JP2020031028A - Mixed positive electrode active material for lithium ion secondary battery and production method of the same - Google Patents

Mixed positive electrode active material for lithium ion secondary battery and production method of the same Download PDF

Info

Publication number
JP2020031028A
JP2020031028A JP2018157671A JP2018157671A JP2020031028A JP 2020031028 A JP2020031028 A JP 2020031028A JP 2018157671 A JP2018157671 A JP 2018157671A JP 2018157671 A JP2018157671 A JP 2018157671A JP 2020031028 A JP2020031028 A JP 2020031028A
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
oxide secondary
olivine
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018157671A
Other languages
Japanese (ja)
Other versions
JP7144239B2 (en
Inventor
愉子 平山
Satoko Hirayama
愉子 平山
弘樹 山下
Hiroki Yamashita
弘樹 山下
大神 剛章
Takeaki Ogami
剛章 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2018157671A priority Critical patent/JP7144239B2/en
Publication of JP2020031028A publication Critical patent/JP2020031028A/en
Application granted granted Critical
Publication of JP7144239B2 publication Critical patent/JP7144239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a positive electrode active material for a lithium ion secondary battery, which is obtained using a lamellar lithium compound oxide secondary particle and a lithium system olivine type compound oxide secondary particle, and furthermore allows for formation of a positive electrode active material layer having a dense packing structure with a small void ratio, and enables the lithium ion secondary battery to express an excellent cycle characteristic, and to provide a production method of the positive electrode active material for a lithium ion secondary battery.SOLUTION: A mixed positive electrode active material for a lithium ion secondary battery is provided that contains a lithium system olivine type compound oxide secondary particle (A) and a lamellar lithium compound oxide secondary particle (B), and that has an Xof 0.3 g/mto 50 g/m, wherein the Xis obtained by the following formula (1): X=T×|D50-D50+2|...(1) (in the formula (1), Tindicates a tap density (g/cm) of the lithium system olivine type compound oxide secondary particle (A), D50 indicates a mean particle diameter (μm) in an accumulation 50% in a particle size distribution of the lithium system olivine type compound oxide secondary particle (A), and D50 indicates the mean particle diameter (μm) in the accumulation 50% in the particle size distribution of the lamellar lithium compound oxide secondary particle (B).).SELECTED DRAWING: None

Description

本発明は、優れたサイクル特性と安全性とを兼ね備えたリチウムイオン二次電池を得ることのできる、リチウムイオン二次電池用混合正極活物質及びその製造方法に関する。   The present invention relates to a mixed positive electrode active material for a lithium ion secondary battery capable of obtaining a lithium ion secondary battery having excellent cycle characteristics and safety, and a method for producing the same.

層状型リチウム・ニッケル・コバルト・マンガン複合酸化物(NCM)や層状型リチウム・ニッケル・コバルト・アルミニウム複合酸化物(NCA)等の層状型リチウム複合酸化物は、リチウム原子層と遷移金属原子層とが酸素原子層を介して交互に積み重なった層状結晶構造を呈し、遷移金属の1原子あたりに1個のリチウム原子が含まれる、いわゆる層状岩塩構造を有している。かかる層状型リチウム複合酸化物は、高出力及び高容量のリチウムイオン二次電池を構成できる正極活物質として使用されている。   Layered lithium composite oxides such as layered lithium-nickel-cobalt-manganese composite oxide (NCM) and layered lithium-nickel-cobalt-aluminum composite oxide (NCA) are composed of a lithium atomic layer and a transition metal atomic layer. Has a layered crystal structure alternately stacked via an oxygen atom layer, and has a so-called layered rock salt structure in which one lithium atom is contained per transition metal atom. Such a layered lithium composite oxide is used as a positive electrode active material that can constitute a high-output and high-capacity lithium-ion secondary battery.

こうした層状型リチウム複合酸化物を正極活物質として用いたリチウムイオン二次電池では、リチウムイオンが層状型リチウム複合酸化物に脱離・挿入されることによって充電・放電が行われるが、通常、充放電サイクルを重ねるにつれて容量低下が生じ、特に長期間使用すると、電池の容量低下が著しくなるおそれがある。これは、充電時に層状型リチウム複合酸化物の遷移金属成分が電解液へ溶出することにより、かかる結晶構造の崩壊が生じやすくなることが原因であると考えられている。また、この遷移金属成分の電解液への溶出によってリチウムイオン二次電池の熱的安定性が低下し、安全性が損なわれるおそれがある。   In a lithium ion secondary battery using such a layered lithium composite oxide as a positive electrode active material, charging and discharging are performed by lithium ions being desorbed and inserted into the layered lithium composite oxide. As the number of discharge cycles increases, the capacity decreases, and particularly when used for a long time, the capacity of the battery may significantly decrease. This is considered to be due to the fact that the transition metal component of the layered lithium composite oxide elutes into the electrolytic solution at the time of charging, so that the collapse of the crystal structure tends to occur. Moreover, the thermal stability of the lithium ion secondary battery may be reduced due to the elution of the transition metal component into the electrolyte, and safety may be impaired.

このような状況下、例えば車載用電池に使用される電池材料には、1000サイクル以上もの多数回にわたる充放電サイクルを経ても、一定以上の電池容量を維持できるような優れた耐久性を有することが要求されており、これに応じるべく種々の開発がなされている。例えば、特許文献1には、Ti、Zr、Nb等でドープされ得る特定のリチウム鉄マンガンリン酸塩化合物と、NCMやNCAのようなリチウム金属酸化物とを含む正電気活性材料が開示されており、リチウムイオン電池材料として熱的安定性の改善を試みている。また特許文献2には、LiFexMn1-x-yyPO4からなり、リチウムイオンの吸蔵・放出による体積変化率が特定の範囲内である電極活物質と、NCMやLMO(マンガン酸リチウム)等のリチウム含有金属酸化物からなる電極活物質とを含む混合物であるリチウムイオン二次電池用電極材料が開示されており、電極として用いた場合の安全性を改善し、電池の寿命の向上を図っている。 Under such circumstances, for example, a battery material used for a vehicle-mounted battery must have excellent durability so that a battery capacity of a certain level or more can be maintained even after a number of charge / discharge cycles of 1000 cycles or more. Has been required, and various developments have been made to meet this demand. For example, Patent Document 1 discloses a positive electroactive material including a specific lithium iron manganese phosphate compound that can be doped with Ti, Zr, Nb, and the like, and a lithium metal oxide such as NCM or NCA. Therefore, it is trying to improve thermal stability as a lithium ion battery material. Further, Patent Document 2 consists of LiFe x Mn 1-xy M y PO 4, and the electrode active material volume change due to absorption and desorption of lithium ions is within a specific range, NCM and LMO (lithium manganate) An electrode material for a lithium ion secondary battery, which is a mixture containing an electrode active material composed of a lithium-containing metal oxide such as, has been disclosed, to improve safety when used as an electrode and to improve battery life. I'm trying.

特表2014−524133号公報JP 2014-524133 A 特開2018−56037号公報JP 2018-56037 A

しかしながら、二次電池を構成する正極活物質層には、空隙率が小さく密実な充填構造を有することが求められるところ、上記特許文献に記載の電極材料を用いて得られる正極活物質層では、用いる酸化物の種類毎に異なる体積変化も要因となって、二次電池の使用時間が増すにつれ、密実な充填構造を保持するのが困難となり、二次電池において優れたサイクル特性を充分に確保できないおそれがある。   However, the positive electrode active material layer constituting the secondary battery is required to have a small porosity and a solid filling structure.However, in the positive electrode active material layer obtained using the electrode material described in the above patent document, Due to the volume change that differs depending on the type of oxide used, as the usage time of the secondary battery increases, it becomes difficult to maintain a solid filling structure, and the excellent cycle characteristics of the secondary battery May not be secured.

したがって、本発明の課題は、層状型リチウム複合酸化物二次粒子とリチウム系オリビン型複合酸化物二次粒子とを用いつつ、空隙率の小さい密実な充填構造を有する正極活物質層の形成を可能とし、リチウムイオン二次電池において優れたサイクル特性を発現させることのできるリチウムイオン二次電池用混合正極活物質及びその製造方法を提供することである。   Therefore, an object of the present invention is to form a positive electrode active material layer having a small packed structure with a small porosity while using layered lithium composite oxide secondary particles and lithium-based olivine type composite oxide secondary particles. It is an object of the present invention to provide a mixed positive electrode active material for a lithium ion secondary battery capable of exhibiting excellent cycle characteristics in the lithium ion secondary battery and a method for producing the same.

そこで本発明者らは、上記課題を解決すべく鋭意検討を行った結果、含有されるリチウム系オリビン型複合酸化物二次粒子(A)と層状型リチウム複合酸化物二次粒子(B)とが、特定の関係式を満たすことにより、リチウムイオン二次電池において優れたサイクル特性を発現させることのできるリチウムイオン二次電池用混合正極活物質が得られることを見出した。   The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, the lithium-based olivine-type composite oxide secondary particles (A) and the layered-type lithium composite oxide secondary particles (B) contained therein However, they have found that, by satisfying a specific relational expression, a mixed positive electrode active material for a lithium ion secondary battery that can exhibit excellent cycle characteristics in a lithium ion secondary battery can be obtained.

すなわち、本発明は、リチウム系オリビン型複合酸化物二次粒子(A)、及び層状型リチウム複合酸化物二次粒子(B)を含有し、かつ下記式(1):
A=TA×|DA50−DB50+2|・・・(1)
(式(1)中、TAは、リチウム系オリビン型複合酸化物二次粒子(A)のタップ密度(g/cm3)を示し、DA50は、リチウム系オリビン型複合酸化物二次粒子(A)の粒度分布における累積50%での平均粒子径(μm)を示し、DB50は、層状型リチウム複合酸化物二次粒子(B)の粒度分布における累積50%での平均粒子径(μm)を示す。)
により求められるXAが0.3g/m2〜50g/m2である、リチウムイオン二次電池用混合正極活物質を提供するものである。
That is, the present invention contains secondary particles of lithium-based olivine type composite oxide (A) and secondary particles of layered lithium composite oxide (B), and has the following formula (1):
X A = T A × | D A 50-D B 50 + 2 | ··· (1)
(In the formula (1), T A represents the tap density of the lithium olivine-type composite oxide secondary particle (A) (g / cm 3 ), D A 50 is lithium olivine-type composite oxide secondary shows the average particle diameter at cumulative 50% in the particle size distribution of the particles (a) (μm), D B 50 , the average particle at 50% accumulation in the particle size distribution of the layered-type lithium composite oxide secondary particle (B) Diameter (μm).)
The obtained X A is 0.3g / m 2 ~50g / m 2 , there is provided a mixed positive active material for a lithium ion secondary battery.

また、本発明は、次の工程(I)〜(V):
(I)層状型リチウム複合酸化物二次粒子(B)について、粒度分布における累積50%での平均粒子径DB50を測定する工程
(II)少なくとも一種のリチウム系オリビン型複合酸化物二次粒子(At)について、タップ密度TA t、リチウム系オリビン型複合酸化物二次粒子(At)の粒度分布における累積50%での平均粒子径DA t50を測定する工程
(III)工程(I)で得られたDB50を下記式(1):
A=TA×|DA50−DB50+2|・・・(1)
(式(1)中、TAは、リチウム系オリビン型複合酸化物二次粒子(A)のタップ密度(g/cm3)を示し、DA50は、リチウム系オリビン型複合酸化物二次粒子(A)の粒度分布における累積50%での平均粒子径(μm)を示し、DB50は、層状型リチウム複合酸化物二次粒子(B)の粒度分布における累積50%での平均粒子径(μm)を示す。XAは、工程(IV)で混合するリチウム系オリビン型複合酸化物二次粒子(A)を選択するための指標となる値(g/m2)を示す。)
に導入する工程
(IV)リチウム系オリビン型複合酸化物二次粒子(At)のなかから、式(1)により求められるXAを0.3g/m2〜50g/m2とするための、タップ密度TA及びDA50を有するリチウム系オリビン型複合酸化物二次粒子(A)を選択する工程
(V)選択したリチウム系オリビン型複合酸化物二次粒子(A)と層状型リチウム複合酸化物二次粒子(B)とを混合する工程
を備えるリチウムイオン二次電池用混合正極活物質の製造方法を提供するものである。
Further, the present invention provides the following steps (I) to (V):
For (I) layered lithium composite oxide secondary particle (B), step (II) at least one lithium-based olivine-type composite oxide secondary measuring the average particle diameter D B 50 at 50% cumulative in the particle size distribution particles for (a t), a tap density T a t, the step of measuring the average particle diameter D a t 50 at 50% accumulation in the particle size distribution of the lithium olivine-type composite oxide secondary particle (a t) (III) The D B 50 obtained in the step (I) is represented by the following formula (1):
X A = T A × | D A 50-D B 50 + 2 | ··· (1)
(In the formula (1), T A represents the tap density of the lithium olivine-type composite oxide secondary particle (A) (g / cm 3 ), D A 50 is lithium olivine-type composite oxide secondary shows the average particle diameter at cumulative 50% in the particle size distribution of the particles (a) (μm), D B 50 , the average particle at 50% accumulation in the particle size distribution of the layered-type lithium composite oxide secondary particle (B) X A represents a value (g / m 2 ) serving as an index for selecting the lithium-based olivine-type composite oxide secondary particles (A) to be mixed in the step (IV).)
Introduced to step (IV) lithium olivine-type composite oxide secondary particles from among (A t), equation (1) by the X A for a 0.3g / m 2 ~50g / m 2 obtained , tap density T a and D a lithium olivine-type composite oxide secondary particles selecting a (a) (V) selected lithium olivine-type composite oxide secondary particle (a) and layer-structured lithium having 50 An object of the present invention is to provide a method for producing a mixed positive electrode active material for a lithium ion secondary battery, comprising a step of mixing the composite oxide secondary particles (B).

本発明のリチウムイオン二次電池用混合正極活物質によれば、空隙率の小さい密実な充填構造を有する正極活物質層の形成が可能となり、優れたサイクル特性を有するリチウムイオン二次電池を容易に得ることができる。   According to the mixed positive electrode active material for a lithium ion secondary battery of the present invention, it is possible to form a positive electrode active material layer having a small porosity and a dense filling structure, and to provide a lithium ion secondary battery having excellent cycle characteristics. Can be easily obtained.

以下、本発明について詳細に説明する。
本発明のリチウムイオン二次電池用混合正極活物質(以下、「混合正極活物質(C)」とも称する)は、リチウム系オリビン型複合酸化物二次粒子(A)、及び層状型リチウム複合酸化物二次粒子(B)を含有し、かつ下記式(1):
A=TA×|DA50−DB50+2|・・・(1)
(式(1)中、TAは、リチウム系オリビン型複合酸化物二次粒子(A)のタップ密度(g/cm3)を示し、DA50は、リチウム系オリビン型複合酸化物二次粒子(A)の粒度分布における累積50%での平均粒子径(μm)を示し、DB50は、層状型リチウム複合酸化物二次粒子(B)の粒度分布における累積50%での平均粒子径(μm)を示す。)
により求められるXAが0.3g/m2〜50g/m2である。
Hereinafter, the present invention will be described in detail.
The mixed positive electrode active material for a lithium ion secondary battery of the present invention (hereinafter, also referred to as “mixed positive electrode active material (C)”) includes lithium-based olivine-type composite oxide secondary particles (A) and layered lithium composite oxide. Secondary particles (B), and the following formula (1):
X A = T A × | D A 50-D B 50 + 2 | ··· (1)
(In the formula (1), T A represents the tap density of the lithium olivine-type composite oxide secondary particle (A) (g / cm 3 ), D A 50 is lithium olivine-type composite oxide secondary shows the average particle diameter at cumulative 50% in the particle size distribution of the particles (a) (μm), D B 50 , the average particle at 50% accumulation in the particle size distribution of the layered-type lithium composite oxide secondary particle (B) Diameter (μm).)
The obtained X A is 0.3g / m 2 ~50g / m 2 .

このように、本発明の混合正極活物質(C)は、上記式(1)により求められるXAが特定の値となるような関係を有するリチウム系オリビン型複合酸化物二次粒子(A)と層状型リチウム複合酸化物二次粒子(B)を含有することにより、形成される正極活物質層において空隙率を適切な範囲に制御することを可能にする。そのため、充放電サイクルにおける正極活物質粒子の体積変化を緩衝する空隙量を有効に低減し、充放電サイクルが増加しても正極活物質層の充填構造が乱れるのを防止することができ、また得られるリチウムイオン二次電池のエネルギー密度を効果的に大きくすることもできる。 Thus, mixing a positive electrode active material of the present invention (C), the above equation (1) by lithium olivine-type composite oxide secondary particles having a relationship as determined X A becomes a specific value (A) By containing the layered lithium composite oxide secondary particles (B), the porosity of the formed positive electrode active material layer can be controlled in an appropriate range. Therefore, the amount of voids that buffer the volume change of the positive electrode active material particles in the charge / discharge cycle can be effectively reduced, and even if the charge / discharge cycle increases, the filling structure of the positive electrode active material layer can be prevented from being disturbed. The energy density of the obtained lithium ion secondary battery can be effectively increased.

本発明の混合正極活物質(C)に含有されるリチウム系オリビン型複合酸化物二次粒子(A)のタップ密度(g/cm3)は、上記式(1)中においてTAで示される値である。かかるタップ密度(TA)とは、JIS Z 2512「金属粉−タップ密度測定方法」に準じて得られる、タッピングにより粉体粒子間の空隙を破壊して密充填した際の見かけのかさ密度である。 The tap density (g / cm 3 ) of the lithium-based olivine-type composite oxide secondary particles (A) contained in the mixed positive electrode active material (C) of the present invention is represented by T A in the above formula (1). Value. The tap density (T A ) is an apparent bulk density obtained when a gap between powder particles is broken by tapping and tightly packed, which is obtained according to JIS Z 2512 “Metal powder-Tap density measurement method”. is there.

かかるリチウム系オリビン型複合酸化物二次粒子(A)のTAは、具体的には、好ましくは0.7g/cm3〜1.8g/cm3であり、より好ましくは0.85g/cm3〜1.8g/cm3であり、特に好ましくは0.9g/cm3〜1.5g/cm3である。TAが上記下限値未満であると、混合正極活物質(C)の充填性が低下して得られる正極活物質層内の空隙率が増加し、エネルギー密度が低下するおそれがある。またTAが上記上限値を超えると、正極の製造で施されるプレスによるリチウム系オリビン型複合酸化物二次粒子(A)の変形量が小さくなって正極活物質層内の空隙を十分に埋めることができなくなるおそれがあり、層状型リチウム複合酸化物二次粒子(B)からの遷移金属の溶出も充分に抑制できないおそれがある。 Specifically, T A of the lithium-based olivine-type composite oxide secondary particles (A) is preferably 0.7 g / cm 3 to 1.8 g / cm 3 , and more preferably 0.85 g / cm 3. 3 was ~1.8g / cm 3, particularly preferably from 0.9g / cm 3 ~1.5g / cm 3 . If T A is less than the lower limit, the porosity in the positive electrode active material layer obtained by decreasing the filling property of the mixed positive electrode active material (C) may increase, and the energy density may decrease. When T A exceeds the above upper limit, the amount of deformation of the lithium-based olivine-type composite oxide secondary particles (A) due to the pressing performed in the production of the positive electrode decreases, and the voids in the positive electrode active material layer are sufficiently reduced. Filling may not be possible, and the elution of transition metal from the layered lithium composite oxide secondary particles (B) may not be sufficiently suppressed.

リチウム系オリビン型複合酸化物二次粒子(A)のD50値は、リチウム系オリビン型複合酸化物二次粒子(A)の粒度分布における累積50%での平均粒子径(メジアン径、μm)であり、すなわちレーザー回折・散乱法に基づく体積基準の粒度分布を元に得られる値であり、上記式(1)中においてDA50で示される値である。 The D 50 value of the lithium-based olivine-type composite oxide secondary particles (A) is the average particle size (median diameter, μm) at a cumulative 50% in the particle size distribution of the lithium-based olivine-type composite oxide secondary particles (A). , and the that is, a value obtained based on the volume-based particle size distribution based on the laser diffraction scattering method, is a value represented by D a 50 in the above formula (1).

かかるDA50は、具体的には、好ましくは3μm〜30μmであり、より好ましくは5μm〜25μmであり、特に好ましくは7μm〜20μmである。DA50が上記範囲外であると、得られる正極活物質層内においてリチウム系オリビン型複合酸化物二次粒子(A)の分布が不均一になり易く、層状型リチウム複合酸化物二次粒子(B)からの遷移金属溶出を充分に抑制できないおそれがある。 Such D A 50 is specifically preferably 3Myuemu~30myuemu, more preferably 5Myuemu~25myuemu, particularly preferably 7Myuemu~20myuemu. When D A 50 is outside the above range, easy distribution of the dilithium-based olivine-type composite oxide in the obtained positive electrode active material layer primary particles (A) becomes uneven, layered lithium composite oxide secondary particles The transition metal elution from (B) may not be sufficiently suppressed.

また、リチウム系オリビン型複合酸化物二次粒子(A)は、上記粒度分布における標準偏差(DASD)が、好ましくは4μm〜15μmであり、より好ましくは5μm〜11μmであり、特に好ましくは6μm〜10μmである。ここで、粒度分布における標準偏差(DASD)とは、対数スケールの粒度分布曲線での標準偏差を意味する。かかるDASDが上記範囲外であると、得られる混合正極活物質(C)の充填性が低下して、形成される正極活物質層における空隙率が増大したり、大径の空隙が生じたりするおそれがある。 Further, lithium olivine-type composite oxide secondary particle (A) is the standard deviation in the particle size distribution (D A SD) is, preferably 4Myuemu~15myuemu, more preferably 5Myuemu~11myuemu, particularly preferably 6 μm to 10 μm. Here, the standard deviation (D A SD) in the particle size distribution means the standard deviation of the grain size distribution curve of a logarithmic scale. When such D A SD is outside the above range, the filling of the resulting mixed cathode active material (C) is decreased, or the porosity is increased in the positive electrode active material layer formed, resulting a gap large diameter Or

また、リチウム系オリビン型複合酸化物二次粒子(A)は、BET比表面積(SA)が、好ましくは15m2/g〜50m2/gであり、より好ましくは16m2/g〜30m2/gであり、特に好ましくは18m2/g〜25m2/gである。ここで、BET比表面積とは、窒素ガスを用いて得られた吸着等温線をBETプロットに変換して得られた単分子層のガス吸着量と窒素ガスの分子の大きさから算出された比表面積を意味する。かかるBET比表面積(SA)が上記下限値未満であると、正極の作製で施されるプレスによるリチウム系オリビン型複合酸化物二次粒子(A)の変形量が小さくなって正極活物質層内の空隙を十分に埋めることができなくなるおそれがあり、層状型リチウム複合酸化物二次粒子(B)からの遷移金属の溶出も充分に抑制できないおそれがある。また、BET比表面積(SA)が上記上限値を超えると、正極の作製時に使用する正極スラリーの粘性が増加し、得られる正極活物質層内においてリチウム系オリビン型複合酸化物二次粒子(A)の分布が不均一になり、層状型リチウム複合酸化物二次粒子(B)からの遷移金属の溶出を抑制できなくなるおそれがある。 Further, lithium olivine-type composite oxide secondary particles (A), BET specific surface area (S A) is preferably 15m 2 / g~50m 2 / g, more preferably 16m 2 / g~30m 2 / g, and particularly preferably from 18m 2 / g~25m 2 / g. Here, the BET specific surface area is a ratio calculated from the gas adsorption amount of the monolayer obtained by converting the adsorption isotherm obtained using nitrogen gas into a BET plot and the size of the nitrogen gas molecule. Means surface area. When the BET specific surface area (S A ) is less than the above lower limit, the amount of deformation of the lithium-based olivine-type composite oxide secondary particles (A) due to pressing performed in the production of the positive electrode becomes small, and the positive electrode active material layer There is a possibility that the internal voids may not be sufficiently filled, and the elution of the transition metal from the layered lithium composite oxide secondary particles (B) may not be sufficiently suppressed. When the BET specific surface area (S A ) exceeds the above upper limit, the viscosity of the positive electrode slurry used at the time of preparing the positive electrode increases, and the lithium-based olivine-type composite oxide secondary particles ( The distribution of A) may become non-uniform, and the elution of transition metal from the layered lithium composite oxide secondary particles (B) may not be suppressed.

リチウム系オリビン型複合酸化物二次粒子(A)は、具体的には、例えば下記式(I):
LiaMnbFec1 dPO4 ・・・(I)
(式(I)中、M1はCo、Ni、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b、c、及びdは、0<a≦1.2、0.3≦b≦1、0≦c≦0.7、及び0≦d≦0.3を満たし、かつa+(Mnの価数)×b+(Feの価数)×c+(M1の価数)×d=3を満たす数を示す。)
又は下記式(II):
LieMnfFeg2 hSiO4 ・・・(II)
(式(II)中、M2はCo、Ni、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd、Al、Zn、V又はGdを示す。e、f、g、及びhは、0<e≦2.4、0≦f≦1.2、0≦g≦1.2、0≦h≦1.2、及びf+g≠0を満たし、かつe+(Mnの価数)×f+(Feの価数)×g+(M2の価数)×h=4を満たす数を示す。)
で表される粒子である。上記式(I)で表される粒子は、いわゆるリン酸リチウム系ポリアニオン粒子であり、上記式(II)で表される粒子は、いわゆるケイ酸リチウム系ポリアニオン粒子である。
The lithium-based olivine-type composite oxide secondary particles (A) are specifically, for example, represented by the following formula (I):
Li a Mn b Fe c M 1 d PO 4 ··· (I)
(In the formula (I), M 1 represents Co, Ni, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd or Gd. A, b, c, and d represent 0 <a ≦ 1.2, 0.3 ≦ b ≦ 1, 0 ≦ c ≦ 0.7, and 0 ≦ d ≦ 0.3, and a + (valence of Mn) × b + (valence of Fe) ) × c + (valence of M 1 ) × d = 3.)
Or the following formula (II):
Li e Mn f Fe g M 2 h SiO 4 ··· (II)
(In the formula (II), M 2 represents Co, Ni, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, Al, Zn, V or Gd. g and h satisfy 0 <e ≦ 2.4, 0 ≦ f ≦ 1.2, 0 ≦ g ≦ 1.2, 0 ≦ h ≦ 1.2, and f + g ≠ 0, and e + (Mn (Valence) × f + (valence of Fe) × g + (valence of M 2 ) × h = 4.)
The particles are represented by The particles represented by the above formula (I) are so-called lithium phosphate-based polyanion particles, and the particles represented by the above formula (II) are so-called lithium silicate-based polyanion particles.

さらに、リチウム系オリビン型複合酸化物二次粒子(A)は、かかる粒子に電子伝導性を付与し、サイクル特性に優れる有用な混合正極活物質(C)を得る観点から、その表面に炭素(D)が担持されてなる粒子であるのが好ましい。
炭素(D)となる炭素源としては、セルロースナノファイバー(d1)、水溶性炭素材料(d2)及び水不溶性炭素粉末(d3)から選択される1種以上が挙げられる。
Further, the lithium-based olivine-type composite oxide secondary particles (A) have a carbon (C) surface on the surface thereof from the viewpoint of imparting electron conductivity to the particles and obtaining a useful mixed positive electrode active material (C) having excellent cycle characteristics. It is preferred that the particles have D) supported thereon.
Examples of the carbon source that becomes carbon (D) include one or more selected from cellulose nanofibers (d1), water-soluble carbon materials (d2), and water-insoluble carbon powders (d3).

炭素源となる上記セルロースナノファイバー(d1)とは、全ての植物細胞壁の約5割を占める骨格成分であって、かかる細胞壁を構成する植物繊維をナノサイズまで解繊等することにより得ることができる軽量高強度繊維であり、セルロースナノファイバー由来の炭素は、周期的構造を有する。かかるセルロースナノファイバーの繊維径は、1nm〜100nmであり、水への良好な分散性も有している。また、セルロースナノファイバーを構成するセルロース分子鎖では、炭素による周期的構造が形成されていることから、これが炭化されつつ上記リチウム系オリビン型複合酸化物二次粒子(A)の表面に堅固に担持されることにより、かかる粒子に有効に電子伝導性を付与することができる。   The cellulose nanofiber (d1) serving as a carbon source is a skeletal component occupying about 50% of all plant cell walls, and can be obtained by, for example, defibrating plant fibers constituting such cell walls to a nano size. Carbon fiber derived from cellulose nanofiber has a periodic structure. The fiber diameter of such a cellulose nanofiber is 1 nm to 100 nm, and also has good dispersibility in water. Further, in the cellulose molecular chain constituting the cellulose nanofiber, since a periodic structure is formed by carbon, this is firmly supported on the surface of the lithium-based olivine-type composite oxide secondary particles (A) while being carbonized. By doing so, it is possible to effectively impart electron conductivity to such particles.

また、炭素源となる上記水溶性炭素材料(d2)とは、25℃の水100gに、水溶性炭素材料の炭素原子換算量で0.4g以上、好ましくは1.0g以上溶解する炭素材料を意味する。かかる水溶性炭素材料としては、例えば、糖類、ポリオール、ポリエーテル、及び有機酸から選ばれる1種又は2種以上が挙げられる。より具体的には、例えば、グルコース、フルクトース、ガラクトース、マンノース等の単糖類;マルトース、スクロース、セロビオース等の二糖類;デンプン、デキストリン等の多糖類;エチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、ブタンジオール、プロパンジオール、ポリビニルアルコール、グリセリン等のポリオールやポリエーテル;クエン酸、酒石酸、アスコルビン酸等の有機酸が挙げられる。なかでも、溶媒への溶解性及び分散性を高めて炭素材料として効果的に機能させる観点から、グルコース、フルクトース、スクロース、デキストリンが好ましく、グルコースがより好ましい。   The water-soluble carbon material (d2) serving as a carbon source is a carbon material that dissolves in 100 g of water at 25 ° C. in an amount of 0.4 g or more, preferably 1.0 g or more in terms of carbon atoms of the water-soluble carbon material. means. Examples of such a water-soluble carbon material include one or more selected from sugars, polyols, polyethers, and organic acids. More specifically, for example, monosaccharides such as glucose, fructose, galactose and mannose; disaccharides such as maltose, sucrose and cellobiose; polysaccharides such as starch and dextrin; ethylene glycol, propylene glycol, diethylene glycol, polyethylene glycol, butane Polyols and polyethers such as diol, propanediol, polyvinyl alcohol and glycerin; and organic acids such as citric acid, tartaric acid and ascorbic acid. Among them, glucose, fructose, sucrose, and dextrin are preferable, and glucose is more preferable, from the viewpoint of enhancing the solubility and dispersibility in a solvent and effectively functioning as a carbon material.

さらに、炭素源となる上記水不溶性炭素粉末(d3)とは、上記水溶性炭素材料由来の炭素(d2)とは別異の炭素材料であって、セルロースナノファイバー(d1)由来の炭素以外の水不溶性(25℃の水100gに対する溶解量が、水不溶性炭素粉末(d3)の炭素原子換算量で0.4g未満)の導電性を有する炭素粉末である。この水不溶性炭素粉末(d3)を、上記リチウム系オリビン型複合酸化物二次粒子(A)に複合化することにより、リチウム系オリビン型複合酸化物二次粒子(A)に電子伝導性を付与する。かかる水不溶性炭素粉末(d3)としては、グラファイト、非晶質カーボン(ケッチェンブラック、アセチレンブラック等)、ナノカーボン(グラフェン、フラーレン等)、導電性ポリマー粉末(ポリアニリン粉末、ポリアセチレン粉末、ポリチオフェン粉末、ポリピロール粉末等)等の1種または2種以上が挙げられる。なかでも、複合化を効率的に行う観点から、グラファイト、アセチレンブラック、グラフェン、ポリアニリン粉末が好ましく、グラファイトがより好ましい。グラファイトとしては、人造グラファイト(鱗片状、塊状、土状、グラフェン)、天然グラファイトのいずれであってもよい。
なお、水不溶性炭素粉末(d3)の平均粒子径は、好ましくは0.5μm〜20μmであり、より好ましくは1.0μm〜15μmである。
Further, the water-insoluble carbon powder (d3) serving as a carbon source is a carbon material different from the carbon (d2) derived from the water-soluble carbon material, and is other than carbon derived from the cellulose nanofiber (d1). It is a carbon powder having water-insoluble conductivity (the amount of dissolution in 100 g of water at 25 ° C. is less than 0.4 g in terms of carbon atoms of the water-insoluble carbon powder (d3)). The water-insoluble carbon powder (d3) is composited with the lithium-based olivine-type composite oxide secondary particles (A) to impart electron conductivity to the lithium-based olivine-type composite oxide secondary particles (A). I do. Examples of the water-insoluble carbon powder (d3) include graphite, amorphous carbon (Ketjen black, acetylene black, etc.), nanocarbon (graphene, fullerene, etc.), conductive polymer powder (polyaniline powder, polyacetylene powder, polythiophene powder, Or polypyrrole powder). Of these, graphite, acetylene black, graphene, and polyaniline powder are preferable, and graphite is more preferable, from the viewpoint of efficiently performing complexing. As the graphite, any of artificial graphite (squamous, massive, earthy, graphene) and natural graphite may be used.
The average particle size of the water-insoluble carbon powder (d3) is preferably 0.5 μm to 20 μm, and more preferably 1.0 μm to 15 μm.

リチウム系オリビン型複合酸化物二次粒子(A)の表面に担持されてなる炭素の量は、リチウム系オリビン型複合酸化物二次粒子(A)100質量%中に、好ましくは0.1質量%〜20質量%であり、より好ましくは0.3質量%〜10質量%であり、特に好ましくは0.5質量%〜8質量%である。より具体的には、セルロースナノファイバー(d1)又は水溶性炭素材料(d2)を炭素源とする炭素(D)である場合は、リチウム系オリビン型複合酸化物二次粒子(A)100質量%中に、好ましくは0.1質量%〜15質量%、より好ましくは0.3質量%〜10質量%、特に好ましくは0.5質量%〜8質量%であり、水不溶性炭素粉末(d3)を炭素源とする炭素(D)である場合は、好ましくは0.5質量%〜20質量%、より好ましくは1質量%〜15質量%、特に好ましくは1.5質量%〜12質量%である。   The amount of carbon supported on the surface of the lithium-based olivine-type composite oxide secondary particles (A) is preferably 0.1% by mass in 100% by mass of the lithium-based olivine-type composite oxide secondary particles (A). % To 20% by mass, more preferably 0.3% to 10% by mass, and particularly preferably 0.5% to 8% by mass. More specifically, in the case of carbon (D) using a cellulose nanofiber (d1) or a water-soluble carbon material (d2) as a carbon source, lithium-based olivine-type composite oxide secondary particles (A) 100% by mass The water-insoluble carbon powder (d3) preferably contains 0.1% by mass to 15% by mass, more preferably 0.3% by mass to 10% by mass, and particularly preferably 0.5% by mass to 8% by mass. In the case of carbon (D) having a carbon source of, preferably 0.5 to 20% by mass, more preferably 1 to 15% by mass, particularly preferably 1.5 to 12% by mass. is there.

本発明の混合正極活物質(C)に含有される層状型リチウム複合酸化物二次粒子(B)のD50値は、層状型リチウム複合酸化物二次粒子(B)の粒度分布における累積50%での平均粒子径(メジアン径、μm)であり、すなわちレーザー回折・散乱法に基づく体積基準の粒度分布を元に得られる値であり、上記式(1)中においてDB50で示される値である。 The D 50 value of the layered lithium composite oxide secondary particles (B) contained in the mixed positive electrode active material (C) of the present invention is the cumulative 50 in the particle size distribution of the layered lithium composite oxide secondary particles (B). the average particle diameter (median diameter, [mu] m) in% is, that is, a value obtained based on the volume-based particle size distribution based on the laser diffraction scattering method, indicated by D B 50 in the formula (1) Value.

かかるDB50は、具体的には、好ましくは3μm〜20μmであり、より好ましくは3.5μm〜17μmであり、特に好ましくは4μm〜14μmである。DB50が上記上限値を超えると、電極の作製時に使用する電極スラリー内に粗粒の層状型リチウム複合酸化物二次粒子(B)が過度に存在して、電極スラリーの均一な塗工が困難になるおそれがある。また、DB50が上記下限値未満であると、層状型リチウム複合酸化物二次粒子(B)の表面積が増大してしまい、遷移金属の溶出が生じやすくなるおそれがある。 Such D B 50 is specifically preferably 3Myuemu~20myuemu, more preferably 3.5Myuemu~17myuemu, particularly preferably 4Myuemu~14myuemu. When D B 50 exceeds the above upper limit, the layered-type lithium composite oxide secondary particles in the the coarse electrode slurry used to produce the electrode during (B) is excessively present, uniform coating of the electrode slurry May be difficult. Further, D B 50 is less than the lower limit, the surface area of the layered lithium composite oxide secondary particle (B) ends up increasing, elution of the transition metal is likely to easily occur.

層状型リチウム複合酸化物二次粒子(B)は、具体的には、例えば下記式(III):
LiNiiCojMnk3 l2・・・(III)
(式(III)中、M3はMg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。i、j、k、lは、0.3≦i<1、0<j≦0.7、0<k≦0.7、0≦l≦0.3、かつ3i+3j+3k+(M3の価数)×l=3を満たす数を示す。)
又は下記式(IV):
LiNimConAlo4 p2 ・・・(IV)
(式(IV)中、M4はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。m、n、o、pは、0.4≦m<1、0<n≦0.6、0<o≦0.3、0≦p≦0.3、かつ3m+3n+3o+(M4の価数)×p=3を満たす数を示す。)
で表される粒子である。
The layered lithium composite oxide secondary particles (B) specifically include, for example, the following formula (III):
LiNi i Co j Mn k M 3 l O 2 ··· (III)
(In the formula (III), M 3 is Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Represents one or more elements selected from Bi and Ge, where i, j, k, and l are 0.3 ≦ i <1, 0 <j ≦ 0.7, 0 <k ≦ 0.7, 0 ≦ l ≦ 0.3, and 3i + 3j + 3k + (valence of M 3) shows a number satisfying × l = 3.)
Or the following formula (IV):
LiNi m Co n Al o M 4 p O 2 ··· (IV)
(In the formula (IV), M 4 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Represents one or more elements selected from Ge, where m, n, o, and p are 0.4 ≦ m <1, 0 <n ≦ 0.6, 0 <o ≦ 0.3, 0 ≦ (p ≦ 0.3 and 3m + 3n + 3o + (valence of M 4 ) × p = 3)
The particles are represented by

本発明の混合正極活物質(C)において、上記リチウム系オリビン型複合酸化物二次粒子(A)のTA及びDA50、並びに層状型リチウム複合酸化物二次粒子(B)のDB50は、下記式(1)により求められるXAが0.3g/m2〜50g/m2である。
A=TA×|DA50−DB50+2|・・・(1)
A、DA50及びDB50を上記式(1)に導入して求められるXAが上記範囲内であることにより、層状型リチウム複合酸化物二次粒子(B)からの遷移金属溶出を充分に抑制できるとともに、充放電サイクルが増加しても正極活物質層の充填構造が乱れるのを防止することができる。したがって、例えば、混合正極活物質(C)の一材料として、用いる層状型リチウム複合酸化物二次粒子(B)を決定した後、かかる層状型リチウム複合酸化物二次粒子(B)のDB50を元に、上記式(1)により求められるXAが上記範囲内になるよう、複数種存在し得るリチウム系オリビン型複合酸化物二次粒子(At)のなかから、TA及びDA50を満たすリチウム系オリビン型複合酸化物二次粒子(A)を選択して用いることができる。
上記式(1)により求められるXAは、0.3g/m2〜50g/m2であって、好ましくは0.35(g/m2)〜25(g/m2)であり、より好ましくは0.4(g/m2)〜20(g/m2)である。
In mixing the positive electrode active material of the present invention (C), D B of T A and D A 50, and a layered-type lithium composite oxide secondary particles of the lithium-based olivine-type composite oxide secondary particle (A) (B) 50 is obtained X a is 0.3g / m 2 ~50g / m 2 by the following equation (1).
X A = T A × | D A 50-D B 50 + 2 | ··· (1)
When T A , D A 50, and D B 50 are introduced into the above formula (1), and the X A obtained is within the above range, the transition metal elution from the layered lithium composite oxide secondary particles (B). Can be sufficiently suppressed, and the filling structure of the positive electrode active material layer can be prevented from being disturbed even when the number of charge / discharge cycles increases. Thus, for example, mixing a positive electrode active first material substance (C), after determining layered lithium composite oxide secondary particle (B) to be used, D B of such layered lithium composite oxide secondary particle (B) T A and D are selected from the lithium-based olivine-type composite oxide secondary particles (A t ) that can exist in plural types so that X A obtained by the above formula (1) falls within the above range based on the above formula (1). it can be selected and used lithium olivine type compound oxide secondary particle (a) satisfying a 50.
X A obtained by the equation (1) is a 0.3g / m 2 ~50g / m 2 , preferably 0.35 (g / m 2) ~25 (g / m 2), more preferably 0.4 (g / m 2) ~20 (g / m 2).

さらに、本発明の混合正極活物質(C)において、上記リチウム系オリビン型複合酸化物二次粒子(A)のTA及びDA50、並びに層状型リチウム複合酸化物二次粒子(B)のDB50に加え、上記リチウム系オリビン型複合酸化物二次粒子(A)のDASD及びSAは、層状型リチウム複合酸化物二次粒子(B)からの遷移金属の溶出をより一層効果的に抑制し、サイクル特性が低下するのを有効に防止する観点から、下記式(2)により求められるXBが、0.15(g2/m4)〜20(g2/m4)であるのが好ましい。
B=XA×DASD/SA ・・・(2)
また、上式(2)により求められるXBは、より好ましくは0.17(g2/m4)〜8(g2/m4)であり、特に好ましくは0.2(g2/m4)〜6(g2/m4)である。
Furthermore, in the mixed positive electrode active material (C) of the present invention, T A and D A 50 of the lithium-based olivine-type composite oxide secondary particles (A) and the layered lithium composite oxide secondary particles (B) in addition to D B 50, D a SD and S a of the lithium olivine-type composite oxide secondary particle (a) is even more the dissolution of transition metal from the layer-structured lithium composite oxide secondary particle (B) effectively suppressed, from the viewpoint of cycle characteristics are effectively prevented from being lowered, the X B obtained by the following equation (2), 0.15 (g 2 / m 4) ~20 (g 2 / m 4 ) Is preferred.
X B = X A × D A SD / S A (2)
X B determined by the above formula (2) is more preferably 0.17 (g 2 / m 4 ) to 8 (g 2 / m 4 ), and particularly preferably 0.2 (g 2 / m 4 ). 4 ) to 6 (g 2 / m 4 ).

リチウム系オリビン型複合酸化物二次粒子(A)の製造方法は、特に制限を受けるものではなく、公知の方法、例えば、固相法、ゾル・ゲル法、共沈法等を用いることができるが、上記各種特性を満足するものが簡便に得られるという観点から、水熱法と噴霧乾燥法を組み合わせた方法、又は噴霧熱分解法を用いた製造方法であるのが好ましい。   The method for producing the lithium-based olivine-type composite oxide secondary particles (A) is not particularly limited, and a known method, for example, a solid phase method, a sol-gel method, a coprecipitation method, or the like can be used. However, from the viewpoint that those satisfying the above various properties can be easily obtained, a production method using a combination of a hydrothermal method and a spray drying method, or a production method using a spray pyrolysis method is preferable.

なお、リチウム系オリビン型複合酸化物二次粒子(A)の表面に炭素(D)を担持させる方法としては、炭素源として上記セルロースナノファイバー(d1)又は上記水溶性炭素材料(d2)を用いる場合、リチウム系オリビン型複合酸化物二次粒子(A)にセルロースナノファイバー(d1)又は水溶性炭素材料(d2)及び水を添加した後、噴霧乾燥して得られた混合物を、還元雰囲気又は不活性雰囲気下、焼成温度は500℃〜800℃、焼成時間は10分間〜3時間で焼成すればよい。
これにより、これら炭素源が炭化されて炭素(D)となり、上記リチウム系オリビン型複合酸化物二次粒子(A)の表面に堅固に担持されて存在することとなる。
In addition, as a method of supporting carbon (D) on the surface of the lithium-based olivine-type composite oxide secondary particles (A), the cellulose nanofiber (d1) or the water-soluble carbon material (d2) is used as a carbon source. In this case, the mixture obtained by adding the cellulose nanofiber (d1) or the water-soluble carbon material (d2) and water to the lithium-based olivine-type composite oxide secondary particles (A) and then spray-drying the mixture is reduced in a reducing atmosphere or The firing may be performed in an inert atmosphere at a firing temperature of 500 ° C. to 800 ° C. for a firing time of 10 minutes to 3 hours.
As a result, these carbon sources are carbonized into carbon (D), which is firmly supported on the surface of the lithium-based olivine-type composite oxide secondary particles (A).

また、炭素源として上記水不溶性炭素粉末(d3)を用いる場合、圧縮力及びせん断力を付加しながらリチウム系オリビン型複合酸化物二次粒子(A)と水不溶性炭素粉末(d3)を混合して、複合体とするのがよい。
これにより、水不溶性炭素粉末(d3)が炭素(D)として、上記リチウム系オリビン型複合酸化物二次粒子(A)の表面に堅固に担持されて存在することとなる。
When the water-insoluble carbon powder (d3) is used as a carbon source, the lithium-based olivine-type composite oxide secondary particles (A) and the water-insoluble carbon powder (d3) are mixed while applying compressive force and shear force. To form a composite.
As a result, the water-insoluble carbon powder (d3) is firmly supported as carbon (D) on the surface of the lithium-based olivine-type composite oxide secondary particles (A).

層状型リチウム複合酸化物二次粒子(B)の製造方法も、特に制限を受けるものではなく、公知の方法、例えば、固相法、共沈法、ゾル・ゲル法等を用いることができるが、上記DB50を満足するものが簡便に得られるという観点から、粉砕処理を組み入れた固相法を用いた製造方法であるのが好ましい。 The method for producing the layered lithium composite oxide secondary particles (B) is also not particularly limited, and a known method such as a solid phase method, a coprecipitation method, or a sol-gel method can be used. from the viewpoint of conveniently obtained, thereby satisfying the above D B 50, is preferably a production method using solid phase method incorporating the grinding process.

本発明の混合正極活物質(C)は、これらリチウム系オリビン型複合酸化物二次粒子(A)と層状型リチウム複合酸化物二次粒子(B)を混合して得られる。かかる混合正極活物質(C)において、リチウム系オリビン型複合酸化物二次粒子(A)の含有量と層状型リチウム複合酸化物二次粒子(B)の含有量の質量比(A:B)は、好ましくは0.5:99.5〜90:10であり、より好ましくは0.5:99.5〜50:50であり、特に好ましくは0.5:99.5〜30:70であり、これらの含有量がこのような質量比となるように、リチウム系オリビン型複合酸化物二次粒子(A)と層状型リチウム複合酸化物二次粒子(B)の添加量を調整して混合すればよい。
かかる質量比(A:B)が上記下限値未満であると、リチウム系オリビン型複合酸化物二次粒子(A)の含有量が不十分となるため、層状型リチウム複合酸化物二次粒子(B)からの遷移金属の溶出を有効に抑制できないおそれがある。また、かかる質量比(A:B)が上記上限値を超えると、放電容量に優れる層状型リチウム複合酸化物二次粒子(B)の含有量が不十分となるため、得られるリチウムイオン二次電池の放電容量が減じられてしまうおそれがある。
The mixed positive electrode active material (C) of the present invention is obtained by mixing these lithium-based olivine type composite oxide secondary particles (A) and layered type lithium composite oxide secondary particles (B). In such a mixed positive electrode active material (C), the mass ratio (A: B) of the content of the lithium-based olivine-type composite oxide secondary particles (A) and the content of the layered-type lithium composite oxide secondary particles (B). Is preferably 0.5: 99.5 to 90:10, more preferably 0.5: 99.5 to 50:50, particularly preferably 0.5: 99.5 to 30:70. The amount of the lithium-based olivine-type composite oxide secondary particles (A) and the amount of the layered-type lithium composite oxide secondary particles (B) are adjusted so that these contents have such a mass ratio. What is necessary is just to mix.
When the mass ratio (A: B) is less than the above lower limit, the content of the lithium-based olivine-type composite oxide secondary particles (A) becomes insufficient, so that the layered lithium composite oxide secondary particles ( Elution of transition metal from B) may not be effectively suppressed. When the mass ratio (A: B) exceeds the above upper limit, the content of the layered lithium composite oxide secondary particles (B) having excellent discharge capacity becomes insufficient, so that the obtained lithium ion secondary There is a possibility that the discharge capacity of the battery is reduced.

リチウム系オリビン型複合酸化物二次粒子(A)と層状型リチウム複合酸化物二次粒子(B)は、これらの粒子のみを直接混合して混合正極活物質(C)を得たのち、その他導電助剤や結着材及び溶媒等の正極合材構成材料を添加・混合することにより、正極スラリーを調製してもよく、或いはこれらの粒子を混合正極活物質(C)の構成材料として用いるとともに、その他の正極合材構成材料も用い、これらの構成材料を一括混合又は順次混合することにより、正極スラリーを調製してもよい。こうして得られる正極スラリーには、混合正極活物質(C)として、所定の要件を満たすリチウム系オリビン型複合酸化物二次粒子(A)と層状型リチウム複合酸化物二次粒子(B)が含有されてなる。
具体的には、例えば、リチウム系オリビン型複合酸化物二次粒子(A)と層状型リチウム複合酸化物二次粒子(B)を含有する混合正極活物質(C)、カーボンブラック等の導電助剤、及びポリフッ化ビニリデン等の結着材(バインダー)に、N−メチル−2−ピロリドン等の溶媒を加え、充分に混練して正極スラリーを得ればよい。その後、アルミニウム箔等の集電体上に正極スラリーを塗布し、次いでローラープレス等による圧密して乾燥することにより、リチウムイオン二次電池の正極を得ることができる。
The lithium-based olivine type composite oxide secondary particles (A) and the layered type lithium composite oxide secondary particles (B) are obtained by directly mixing only these particles to obtain a mixed positive electrode active material (C). A positive electrode slurry may be prepared by adding and mixing a constituent material of a positive electrode mixture such as a conductive additive, a binder, and a solvent, or these particles may be used as a constituent material of a mixed positive electrode active material (C). At the same time, other positive electrode mixture constituent materials may be used, and the constituent materials may be mixed at once or sequentially mixed to prepare a positive electrode slurry. The positive electrode slurry thus obtained contains, as the mixed positive electrode active material (C), lithium-based olivine-type composite oxide secondary particles (A) and layered lithium composite oxide secondary particles (B) satisfying predetermined requirements. Be done.
Specifically, for example, a mixed positive electrode active material (C) containing lithium-based olivine-type composite oxide secondary particles (A) and layered lithium composite oxide secondary particles (B), and a conductive additive such as carbon black. A positive electrode slurry may be obtained by adding a solvent such as N-methyl-2-pyrrolidone to a binder and a binder such as polyvinylidene fluoride and sufficiently kneading the mixture. Thereafter, a positive electrode slurry is applied on a current collector such as an aluminum foil, and is then compacted and dried by a roller press or the like, whereby a positive electrode of a lithium ion secondary battery can be obtained.

なお、正極スラリーの調製に用いる装置、器具、及び各正極合材構成材料の混合する順序などは、特に限定されないが、リチウム系オリビン型複合酸化物二次粒子(A)と層状型リチウム複合酸化物二次粒子(B)を均一性の高い混合状態にするのが望ましい。例えば、層状型リチウム複合酸化物二次粒子(B)が崩壊しない程度のせん断力をかけながら混合すると、リチウム系オリビン型複合酸化物二次粒子(A)と層状型リチウム複合酸化物二次粒子(B)を均一性の高い混合状態とすることができる。   The apparatus and equipment used for preparing the positive electrode slurry and the order in which the respective positive electrode mixture constituent materials are mixed are not particularly limited, but the lithium-based olivine-type composite oxide secondary particles (A) and the layered lithium composite oxide are used. It is desirable that the material secondary particles (B) be in a highly homogeneous mixed state. For example, when the layered lithium composite oxide secondary particles (B) are mixed while applying a shearing force to such an extent that they do not collapse, the lithium-based olivine type composite oxide secondary particles (A) and the layered lithium composite oxide secondary particles are mixed. (B) can be made into a highly uniform mixed state.

リチウム系オリビン型複合酸化物二次粒子(A)と層状型リチウム複合酸化物二次粒子(B)の混合状態の均一性は、本発明の混合正極活物質(C)を含む正極スラリーによりリチウムイオン二次電池の正極活物質層を形成した際、かかる正極活物質層における混合正極活物質(C)粒子の分布状態から評価することができる。具体的には、正極活物質層の積層状態のSEM写真(後方散乱電子像)を特定のグレイレベルで二値化して粒子間空隙を可視化し、かかる粒子間空隙の分布状態が均一か否かを目視により判断して評価すればよい。   The uniformity of the mixed state of the lithium-based olivine type composite oxide secondary particles (A) and the layered type lithium composite oxide secondary particles (B) is determined by the positive electrode slurry containing the mixed positive electrode active material (C) of the present invention. When the positive electrode active material layer of the ion secondary battery is formed, it can be evaluated from the distribution state of the mixed positive electrode active material (C) particles in the positive electrode active material layer. Specifically, the SEM photograph (backscattered electron image) of the laminated state of the positive electrode active material layer is binarized at a specific gray level to visualize the interparticle gaps, and whether the distribution of the interparticle gaps is uniform or not. May be visually determined and evaluated.

また、本発明の混合正極活物質(C)は、より具体的には、例えば、次の工程(I)〜(V):
(I)層状型リチウム複合酸化物二次粒子(B)について、粒度分布における累積50%での平均粒子径DB50を測定する工程
(II)少なくとも一種のリチウム系オリビン型複合酸化物二次粒子(At)について、タップ密度TA t、リチウム系オリビン型複合酸化物二次粒子(At)の粒度分布における累積50%での平均粒子径DA t50を測定する工程
(III)工程(I)で得られたDB50を下記式(1):
A=TA×|DA50−DB50+2|・・・(1)
(式(1)中、TAは、リチウム系オリビン型複合酸化物二次粒子(A)のタップ密度(g/cm3)を示し、DA50は、リチウム系オリビン型複合酸化物二次粒子(A)の粒度分布における累積50%での平均粒子径(μm)を示し、DB50は、層状型リチウム複合酸化物二次粒子(B)の粒度分布における累積50%での平均粒子径(μm)を示す。XAは、工程(IV)で混合するリチウム系オリビン型複合酸化物二次粒子(A)を選択するための指標となる値(g/m2)を示す。)
に導入する工程
(IV)リチウム系オリビン型複合酸化物二次粒子(At)のなかから、式(1)により求められるXAを0.3g/m2〜50g/m2とするための、タップ密度TA及びDA50を有するリチウム系オリビン型複合酸化物二次粒子(A)を選択する工程
(V)選択したリチウム系オリビン型複合酸化物二次粒子(A)と層状型リチウム複合酸化物二次粒子(B)とを混合する工程
を備える製造方法により、得ることができる。
Further, the mixed positive electrode active material (C) of the present invention is more specifically, for example, in the following steps (I) to (V):
For (I) layered lithium composite oxide secondary particle (B), step (II) at least one lithium-based olivine-type composite oxide secondary measuring the average particle diameter D B 50 at 50% cumulative in the particle size distribution particles for (a t), a tap density T a t, the step of measuring the average particle diameter D a t 50 at 50% accumulation in the particle size distribution of the lithium olivine-type composite oxide secondary particle (a t) (III) The D B 50 obtained in the step (I) is represented by the following formula (1):
X A = T A × | D A 50-D B 50 + 2 | ··· (1)
(In the formula (1), T A represents the tap density of the lithium olivine-type composite oxide secondary particle (A) (g / cm 3 ), D A 50 is lithium olivine-type composite oxide secondary shows the average particle diameter at cumulative 50% in the particle size distribution of the particles (a) (μm), D B 50 , the average particle at 50% accumulation in the particle size distribution of the layered-type lithium composite oxide secondary particle (B) X A represents a value (g / m 2 ) serving as an index for selecting the lithium-based olivine-type composite oxide secondary particles (A) to be mixed in the step (IV).)
Introduced to step (IV) lithium olivine-type composite oxide secondary particles from among (A t), equation (1) by the X A for a 0.3g / m 2 ~50g / m 2 obtained , tap density T a and D a lithium olivine-type composite oxide secondary particles selecting a (a) (V) selected lithium olivine-type composite oxide secondary particle (a) and layer-structured lithium having 50 It can be obtained by a production method including a step of mixing with the composite oxide secondary particles (B).

なお、「リチウム系オリビン型複合酸化物二次粒子(At)」とは、リチウム系オリビン型複合酸化物二次粒子(A)も含め、少なくとも一種以上の、或いは複数種のリチウム系オリビン型複合酸化物二次粒子を総じて称するものである。また、リチウム系オリビン型複合酸化物二次粒子(A)と同様、TA tは、リチウム系オリビン型複合酸化物二次粒子(At)のタップ密度を示し、DA t50は、リチウム系オリビン型複合酸化物二次粒子(At)の粒度分布における累積50%での平均粒子径を示す。 The “lithium-based olivine-type composite oxide secondary particles (A t )” includes at least one or more or a plurality of types of lithium-based olivine-type composite oxide secondary particles (A). The composite oxide secondary particles are generally referred to. Further, similarly to the lithium olivine type compound oxide secondary particle (A), T A t represents a tap density of lithium olivine-type composite oxide secondary particle (A t), D A t 50 , the lithium The average particle diameter at a cumulative 50% in the particle size distribution of secondary olivine-type composite oxide secondary particles (A t ) is shown.

工程(I)は、層状型リチウム複合酸化物二次粒子(B)について、DB50を測定する工程である。まずは、得ようとする混合正極活物質(C)に応じて、用いる層状型リチウム複合酸化物二次粒子(B)を選択し、そのDB50を測定して、上記式(1)を活用しつつ、次工程以降においてリチウム系オリビン型複合酸化物二次粒子(A)を選択する。 Step (I), for the layered type lithium composite oxide secondary particle (B), a step of measuring D B 50. First, mixed in accordance with the positive electrode active material (C) to be obtained, selecting a layered lithium composite oxide secondary particle (B) to be used, use to measure its D B 50, the above equation (1) Then, lithium-based olivine-type composite oxide secondary particles (A) are selected in the subsequent steps.

工程(II)は、少なくとも一種のリチウム系オリビン型複合酸化物二次粒子(At)について、タップ密度TA t、リチウム系オリビン型複合酸化物二次粒子(At)の粒度分布における累積50%での平均粒子径DA t50を測定する工程である。複数種存在し得るリチウム系オリビン型複合酸化物二次粒子(At)の各々の種類のTA t及びDA t50を測定することにより、次工程以降において、本発明の混合正極活物質(C)を得るにあたって適切なTA及びDA50を有するリチウム系オリビン型複合酸化物二次粒子(A)を選択することが可能となる。また、リチウム系オリビン型複合酸化物二次粒子(At)が一種のみ存在する場合であっても、それが本発明の混合正極活物質(C)を得るにあたって適切なリチウム系オリビン型複合酸化物二次粒子であるか否かを、用いる層状型リチウム複合酸化物二次粒子(B)を基準として評価することもできる。
なお、リチウム系オリビン型複合酸化物二次粒子(At)についてのDA t50及びTA tは、各々リチウム系オリビン型複合酸化物二次粒子(A)についてのDA50及びTAと同義であり、上述した測定方法と同じ測定方法により得られる値である。
Step (II) is at least about one lithium olivine-type composite oxide secondary particle (A t), accumulation in the particle size distribution of the tap density T A t, lithium olivine-type composite oxide secondary particle (A t) a step of measuring an average particle diameter D a t 50 at 50%. By measuring each type of T A t and D A t 50 of the lithium-based olivine-type composite oxide secondary particles may be present more (A t), in the subsequent step, mixing the positive electrode active material of the present invention In obtaining (C), it is possible to select lithium-based olivine-type composite oxide secondary particles (A) having appropriate T A and D A 50. Even when only one kind of lithium-based olivine-type composite oxide secondary particles (A t ) is present, it is suitable for obtaining the mixed positive electrode active material (C) of the present invention. It is also possible to evaluate whether or not the particles are secondary particles based on the layered lithium composite oxide secondary particles (B) used.
Incidentally, D A t 50 and T A for lithium olivine type compound oxide secondary particle (A t) t, each of the lithium-based olivine type compound oxide secondary particle (A) D A 50 and T A Is a value obtained by the same measurement method as that described above.

工程(III)は、工程(I)で得られたDB50を下記式(1):
A=TA×|DA50−DB50+2|・・・(1)
(式(1)中、TAは、リチウム系オリビン型複合酸化物二次粒子(A)のタップ密度(g/cm3)を示し、DA50は、リチウム系オリビン型複合酸化物二次粒子(A)の粒度分布における累積50%での平均粒子径(μm)を示し、DB50は、層状型リチウム複合酸化物二次粒子(B)の粒度分布における累積50%での平均粒子径(μm)を示す。XAは、工程(IV)で混合するリチウム系オリビン型複合酸化物二次粒子(A)を選択するための指標となる値(g/m2)を示す。)
に導入する工程である。すなわち、かかる工程(III)では、工程(I)において、測定した層状型リチウム複合酸化物二次粒子(B)のDB50を基準とすべく、上記式(1)にDB50の値を具体的に導入することにより、次工程においてXAの値を指標としながら、適切なリチウム系オリビン型複合酸化物二次粒子(A)を選択することが可能となる。
In the step (III), the D B50 obtained in the step (I) is converted into the following formula (1):
X A = T A × | D A 50-D B 50 + 2 | ··· (1)
(In the formula (1), T A represents the tap density of the lithium olivine-type composite oxide secondary particle (A) (g / cm 3 ), D A 50 is lithium olivine-type composite oxide secondary shows the average particle diameter at cumulative 50% in the particle size distribution of the particles (a) (μm), D B 50 , the average particle at 50% accumulation in the particle size distribution of the layered-type lithium composite oxide secondary particle (B) X A represents a value (g / m 2 ) serving as an index for selecting the lithium-based olivine-type composite oxide secondary particles (A) to be mixed in the step (IV).)
This is the step of introducing That is, in this step (III), in the step (I), the D B 50 of the measured layered lithium composite oxide secondary particle (B) in order to the reference, the value of D B 50 in the formula (1) by specifically introduced, while the value of X a as an index in the next step, it is possible to select an appropriate lithium olivine-type composite oxide secondary particle (a).

工程(IV)は、リチウム系オリビン型複合酸化物二次粒子(At)のなかから、式(1)により求められるXAを0.3g/m2〜50g/m2とするための、タップ密度TA及びDA50を有するリチウム系オリビン型複合酸化物二次粒子(A)を選択する工程である。かかる工程において、具体的に層状型リチウム複合酸化物二次粒子(B)のDB50及び上記式(1)を活用し、XAの値を指標としながら適切なリチウム系オリビン型複合酸化物二次粒子(A)を選択する。XA、TA及びDA50等に関する、より好適な範囲は上述のとおりである。 Step (IV) is, from among lithium olivine-type composite oxide secondary particle (A t), for the X A obtained by the equation (1) and 0.3g / m 2 ~50g / m 2 , a step of selecting a lithium olivine type compound oxide secondary particle (a) having a tap density T a and D a 50. In this step, specifically, utilizing the value of X A as an index, utilizing the DB 50 of the layered lithium composite oxide secondary particles (B) and the above formula (1), an appropriate lithium-based olivine type composite oxide Select the secondary particles (A). More preferable ranges for X A , T A and D A 50 are as described above.

工程(V)は、選択したリチウム系オリビン型複合酸化物二次粒子(A)と層状型リチウム複合酸化物二次粒子(B)とを混合する工程である。具体的な混合方法については上述のとおりであり、これにより本発明の混合正極活物質(C)を得ることができる。   Step (V) is a step of mixing the selected lithium-based olivine type composite oxide secondary particles (A) and the layered type lithium composite oxide secondary particles (B). The specific mixing method is as described above, whereby the mixed positive electrode active material (C) of the present invention can be obtained.

本発明の混合正極活物質(C)を用いて得られる正極活物質層を適用できるリチウムイオン二次電池としては、正極と負極と電解液とセパレータを必須の構成部材とするものであれば特に限定されない。   As a lithium ion secondary battery to which a positive electrode active material layer obtained by using the mixed positive electrode active material (C) of the present invention can be applied, a lithium ion secondary battery particularly including a positive electrode, a negative electrode, an electrolytic solution, and a separator as essential components is provided. Not limited.

リチウムイオン二次電池の負極については、リチウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。   The negative electrode of the lithium ion secondary battery is not particularly limited in its material configuration as long as it can occlude lithium ions during charging and release lithium ions during discharging, and can use a material having a known material configuration. .

電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、リチウムイオン二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。   The electrolytic solution is obtained by dissolving a supporting salt in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent used for the electrolyte solution of the lithium ion secondary battery.For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones, An oxolane compound or the like can be used.

支持塩は、その種類が特に限定されるものではないが、リチウムイオン二次電池の場合、LiPF6、LiBF4、LiClO4及びLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32及びLiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The type of the supporting salt is not particularly limited, but in the case of a lithium ion secondary battery, an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , an organic material selected from LiC (SO 3 CF 3 ) 2 and LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) It is preferably at least one of a salt and a derivative of the organic salt.

セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。   The separator serves to electrically insulate the positive electrode and the negative electrode and retain the electrolyte. For example, a porous synthetic resin film, particularly a porous film of a polyolefin polymer (polyethylene, polypropylene) may be used.

上記の構成を有するリチウムイオン二次電池の形状としては、特に制限を受けるものではなく、コイン型、円筒型,角型等種々の形状や、ラミネート外装体に封入した不定形状であってもよい。   The shape of the lithium ion secondary battery having the above configuration is not particularly limited, and may be various shapes such as a coin shape, a cylindrical shape, a square shape, and an irregular shape sealed in a laminate outer package. .

以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。
なお、各DA50及びDB50は、レーザー回折・散乱方式粒度分布測定装置 MT3300EXII(マイクロトラック・ベル(株)製)を用いて測定した値であり、BET比表面積は、DesorbIII((株)島津製作所製)を用いて測定した値である。
Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
Each D A 50 and D B 50 is a value measured using a laser diffraction-scattering type particle size distribution measuring apparatus MT3300EXII (manufactured by Microtrac Bell (Ltd.)), BET specific surface area, DesorbIII ((Co. ) Shimadzu Corporation).

[製造例1:層状型リチウム複合酸化物二次粒子(B)(NMC−Ba)の製造]
Ni:Co:Mnのモル比が1:1:1となるように、硫酸ニッケル六水和物 263g、硫酸コバルト七水和物 281g、硫酸マンガン五水和物 241g、及び水 3Lを混合した後、かかる混合液に25%アンモニア水を、滴下速度300ml/分で滴下して、pHが11の金属複合水酸化物を含むスラリーa1を得た。
次いで、スラリーa1をろ過、乾燥して、金属複合水酸化物の混合物b1を得た後、かかる混合物b1に炭酸リチウム37gをボールミルで混合して粉末混合物c1を得た。
得られた粉末混合物c1を、空気雰囲気下で800℃×4時間仮焼成して解砕した後、本焼成として空気雰囲気下で800℃×12時間焼成し、層状型リチウム複合酸化物二次粒子(NMC−Ba)(LiNi0.33Co0.33Mn0.342、D50:12.8μm)を得た。
[Production Example 1: Production of layered lithium composite oxide secondary particles (B) (NMC-Ba)]
After mixing 263 g of nickel sulfate hexahydrate, 281 g of cobalt sulfate heptahydrate, 241 g of manganese sulfate pentahydrate, and 3 L of water such that the molar ratio of Ni: Co: Mn becomes 1: 1: 1. Then, 25% ammonia water was dropped into the mixture at a dropping rate of 300 ml / min to obtain a slurry a1 containing a metal composite hydroxide having a pH of 11.
Next, the slurry a1 was filtered and dried to obtain a mixture b1 of a metal composite hydroxide, and then 37 g of lithium carbonate was mixed with the mixture b1 by a ball mill to obtain a powder mixture c1.
The obtained powder mixture c1 was calcined at 800 ° C. for 4 hours in an air atmosphere to be crushed, and then calcined at 800 ° C. for 12 hours in an air atmosphere as main firing to obtain layered lithium composite oxide secondary particles. (NMC-Ba) (LiNi 0.33 Co 0.33 Mn 0.34 O 2 , D 50 : 12.8 μm) was obtained.

[製造例2:層状型リチウム複合酸化物二次粒子(B)(NMC−Bb)の製造]
粉末混合物c1の仮焼成を空気雰囲気下で800℃×10時間に、本焼成を空気雰囲気下で800℃×5時間に変更した以外、製造例1と同様にして、層状型リチウム複合酸化物二次粒子(NMC−Bb)(LiNi0.33Co0.33Mn0.342、D50:5.0μm)を得た。
[Production Example 2: Production of layered lithium composite oxide secondary particles (B) (NMC-Bb)]
The same procedure as in Production Example 1 was carried out, except that the preliminary firing of the powder mixture c1 was changed to 800 ° C. × 10 hours in an air atmosphere, and the main firing was changed to 800 ° C. × 5 hours in an air atmosphere. Secondary particles (NMC-Bb) (LiNi 0.33 Co 0.33 Mn 0.34 O 2 , D 50 : 5.0 μm) were obtained.

[製造例3:リチウム系オリビン型複合酸化物二次粒子(A)(LMP−Aa)の製造]
LiOH・H2O 1272g、及び水4Lを混合してスラリーa3を得た。次いで、得られたスラリーa3を、25℃の温度に保持しながら3分間撹拌しつつ85%のリン酸水溶液1153gを35mL/分で滴下し、続いてセルロースナノファイバー(Wma−10002、(株)スギノマシン製、繊維径4nm〜20nm)5892gを添加して、速度400rpmで12時間撹拌して、Li3PO4を含むスラリーb3を得た。
得られたスラリーb3に窒素パージして、スラリーb3の溶存酸素濃度を0.5mg/Lとした後、スラリーb3全量に対し、MnSO4・5H2O 1688g、FeSO4・7H2O 834gを添加してスラリーc3を得た。添加したMnSO4とFeSO4のモル比(マンガン化合物:鉄化合物)は、70:30であった。
次いで、得られたスラリーc3をオートクレーブに投入し、170℃で1時間水熱反応を行った。オートクレーブ内の圧力は0.8MPaであった。水熱反応後、生成した結晶をろ過し、次いで結晶1質量部に対し12質量部の水により洗浄した。洗浄した結晶を−50℃で12時間凍結乾燥して複合体d3を得た。
得られた複合体d3を1000g分取し、これに水1Lを添加して、スラリーe3を得た。得られたスラリーe3を超音波攪拌機(T25、IKA(株)製)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(MDL−050M、藤崎電機(株)製)を用いて、噴霧温度150℃でスプレードライに付して造粒体f3を得た。
得られた造粒体f3を、アルゴン水素雰囲気下(水素濃度3%)、700℃で1時間焼成して、2.0質量%のセルロースナノファイバー由来の炭素が担持されてなるリチウム系オリビン型複合酸化物二次粒子(A)(LMP−Aa)(LiMn0.7Fe0.3PO4、炭素の量=2.0質量%、タップ密度:1.04g/cm3、D50:15.8μm、粒度分布の標準偏差:9.8μm、BET比表面積:18.8m2/g)を得た。
[Production Example 3: Production of lithium-based olivine-type composite oxide secondary particles (A) (LMP-Aa)]
1272 g of LiOH.H 2 O and 4 L of water were mixed to obtain a slurry a3. Next, 1153 g of 85% phosphoric acid aqueous solution was dropped at 35 mL / min while stirring the obtained slurry a3 at a temperature of 25 ° C. for 3 minutes, and subsequently, cellulose nanofibers (Wma-10002, Inc.) Sugino machine, with the addition of fiber diameter 4nm~20nm) 5892g, and stirred at a speed 400 rpm 12 hours to obtain a slurry b3 containing Li 3 PO 4.
And the resulting nitrogen purge slurry b3, added after the dissolved oxygen concentration of the slurry b3 was 0.5 mg / L, with respect to the slurry b3 total amount, MnSO 4 · 5H 2 O 1688g , the FeSO 4 · 7H 2 O 834g Thus, a slurry c3 was obtained. The molar ratio of the added MnSO 4 to FeSO 4 (manganese compound: iron compound) was 70:30.
Next, the obtained slurry c3 was put into an autoclave, and a hydrothermal reaction was performed at 170 ° C. for 1 hour. The pressure inside the autoclave was 0.8 MPa. After the hydrothermal reaction, the generated crystals were filtered and then washed with 12 parts by mass of water per 1 part by mass of the crystals. The washed crystals were freeze-dried at -50 ° C for 12 hours to obtain a complex d3.
1000 g of the obtained composite d3 was collected, and 1 L of water was added thereto to obtain a slurry e3. The obtained slurry e3 was subjected to dispersion treatment with an ultrasonic stirrer (T25, manufactured by IKA Corporation) for 1 minute to uniformly color the whole, and then spray-dried (MDL-050M, manufactured by Fujisaki Electric Co., Ltd.). ) To give a granulated material f3 by spray drying at a spray temperature of 150 ° C.
The obtained granule f3 is calcined at 700 ° C. for 1 hour under an argon hydrogen atmosphere (hydrogen concentration: 3%) to obtain a lithium-based olivine type carrying 2.0% by mass of carbon derived from cellulose nanofibers. Composite oxide secondary particles (A) (LMP-Aa) (LiMn 0.7 Fe 0.3 PO 4 , amount of carbon = 2.0 mass%, tap density: 1.04 g / cm 3 , D 50 : 15.8 μm, particle size (Standard deviation of distribution: 9.8 μm, BET specific surface area: 18.8 m 2 / g).

[製造例4:リチウム系オリビン型複合酸化物二次粒子(A)(LMP−Ab)の製造]
製造例3において得られたスラリーc3をオートクレーブに投入し、140℃で1時間水熱反応を行った。オートクレーブ内の圧力は0.4MPaであった。水熱反応後、生成した結晶をろ過し、次いで結晶1質量部に対し12質量部の水により洗浄した。洗浄した結晶を−50℃で12時間凍結乾燥して複合体d4を得た。
得られた複合体d4を1000g分取し、これに水1Lを添加して、スラリーe4を得た。得られたスラリーe4を超音波攪拌機(同上)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(同上)を用いて、噴霧温度200℃でスプレードライに付して造粒体f4を得た。
得られた造粒体f4を、アルゴン水素雰囲気下(水素濃度3%)、700℃で1時間焼成して、2.0質量%のセルロースナノファイバー由来の炭素が担持されてなるリチウム系オリビン型複合酸化物二次粒子(A)(LMP−Ab)(LiMn0.7Fe0.3PO4、炭素の量=2.0質量%、タップ密度:1.14g/cm3、D50:10.0μm、粒度分布の標準偏差:6.6μm、BET比表面積:22.2m2/g)を得た。
[Production Example 4: Production of lithium-based olivine-type composite oxide secondary particles (A) (LMP-Ab)]
The slurry c3 obtained in Production Example 3 was charged into an autoclave, and a hydrothermal reaction was performed at 140 ° C. for 1 hour. The pressure inside the autoclave was 0.4 MPa. After the hydrothermal reaction, the generated crystals were filtered and then washed with 12 parts by mass of water per 1 part by mass of the crystals. The washed crystals were freeze-dried at -50 ° C for 12 hours to obtain a complex d4.
1000 g of the obtained composite d4 was collected, and 1 L of water was added thereto to obtain a slurry e4. The obtained slurry e4 was subjected to dispersion treatment with an ultrasonic stirrer (same as above) for 1 minute to uniformly color the whole, and then subjected to spray drying at a spray temperature of 200 ° C. using a spray drying apparatus (same as above). Thus, a granulated body f4 was obtained.
The obtained granule f4 is calcined at 700 ° C. for 1 hour under an argon hydrogen atmosphere (hydrogen concentration: 3%) to obtain a lithium-based olivine type carrying 2.0% by mass of carbon derived from cellulose nanofibers. Composite oxide secondary particles (A) (LMP-Ab) (LiMn 0.7 Fe 0.3 PO 4 , amount of carbon = 2.0 mass%, tap density: 1.14 g / cm 3 , D 50 : 10.0 μm, particle size (Standard deviation of distribution: 6.6 μm, BET specific surface area: 22.2 m 2 / g).

[製造例5:リチウム系オリビン型複合酸化物二次粒子(A)(LMP−Ac)の製造]
スラリーa3に添加するセルロースナノファイバー(同上)の添加量を7660gとした以外、製造例3と同様にして、スラリーb3の代わりにスラリーb5を得た後、スラリーb3と同様の処理を施して複合体d5を得た。得られた複合体d5を1000g分取し、これに水1.5Lを添加して、スラリーe5を得た。得られたスラリーe5を超音波攪拌機(同上)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(同上)を用いて、噴霧温度170℃でスプレードライに付して造粒体f5を得た。
得られた造粒体f5を、アルゴン水素雰囲気下(水素濃度3%)、700℃で1時間焼成して、2.6質量%のセルロースナノファイバー由来の炭素が担持されてなるリチウム系オリビン型複合酸化物二次粒子(A)(LMP−Ac)(LiMn0.7Fe0.3PO4、炭素の量=2.6質量%、タップ密度:1.04g/cm3、D50:7.14μm、粒度分布の標準偏差:6.6μm、BET比表面積:24.8m2/g)を得た。
[Production Example 5: Production of lithium-based olivine-type composite oxide secondary particles (A) (LMP-Ac)]
Slurry b5 was obtained instead of slurry b3 in the same manner as in Production Example 3 except that the amount of cellulose nanofibers (same as above) added to slurry a3 was 7660 g, and the same treatment as that for slurry b3 was performed to obtain a composite. A body d5 was obtained. 1000 g of the obtained composite d5 was collected, and 1.5 L of water was added thereto to obtain a slurry e5. The obtained slurry e5 was subjected to dispersion treatment with an ultrasonic stirrer (same as above) for 1 minute to uniformly color the whole, and then subjected to spray drying at a spray temperature of 170 ° C. using a spray drying apparatus (same as above). Thus, a granulated body f5 was obtained.
The obtained granule f5 is calcined at 700 ° C. for 1 hour in an argon hydrogen atmosphere (hydrogen concentration: 3%), and a lithium-based olivine type supporting 2.6% by mass of carbon derived from cellulose nanofiber is supported. Composite oxide secondary particles (A) (LMP-Ac) (LiMn 0.7 Fe 0.3 PO 4 , amount of carbon = 2.6 mass%, tap density: 1.04 g / cm 3 , D 50 : 7.14 μm, particle size (Standard deviation of distribution: 6.6 μm, BET specific surface area: 24.8 m 2 / g).

[製造例6:リチウム系オリビン型複合酸化物二次粒子(A)(LMP−Ad)の製造]
製造例3において得られた複合体d3を1000g分取し、これに水2Lを添加して、スラリーe6を得た。得られたスラリーe6を超音波攪拌機(同上)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(同上)を用いて、噴霧温度150℃でスプレードライに付して造粒体f6を得た。
得られた造粒体f6を、アルゴン水素雰囲気下(水素濃度3%)、700℃で1時間焼成して、2.0質量%のセルロースナノファイバー由来の炭素が担持されてなるリチウム系オリビン型複合酸化物二次粒子(A)(LMP−Ad)(LiMn0.7Fe0.3PO4、炭素の量=2.0質量%、タップ密度:0.98g/cm3、D50:8.31μm、粒度分布の標準偏差:7.2μm、BET比表面積:19.9m2/g)を得た。
[Production Example 6: Production of lithium-based olivine-type composite oxide secondary particles (A) (LMP-Ad)]
1000 g of the composite d3 obtained in Production Example 3 was collected, and 2 L of water was added thereto to obtain a slurry e6. The obtained slurry e6 was subjected to dispersion treatment with an ultrasonic stirrer (same as above) for 1 minute to uniformly color the whole, and then subjected to spray drying at a spray temperature of 150 ° C. using a spray drying apparatus (same as above). Thus, a granulated body f6 was obtained.
The obtained granule f6 is calcined at 700 ° C. for 1 hour under an argon hydrogen atmosphere (hydrogen concentration: 3%), and a lithium-based olivine type carrying 2.0% by mass of carbon derived from cellulose nanofibers is supported. Composite oxide secondary particles (A) (LMP-Ad) (LiMn 0.7 Fe 0.3 PO 4 , amount of carbon = 2.0 mass%, tap density: 0.98 g / cm 3 , D 50 : 8.31 μm, particle size (Standard deviation of distribution: 7.2 μm, BET specific surface area: 19.9 m 2 / g).

[製造例7:リチウム系オリビン型複合酸化物二次粒子(A)(LMP−Ae)の製造]
製造例3において得られた複合体d3を200g分取し、メカノフュージョン(AMS−Lab、ホソカワミクロン社製)を用いて3900rpm(30m/s)で30分間造粒処理して造粒体f7を得た。
得られた造粒体f7を、アルゴン水素雰囲気下(水素濃度3%)、700℃で1時間焼成して、2.0質量%のセルロースナノファイバー由来の炭素が担持されてなるリチウム系オリビン型複合酸化物二次粒子(A)(LMP−Ae)(LiMn0.7Fe0.3PO4、炭素の量=2.0質量%、タップ密度:1.41g/cm3、D50:16.1μm、粒度分布の標準偏差:6.6μm、BET比表面積:20.2m2/g)を得た。
[Production Example 7: Production of lithium-based olivine-type composite oxide secondary particles (A) (LMP-Ae)]
200 g of the composite d3 obtained in Production Example 3 was sampled, and granulated at 3900 rpm (30 m / s) for 30 minutes using Mechanofusion (AMS-Lab, manufactured by Hosokawa Micron) to obtain a granule f7. Was.
The obtained granule f7 is calcined at 700 ° C. for 1 hour in an argon hydrogen atmosphere (hydrogen concentration: 3%) to obtain a lithium-based olivine type carrying 2.0% by mass of carbon derived from cellulose nanofibers. Composite oxide secondary particles (A) (LMP-Ae) (LiMn 0.7 Fe 0.3 PO 4 , amount of carbon = 2.0 mass%, tap density: 1.41 g / cm 3 , D 50 : 16.1 μm, particle size (Standard deviation of distribution: 6.6 μm, BET specific surface area: 20.2 m 2 / g).

[製造例8:リチウム系オリビン型複合酸化物二次粒子(A)(LMP−Af)の製造]
製造例3において得られた複合体d3を200g分取し、メカノフュージョン(同上)を用いて2600rpm(20m/s)で30分間造粒処理して造粒体f8を得た。
得られた造粒体f8を、アルゴン水素雰囲気下(水素濃度3%)、700℃で1時間焼成して、2.0質量%のセルロースナノファイバー由来の炭素が担持されてなるリチウム系オリビン型複合酸化物二次粒子(A)(LMP−Af)(LiMn0.7Fe0.3PO4、炭素の量=2.0質量%、タップ密度:1.42g/cm3、D50:10.5μm、粒度分布の標準偏差:9.8μm、BET比表面積:19.8m2/g)を得た。
[Production Example 8: Production of lithium-based olivine-type composite oxide secondary particles (A) (LMP-Af)]
200 g of the composite d3 obtained in Production Example 3 was collected and granulated at 2600 rpm (20 m / s) for 30 minutes using Mechanofusion (same as above) to obtain a granulated body f8.
The obtained granule f8 is calcined at 700 ° C. for 1 hour under an argon hydrogen atmosphere (hydrogen concentration: 3%) to obtain a lithium-based olivine type carrying 2.0% by mass of carbon derived from cellulose nanofibers. Composite oxide secondary particles (A) (LMP-Af) (LiMn 0.7 Fe 0.3 PO 4 , amount of carbon = 2.0 mass%, tap density: 1.42 g / cm 3 , D 50 : 10.5 μm, particle size (Standard deviation of distribution: 9.8 μm, BET specific surface area: 19.8 m 2 / g).

[製造例9:リチウム系オリビン型複合酸化物二次粒子(A)(LMP−Ag)の製造]
添加するMnSO4・5H2O 1688gを2411gに、FeSO4・7H2O 834gを0にして、添加したMnSO4とFeSO4のモル比(マンガン化合物:鉄化合物)を100:0とした以外、製造例3と同様にして、スラリーc9を得た。得られたスラリーc9をオートクレーブに投入し、140℃で1時間水熱反応を行った。オートクレーブ内の圧力は0.4MPaであった。水熱反応後、生成した結晶をろ過し、次いで結晶1質量部に対し12質量部の水により洗浄した。洗浄した結晶を−50℃で12時間凍結乾燥して複合体d9を得た。
得られた複合体d9を1000g分取し、これに水1Lを添加して、スラリーe9を得た。得られたスラリーe9を超音波攪拌機(同上)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(同上)を用いて、噴霧温度180℃でスプレードライに付して造粒体f9を得た。
得られた造粒体f9を、アルゴン水素雰囲気下(水素濃度3%)、700℃で1時間焼成して、2.0質量%のセルロースナノファイバー由来の炭素が担持されてなるリチウム系オリビン型複合酸化物二次粒子(A)(LMP−Ag)(LiMnPO4、炭素の量=2.0質量%、タップ密度:1.02g/cm3、D50:16.0μm、粒度分布の標準偏差:9.8μm、BET比表面積:21.0m2/g)を得た。
[Production Example 9: Production of lithium-based olivine-type composite oxide secondary particles (A) (LMP-Ag)]
Except that 0, and: the addition to MnSO 4 · 5H 2 O 1688g to 2411G, the FeSO 4 · 7H 2 O 834 g to 0, the molar ratio of MnSO 4 and FeSO 4 was added (manganese compound: iron compound) 100 A slurry c9 was obtained in the same manner as in Production Example 3. The obtained slurry c9 was charged into an autoclave and subjected to a hydrothermal reaction at 140 ° C. for 1 hour. The pressure inside the autoclave was 0.4 MPa. After the hydrothermal reaction, the generated crystals were filtered and then washed with 12 parts by mass of water per 1 part by mass of the crystals. The washed crystals were lyophilized at −50 ° C. for 12 hours to obtain a complex d9.
1000 g of the obtained composite d9 was collected, and 1 L of water was added thereto to obtain a slurry e9. The obtained slurry e9 was subjected to dispersion treatment with an ultrasonic stirrer (same as above) for 1 minute to uniformly color the whole, and then subjected to spray drying at a spray temperature of 180 ° C. using a spray drying apparatus (same as above). Thus, a granulated body f9 was obtained.
The obtained granule f9 is calcined at 700 ° C. for 1 hour in an argon hydrogen atmosphere (hydrogen concentration: 3%), and a lithium-based olivine type carrying 2.0% by mass of carbon derived from cellulose nanofiber is supported. Composite oxide secondary particles (A) (LMP-Ag) (LiMnPO 4 , amount of carbon = 2.0% by mass, tap density: 1.02 g / cm 3 , D 50 : 16.0 μm, standard deviation of particle size distribution : 9.8 µm, BET specific surface area: 21.0 m 2 / g).

[製造例10:リチウム系オリビン型複合酸化物二次粒子(A)(LMP−Ah)の製造]
添加するMnSO4・5H2O 1688gを723gに、FeSO4・7H2O 834gを1946gにして、添加したMnSO4とFeSO4のモル比(マンガン化合物:鉄化合物)を30:70とした以外、製造例3と同様にして、2.0質量%のセルロースナノファイバー由来の炭素が担持されてなるリチウム系オリビン型複合酸化物二次粒子(A)(LMP−Ah)(LiMn0.3Fe0.7PO4、炭素の量=2.0質量%、タップ密度:1.10g/cm3、D50:15.5μm、粒度分布の標準偏差:9.8μm、BET比表面積:17.6m2/g)を得た。
[Production Example 10: Production of lithium-based olivine-type composite oxide secondary particles (A) (LMP-Ah)]
Except that: (iron compound, manganese compound) was 30:70, added to MnSO 4 · 5H 2 O 1688g to 723 g, and the FeSO 4 · 7H 2 O 834 g to 1946G, the molar ratio of MnSO 4 and FeSO 4 was added Similarly to Production Example 3, lithium-based olivine-type composite oxide secondary particles (A) (LMP-Ah) (LiMn 0.3 Fe 0.7 PO 4 ) on which 2.0% by mass of carbon derived from cellulose nanofibers are supported , Amount of carbon = 2.0 mass%, tap density: 1.10 g / cm 3 , D 50 : 15.5 μm, standard deviation of particle size distribution: 9.8 μm, BET specific surface area: 17.6 m 2 / g). Obtained.

[製造例11:リチウム系オリビン型複合酸化物二次粒子(A)(LMP−Ai)の製造]
製造例3において得られた複合体d3を1000g分取し、これに水1Lを添加して、スラリーe11を得た。得られたスラリーe11を超音波攪拌機(同上)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(同上)を用いて、噴霧温度180℃でスプレードライに付して造粒体f11を得た。
得られた造粒体f11を、アルゴン水素雰囲気下(水素濃度3%)、700℃で1時間焼成して、2.0質量%のセルロースナノファイバー由来の炭素が担持されてなるリチウム系オリビン型複合酸化物二次粒子(A)(LMP−Ai)(LiMn0.7Fe0.3PO4、炭素の量=2.0質量%、タップ密度:0.95g/cm3、D50:10.6μm、粒度分布の標準偏差:6.6μm、BET比表面積:23.6m2/g)を得た。
[Production Example 11: Production of lithium-based olivine-type composite oxide secondary particles (A) (LMP-Ai)]
1000 g of the composite d3 obtained in Production Example 3 was collected, and 1 L of water was added thereto to obtain a slurry e11. The obtained slurry e11 was subjected to dispersion treatment with an ultrasonic stirrer (same as above) for 1 minute to uniformly color the whole, and then subjected to spray drying at a spray temperature of 180 ° C. using a spray drying apparatus (same as above). Thus, a granulated body f11 was obtained.
The obtained granule f11 is calcined at 700 ° C. for 1 hour in an argon hydrogen atmosphere (hydrogen concentration: 3%) to obtain a lithium-based olivine type carrying 2.0% by mass of cellulose nanofiber-derived carbon. Composite oxide secondary particles (A) (LMP-Ai) (LiMn 0.7 Fe 0.3 PO 4 , amount of carbon = 2.0 mass%, tap density: 0.95 g / cm 3 , D 50 : 10.6 μm, particle size (Standard deviation of distribution: 6.6 μm, BET specific surface area: 23.6 m 2 / g).

[製造例12:リチウム系オリビン型複合酸化物二次粒子(A)(LMP−Aj)の製造]
製造例3において得られた複合体d3を200g分取し、メカノフュージョン(同上)を用いて3250rpm(25m/s)で30分間造粒処理して造粒体f12を得た。
得られた造粒体f12を、アルゴン水素雰囲気下(水素濃度3%)、700℃で1時間焼成して、2.0質量%のセルロースナノファイバー由来の炭素が担持されてなるリチウム系オリビン型複合酸化物二次粒子(A)(LMP−Aj)(LiMn0.7Fe0.3PO4、炭素の量=2.0質量%、タップ密度:1.42g/cm3、D50:10.9μm、粒度分布の標準偏差:7.2μm、BET比表面積:20.0m2/g)を得た。
[Production Example 12: Production of lithium-based olivine-type composite oxide secondary particles (A) (LMP-Aj)]
200 g of the composite d3 obtained in Production Example 3 was collected and granulated at 3250 rpm (25 m / s) for 30 minutes using Mechanofusion (same as above) to obtain a granulated body f12.
The obtained granule f12 is calcined at 700 ° C. for 1 hour in an argon hydrogen atmosphere (hydrogen concentration: 3%) to obtain a lithium-based olivine type carrying 2.0% by mass of cellulose nanofiber-derived carbon. Complex oxide secondary particles (A) (LMP-Aj) (LiMn 0.7 Fe 0.3 PO 4 , amount of carbon = 2.0 mass%, tap density: 1.42 g / cm 3 , D 50 : 10.9 μm, particle size (Standard deviation of distribution: 7.2 μm, BET specific surface area: 20.0 m 2 / g).

[製造例13:リチウム系オリビン型複合酸化物二次粒子(A)(LMP−Ak)の製造]
製造例3において得られたスラリーc3をオートクレーブに投入し、200℃で1時間水熱反応を行った。オートクレーブ内の圧力は1.6MPaであった。水熱反応後、生成した結晶をろ過し、次いで結晶1質量部に対し12質量部の水により洗浄した。洗浄した結晶を−50℃で12時間凍結乾燥して複合体d13を得た。得られた複合体d13を200g分取し、メカノフュージョン(同上)を用いて3900rpm(30m/s)で4時間造粒処理して造粒体f13を得た。
得られた造粒体f13を、アルゴン水素雰囲気下(水素濃度3%)、700℃で1時間焼成して、2.0質量%のセルロースナノファイバー由来の炭素が担持されてなるリチウム系オリビン型複合酸化物二次粒子(A)(LMP−Ak)(LiMn0.7Fe0.3PO4、炭素の量=2.0質量%、タップ密度:1.80g/cm3、D50:29.8μm、粒度分布の標準偏差:6.6μm、BET比表面積:17.7m2/g)を得た。
[Production Example 13: Production of lithium-based olivine-type composite oxide secondary particles (A) (LMP-Ak)]
The slurry c3 obtained in Production Example 3 was charged into an autoclave, and a hydrothermal reaction was performed at 200 ° C. for 1 hour. The pressure inside the autoclave was 1.6 MPa. After the hydrothermal reaction, the generated crystals were filtered and then washed with 12 parts by mass of water per 1 part by mass of the crystals. The washed crystals were freeze-dried at -50 ° C for 12 hours to obtain a complex d13. 200 g of the obtained composite d13 was collected and granulated at 3900 rpm (30 m / s) for 4 hours using Mechanofusion (same as above) to obtain a granulated body f13.
The obtained granules f13 are calcined at 700 ° C. for 1 hour in an argon hydrogen atmosphere (hydrogen concentration: 3%) to obtain a lithium-based olivine type carrying 2.0% by mass of carbon derived from cellulose nanofibers. Composite oxide secondary particles (A) (LMP-Ak) (LiMn 0.7 Fe 0.3 PO 4 , amount of carbon = 2.0 mass%, tap density: 1.80 g / cm 3 , D 50 : 29.8 μm, particle size (Standard deviation of distribution: 6.6 μm, BET specific surface area: 17.7 m 2 / g).

[製造例14:リチウム系オリビン型複合酸化物二次粒子(A)(LMP−Al)の製造]
スプレードライ装置(同上)の噴霧温度を240℃に変更した以外、製造例3と同様にして、2.0質量%のセルロースナノファイバー由来の炭素が担持されてなるリチウム系オリビン型複合酸化物二次粒子(A)(LMP−Al)(LiMn0.7Fe0.3PO4、炭素の量=2.0質量%、タップ密度:1.04g/cm3、D50:3.0μm、粒度分布の標準偏差:9.8μm、BET比表面積:18.8m2/g)を得た。
[Production Example 14: Production of lithium-based olivine-type composite oxide secondary particles (A) (LMP-Al)]
A lithium-based olivine-type composite oxide having 2.0% by mass of carbon derived from cellulose nanofibers was carried out in the same manner as in Production Example 3 except that the spray temperature of the spray drying apparatus (same as above) was changed to 240 ° C. Secondary particles (A) (LMP-Al) (LiMn 0.7 Fe 0.3 PO 4 , amount of carbon = 2.0 mass%, tap density: 1.04 g / cm 3 , D 50 : 3.0 μm, standard deviation of particle size distribution : 9.8 µm, BET specific surface area: 18.8 m 2 / g).

[製造例15:リチウム系オリビン型複合酸化物二次粒子(A)(LMS−Aa)の製造]
LiOH・H2O 428g、Na4SiO4・nH2O 1397g、セルロースナノファイバー(同上)5892g及び水3.75Lを混合してスラリーa15を得た。次いで、得られたスラリーa15に、MnSO4・5H2O 1655g及びZr(SO42・4H2O 53gを添加してスラリーb15を得た。添加したMnSO4とZr(SO42のモル比(マンガン化合物:ジルコニウム化合物)は、97:3であった。
次いで、得られたスラリーb15をオートクレーブに投入し、170℃で3時間水熱反応を行った。オートクレーブ内の圧力は0.4MPaであった。水熱反応後、生成した結晶をろ過し、次いで結晶1質量部に対し12質量部の水により洗浄した。洗浄した結晶を−50℃で12時間凍結乾燥して複合体c15を得た。
得られた複合体c15を500g分取し、これに水500mLを添加して、スラリーd13を得た。得られたスラリーd13を超音波攪拌機(同上)で1分間分散処理して、全体を均一に呈色させた後、スプレードライ装置(同上)を用いて、噴霧温度150℃でスプレードライに付して造粒体e15を得た。
得られた造粒体e15を、アルゴン水素雰囲気下(水素濃度3%)、650℃で1時間焼成して、4.0質量%のセルロースナノファイバー由来の炭素が担持されてなるリチウム系オリビン型複合酸化物二次粒子(A)(LMS−Aa)(Li2Mn0.97Zr0.03SiO4、炭素の量=4.0質量%、タップ密度:0.97g/cm3、D50:8.9μm、粒度分布の標準偏差:7.2μm、BET比表面積:28.3m2/g)を得た。
[Production Example 15: Production of lithium-based olivine-type composite oxide secondary particles (A) (LMS-Aa)]
LiOH · H 2 O 428g, was obtained Na 4 SiO 4 · nH 2 O 1397g, slurry a15 mixed cellulose nanofibers (ibid) 5892G and water 3.75 L. Then, the resulting slurry a15, and MnSO 4 · 5H 2 O 1655g and Zr (SO 4) was added to 2 · 4H 2 O 53g obtain a slurry b15. The molar ratio (manganese compound: zirconium compound) of the added MnSO 4 and Zr (SO 4 ) 2 was 97: 3.
Next, the obtained slurry b15 was charged into an autoclave, and a hydrothermal reaction was performed at 170 ° C. for 3 hours. The pressure inside the autoclave was 0.4 MPa. After the hydrothermal reaction, the generated crystals were filtered and then washed with 12 parts by mass of water per 1 part by mass of the crystals. The washed crystals were freeze-dried at -50 ° C for 12 hours to obtain a complex c15.
500 g of the obtained composite c15 was collected, and 500 mL of water was added thereto to obtain a slurry d13. The obtained slurry d13 was subjected to dispersion treatment with an ultrasonic stirrer (same as above) for 1 minute to uniformly color the whole, and then subjected to spray drying at a spray temperature of 150 ° C. using a spray drying apparatus (same as above). Thus, a granulated body e15 was obtained.
The obtained granule e15 is calcined at 650 ° C. for 1 hour in an argon hydrogen atmosphere (hydrogen concentration: 3%), and a lithium-based olivine type carrying 4.0% by mass of carbon derived from cellulose nanofibers is supported. Composite oxide secondary particles (A) (LMS-Aa) (Li 2 Mn 0.97 Zr 0.03 SiO 4 , amount of carbon = 4.0 mass%, tap density: 0.97 g / cm 3 , D 50 : 8.9 μm (Standard deviation of particle size distribution: 7.2 μm, BET specific surface area: 28.3 m 2 / g).

[製造例16:リチウム系オリビン型複合酸化物二次粒子(A)(LFS−Aa)の製造]
添加するMnSO4・5H2O 1655gをFeSO4・7H2O 1358gとした以外、製造例15と同様にして、4.0質量%のセルロースナノファイバー由来の炭素が担持されてなるリチウム系オリビン型複合酸化物二次粒子(A)(LFS−Aa)(Li2Fe0.97Zr0.03SiO4、炭素の量=4.0質量%、タップ密度:1.03g/cm3、D50:8.5μm、粒度分布の標準偏差:7.2μm、BET比表面積:26.1m2/g)を得た。
[Production Example 16: Production of lithium-based olivine-type composite oxide secondary particles (A) (LFS-Aa)]
Except for changing the addition to MnSO 4 · 5H 2 O 1655g was FeSO 4 · 7H 2 O 1358g, in the same manner as in Production Example 15, a lithium-based olivine carbon from 4.0% by weight of the cellulose nanofibers, which are carried Composite oxide secondary particles (A) (LFS-Aa) (Li 2 Fe 0.97 Zr 0.03 SiO 4 , amount of carbon = 4.0 mass%, tap density: 1.03 g / cm 3 , D 50 : 8.5 μm (Standard deviation of particle size distribution: 7.2 μm, BET specific surface area: 26.1 m 2 / g).

各混合正極活物質を得るためのリチウム系オリビン型複合酸化物二次粒子(A)及び層状型リチウム複合酸化物二次粒子(B)の構成を表1に示す。
また、リチウム系オリビン型複合酸化物二次粒子(A)及び層状型リチウム複合酸化物二次粒子(B)の所定の物性を用いて上記式(1)により求めたXA及び上記式(2)により求めたXBも表1に示す。
Table 1 shows the structure of the lithium-based olivine type composite oxide secondary particles (A) and the layered type lithium composite oxide secondary particles (B) for obtaining each mixed positive electrode active material.
Further, lithium olivine-type composite oxide secondary particle (A) and the above formula with a predetermined physical properties of layered-type lithium composite oxide secondary particle (B) (1) by the obtained X A and the formula (2 )) Are also shown in Table 1.

Figure 2020031028
Figure 2020031028

≪正極の製造≫
表1に示す各混合正極活物質の構成にしたがって、リチウム系オリビン型複合酸化物二次粒子(A)及び層状型リチウム複合酸化物二次粒子(B)を用いつつ、正極スラリーを調製した。
具体的には、混合正極活物質(リチウム系オリビン型複合酸化物二次粒子(A)と層状型リチウム複合酸化物二次粒子(B)の混合物)(18g):アセチレンブラック(2g):ポリフッ化ビニリデン(2g)=90:5:5(質量比)の配合割合となるよう正極スラリーを調製した。より具体的には、自転・公転式ミキサー(ARE−310、(株)シンキー製)を用い、先ずアセチレンブラックとポリフッ化ビニリデンを回転数2000rpmで10分間混練した後、混合正極活物質を構成する層状型リチウム複合酸化物二次粒子(B)を添加して回転数2000rpmで5分間混練し、その後混合正極活物質を構成する層状型リチウム複合酸化物二次粒子(B)を添加して、さらに回転数2000rpmで5分間混練した。その後、これにN−メチル−2−ピロリドンを適量加えて、回転数2000rpmで5分間混練して正極スラリーを得た。
≫Manufacture of positive electrode≫
According to the configuration of each mixed positive electrode active material shown in Table 1, a positive electrode slurry was prepared while using lithium-based olivine-type composite oxide secondary particles (A) and layered lithium composite oxide secondary particles (B).
Specifically, a mixed positive electrode active material (a mixture of lithium-based olivine type composite oxide secondary particles (A) and layered type lithium composite oxide secondary particles (B)) (18 g): acetylene black (2 g): polyfluoride A positive electrode slurry was prepared so as to have a mixing ratio of vinylidene chloride (2 g) = 90: 5: 5 (mass ratio). More specifically, first, acetylene black and polyvinylidene fluoride are kneaded at 2,000 rpm for 10 minutes using a rotation / revolution type mixer (ARE-310, manufactured by Shinky Corporation), and then a mixed positive electrode active material is formed. The layered lithium composite oxide secondary particles (B) were added and kneaded at 2,000 rpm for 5 minutes, and then the layered lithium composite oxide secondary particles (B) constituting the mixed positive electrode active material were added. The mixture was further kneaded at 2,000 rpm for 5 minutes. Thereafter, an appropriate amount of N-methyl-2-pyrrolidone was added thereto and kneaded at 2,000 rpm for 5 minutes to obtain a positive electrode slurry.

次いで、ブレード間隔250μmのドクターブレードを用い、上記正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗布した後、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜き、ハンドプレスを用いて16MPaで2分間プレスして正極とした。   Next, using a doctor blade with a blade interval of 250 μm, the above positive electrode slurry was applied to a current collector made of an aluminum foil having a thickness of 20 μm, followed by vacuum drying at 80 ° C. for 12 hours. Then, it was punched into a disk of φ14 mm and pressed at 16 MPa for 2 minutes using a hand press to obtain a positive electrode.

≪正極断面のSEM観察≫
得られた正極について、その断面のSEM写真(後方散乱電子像。使用装置:JSM−7001F、日本電子(株)製)を画像解析して、粒子間空隙の量、平均空隙径(円面積相当径)、当該平均空隙径の標準偏差、及び粒子間空隙の分布状態を評価した。このSEM写真を用いた画像解析では、任意に選択した集電体周辺の50μm×50μmの範囲を対象にした。SEM観察用の正極断面試料は、切断、粗研磨後の正極断面をダイヤモンドペーストで研磨した後、Arイオンビームを用いてクロスセクションポリッシャを行うことにより作製した。
画像解析結果を表2に示す。
なお、表2に示す粒子間空隙の分布状態は、SEM写真を目視により評価した結果である。具体的には、粒子間空隙の分布をSEM写真全体で観察し、空隙が均一に分散していると判断した場合を「○」、集電体近傍に大径の空隙が偏在している等、空隙が均一に分散していないと判断した場合を「×」と評価した。
SSEM observation of cross section of positive electrode≫
With respect to the obtained positive electrode, an SEM photograph (backscattered electron image; used device: JSM-7001F, manufactured by JEOL Ltd.) of the cross section was subjected to image analysis, and the amount of interparticle voids, average void diameter (equivalent to a circular area) Diameter), the standard deviation of the average void diameter, and the distribution of voids between particles were evaluated. In the image analysis using the SEM photograph, a range of 50 μm × 50 μm around the arbitrarily selected current collector was targeted. A positive electrode cross section sample for SEM observation was produced by polishing the cross section of the positive electrode after cutting and rough polishing with a diamond paste, and then performing a cross section polisher using an Ar ion beam.
Table 2 shows the image analysis results.
In addition, the distribution state of the interparticle space | gap shown in Table 2 is the result of having evaluated the SEM photograph visually. Specifically, the distribution of voids between particles is observed in the entire SEM photograph, and when it is determined that the voids are uniformly dispersed, “○” indicates that large-sized voids are unevenly distributed near the current collector, and the like. In addition, when it was judged that the voids were not uniformly dispersed, it was evaluated as “×”.

Figure 2020031028
Figure 2020031028

≪電解液への遷移金属溶出量≫
上記正極を用いてコイン型二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔(リチウムイオン二次電池の場合)を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比3:7の割合で混合した混合溶媒に、LiPF6を1mol/Lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型二次電池(CR−2032)を得た。
遷移 Amount of transition metal eluted into electrolyte 液
A coin-type secondary battery was constructed using the positive electrode. As the negative electrode, a lithium foil punched into φ15 mm (in the case of a lithium ion secondary battery) was used. As the electrolytic solution, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent obtained by mixing ethylene carbonate and ethyl methyl carbonate at a volume ratio of 3: 7 was used. As the separator, a known separator such as a polymer porous film such as polypropylene was used. These battery parts were incorporated and housed in a conventional manner in an atmosphere having a dew point of -50 ° C or lower, to obtain a coin-type secondary battery (CR-2032).

得られた二次電池に対し、電流170mA/g、電圧4.5Vの定電流充電を行った。
その後、かかる二次電池を解体し、取り出した正極を炭酸ジメチルで洗浄後、電解液に浸した。このときの電解液は、エチレンカーボネート及びエチルメチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LiPF6を1mol/Lの濃度で溶解したものを用いた。正極を浸した電解液を密閉容器に入れ、70℃で1週間静置した。
静置後、正極を取り出した電解液を0.45μmのディスミックフィルタで濾過し、硝酸により酸分解した。酸分解した電解液に含まれる層状型リチウム複合酸化物二次粒子(B)由来のNi、Co、Mnを、ICP発光分光法(ULTIMA2、(株)堀場製作所製)を用いて定量した。
結果を表3に示す。
The obtained secondary battery was subjected to constant current charging at a current of 170 mA / g and a voltage of 4.5 V.
Thereafter, the secondary battery was disassembled, and the positive electrode taken out was washed with dimethyl carbonate, and then immersed in an electrolytic solution. The electrolyte used at this time was a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent obtained by mixing ethylene carbonate and ethyl methyl carbonate at a volume ratio of 1: 1. The electrolyte in which the positive electrode was immersed was placed in a closed container, and left at 70 ° C. for one week.
After standing, the electrolyte from which the positive electrode was taken out was filtered through a 0.45 μm discic filter, and acid-decomposed with nitric acid. Ni, Co, and Mn derived from the layered lithium composite oxide secondary particles (B) contained in the acid-decomposed electrolytic solution were quantified using ICP emission spectroscopy (ULTIMA2, manufactured by Horiba, Ltd.).
Table 3 shows the results.

≪放電特性の評価≫
得られた二次電池を用い、充放電試験を行った。具体的には、電流密度85mA/g、電圧4.25Vの定電流充電後に、電流密度85mA/g、終止電圧3.0Vの定電流放電を行い、放電容量測定装置(HJ−1001SD8、北斗電工(株)製)を用い、気温30℃環境での、0.5C(85mAh/g)における放電容量を測定した。また、上記充放電サイクルを1000サイクル繰返し、下記式(X)により容量保持率(%)を求めた。
結果を表3に示す。
容量保持率(%)=(1000サイクル後の放電容量)/
(1サイクル後の放電容量)×100 ・・・(X)
≫Evaluation of discharge characteristics≫
A charge / discharge test was performed using the obtained secondary battery. Specifically, after a constant current charge at a current density of 85 mA / g and a voltage of 4.25 V, a constant current discharge at a current density of 85 mA / g and a final voltage of 3.0 V was performed, and a discharge capacity measuring device (HJ-1001SD8, Hokuto Denko) The discharge capacity at 0.5 C (85 mAh / g) in a 30 ° C. environment was measured. The charge / discharge cycle was repeated 1,000 times, and the capacity retention (%) was determined by the following equation (X).
Table 3 shows the results.
Capacity retention (%) = (discharge capacity after 1000 cycles) /
(Discharge capacity after one cycle) × 100 (X)

Figure 2020031028
Figure 2020031028

表3より、本発明の混合正極活物質を用いた全ての実施例は、比較例1又は比較例2と比較して、遷移金属溶出量、特にNiとMnの溶出量を有効に抑制しており、容量保持率の高い二次電池を得ることができた。これは、表2に示すとおり、本発明の混合正極活物質を用いて作製した正極は、空隙量が低減されるとともに空隙径のばらつきも小さく、さらにそれら空隙の分布の均一性が高いことによるものと考えられる。   From Table 3, all the examples using the mixed positive electrode active material of the present invention effectively suppressed the transition metal elution amount, particularly the Ni and Mn elution amount, as compared with Comparative Example 1 or Comparative Example 2. As a result, a secondary battery having a high capacity retention rate was obtained. This is because, as shown in Table 2, the positive electrode manufactured using the mixed positive electrode active material of the present invention has a reduced amount of voids, a small variation in void diameter, and a high uniformity of distribution of the voids. It is considered something.

Figure 2020031028
Figure 2020031028

Claims (9)

リチウム系オリビン型複合酸化物二次粒子(A)、及び層状型リチウム複合酸化物二次粒子(B)を含有し、かつ下記式(1):
A=TA×|DA50−DB50+2|・・・(1)
(式(1)中、TAは、リチウム系オリビン型複合酸化物二次粒子(A)のタップ密度(g/cm3)を示し、DA50は、リチウム系オリビン型複合酸化物二次粒子(A)の粒度分布における累積50%での平均粒子径(μm)を示し、DB50は、層状型リチウム複合酸化物二次粒子(B)の粒度分布における累積50%での平均粒子径(μm)を示す。)
により求められるXAが0.3g/m2〜50g/m2である、リチウムイオン二次電池用混合正極活物質。
It contains a lithium-based olivine type composite oxide secondary particle (A) and a layered type lithium composite oxide secondary particle (B), and has the following formula (1):
X A = T A × | D A 50-D B 50 + 2 | ··· (1)
(In the formula (1), T A represents the tap density of the lithium olivine-type composite oxide secondary particle (A) (g / cm 3 ), D A 50 is lithium olivine-type composite oxide secondary shows the average particle diameter at cumulative 50% in the particle size distribution of the particles (a) (μm), D B 50 , the average particle at 50% accumulation in the particle size distribution of the layered-type lithium composite oxide secondary particle (B) Diameter (μm).)
The obtained X A is 0.3g / m 2 ~50g / m 2 , mixing the positive active material for a lithium ion secondary battery.
式(1)中のDA50が、3μm〜30μmである、請求項1に記載のリチウムイオン二次電池用混合正極活物質。 D A 50 in formula (1) is a 3Myuemu~30myuemu, mixed positive active material for a lithium ion secondary battery according to claim 1. リチウム系オリビン型複合酸化物二次粒子(A)の含有量と層状型リチウム複合酸化物二次粒子(B)の含有量との質量比(A:B)が、0.5:99.5〜90:10である、請求項1又は2に記載のリチウムイオン二次電池用混合正極活物質。   The mass ratio (A: B) between the content of the lithium-based olivine type composite oxide secondary particles (A) and the content of the layered type lithium composite oxide secondary particles (B) is 0.5: 99.5. The mixed positive electrode active material for a lithium ion secondary battery according to claim 1, wherein the ratio is from 90 to 90:10. さらに下記式(2):
B=XA×DASD/SA ・・・(2)
(式(2)中、DASDは、リチウム系オリビン型複合酸化物二次粒子の粒度分布における標準偏差(μm)を示し、SAは、リチウム系オリビン型複合酸化物二次粒子のBET比表面積(m2/g)を示す。)
により求められるXBが、0.15(g2/m4)〜20(g2/m4)である、請求項1〜3のいずれか1項に記載のリチウムイオン二次電池用混合正極活物質。
Further, the following formula (2):
X B = X A × D A SD / S A (2)
(In the formula (2), D A SD represents the standard deviation ([mu] m) in particle size distribution of the lithium olivine-type composite oxide secondary particle, S A is BET of lithium olivine-type composite oxide secondary particles (Specific surface area (m 2 / g) is shown.)
The X B that is required, 0.15 (g 2 / m 4 ) which is ~20 (g 2 / m 4) , mixed positive electrode for a lithium ion secondary battery according to any one of claims 1 to 3 Active material.
リチウム系オリビン型複合酸化物二次粒子(A)が、表面に炭素が担持されてなる粒子である、請求項1〜4のいずれか1項に記載のリチウムイオン二次電池用混合正極活物質。   The mixed positive electrode active material for a lithium ion secondary battery according to any one of claims 1 to 4, wherein the lithium-based olivine-type composite oxide secondary particles (A) are particles having carbon supported on the surface. . リチウム系オリビン型複合酸化物二次粒子(A)が、下記式(I):
LiaMnbFec1 dPO4 ・・・(I)
(式(I)中、M1はCo、Ni、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b、c、及びdは、0<a≦1.2、0.3≦b≦1、0≦c≦0.7、及び0≦d≦0.3を満たし、かつa+(Mnの価数)×b+(Feの価数)×c+(M1の価数)×d=3を満たす数を示す。)
又は下記式(II):
LieMnfFeg2 hSiO4 ・・・(II)
(式(II)中、M2はCo、Ni、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd、Al、Zn、V又はGdを示す。e、f、g、及びhは、0<e≦2.4、0≦f≦1.2、0≦g≦1.2、0≦h≦1.2、及びf+g≠0を満たし、かつe+(Mnの価数)×f+(Feの価数)×g+(M2の価数)×h=4を満たす数を示す。)
で表される粒子である、請求項1〜5のいずれか1項に記載のリチウムイオン二次電池用混合正極活物質。
The lithium-based olivine type composite oxide secondary particles (A) are represented by the following formula (I):
Li a Mn b Fe c M 1 d PO 4 ··· (I)
(In the formula (I), M 1 represents Co, Ni, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd or Gd. A, b, c, and d represent 0 <a ≦ 1.2, 0.3 ≦ b ≦ 1, 0 ≦ c ≦ 0.7, and 0 ≦ d ≦ 0.3, and a + (valence of Mn) × b + (valence of Fe) ) × c + (valence of M 1 ) × d = 3.)
Or the following formula (II):
Li e Mn f Fe g M 2 h SiO 4 ··· (II)
(In the formula (II), M 2 represents Co, Ni, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, Al, Zn, V or Gd. g and h satisfy 0 <e ≦ 2.4, 0 ≦ f ≦ 1.2, 0 ≦ g ≦ 1.2, 0 ≦ h ≦ 1.2, and f + g ≠ 0, and e + (Mn (Valence) × f + (valence of Fe) × g + (valence of M 2 ) × h = 4.)
The mixed positive electrode active material for a lithium ion secondary battery according to any one of claims 1 to 5, which is a particle represented by the following formula:
層状型リチウム複合酸化物二次粒子(B)が、下記式(III):
LiNiiCojMnk3 l2・・・(III)
(式(III)中、M3はMg、Ti、Nb、Fe、Cr、Si、Al、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。i、j、k、lは、0.3≦i<1、0<j≦0.7、0<k≦0.7、0≦l≦0.3、かつ3i+3j+3k+(M3の価数)×l=3を満たす数を示す。)
又は下記式(IV):
LiNimConAlo4 p2 ・・・(IV)
(式(IV)中、M4はMg、Ti、Nb、Fe、Cr、Si、Ga、V、Zn、Cu、Sr、Mo、Zr、Sn、Ta、W、La、Ce、Pb、Bi及びGeから選ばれる1種又は2種以上の元素を示す。m、n、o、pは、0.4≦m<1、0<n≦0.6、0<o≦0.3、0≦p≦0.3、かつ3m+3n+3o+(M4の価数)×p=3を満たす数を示す。)
で表される粒子である、請求項1〜6のいずれか1項に記載のリチウムイオン二次電池用混合正極活物質。
The layered lithium composite oxide secondary particles (B) are represented by the following formula (III):
LiNi i Co j Mn k M 3 l O 2 ··· (III)
(In the formula (III), M 3 is Mg, Ti, Nb, Fe, Cr, Si, Al, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Represents one or more elements selected from Bi and Ge, where i, j, k, and l are 0.3 ≦ i <1, 0 <j ≦ 0.7, 0 <k ≦ 0.7, 0 ≦ l ≦ 0.3, and 3i + 3j + 3k + (valence of M 3) shows a number satisfying × l = 3.)
Or the following formula (IV):
LiNi m Co n Al o M 4 p O 2 ··· (IV)
(In the formula (IV), M 4 is Mg, Ti, Nb, Fe, Cr, Si, Ga, V, Zn, Cu, Sr, Mo, Zr, Sn, Ta, W, La, Ce, Pb, Bi and Represents one or more elements selected from Ge, where m, n, o, and p are 0.4 ≦ m <1, 0 <n ≦ 0.6, 0 <o ≦ 0.3, 0 ≦ (p ≦ 0.3 and 3m + 3n + 3o + (valence of M 4 ) × p = 3)
The mixed positive electrode active material for a lithium ion secondary battery according to any one of claims 1 to 6, which is a particle represented by the following formula:
次の工程(I)〜(V):
(I)層状型リチウム複合酸化物二次粒子(B)について、粒度分布における累積50%での平均粒子径DB50を測定する工程
(II)少なくとも一種のリチウム系オリビン型複合酸化物二次粒子(At)について、タップ密度TA t、リチウム系オリビン型複合酸化物二次粒子(At)の粒度分布における累積50%での平均粒子径DA t50を測定する工程
(III)工程(I)で得られたDB50を下記式(1):
A=TA×|DA50−DB50+2|・・・(1)
(式(1)中、TAは、リチウム系オリビン型複合酸化物二次粒子(A)のタップ密度(g/cm3)を示し、DA50は、リチウム系オリビン型複合酸化物二次粒子(A)の粒度分布における累積50%での平均粒子径(μm)を示し、DB50は、層状型リチウム複合酸化物二次粒子(B)の粒度分布における累積50%での平均粒子径(μm)を示す。XAは、工程(IV)で混合するリチウム系オリビン型複合酸化物二次粒子(A)を選択するための指標となる値(g/m2)を示す。)
に導入する工程
(IV)リチウム系オリビン型複合酸化物二次粒子(At)のなかから、式(1)により求められるXAを0.3g/m2〜50g/m2とするための、タップ密度TA及びDA50を有するリチウム系オリビン型複合酸化物二次粒子(A)を選択する工程
(V)選択したリチウム系オリビン型複合酸化物二次粒子(A)と層状型リチウム複合酸化物二次粒子(B)とを混合する工程
を備えるリチウムイオン二次電池用混合正極活物質の製造方法。
The following steps (I) to (V):
For (I) layered lithium composite oxide secondary particle (B), step (II) at least one lithium-based olivine-type composite oxide secondary measuring the average particle diameter D B 50 at 50% cumulative in the particle size distribution particles for (a t), a tap density T a t, the step of measuring the average particle diameter D a t 50 at 50% accumulation in the particle size distribution of the lithium olivine-type composite oxide secondary particle (a t) (III) The D B 50 obtained in the step (I) is represented by the following formula (1):
X A = T A × | D A 50-D B 50 + 2 | ··· (1)
(In the formula (1), T A represents the tap density of the lithium olivine-type composite oxide secondary particle (A) (g / cm 3 ), D A 50 is lithium olivine-type composite oxide secondary shows the average particle diameter at cumulative 50% in the particle size distribution of the particles (a) (μm), D B 50 , the average particle at 50% accumulation in the particle size distribution of the layered-type lithium composite oxide secondary particle (B) X A represents a value (g / m 2 ) serving as an index for selecting the lithium-based olivine-type composite oxide secondary particles (A) to be mixed in the step (IV).)
Introduced to step (IV) lithium olivine-type composite oxide secondary particles from among (A t), equation (1) by the X A for a 0.3g / m 2 ~50g / m 2 obtained , tap density T a and D a lithium olivine-type composite oxide secondary particles selecting a (a) (V) selected lithium olivine-type composite oxide secondary particle (a) and layer-structured lithium having 50 A method for producing a mixed positive electrode active material for a lithium ion secondary battery, comprising a step of mixing the composite oxide secondary particles (B).
工程(V)での混合において、リチウム系オリビン型複合酸化物二次粒子(A)と層状型リチウム複合酸化物二次粒子(B)との質量比(A:B)が、0.5:99.5〜90:10である請求項8に記載のリチウムイオン二次電池用混合正極活物質の製造方法。   In the mixing in the step (V), the mass ratio (A: B) of the lithium-based olivine type composite oxide secondary particles (A) and the layered type lithium composite oxide secondary particles (B) is 0.5: The method for producing a mixed positive electrode active material for a lithium ion secondary battery according to claim 8, wherein the ratio is 99.5 to 90:10.
JP2018157671A 2018-08-24 2018-08-24 Mixed positive electrode active material for lithium ion secondary battery and method for producing the same Active JP7144239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018157671A JP7144239B2 (en) 2018-08-24 2018-08-24 Mixed positive electrode active material for lithium ion secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018157671A JP7144239B2 (en) 2018-08-24 2018-08-24 Mixed positive electrode active material for lithium ion secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2020031028A true JP2020031028A (en) 2020-02-27
JP7144239B2 JP7144239B2 (en) 2022-09-29

Family

ID=69622770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018157671A Active JP7144239B2 (en) 2018-08-24 2018-08-24 Mixed positive electrode active material for lithium ion secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP7144239B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060242A1 (en) * 2019-09-24 2021-04-01 株式会社スリーダム Lithium ion secondary battery positive electrode and lithium ion secondary battery
JP7010402B1 (en) * 2021-03-31 2022-01-26 住友大阪セメント株式会社 Positive Material for Lithium Ion Secondary Battery, Positive Positive for Lithium Ion Secondary Battery, Lithium Ion Secondary Battery
WO2023033009A1 (en) * 2021-08-31 2023-03-09 古河電池株式会社 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7478587B2 (en) 2020-05-14 2024-05-07 太平洋セメント株式会社 Positive electrode active material particles for lithium ion secondary batteries and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113783A (en) * 2009-11-26 2011-06-09 Sony Corp Positive electrode active material for nonaqueous electrolyte battery, nonaqueous electrolyte battery, high-output electronic equipment, and automobile
JP2016058237A (en) * 2014-09-10 2016-04-21 太平洋セメント株式会社 Positive electrode material for lithium ion secondary battery
JP2018026314A (en) * 2016-08-12 2018-02-15 株式会社豊田自動織機 Positive electrode and lithium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113783A (en) * 2009-11-26 2011-06-09 Sony Corp Positive electrode active material for nonaqueous electrolyte battery, nonaqueous electrolyte battery, high-output electronic equipment, and automobile
JP2016058237A (en) * 2014-09-10 2016-04-21 太平洋セメント株式会社 Positive electrode material for lithium ion secondary battery
JP2018026314A (en) * 2016-08-12 2018-02-15 株式会社豊田自動織機 Positive electrode and lithium ion secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060242A1 (en) * 2019-09-24 2021-04-01 株式会社スリーダム Lithium ion secondary battery positive electrode and lithium ion secondary battery
JP7429001B2 (en) 2019-09-24 2024-02-07 株式会社スリーダムアライアンス Positive electrode for lithium ion secondary batteries and lithium ion secondary batteries
JP7478587B2 (en) 2020-05-14 2024-05-07 太平洋セメント株式会社 Positive electrode active material particles for lithium ion secondary batteries and method for producing same
JP7010402B1 (en) * 2021-03-31 2022-01-26 住友大阪セメント株式会社 Positive Material for Lithium Ion Secondary Battery, Positive Positive for Lithium Ion Secondary Battery, Lithium Ion Secondary Battery
WO2023033009A1 (en) * 2021-08-31 2023-03-09 古河電池株式会社 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP7144239B2 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
CN110462896B (en) Positive electrode active material composite for lithium ion secondary battery, secondary battery using same, and method for producing said composite
KR101300304B1 (en) Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
TWI636007B (en) Method for producing carbon composite manganese iron iron phosphate particle powder, carbon composite manganese iron iron particle particle powder, and nonaqueous electrolyte secondary battery using the same
JP7144239B2 (en) Mixed positive electrode active material for lithium ion secondary battery and method for producing the same
JP2014515171A (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP2004079276A (en) Positive electrode activator and its manufacturing method
US10109861B2 (en) Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
US10026520B2 (en) Positive electrode active material for secondary battery
JP6527200B2 (en) Positive electrode active material for lithium ion secondary battery or positive electrode active material for sodium ion secondary battery, and manufacturing method thereof
JP2013201120A (en) Method of preparing carbon nanotube-olivine type lithium manganese phosphate composites and lithium secondary battery using the same
JP6163579B1 (en) Polyanion positive electrode active material and method for producing the same
KR20160111446A (en) Composite particle, negative electrode, and cell
JP7366662B2 (en) Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same
JP7108504B2 (en) Olivine-type lithium-based oxide primary particles for mixed positive electrode active material and method for producing the same
JP2005276502A (en) Lithium transition metal compound oxide powder for lithium secondary battery positive electrode active material and its manufacturing method, its precursor and its manufacturing method, lithium secondary battery positive electrode using it, and lithium secondary battery
JP6307133B2 (en) Polyanionic positive electrode active material and method for producing the same
JP7409922B2 (en) Positive electrode active material for multilayer lithium ion secondary battery and method for producing the same
JP7409923B2 (en) Positive electrode active material for multilayer lithium ion secondary battery and method for producing the same
JP7299119B2 (en) Mixed positive electrode active material for lithium ion secondary battery and method for manufacturing positive electrode for lithium ion secondary battery
JP7421372B2 (en) Method for manufacturing positive electrode active material composite for lithium ion secondary battery
JP6527972B1 (en) Method of manufacturing positive electrode active material for secondary battery
JP7320418B2 (en) Mixed positive electrode active material for lithium ion secondary battery and method for manufacturing positive electrode for lithium ion secondary battery
WO2024048099A1 (en) Negative electrode active material for secondary batteries, and secondary battery
WO2023171580A1 (en) Negative electrode active material for secondary batteries, and secondary battery
JP2022045169A (en) Lithium system polyanion particle aggregate for secondary battery cathode active material and manufacturing method of the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220915

R150 Certificate of patent or registration of utility model

Ref document number: 7144239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150