Critical patent/JP2020031548A/en
Application granted granted Critical
Publication of JP7176727B2 publication Critical patent/JP7176727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Botany (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

To provide a three-dimensional myocardial tissue that has a high cell density, significantly great shrinkage force and can sufficiently reproduce a biological tissue and a method of producing the same.SOLUTION: A method for producing a three-dimensional myocardial tissue includes culturing a cardiomyocyte or a cell mixture containing a cardiomyocyte in a container having an extracellular matrix gel in an inner wall. There is also provided a cultured three-dimensional myocardial tissue including a cardiomyocyte or a cell mixture containing a cardiomyocyte in a container having an extracellular matrix gel in an inner wall.SELECTED DRAWING: None

Description

本発明は、人工生体組織およびその製造方法に関する。詳細には、本発明は、三次元心筋組織およびその製造方法に関する。   The present invention relates to an artificial living tissue and a method for producing the same. More specifically, the present invention relates to a three-dimensional myocardial tissue and a method for producing the same.

三次元構造を有する心筋細胞組織を得るために、培養担体や細胞を含む凝集体を利用した培養方法が用いられている。例えば、コラーゲンからなるゲルと心筋細胞を混合し、鋳型に流し込んで成形することで細胞とコラーゲンゲルからなる三次元構造が得られることが報告されている(例えば、非特許文献1)。しかし、このようにして得られた三次元構造中の細胞密度が低いという問題がある。   In order to obtain a cardiomyocyte tissue having a three-dimensional structure, a culture method using an aggregate containing a culture carrier or cells has been used. For example, it has been reported that a three-dimensional structure consisting of cells and a collagen gel can be obtained by mixing a gel made of collagen and myocardial cells, casting the mixture into a mold, and molding (for example, Non-Patent Document 1). However, there is a problem that the cell density in the thus obtained three-dimensional structure is low.

より高い細胞密度を有する三次元心筋細胞組織を構築するために、細胞シート技術が報告されている(例えば、非特許文献2)。細胞シートを積層することによって高い細胞密度を持つ三次元組織を構築することが可能である。しかし、細胞シート中の細胞密度が高いために内部壊死が生じることに加え、組織自体の収縮力も十分とはいえない。   In order to construct a three-dimensional cardiomyocyte tissue having a higher cell density, a cell sheet technique has been reported (for example, Non-Patent Document 2). By laminating the cell sheets, it is possible to construct a three-dimensional tissue having a high cell density. However, since the cell density in the cell sheet is high, internal necrosis occurs, and the contraction force of the tissue itself is not sufficient.

これらに対して、細胞の膜表面に細胞接着因子であるタンパク質をコーティングすることによって、細胞同士の接着を促進し、高い細胞密度を有する三次元構造を構築する細胞積層法や細胞集積法の技術が報告されている(特許文献1、2、非特許文献3、4)。これらの技術によって、高い細胞密度を持ち、さらに血管網構造を有する三次元心筋組織の構築が行われている(非特許文献5)。このような心筋組織は生体に近い反応を示し、創薬応用へ向けた研究および薬剤応答の評価などが進められている。また、このような心筋組織は血管網を有するために、移植された場合に生着および成熟が確認されている(非特許文献6)。しかし、上記技術によって得られた心筋組織は、収縮力の観点からするとまだ十分には生体組織を再現できているとはいえない。   On the other hand, by coating the cell membrane with a protein, which is a cell adhesion factor, on the surface of the cell, it promotes cell-cell adhesion and builds a three-dimensional structure with high cell density. Have been reported (Patent Documents 1 and 2, Non-Patent Documents 3 and 4). With these techniques, a three-dimensional myocardial tissue having a high cell density and a vascular network structure has been constructed (Non-Patent Document 5). Such a myocardial tissue exhibits a reaction close to that of a living body, and research for drug discovery application and evaluation of drug response are being advanced. In addition, since such a myocardial tissue has a vascular network, engraftment and maturation have been confirmed when transplanted (Non-Patent Document 6). However, the myocardial tissue obtained by the above technique cannot be said to sufficiently reproduce living tissue from the viewpoint of contraction force.

特許第4919464号公報Japanese Patent No. 4991964 特許第5850419号公報Japanese Patent No. 5850419

Eschenhagen T et al. FASEB Journal. 11(8), 683-94, 1997.Eschenhagen T et al. FASEB Journal. 11 (8), 683-94, 1997. Shimizu T et al. Biomaterials. 24(13), 2309-16, 2003.Shimizu T et al. Biomaterials. 24 (13), 2309-16, 2003. Matsusaki M et al. Angewandte Chemie. 46(25), 1689-92, 2007.Matsusaki M et al. Angewandte Chemie. 46 (25), 1689-92, 2007. Nishiguchi A et al. Advanced materials. 23(31), 3506-10, 2011.Nishiguchi A et al. Advanced materials.23 (31), 3506-10, 2011. Amano Y et al. Acta Biomaterialia. 33, 110-21, 2016Amano Y et al. Acta Biomaterialia. 33, 110-21, 2016 Narita H et al. Scientific reports. 7(1), 13708, 2017.Narita H et al. Scientific reports.7 (1), 13708, 2017.

細胞密度が高く、収縮力が大きく十分に生体組織を再現できる三次元心筋組織を構築することが望まれている。このような三次元心筋組織を再生医療や創薬分野に応用することが望まれている。   It is desired to construct a three-dimensional myocardial tissue having a high cell density, a large contraction force and sufficient reproduction of a living tissue. It is desired to apply such three-dimensional myocardial tissue to regenerative medicine and drug discovery.

本発明者らは、鋭意研究を重ねた結果、細胞外マトリックスゲルを内壁に有する培養容器内で三次元心筋組織を構築することにより、上記課題を解決できることを見出し、本発明を完成させるに至った。   The present inventors have conducted intensive studies and as a result, found that the above-mentioned problems can be solved by constructing a three-dimensional myocardial tissue in a culture vessel having an extracellular matrix gel on the inner wall, and completed the present invention. Was.

すなわち、本発明は以下のものを提供する。
(1)細胞外マトリックスゲルを内壁に有する容器中で心筋細胞または心筋細胞を含む細胞混合物を培養することを特徴とする、三次元心筋組織の製造方法。
(2)細胞外マトリックスがコラーゲン、アテロコラーゲン、ゼラチン、フィブロネクチン、ラミニン、カドヘリン、テネイシン、エンタクチン、エラスチン、フィブリン、プロテオグリカン、ヒアルロン酸、キチン、キトサン、ポリエチレングリコール、ポリビニルアルコール、および上記物質の誘導体からなる群より選択される1種またはそれ以上のものである(1)記載の方法。
(3)細胞混合物が心筋細胞および心筋線維芽細胞を含むものである(1)または(2)記載の方法。
(4)細胞混合物がさらに血管内皮細胞を含むものである(3)記載の方法。
(5)心筋細胞に細胞外マトリックスを交互積層する前処理が施されている(1)〜(4)のいずれか記載の方法。
(6)三次元心筋組織の平均最大収縮速度が150μm/s以上であり、平均最大弛緩速度が90μm/s以上である(1)〜(5)のいずれか記載の方法。
(7)細胞外マトリックスゲルを内壁に有する容器中の、心筋細胞または心筋細胞を含む細胞混合物を含んでなる培養三次元心筋組織。
(8)細胞外マトリックスがコラーゲン、アテロコラーゲン、ゼラチン、フィブロネクチン、ラミニン、カドヘリン、テネイシン、エンタクチン、エラスチン、フィブリン、プロテオグリカン、ヒアルロン酸、キチン、キトサン、ポリエチレングリコール、ポリビニルアルコール、および上記物質の誘導体からなる群より選択される1種またはそれ以上のものである(7)記載の組織。
(9)細胞混合物が心筋細胞および心筋線維芽細胞を含むものである(7)または(8)記載の組織。
(10)細胞混合物がさらに血管内皮細胞を含むものである(9)記載の組織。
(11)心筋細胞に細胞外マトリックスを交互積層する前処理が施されている(7)〜(10)のいずれか記載の組織。
(12)平均最大収縮速度が150μm/s以上であり、平均最大弛緩速度が90μm/s以上である(7)〜(11)のいずれか記載の組織。
That is, the present invention provides the following.
(1) A method for producing three-dimensional myocardial tissue, comprising culturing cardiomyocytes or a cell mixture containing cardiomyocytes in a container having an extracellular matrix gel on the inner wall.
(2) The group whose extracellular matrix is composed of collagen, atelocollagen, gelatin, fibronectin, laminin, cadherin, tenascin, entactin, elastin, fibrin, proteoglycan, hyaluronic acid, chitin, chitosan, polyethylene glycol, polyvinyl alcohol, and derivatives of the above substances (1) The method according to (1), which is one or more selected from the group consisting of:
(3) The method according to (1) or (2), wherein the cell mixture contains cardiomyocytes and myocardial fibroblasts.
(4) The method according to (3), wherein the cell mixture further contains vascular endothelial cells.
(5) The method according to any one of (1) to (4), wherein a pretreatment for alternately stacking extracellular matrices on the cardiomyocytes is performed.
(6) The method according to any one of (1) to (5), wherein the average maximum contraction speed of the three-dimensional myocardial tissue is 150 μm / s or more, and the average maximum relaxation speed is 90 μm / s or more.
(7) A cultured three-dimensional myocardial tissue comprising cardiomyocytes or a cell mixture containing cardiomyocytes in a container having an extracellular matrix gel on the inner wall.
(8) The group consisting of collagen, atelocollagen, gelatin, fibronectin, laminin, cadherin, tenascin, entactin, elastin, fibrin, proteoglycan, hyaluronic acid, chitin, chitosan, polyethylene glycol, polyvinyl alcohol, and derivatives of the above substances The tissue according to (7), which is one or more selected from the group consisting of:
(9) The tissue according to (7) or (8), wherein the cell mixture contains cardiomyocytes and myocardial fibroblasts.
(10) The tissue according to (9), wherein the cell mixture further contains vascular endothelial cells.
(11) The tissue according to any one of (7) to (10), wherein a pretreatment for alternately laminating an extracellular matrix on the cardiomyocytes is performed.
(12) The tissue according to any one of (7) to (11), wherein the average maximum contraction speed is 150 µm / s or more, and the average maximum relaxation speed is 90 µm / s or more.

本発明によれば、高い細胞密度と生体に近い大きな収縮力を有する、三次元心筋組織ならびにその製造方法が提供される。本発明の三次元心筋組織の大きな収縮力は、容器内壁の細胞外マトリックスゲルが心筋組織の拍動の機能を阻害せず、かつ心筋組織を保持できるためと考えられる。本発明の三次元心筋組織は、生体内の心筋と同様の反応を生体外で再現することができるため、より高度な再生医療や創薬研究等を実現することができる。   According to the present invention, a three-dimensional myocardial tissue having a high cell density and a large contraction force close to a living body and a method for producing the same are provided. It is considered that the large contraction force of the three-dimensional myocardial tissue of the present invention is because the extracellular matrix gel on the inner wall of the container does not inhibit the pulsatile function of the myocardial tissue and can retain the myocardial tissue. Since the three-dimensional myocardial tissue of the present invention can reproduce the same reaction as in-vivo myocardium in vitro, it is possible to realize more advanced regenerative medicine and drug discovery research.

図1は、コラーゲンゲル培養容器を用いた三次元心筋組織の構築方法を模式的に示す図である。FIG. 1 is a diagram schematically showing a method for constructing a three-dimensional myocardial tissue using a collagen gel culture vessel. 図2は、コラーゲンゲル培養容器上に構築された三次元心筋組織(破線内)を示す写真である。FIG. 2 is a photograph showing a three-dimensional myocardial tissue (in a broken line) constructed on a collagen gel culture vessel. 図3は、コラーゲンゲル培養容器を用いて構築された三次元心筋組織およびカルチャーインサートを用いて構築された三次元新規組織の収縮挙動を示すグラフである。FIG. 3 is a graph showing the contraction behavior of a three-dimensional myocardial tissue constructed using a collagen gel culture vessel and a new three-dimensional tissue constructed using a culture insert. 図4は、コラーゲンゲル培養容器を用いて構築された三次元心筋組織およびカルチャーインサートを用いて構築された三次元新規組織の最大収縮速度および最大弛緩速度を示すグラフである。FIG. 4 is a graph showing the maximum contraction rate and maximum relaxation rate of a three-dimensional myocardial tissue constructed using a collagen gel culture vessel and a new three-dimensional tissue constructed using a culture insert. 図5は、コラーゲンゲル培養容器上で培養した血管網を有する三次元心筋組織の蛍光染色画像(水平方向からの断面図)である。抗CD31抗体染色を赤、抗アクチンフィラメント抗体染色を緑、DAPI染色を青で示す。FIG. 5 is a fluorescent staining image (cross-sectional view from the horizontal direction) of a three-dimensional myocardial tissue having a vascular network cultured on a collagen gel culture vessel. Anti-CD31 antibody staining is shown in red, anti-actin filament antibody staining in green, and DAPI staining in blue.

本発明は、1の態様において、細胞外マトリックスゲルを内壁に有する容器中で心筋細胞または心筋細胞を含む細胞混合物を培養することを特徴とする、三次元心筋組織の製造方法を提供する。   In one aspect, the present invention provides a method for producing three-dimensional myocardial tissue, which comprises culturing cardiomyocytes or a cell mixture containing cardiomyocytes in a container having an extracellular matrix gel on the inner wall.

細胞外マトリックスは公知である。細胞外マトリックスは生体細胞から分泌され、細胞の外側に蓄積される物質であり、細胞の接着、増殖や分化の調節に関与している。本発明における容器に用いられる細胞外マトリックスは、生体内に存在するものであってもよく、生体内に存在しないが生体内に存在するものと同様の機能、特性を有するものであってもよい。本明細書において、これらをまとめて細胞外マトリックスという。本発明における容器に用いられる好ましい細胞外マトリックスは、細胞接着性であり、かつゲル化可能なものである。また、生体適合性を有するものも好ましい。本発明における容器に用いられる好ましい細胞外マトリックスの例としては、コラーゲン、アテロコラーゲン、ゼラチン、フィブロネクチン、ラミニン、カドヘリン、テネイシン、エンタクチン、エラスチン、フィブリン、プロテオグリカン、ヒアルロン酸、キチン・キトサンなどの多糖類、あるいは、ポリエチレングリコール、ポリビニルアルコール等の水溶性合成高分子、および上記物質の誘導体などが挙げられるが、これらに限定されない。コラーゲン、ゼラチン、フィブリンは、細胞接着性およびゲル化能の双方において非常に優れており、しかも生体適合性もあるので、本発明における容器に特に好ましく用いられる。上記物質の誘導体は、細胞接着性、ゲル化能、生体適合性を損なわない限り、あらゆる誘導体を包含する。誘導体の製造方法は当業者に公知である。   Extracellular matrices are known. Extracellular matrix is a substance secreted from living cells and accumulated outside the cells, and is involved in regulation of cell adhesion, proliferation and differentiation. The extracellular matrix used for the container in the present invention may be one that exists in the living body, or one that does not exist in the living body but has the same function and characteristics as those present in the living body. . In the present specification, these are collectively referred to as an extracellular matrix. The preferred extracellular matrix used for the container in the present invention is a cell-adhesive and gellable one. Further, those having biocompatibility are also preferable. Examples of preferred extracellular matrix used in the container of the present invention include collagen, atelocollagen, gelatin, fibronectin, laminin, cadherin, tenascin, entactin, elastin, fibrin, proteoglycan, hyaluronic acid, polysaccharides such as chitin / chitosan, or , Polyethylene glycol, polyvinyl alcohol, and other water-soluble synthetic polymers, and derivatives of the above substances, but are not limited thereto. Collagen, gelatin and fibrin are particularly preferably used for the container of the present invention because they are very excellent in both cell adhesiveness and gelling ability and are also biocompatible. Derivatives of the above substances include all derivatives as long as cell adhesion, gelling ability and biocompatibility are not impaired. Methods for producing derivatives are known to those skilled in the art.

細胞外マトリックスゲルは、細胞外マトリックスをゲル化させたものである。該ゲルは細胞外マトリックス成分からなるものであってもよく、細胞外マトリックス成分を含むものであってもよい。細胞外マトリックスゲルの製造方法は公知である。例えば、I型コラーゲン水溶液を生理的条件下に置くことによりI型コラーゲンのゲルを得てもよい。使用する細胞外マトリックスがゲル化しにくい、あるいはゲル化しない場合は、アガロース、カラギーナン、アルギン酸ナトリウム、ゼラチン等の公知のゲル化剤を用いてゲル化させてもよい。   The extracellular matrix gel is obtained by gelling the extracellular matrix. The gel may consist of an extracellular matrix component or may contain an extracellular matrix component. Methods for producing extracellular matrix gels are known. For example, a gel of type I collagen may be obtained by placing an aqueous solution of type I collagen under physiological conditions. When the extracellular matrix to be used is hard to gel or does not gel, it may be gelled using a known gelling agent such as agarose, carrageenan, sodium alginate, gelatin and the like.

本発明において、細胞外マトリックスゲル中の細胞外マトリックスは1種類であってもよく、2種類またはそれ以上であってもよい。   In the present invention, the extracellular matrix in the extracellular matrix gel may be one type, or two or more types.

ゲル強度やゲルの厚さ等の細胞外マトリックスゲルの特性や物性は、容器の形状、使用細胞、望まれる三次元心筋組織の収縮速度やサイズ等に応じて決定することができる。心筋組織の拍動の機能を阻害せず、かつ心筋組織を保持できるように、細胞外マトリックスゲルの特性や物性を決定することが好ましい。また、三次元心筋組織がゲルから脱落しないように、細胞外マトリックスゲルの特性や物性を決定することも好ましい。このような決定は当業者の技量の範囲内である。例えば、細胞外マトリックス成分の濃度を調節することによってゲル強度を調節してもよい。   The properties and physical properties of the extracellular matrix gel, such as gel strength and gel thickness, can be determined according to the shape of the container, the cells used, the desired contraction rate and size of the three-dimensional myocardial tissue, and the like. It is preferable to determine the properties and physical properties of the extracellular matrix gel so as not to inhibit the pulsatile function of the myocardial tissue and retain the myocardial tissue. It is also preferable to determine the properties and properties of the extracellular matrix gel so that the three-dimensional myocardial tissue does not fall off the gel. Such a determination is within the skill of those in the art. For example, gel strength may be adjusted by adjusting the concentration of extracellular matrix components.

細胞外マトリックスゲルを内壁に有する容器は、内壁全部に細胞外マトリックスゲルを有していてもよく、内壁の一部に細胞外マトリックスゲルを有していてもよい。容器の内壁は、容器内部の底面、側面、および存在する場合は上底面を含む。例えば、容器の底面全部および側面全部が細胞外マトリックスゲルで覆われていてもよく、あるいは細胞外マトリックスでできていてもよい。また例えば、容器の底面の一部および側面の一部が細胞外マトリックスゲルで覆われていてもよく、あるいは細胞外マトリックスでできていてもよい。また例えば、容器の底面の全部および側面の一部が細胞外マトリックスゲルで覆われていてもよく、あるいは細胞外マトリックスでできていてもよい。また例えば容器の底面の一部および側面の全部が細胞外マトリックスゲルで覆われていてもよく、あるいは細胞外マトリックスでできていてもよい。底面の全部が細胞外マトリックスゲルで覆われていているか、あるいは細胞外マトリックスでできている容器が好ましい。底面の全部および側面の全部が細胞外マトリックスゲルで覆われていているか、あるいは細胞外マトリックスでできている容器がさらに好ましい。   The container having the extracellular matrix gel on the inner wall may have the extracellular matrix gel on the entire inner wall, or may have the extracellular matrix gel on a part of the inner wall. The inner wall of the container includes a bottom surface, sides, and a top surface, if present, inside the container. For example, the entire bottom and side surfaces of the container may be covered with extracellular matrix gel, or may be made of extracellular matrix. Also, for example, a part of the bottom surface and a part of the side surface of the container may be covered with an extracellular matrix gel, or may be made of an extracellular matrix. Further, for example, the entire bottom surface and a part of the side surface of the container may be covered with an extracellular matrix gel, or may be made of an extracellular matrix. Further, for example, a part of the bottom surface and the entire side surface of the container may be covered with an extracellular matrix gel, or may be made of an extracellular matrix. Preference is given to containers in which the entire bottom surface is covered with extracellular matrix gel or made of extracellular matrix. More preferred are containers in which the entire bottom surface and all of the side surfaces are covered with an extracellular matrix gel or are made of an extracellular matrix.

上記のような容器を作製するためには、既存のガラスまたはプラスチック製の培養容器の内壁に細胞外マトリックスゲルを塗布してもよい。あるいは本願実施例に示すように、細胞外マトリックスゲルに型を押し付けながら固化させ、固化後に型を除去することにより容器を作製してもよい。このように細胞外マトリックスゲルに凹部を形成することにより作製された容器については、容器の内壁という場合は当該凹部を指す。   In order to prepare such a container, an extracellular matrix gel may be applied to the inner wall of an existing glass or plastic culture container. Alternatively, as shown in Examples of the present application, a container may be produced by solidifying while pressing the mold against the extracellular matrix gel, and removing the mold after solidification. As for the container prepared by forming the concave portion in the extracellular matrix gel as described above, the inner wall of the container indicates the concave portion.

容器のサイズや形状は、三次元心筋組織のサイズや形状、該組織の用途等に応じて適宜選択、変更することができ、特に限定されるものではない。例えば、容器の底面が直径約100μm〜数cmの円形であってもよい。   The size and shape of the container can be appropriately selected and changed according to the size and shape of the three-dimensional myocardial tissue, the use of the tissue, and the like, and are not particularly limited. For example, the bottom surface of the container may be a circle having a diameter of about 100 μm to several cm.

心筋細胞はあらゆる種類の心筋細胞であってよい。心筋細胞が由来する動物種についてはヒト、サル、イヌ、ネコ、ウシ、ウマ、ブタ、ヒツジ、ヤギ等が例示されるが、これらの動物種に限定されるものではない。心筋細胞としては市販のものを用いてもよい。またiPS細胞またはES細胞から分化させた心筋細胞を用いてもよい。あるいは生体の心臓から取得し培養したものを用いてもよい。iPS細胞またはES細胞から心筋細胞への分化方法、ならびに心臓組織からの心筋細胞の取得・培養方法は公知である。例えばヒトiPS由来の心筋細胞を用いて製造された本発明の三次元心筋組織を用いることで、ヒト心臓に対する薬剤の心毒性や副作用を正確かつ早期に評価することができる。   The cardiomyocytes can be any type of cardiomyocytes. Examples of animal species from which cardiomyocytes are derived include humans, monkeys, dogs, cats, cows, horses, pigs, sheep, goats, and the like, but are not limited to these animal species. A commercially available cardiomyocyte may be used. Cardiomyocytes differentiated from iPS cells or ES cells may also be used. Alternatively, those obtained and cultured from the heart of a living body may be used. Methods for differentiating iPS cells or ES cells into cardiomyocytes, and methods for obtaining and culturing cardiomyocytes from heart tissue are known. For example, by using the three-dimensional myocardial tissue of the present invention produced using human iPS-derived cardiomyocytes, the cardiotoxicity and side effects of the drug on the human heart can be accurately and early evaluated.

心筋細胞を含む細胞混合物は、心筋細胞以外の細胞を含むものである。心筋以外の細胞としては、線維芽細胞、好ましくは心筋由来の線維芽細胞、血管内皮細胞等が挙げられるが、これらに限定されない。心筋由来の線維芽細胞や血管内皮細胞は市販されており、これらの市販品を用いてよい。線維芽細胞を心筋から採取して培養することにより得てもよい。血管内皮細胞を血管から取得して培養することにより得てもよい。線維芽細胞や血管内皮細胞の取得・培養方法は公知である。   The cell mixture containing cardiomyocytes contains cells other than cardiomyocytes. Cells other than myocardium include, but are not limited to, fibroblasts, preferably fibroblasts derived from myocardium, vascular endothelial cells, and the like. Myocardial fibroblasts and vascular endothelial cells are commercially available, and these commercially available products may be used. It may be obtained by collecting fibroblasts from myocardium and culturing them. It may be obtained by obtaining vascular endothelial cells from blood vessels and culturing them. Methods for obtaining and culturing fibroblasts and vascular endothelial cells are known.

本発明の三次元心筋組織の製造方法において、心筋細胞のみを用いて三次元心筋組織を構築することができるが、心筋細胞と心筋由来の線維芽細胞の混合物を用いて三次元心筋組織を構築することが好ましい。心筋細胞と心筋由来の線維芽細胞および血管内皮細胞の混合物を用いることによって血管網を有する三次元心筋組織を得ることができる。   In the method for producing 3D myocardial tissue of the present invention, 3D myocardial tissue can be constructed using only cardiomyocytes, but 3D myocardial tissue is constructed using a mixture of myocardial cells and myocardium-derived fibroblasts. Is preferred. A three-dimensional myocardial tissue having a vascular network can be obtained by using a mixture of myocardial cells, myocardial fibroblasts and vascular endothelial cells.

本発明の三次元心筋組織の製造方法における細胞の培養は、その前工程として、上記容器への細胞の播種を含む。細胞の播種は公知の方法にて行うことができる。通常は、細胞混合物を細胞懸濁液として播種する。例えば、ピペットを用いて細胞を滴下することにより播種してもよい。あるいは種々の3Dプリンタを用いて播種してもよい。プリンタ方式では、インクジェットプリンタ、マイクロ押し出しプリンタ、レーザーアシストプリンタなどがある。他には塗布針を用いて播種する方法がある。プリンタ方式や塗布針を用いる方法は、三次元心筋組織のマイクロチップを作成するような場合に好適である。   The culturing of the cells in the method for producing a three-dimensional myocardial tissue of the present invention includes, as a preceding step, seeding of the cells into the container. Seeding of cells can be performed by a known method. Usually, the cell mixture is seeded as a cell suspension. For example, cells may be seeded by dropping cells using a pipette. Alternatively, seeding may be performed using various 3D printers. In the printer system, there are an ink jet printer, a micro extrusion printer, a laser assist printer, and the like. There is another method of sowing using an application needle. The printer method and the method using an application needle are suitable for producing a microchip of three-dimensional myocardial tissue.

心筋細胞を含む細胞混合物を用いる場合、心筋細胞と心筋細胞以外の細胞の割合は適宜定めうる。心筋細胞と心筋由来の線維芽細胞の混合物の場合、心筋細胞:線維芽細胞=2〜4:1、好ましくは2.5〜3.4:1、例えば3:1であってもよい。心筋細胞と心筋由来の線維芽細胞および血管内皮細胞の混合物の場合、心筋細胞:線維芽細胞:血管内皮細胞=2〜4:1:0.2〜0.6、好ましくは2.5〜3.5:1:0.3〜0.5、例えば3:1:0.4であってもよい。   When a cell mixture containing cardiomyocytes is used, the ratio of cardiomyocytes to cells other than cardiomyocytes can be appropriately determined. In the case of a mixture of cardiomyocytes and cardiomyocyte-derived fibroblasts, cardiomyocyte: fibroblast = 2-4: 1, preferably 2.5-3.4: 1, for example, 3: 1. In the case of a mixture of cardiomyocytes, myocardial fibroblasts and vascular endothelial cells, cardiomyocytes: fibroblasts: vascular endothelial cells = 2 to 4: 1: 0.2 to 0.6, preferably 2.5 to 3 0.5: 1: 0.3 to 0.5, for example 3: 1: 0.4.

播種する細胞の数は、三次元心筋組織を得ることができる数であればいずれの数であってもよい。三次元心筋組織のサイズ、形状、用途、および容器のサイズ、形状などに応じて細胞の数を決定することができる。一般的には、容器の底面に数層〜数十層の細胞が集積するような数、あるいは播種した細胞層の厚さが数十μm〜数百μmとなるような数としてもよい。   The number of cells to be seeded may be any number as long as a three-dimensional myocardial tissue can be obtained. The number of cells can be determined according to the size, shape, and use of the three-dimensional myocardial tissue, and the size and shape of the container. Generally, the number may be such that several to several tens of cells accumulate on the bottom surface of the container, or may be such that the thickness of the seeded cell layer is several tens μm to several hundred μm.

本発明の三次元心筋組織の製造方法において、組織を構成する細胞に細胞外マトリックスを交互積層する前処理を施すことが好ましい。このような前処理を施した細胞をLbL細胞という。このような前処理を施すことにより、細胞間の接着を誘起し、短時間で三次元組織を構築することができる。このような前処理を心筋細胞に施すことが好ましい。心筋細胞以外の細胞にも上記前処理を施してもよい。例えば、心筋細胞、心臓線維芽細胞および血管内皮細胞を用いて三次元心筋組織を製造する場合、心筋細胞および心臓線維芽細胞に上記前処理を施してもよい。   In the method for producing a three-dimensional myocardial tissue of the present invention, it is preferable to perform a pretreatment for alternately laminating an extracellular matrix on cells constituting the tissue. Cells subjected to such pretreatment are referred to as LbL cells. By performing such a pretreatment, adhesion between cells is induced, and a three-dimensional tissue can be constructed in a short time. It is preferable to perform such a pretreatment on cardiomyocytes. Cells other than cardiomyocytes may be subjected to the above pretreatment. For example, when producing a three-dimensional myocardial tissue using cardiomyocytes, cardiac fibroblasts and vascular endothelial cells, the above-mentioned pretreatment may be applied to myocardial cells and cardiac fibroblasts.

上記前処理において、第1および第2の細胞外マトリックスを細胞に交互積層する。細胞外マトリックスおよびそれらの細胞への適用については特許第5850419号明細書に記載されており、これを参照することによりその内容を本明細書に取り込む。第1および第2の細胞外マトリックスの組み合わせの典型例は、第1の細胞外マトリックスがArg−Gly−Asp配列(RGD配列)を含むタンパク質であり、第2の細胞外マトリックスが第1の細胞外マトリックスと相互作用するタンパク質である。ここで、相互作用とは、例えば、静電的相互作用、疎水性相互作用、水素結合、電荷移動相互作用、共有結合形成、タンパク質間の特異的相互作用、ファンデルワールス力等により、化学的、物理的に、RGD配列を含む高分子と結合、接着、吸着、または電子の授受が可能な程度に近接することを意味する。なお、第1および第2の細胞外マトリックスは、生分解性であることが好ましい。   In the above pretreatment, the first and second extracellular matrices are alternately stacked on cells. Extracellular matrices and their application to cells are described in US Pat. No. 5,850,419, the contents of which are incorporated herein by reference. A typical example of the combination of the first and second extracellular matrices is that the first extracellular matrix is a protein containing an Arg-Gly-Asp sequence (RGD sequence) and the second extracellular matrix is a first cell. A protein that interacts with the outer matrix. Here, the interaction means, for example, chemical interaction by electrostatic interaction, hydrophobic interaction, hydrogen bond, charge transfer interaction, covalent bond formation, specific interaction between proteins, van der Waals force, etc. Physically, it is close enough to bond, adhere, adsorb, or transfer electrons with a polymer containing an RGD sequence. Note that the first and second extracellular matrices are preferably biodegradable.

第1および第2の細胞外マトリックスの組み合わせの具体例として、フィブロネクチンとゼラチン、フィブロネクチンとε−ポリリジン、フィブロネクチンとヒアルロン酸、ラミニンとゼラチン、ビトロネクチンとゼラチン、フィブロネクチンとデキストラン硫酸、フィブロネクチンとへパリン、エラスチンとポリリジン、フィブロネクチンとコラーゲン、ラミニンとコラーゲン、ビトロネクチンとコラーゲン、RGD結合コラーゲンまたはRGD結合ゼラチンとコラーゲンまたはゼラチン等の組合せが挙げられる。フィブロネクチンとゼラチン、フィブロネクチンとヘパリン、フィブロネクチンとε−ポリリジン、フィブロネクチンとヒアルロン酸、フィブロネクチンとデキストラン硫酸との組合せが好ましく、フィブロネクチンとゼラチンとの組合せがより好ましい。なお、第1の細胞外マトリックスと第2の細胞外マトリックスは各々一種類ずつであってもよく、相互作用を示す範囲で二種類以上を各々併用してもよい。   Specific examples of the combination of the first and second extracellular matrices include fibronectin and gelatin, fibronectin and ε-polylysine, fibronectin and hyaluronic acid, laminin and gelatin, vitronectin and gelatin, fibronectin and dextran sulfate, fibronectin and heparin, elastin. And polylysine, fibronectin and collagen, laminin and collagen, vitronectin and collagen, RGD-bound collagen or RGD-bound gelatin and collagen or gelatin, and the like. Combinations of fibronectin and gelatin, fibronectin and heparin, fibronectin and ε-polylysine, fibronectin and hyaluronic acid, fibronectin and dextran sulfate are preferred, and fibronectin and gelatin are more preferred. The first extracellular matrix and the second extracellular matrix may each be of one type, or two or more types may be used in combination as long as they exhibit an interaction.

細胞に細胞外マトリックスを交互積層する方法としては、特に限定されるものではないが、例えば、第1の細胞外マトリックスを含む水溶液に細胞を浸漬し、次いで、第2の細胞外マトリックスを含む水溶液に細胞を浸漬してもよい。また例えば、単層の細胞表面上に第1の細胞外マトリックスを含む水溶液および第2の細胞外マトリックスを含む水溶液を交互に接触させてもよい。これらの方法については、例えば赤木ら、表面 第51巻第4号 p.1〜11(2013)や松崎ら、薬剤学 第76巻第5号 p.294〜300(2016)を参照することができる。   The method for alternately laminating the extracellular matrix on the cells is not particularly limited. For example, the cells are immersed in an aqueous solution containing the first extracellular matrix, and then the aqueous solution containing the second extracellular matrix is used. May be immersed in the cells. Further, for example, an aqueous solution containing the first extracellular matrix and an aqueous solution containing the second extracellular matrix may be alternately contacted on the cell surface of the monolayer. For these methods, see, for example, Akagi et al., Surface, Vol. 51, No. 4, p. 1-11 (2013), Matsuzaki et al., Pharmaceutical Sciences Vol. 76, No. 5, p. 294-300 (2016).

心筋細胞または心筋細胞を含む細胞混合物を上記容器にて培養することにより、本発明の三次元心筋組織を構築することができる。心筋細胞または心筋細胞を含む細胞混合物の培養は、通常の動物細胞の培養方法を用いて行うことができる。例えば20〜40℃、好ましくは35〜39℃、より好ましくは37℃で、例えば1日〜14日、好ましくは数日〜10日培養してもよい。培地も公知のものを用いることができる。培地の例としては、Eagle's MEM培地、Dulbecco's Modified Eagle培地 (DMEM)、Modified Eagle培地(MEM)、Minimum Essential培地、RDMI、GlutaMax培地等が挙げられるが、これらの培地に限定されない。培養条件や培地は、細胞の種類、細胞数、三次元心筋組織のサイズや形状、容器のサイズや形状等に応じて決定することができ、特に限定されるものではない。   The three-dimensional myocardial tissue of the present invention can be constructed by culturing cardiomyocytes or a cell mixture containing cardiomyocytes in the above-mentioned container. Culture of cardiomyocytes or a cell mixture containing cardiomyocytes can be carried out by using a usual animal cell culture method. For example, the cells may be cultured at 20 to 40 ° C, preferably 35 to 39 ° C, more preferably 37 ° C, for example, for 1 to 14 days, preferably several days to 10 days. Known media can also be used. Examples of the medium include, but are not limited to, Eagle's MEM medium, Dulbecco's Modified Eagle medium (DMEM), Modified Eagle medium (MEM), Minimum Essential medium, RDMI, GlutaMax medium, and the like. The culture conditions and medium can be determined according to the type of cells, the number of cells, the size and shape of the three-dimensional myocardial tissue, the size and shape of the container, and are not particularly limited.

上記製造方法により得られる本発明の三次元心筋組織の厚さは数十μm〜数百μmであり得る。   The thickness of the three-dimensional myocardial tissue of the present invention obtained by the above manufacturing method can be several tens μm to several hundred μm.

上記製造方法により得られる本発明の三次元心筋組織の収縮力は極めて大きく、従来法により得られる心筋組織の約10倍またはそれ以上であり得る。本発明の三次元心筋組織の平均最大収縮速度は50μm/s以上、好ましくは100μm/s以上、より好ましくは150μm/s以上であり得、平均最大弛緩速度は30μm/s以上、好ましくは60μm/s以上、より好ましくは90μm/s以上であり得る。本発明の三次元心筋組織は収縮速度および弛緩速度が大きいことから、例えば薬剤スクリーニングの際に、少量の試験薬剤を与えた場合であっても反応を見ることができる。また、心筋細胞を含む細胞混合物中に血管内皮細胞を用いて三次元心筋組織を構築した場合には、三次元心筋組織中に血管網が形成される。しかも本発明の三次元心筋組織中の細胞密度は高い。したがって、本発明の三次元心筋組織を用いることによって、生体内と同様の反応を生体外で再現することが可能となる。   The contractile force of the three-dimensional myocardial tissue of the present invention obtained by the above manufacturing method is extremely large, and may be about 10 times or more that of the myocardial tissue obtained by the conventional method. The average maximum contraction rate of the three-dimensional myocardial tissue of the present invention can be 50 μm / s or more, preferably 100 μm / s or more, more preferably 150 μm / s or more, and the average maximum relaxation rate is 30 μm / s or more, preferably 60 μm / s. s or more, more preferably 90 μm / s or more. Since the three-dimensional myocardial tissue of the present invention has a high contraction rate and a high relaxation rate, a reaction can be observed even when a small amount of a test drug is given, for example, during drug screening. When a three-dimensional myocardial tissue is constructed using vascular endothelial cells in a cell mixture containing myocardial cells, a vascular network is formed in the three-dimensional myocardial tissue. Moreover, the cell density in the three-dimensional myocardial tissue of the present invention is high. Therefore, by using the three-dimensional myocardial tissue of the present invention, it is possible to reproduce the same reaction as in vivo in vitro.

本発明の製造方法により得られた三次元心筋組織を、細胞外マトリックスゲルから分離して使用してもよく、細胞外マトリックスゲルとともに使用してもよい。本発明の三次元心筋組織を、心臓に適用される移植片として用いてもよい。また本発明の三次元心筋組織を、薬剤のスクリーニングや心毒性評価などの試験に用いてもよい。さらに本発明の三次元心筋組織を基板上に配置してチップを構成し、ハイスループット試験に使用してもよい。本発明の三次元心筋組織の他の用途としては、組織工学、細胞培養、バイオセンサー等が挙げられるが、これらに限定されない。   The three-dimensional myocardial tissue obtained by the production method of the present invention may be used separately from the extracellular matrix gel, or may be used together with the extracellular matrix gel. The three-dimensional myocardial tissue of the present invention may be used as a graft applied to the heart. Further, the three-dimensional myocardial tissue of the present invention may be used for tests such as drug screening and cardiotoxicity evaluation. Further, the three-dimensional myocardial tissue of the present invention may be arranged on a substrate to form a chip and used for a high-throughput test. Other uses of the three-dimensional myocardial tissue of the present invention include, but are not limited to, tissue engineering, cell culture, biosensors, and the like.

本発明は、もう1つの態様において、細胞外マトリックスゲルを内壁に有する容器中の、心筋細胞または心筋細胞を含む細胞混合物を含んでなる培養三次元心筋組織を提供する。   In another aspect, the present invention provides a cultured three-dimensional myocardial tissue comprising cardiomyocytes or a cell mixture comprising cardiomyocytes in a container having an extracellular matrix gel on the inner wall.

細胞外マトリックスゲル、容器、内壁、心筋細胞、心筋細胞を含む細胞混合物、三次元心筋組織については上で説明したとおりである。培養三次元心筋組織は、上記容器中に存在する培養された状態の三次元心筋組織である。培養についても上で説明したとおりである。   The extracellular matrix gel, container, inner wall, cardiomyocytes, cell mixture containing myocardial cells, and three-dimensional myocardial tissue are as described above. The cultured three-dimensional myocardial tissue is a cultured three-dimensional myocardial tissue existing in the container. The culture is also as described above.

上記培養三次元心筋組織を構成する心筋細胞は、細胞外マトリックスを交互積層する前処理を施されている細胞であることが好ましい。上記培養三次元心筋組織を構成する心筋細胞以外の細胞にも上記前処理を施してもよい。   The cardiomyocytes constituting the cultured three-dimensional myocardial tissue are preferably cells that have been subjected to a pretreatment for alternately laminating extracellular matrices. The pretreatment may be applied to cells other than cardiomyocytes constituting the cultured three-dimensional myocardial tissue.

上記培養三次元心筋組織の平均最大収縮速度は50μm/s以上、好ましくは100μm/s以上、より好ましくは150μm/s以上であり得、平均最大弛緩速度は30μm/s以上、好ましくは60μm/s以上、より好ましくは90μm/s以上であり得る。   The average maximum contraction rate of the cultured three-dimensional myocardial tissue can be 50 μm / s or more, preferably 100 μm / s or more, more preferably 150 μm / s or more, and the average maximum relaxation rate is 30 μm / s or more, preferably 60 μm / s. Or more, more preferably 90 μm / s or more.

上で説明した用語以外の本明細書中の用語の意味については、医学、細胞工学、生物学等の分野において通常に理解されている意味に解される。   The meanings of the terms herein other than those described above are to be understood as commonly understood in the fields of medicine, cell engineering, biology, and the like.

以下に実施例を示して本発明をより詳細かつ具体的に説明するが、実施例は本発明の範囲を限定するものではない。   Hereinafter, the present invention will be described in more detail and specifically with reference to examples, but the examples do not limit the scope of the present invention.

図1に示す方法に従って、コラーゲンゲル培養容器を用いて三次元心筋組織の構築を行った。コラーゲン溶液(2.1mg/ml)を6ウェルプレート上に滴下し、カルチャーインサート(24ウェルサイズ)を設置した。さらに周囲にコラーゲン溶液を滴下し、37℃で30分静置することによってゲル化させた。ゲル化後、カルチャーインサートを取り外し、形成された凹部分を培養容器として、ここにフィブロネクチンとゼラチンを相互積層したiPS細胞由来心筋細胞(iPS細胞株253G1(理研)を出願人が心筋に分化誘導した)と、フィブロネクチンとゼラチンを相互積層した心筋線維芽細胞(Lonza社、カタログ番号:CC−2904)を混合した細胞懸濁液を滴下することにより播種し(1.0x10cells:10層)、培養を行うことで三次元心筋組織の構築を行った(図2)。播種した心筋細胞と心筋線維芽細胞の比率は、心筋細胞:心筋線維芽細胞=75:25であった。細胞播種後、DMEM培地(10% FBS含有)を添加して37℃で5日間培養を行い、構築した三次元心筋組織の拍動の収縮挙動を評価した。 According to the method shown in FIG. 1, a three-dimensional myocardial tissue was constructed using a collagen gel culture vessel. A collagen solution (2.1 mg / ml) was dropped on a 6-well plate, and a culture insert (24-well size) was provided. Further, a collagen solution was dropped on the periphery and left at 37 ° C. for 30 minutes to gel. After gelation, the culture insert was removed, and the formed concavity was used as a culture vessel, and the applicant induced iPS cell-derived cardiomyocytes (iPS cell line 253G1 (RIKEN) into myocardium by laminating fibronectin and gelatin. ) And myocardial fibroblasts (Lonza, catalog number: CC-2904) in which fibronectin and gelatin were layered on each other, and the cells were seeded by dropping (1.0 × 10 6 cells: 10 layers), By culturing, a three-dimensional myocardial tissue was constructed (FIG. 2). The ratio of seeded cardiomyocytes to cardiomyocyte fibroblasts was cardiomyocyte: cardiomyocyte fibroblast = 75: 25. After seeding the cells, a DMEM medium (containing 10% FBS) was added and the cells were cultured at 37 ° C. for 5 days, and the beating contraction behavior of the constructed three-dimensional myocardial tissue was evaluated.

構築した三次元心筋組織の評価方法として、高速度カメラによる撮影と粒子イメージ流速計測法(PIV法)を用いた。比較実験として、カルチャーインサート上に上記と同様にして播種、培養を行うことによって三次元心筋組織を構築し(従来法による構築)、PIV法を用いて拍動の収縮挙動を評価した。   As a method for evaluating the constructed three-dimensional myocardial tissue, imaging by a high-speed camera and a particle image flow velocity measurement method (PIV method) were used. As a comparative experiment, three-dimensional myocardial tissue was constructed by seeding and culturing on a culture insert in the same manner as described above (construction by a conventional method), and the contraction behavior of pulsation was evaluated using the PIV method.

その結果、コラーゲンゲル培養容器上の三次元心筋組織は、従来のカルチャーインサート上の三次元心筋組織の10倍程度の大きな収縮が発現していた(図3、図4)。   As a result, the three-dimensional myocardial tissue on the collagen gel culture vessel exhibited about 10 times larger contraction than the three-dimensional myocardial tissue on the conventional culture insert (FIGS. 3 and 4).

フィブロネクチンとゼラチンを相互積層したiPS細胞由来心筋細胞、フィブロネクチンとゼラチンを相互積層した心筋線維芽細胞、および血管内皮細胞(Lonza社、カタログ番号:CC−7030)をそれぞれ75:25:10で混合した細胞懸濁液をコラーゲンゲル容器内に播種(1.0x10cells:10層)し、実施例1と同様にして三次元心筋組織を構築した。 IPS cell-derived cardiomyocytes in which fibronectin and gelatin were layered, cardiomyocyte fibroblasts in which fibronectin and gelatin were layered, and vascular endothelial cells (Lonza, catalog number: CC-7030) were mixed at 75:25:10, respectively. The cell suspension was seeded in a collagen gel container (1.0 × 10 6 cells: 10 layers), and a three-dimensional myocardial tissue was constructed in the same manner as in Example 1.

得られた三次元組織について抗CD31抗体染色、抗アクチンフィラメント抗体染色およびDAPI染色を行って、三次元組織中の構造について調べた。その結果、従来法による構築と同様に三次元組織中に血管網が形成されており、ゲル容器内部に血管内皮細胞が浸潤している様子が認められた(図5)。   The obtained three-dimensional tissue was subjected to anti-CD31 antibody staining, anti-actin filament antibody staining and DAPI staining to examine the structure in the three-dimensional tissue. As a result, a vascular network was formed in the three-dimensional tissue as in the case of the construction according to the conventional method, and it was recognized that vascular endothelial cells had infiltrated inside the gel container (FIG. 5).

本発明は、再生医療や創薬研究等の分野において利用可能である。具体的には、本発明により得られる三次元心筋組織は、創薬研究における安全性/毒性、薬物動態、薬効、薬理の評価、薬剤スクリーニング、移植片の製造、組織工学、細胞培養、バイオセンサー、バイオチップ等に応用することができる。   The present invention can be used in fields such as regenerative medicine and drug discovery research. Specifically, the three-dimensional myocardial tissue obtained by the present invention can be used to evaluate safety / toxicity, pharmacokinetics, pharmacodynamics, pharmacology, drug screening, graft production, tissue engineering, cell culture, biosensors in drug discovery research , Biochips and the like.

Claims (12)

細胞外マトリックスゲルを内壁に有する容器中で心筋細胞または心筋細胞を含む細胞混合物を培養することを特徴とする、三次元心筋組織の製造方法。   A method for producing three-dimensional myocardial tissue, comprising culturing cardiomyocytes or a cell mixture containing cardiomyocytes in a container having an extracellular matrix gel on the inner wall. 細胞外マトリックスがコラーゲン、アテロコラーゲン、ゼラチン、フィブロネクチン、ラミニン、カドヘリン、テネイシン、エンタクチン、エラスチン、フィブリン、プロテオグリカン、ヒアルロン酸、キチン、キトサン、ポリエチレングリコール、ポリビニルアルコール、および上記物質の誘導体からなる群より選択される1種またはそれ以上のものである請求項1記載の方法。   The extracellular matrix is selected from the group consisting of collagen, atelocollagen, gelatin, fibronectin, laminin, cadherin, tenascin, entactin, elastin, fibrin, proteoglycan, hyaluronic acid, chitin, chitosan, polyethylene glycol, polyvinyl alcohol, and derivatives of the above substances. 2. The method of claim 1, wherein the method is one or more. 細胞混合物が心筋細胞および心筋線維芽細胞を含むものである請求項1または2記載の方法。   The method according to claim 1 or 2, wherein the cell mixture contains cardiomyocytes and cardiomyocyte fibroblasts. 細胞混合物がさらに血管内皮細胞を含むものである請求項3記載の方法。   4. The method according to claim 3, wherein the cell mixture further comprises vascular endothelial cells. 心筋細胞に細胞外マトリックスを交互積層する前処理が施されている請求項1〜4のいずれか1項記載の方法。   The method according to any one of claims 1 to 4, wherein a pretreatment for alternately laminating an extracellular matrix is performed on the cardiomyocytes. 三次元心筋組織の平均最大収縮速度が150μm/s以上であり、平均最大弛緩速度が90μm/s以上である請求項1〜5のいずれか1項記載の方法。   The method according to any one of claims 1 to 5, wherein the average maximum contraction speed of the three-dimensional myocardial tissue is 150 µm / s or more, and the average maximum relaxation speed is 90 µm / s or more. 細胞外マトリックスゲルを内壁に有する容器中の、心筋細胞または心筋細胞を含む細胞混合物を含んでなる培養三次元心筋組織。   A cultured three-dimensional myocardial tissue comprising cardiomyocytes or a cell mixture containing cardiomyocytes in a container having an extracellular matrix gel on the inner wall. 細胞外マトリックスがコラーゲン、アテロコラーゲン、ゼラチン、フィブロネクチン、ラミニン、カドヘリン、テネイシン、エンタクチン、エラスチン、フィブリン、プロテオグリカン、ヒアルロン酸、キチン、キトサン、ポリエチレングリコール、ポリビニルアルコール、および上記物質の誘導体からなる群より選択される1種またはそれ以上のものである請求項7記載の組織。   The extracellular matrix is selected from the group consisting of collagen, atelocollagen, gelatin, fibronectin, laminin, cadherin, tenascin, entactin, elastin, fibrin, proteoglycan, hyaluronic acid, chitin, chitosan, polyethylene glycol, polyvinyl alcohol, and derivatives of the above substances. 8. The tissue of claim 7, wherein the tissue is one or more. 細胞混合物が心筋細胞および心筋線維芽細胞を含むものである請求項7または8記載の組織。   9. The tissue according to claim 7, wherein the cell mixture contains cardiomyocytes and cardiomyofibroblasts. 細胞混合物がさらに血管内皮細胞を含むものである請求項9記載の組織。   The tissue according to claim 9, wherein the cell mixture further contains vascular endothelial cells. 心筋細胞に細胞外マトリックスを交互積層する前処理が施されている請求項7〜10のいずれか1項記載の組織。   The tissue according to any one of claims 7 to 10, wherein a pretreatment for alternately laminating an extracellular matrix is performed on the cardiomyocytes. 平均最大収縮速度が150μm/s以上であり、平均最大弛緩速度が90μm/s以上である請求項7〜11のいずれか1項記載の組織。   The tissue according to any one of claims 7 to 11, wherein the average maximum contraction speed is 150 µm / s or more, and the average maximum relaxation speed is 90 µm / s or more.
JP2018159015A 2018-08-28 2018-08-28 Method for producing three-dimensional myocardial tissue Active JP7176727B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018159015A JP7176727B2 (en) 2018-08-28 2018-08-28 Method for producing three-dimensional myocardial tissue
PCT/JP2019/007718 WO2020044615A1 (en) 2018-08-28 2019-02-21 Method for producing three-dimensional myocardial tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018159015A JP7176727B2 (en) 2018-08-28 2018-08-28 Method for producing three-dimensional myocardial tissue

Publications (2)

Publication Number Publication Date
JP2020031548A true JP2020031548A (en) 2020-03-05
JP7176727B2 JP7176727B2 (en) 2022-11-22

Family

ID=69645135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018159015A Active JP7176727B2 (en) 2018-08-28 2018-08-28 Method for producing three-dimensional myocardial tissue

Country Status (2)

Country Link
JP (1) JP7176727B2 (en)
WO (1) WO2020044615A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114128A1 (en) * 2020-11-26 2022-06-02 凸版印刷株式会社 Three-dimensional cell tissue production method and three-dimensional cell tissue

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054781A (en) * 2017-09-22 2019-04-11 株式会社リコー Particle-containing three-dimensional tissues, and shrinkage measurement method for particle-containing three-dimensional tissues

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054781A (en) * 2017-09-22 2019-04-11 株式会社リコー Particle-containing three-dimensional tissues, and shrinkage measurement method for particle-containing three-dimensional tissues

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ACTA BIOMATERIALIA, 2016, VOL.33, PP.110-121, JPN6019018399, ISSN: 0004742137 *
SCIENTIFIC REPORTS, 2013, VOL.3, 1316 (PP.1-7), JPN6019018397, ISSN: 0004742135 *
SENSORS AND ACTUATORS B, 2006, VOL.117, PP.391-400, JPN6019018398, ISSN: 0004742136 *
TISSUE ENGINEERING: PART C, 2010, VOL.16, NO.3, PP.375-385, JPN6019018396, ISSN: 0004742134 *
第17回日本再生医療学会総会 プログラム抄録, 2018.02.23, P.868 (O-57-2), JPN6019018403, ISSN: 0004742141 *
第47回医用高分子シンポジウム 講演要旨集, 2018.07.06, PP.27-28, JPN6019018400, ISSN: 0004742138 *
第5回国際組織工学・再生医療学会世界会議2018−京都 抄録, 2018.08.09, P.535 (A91646/02-P491), JPN6019018402, ISSN: 0004742140 *
高分子学会予稿集, 2018.05.08, 第67巻第1号, 2H18, JPN6019018401, ISSN: 0004742139 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114128A1 (en) * 2020-11-26 2022-06-02 凸版印刷株式会社 Three-dimensional cell tissue production method and three-dimensional cell tissue

Also Published As

Publication number Publication date
WO2020044615A1 (en) 2020-03-05
JP7176727B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
JP6427836B2 (en) Method for producing a three-dimensional cellular tissue
Boudou et al. Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications
Xu et al. Fabrication and characterization of bio-engineered cardiac pseudo tissues
CN108126242B (en) Bio-brick for bio-printing and use thereof
US9587213B2 (en) Methods and devices for encapsulating cells
US8137964B2 (en) Method of producing three-dimensional tissue and method of producing extracellular matrix used in the same
Picart et al. Layer-by-layer films for biomedical applications
CN106039413B (en) Method for preparing bio-brick containing endothelial cells and bio-brick prepared thereby
CA2684544A1 (en) Improved three-dimensional biocompatible skeleton structure containing nanoparticles
KR102446764B1 (en) Spheroids Containing Biologically-Related Materials and Related Methods
JP6953894B2 (en) Three-dimensional liver tissue structure and its manufacturing method
JPH06327462A (en) Formation of cell aggregate
US20220228108A1 (en) Cell culture base material and cell culture base material with cells
WO2020044615A1 (en) Method for producing three-dimensional myocardial tissue
JP7416185B2 (en) Method for manufacturing three-dimensional cell structures
JP7102694B2 (en) Complex and its manufacturing method, laminate, cell adhesion substrate and its manufacturing method
WO2022039261A1 (en) Production method for three-dimensional cell structure, and three-dimensional cell structure
Gu Functional tissues from intelligent materials, 3D printing and stem cells
WO2023113685A1 (en) Surface coating for spheroid growth
Ogunkuade Development of Implantable Scaffold for Ear Tissue Cartilage with Potential Application in Bionic Ears
Corrreia Multifunctional and liquified capsules for tissue regeneration
da Luz Mano Maria Clara Rosa da Silva Correia
da Silva Corrreia Multifunctional and Liquified Capsules for Tissue Regeneration

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210310

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221102

R150 Certificate of patent or registration of utility model

Ref document number: 7176727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150