JP2020031027A - SOLID ELECTROLYTE FOR ALL-SOLID-STATE LITHIUM-SULFUR BATTERY INCLUDING Li2S-P2S5-SeS2 SERIES GLASS CERAMIC, POSITIVE ELECTRODE MATERIAL SUITABLE FOR SOLID ELECTROLYTE, MANUFACTURING METHOD THEREOF, AND ALL-SOLID-STATE LITHIUM-SULFUR BATTERY INCLUDING THESE - Google Patents

SOLID ELECTROLYTE FOR ALL-SOLID-STATE LITHIUM-SULFUR BATTERY INCLUDING Li2S-P2S5-SeS2 SERIES GLASS CERAMIC, POSITIVE ELECTRODE MATERIAL SUITABLE FOR SOLID ELECTROLYTE, MANUFACTURING METHOD THEREOF, AND ALL-SOLID-STATE LITHIUM-SULFUR BATTERY INCLUDING THESE Download PDF

Info

Publication number
JP2020031027A
JP2020031027A JP2018157667A JP2018157667A JP2020031027A JP 2020031027 A JP2020031027 A JP 2020031027A JP 2018157667 A JP2018157667 A JP 2018157667A JP 2018157667 A JP2018157667 A JP 2018157667A JP 2020031027 A JP2020031027 A JP 2020031027A
Authority
JP
Japan
Prior art keywords
solid
solid electrolyte
ses
glass ceramic
sulfur battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018157667A
Other languages
Japanese (ja)
Other versions
JP7093078B2 (en
Inventor
和治 関
Kazuharu Seki
和治 関
官 国清
Kunikiyo Kan
国清 官
志俊 武
Zhijun Wu
志俊 武
正坤 謝
Zhengkun Xie
正坤 謝
曉弘 吉田
Akihiro Yoshida
曉弘 吉田
里提 阿布
Liti Abu
里提 阿布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirosaki University NUC
Ziqoo Co Ltd
Original Assignee
Hirosaki University NUC
Ziqoo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirosaki University NUC, Ziqoo Co Ltd filed Critical Hirosaki University NUC
Priority to JP2018157667A priority Critical patent/JP7093078B2/en
Publication of JP2020031027A publication Critical patent/JP2020031027A/en
Application granted granted Critical
Publication of JP7093078B2 publication Critical patent/JP7093078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a solid electrolyte for an all-solid-state lithium-sulfur battery which is improved from a LiS-PSglass ceramic and has improved lithium ion conductivity and stability of battery capacity after repeated charge and discharge, and a manufacturing method thereof.SOLUTION: There is provided a solid electrolyte for an all-solid lithium-sulfur battery in which, in a LiS-PSseries glass ceramic, a part of the PSis replaced by SeS, and the solid electrolyte consists of a LiS-PS-SeSseries glass ceramic whose content of SeSis 1 to 6 mol% of the content of PS. There is also provided a manufacturing method of the solid electrolyte for an all-solid lithium-sulfur battery.SELECTED DRAWING: None

Description

本発明は、LiS−P−SeS系ガラスセラミックからなる全固体リチウム硫黄電池用固体電解質、前記固体電解質に適した正極材料及びこれらの製造方法、並びにこれらを含む全固体リチウム硫黄電池に関する。 The present invention relates to a solid electrolyte for an all-solid lithium-sulfur battery made of a Li 2 S—P 2 S 5 —SeS 2 glass ceramic, a cathode material suitable for the solid electrolyte, a method for producing the same, and an all-solid lithium containing the same. Related to sulfur batteries.

リチウムイオン電池の大型化、高性能化、低コスト化が求められる中で、無機固体電解質を用いた全固体リチウム二次電池(例えば、全固体リチウム硫黄(Li−S)電池)が安全性、信頼性等に優れた次世代蓄電池として注目されている。   As the size, performance, and cost of lithium-ion batteries are required, all-solid-state lithium secondary batteries (for example, all-solid lithium-sulfur (Li-S) batteries) that use inorganic solid electrolytes are safe, It is attracting attention as a next-generation storage battery with excellent reliability and the like.

非特許文献1は、「硫化物ガラス系電解質を用いた全固体電池の開発と今後の展望」と称する論文であり、LiS−P系ガラスセラミックからなる固体電解質が種々の固体電解質の中でも高いイオン伝導率を示すこと、材料の組成(混合比率)や構造の乱れ具合によってリチウムイオン伝導率が異なること等が報告されている。 Non-Patent Document 1, a paper called "sulfide and development of all-solid-state battery using a glass-based electrolyte Future Perspectives", Li 2 S-P 2 S 5 -based glass made of ceramic solid electrolyte various solid It has been reported that among electrolytes, high ion conductivity is exhibited, and that lithium ion conductivity varies depending on the composition (mixing ratio) of materials and the degree of disorder in the structure.

例えば、正極にポリサルファイドと呼ばれるSから成る硫黄粉末、負極に金属Li、そして電解質に硫化物系材料のLiS−P系材料とヨウ化リチウム(LiI)を混合した材料を使用し、加圧してセルを作製した全固体リチウム硫黄(Li−S)電池が大きな放電容量密度を示したことが記載されている(非特許文献1の図2など)。 For example, use sulfur powder consisting of S 8 called polysulfide positive electrode, metallic Li as a negative electrode, and the electrolyte Li 2 S-P 2 S 5 based material and material obtained by mixing lithium iodide (LiI) of sulfide-based material It has been described that an all-solid lithium sulfur (Li-S) battery in which a cell was fabricated by pressurization exhibited a large discharge capacity density (see, for example, FIG. 2 of Non-Patent Document 1).

また、非特許文献1、2には、LiS−P系ガラスセラミックからなる固体電解質の導電率をさらに増大させるためには、LiS−P系ガラスセラミックの元素を置換したり元素を添加する方法が有効であることが開示されている。例えば、Pの一部をPやPで置き換えることによって導電率が増加したこと、またLiIやGeSを添加した場合に導電率が増加したこと等が記載されている。これらの導電率の増加は、硫黄欠損、新たな結晶生成及び結晶性向上が理由と考えられている。なお、Pで置き換えることについては非特許文献3にも開示されている。 Further, Non-Patent Documents 1,2, Li 2 S-P 2 in order to S 5 system increases the conductivity of the solid electrolyte made of glass-ceramic further, Li 2 S-P 2 S 5 -based glass ceramic element It is disclosed that a method of substituting an element or adding an element is effective. For example, it is described that the conductivity was increased by replacing a part of P 2 S 5 with P 2 S 3 or P 2 O 5 , and that the conductivity was increased when LiI or GeS 2 was added. ing. These increases in conductivity are believed to be due to sulfur deficiency, new crystal formation and improved crystallinity. The replacement with P 2 O 5 is also disclosed in Non-Patent Document 3.

「硫化物ガラス系電解質を用いた全固体電池の開発と今後の展望」、辰巳砂昌弘、大阪府立大学大学院工学研究科、2014年、粉砕 (57), 3-10, 2014"Development and Future Prospects of All-Solid-State Batteries Using Sulfide Glass-Based Electrolyte", Masahiro Tatsumi, Graduate School of Engineering, Osaka Prefecture University, 2014, Pulverization (57), 3-10, 2014 Structure, ionic conductivity and electrochemical stability of Li2S-P2S5-LiI glass and glass-ceramic electrolytes、Satoshi Ujiie, Akitoshi Hayashi, Masahiro Tatsumisago、Solid State Ionics 211 (2012) 42-45Structure, ionic conductivity and electrochemical stability of Li2S-P2S5-LiI glass and glass-ceramic electrolytes, Satoshi Ujiie, Akitoshi Hayashi, Masahiro Tatsumisago, Solid State Ionics 211 (2012) 42-45 「Improved chemical stability and cyclability in Li2S-P2S5-P2O5-ZnO composite electrolytes for all-solid-state rechargeable lithium batteries」、Akitoshi Hayashi et al., Journal of Alloys and Compounds 591 (2014) 247-250`` Improved chemical stability and cyclability in Li2S-P2S5-P2O5-ZnO composite electrolytes for all-solid-state rechargeable lithium batteries '', Akitoshi Hayashi et al., Journal of Alloys and Compounds 591 (2014) 247-250

上記の通り、固体電解質の中でもLiS−P系ガラスセラミックからなる固体電解質の研究開発が進められているが、リチウムイオン伝導率及び充放電を繰り返した際の電池容量の維持の点で未だ改善の余地がある。 As described above, among solid electrolytes, research and development of solid electrolytes composed of Li 2 S—P 2 S 5 glass ceramics are being promoted, but lithium ion conductivity and maintenance of battery capacity when charge and discharge are repeated are maintained. There is still room for improvement in this respect.

よって、本発明は、LiS−P系ガラスセラミックを改良した固体電解質であって、リチウムイオン伝導率及び充放電を繰り返した際の電池容量の安定性が向上した全固体リチウム硫黄電池用固体電解質及びその製造方法を提供することを目的とする。また、当該固体電解質と組み合わせて用いるための正極材料及びその製造方法、並びに当該固体電解質を備えた全固体リチウム硫黄電池を提供することも目的とする。 Therefore, the present invention relates to a solid electrolyte in which a Li 2 SP 2 S 5 -based glass ceramic is improved, and which has improved lithium ion conductivity and stability of battery capacity when charge / discharge is repeated, and all-solid lithium sulfur. An object of the present invention is to provide a solid electrolyte for a battery and a method for producing the same. It is another object of the present invention to provide a positive electrode material for use in combination with the solid electrolyte, a method for producing the same, and an all-solid lithium-sulfur battery including the solid electrolyte.

本発明者らは上記目的を達成すべく鋭意研究を重ねた結果、LiS−P系ガラスセラミックを改良した特定組成のLiS−P−SeS系ガラスセラミックを用いる場合には上記目的を達成できることを見出し、本発明を完成するに至った。 The present inventors have result of intensive studies to achieve the above object, the Li 2 S-P 2 S 5-SES 2 system glass-ceramic having a specific composition having improved Li 2 S-P 2 S 5 -based glass ceramic It has been found that the above object can be achieved when used, and the present invention has been completed.

つまり、本発明は下記の全固体リチウム硫黄電池用固体電解質及びその製造方法、当該固体電解質と組み合わせて用いるための正極材料及びその製造方法、並びに当該固体電解質を備えた全固体リチウム硫黄電池に関する。
1.LiS−P系ガラスセラミックにおいて、
前記Pの一部がSeSに置換されており、SeSの含有量がPの含有量の1〜6モル%であるLiS−P−SeS系ガラスセラミックからなることを特徴とする全固体リチウム硫黄電池用固体電解質。
2.前記LiS−P−SeS系ガラスセラミックの組成が、
7LiS−(3−x)P−xSeS
〔但し、SeSのモル比を示すxは、0<x≦0.1である。〕
である、上記項1に記載の固体電解質。
3.前記LiS−P−SeS系ガラスセラミックの組成が、
8LiS−(2−x)P−xSeS
〔但し、SeSのモル比を示すxは、0<x≦0.1である。〕
である、上記項1に記載の固体電解質。
4.更にFe,Mg,Ca,V,Se及びSnからなる群から選択される少なくとも一種の元素を含有する、上記項1〜3のいずれかに記載の固体電解質。
5.LiS粉末,P粉末及びSeS粉末を含有する原料混合物をボールミルを用いて室温下で粉砕した後、粉砕物を不活性ガス雰囲気中で焼成することを特徴とする、上記項1〜4のいずれかに記載の固体電解質の製造方法。
6.全固体リチウム硫黄電池において、上記項1〜4のいずれかに記載の固体電解質と組み合わせて用いるための正極材料であって、前記LiS−P−SeS系ガラスセラミックと、硫黄と、炭素との複合物であるS−LiS−P−SeS−C系複合体からなることを特徴とする全固体リチウム硫黄電池用正極材料。
7.硫黄及び炭素材料をボールミルを用いて室温下で粉砕した後、粉砕物と前記LiS−P−SeS系ガラスセラミックとの混合物をボールミルを用いて室温下で粉砕することを特徴とする、上記項6に記載の正極材料の製造方法。
8.正極材料、負極材料、及び上記項1〜4のいずれかに記載の固体電解質を備えた、全固体リチウム硫黄電池。
That is, the present invention relates to the following solid electrolyte for an all-solid lithium-sulfur battery and a method for producing the same, a cathode material for use in combination with the solid electrolyte and a method for producing the same, and an all-solid lithium-sulfur battery including the solid electrolyte.
1. In a Li 2 SP 2 S 5 glass ceramic,
The portion of the P 2 S 5 has been substituted with a SeS 2, Li 2 S-P 2 S 5 -SeS 2 based content SeS 2 is 1-6 mol% of the content of P 2 S 5 A solid electrolyte for an all-solid lithium-sulfur battery, comprising a glass ceramic.
2. The composition of the Li 2 S—P 2 S 5 —SeS 2 based glass ceramic is:
7Li 2 S- (3-x) P 2 S 5 -xSeS 2
[However, x indicating the molar ratio of SeS 2 is 0 <x ≦ 0.1. ]
Item 2. The solid electrolyte according to Item 1, wherein
3. The composition of the Li 2 S—P 2 S 5 —SeS 2 based glass ceramic is:
8Li 2 S- (2-x) P 2 S 5 -xSeS 2
[However, x indicating the molar ratio of SeS 2 is 0 <x ≦ 0.1. ]
Item 2. The solid electrolyte according to Item 1, wherein
4. Item 4. The solid electrolyte according to any one of Items 1 to 3, further comprising at least one element selected from the group consisting of Fe, Mg, Ca, V, Se and Sn.
5. The above-described item, wherein the raw material mixture containing the Li 2 S powder, the P 2 S 5 powder, and the SeS 2 powder is pulverized at room temperature using a ball mill, and the pulverized material is fired in an inert gas atmosphere. 5. The method for producing a solid electrolyte according to any one of 1 to 4.
6. An all-solid-state lithium-sulfur battery, a positive electrode material for use in combination with a solid electrolyte according to any one of claim 1 to 4, and the Li 2 S-P 2 S 5 -SeS 2 system glass ceramics, sulfur When, S-Li 2 S-P 2 S 5 -SeS 2 -C based positive electrode material for all-solid lithium-sulfur battery, characterized by comprising a complex which is a composite of carbon.
7. After grinding at room temperature using a ball mill sulfur and carbon material, characterized in that ground under room temperature pulverized material and the Li 2 S-P 2 S 5 -SeS mixture of 2 glass ceramics with a ball mill Item 7. The method for producing a positive electrode material according to Item 6 above.
8. An all-solid lithium-sulfur battery comprising a positive electrode material, a negative electrode material, and the solid electrolyte according to any one of the above items 1 to 4.

本発明の全固体リチウム硫黄電池用固体電解質は特定組成のLiS−P−SeS系ガラスセラミックからなり、従来品のLiS−P系ガラスセラミックと比べてリチウムイオン伝導率が向上している。また、当該固体電解質を備えた全固体リチウム硫黄電池は充放電を繰り返した際の電池容量の安定性が向上している。また、本発明の固体電解質及び正極材料の製造方法は、それぞれ、前記固体電解質、及び前記固体電解質と組み合わせて用いる正極材料の製造方法として有用である。 The solid electrolyte for an all-solid-state lithium-sulfur battery of the present invention is made of a Li 2 S—P 2 S 5 —SeS 2 system glass ceramic having a specific composition, and has a higher lithium content than a conventional Li 2 S—P 2 S 5 system glass ceramic. The ionic conductivity is improved. Further, the all-solid-state lithium-sulfur battery provided with the solid electrolyte has improved stability in battery capacity when charging and discharging are repeated. In addition, the method for producing a solid electrolyte and a positive electrode material of the present invention is useful as a method for producing the solid electrolyte and a positive electrode material used in combination with the solid electrolyte, respectively.

試験例1の結果(ガラスセラミックのX線回折パターン)を示す図である。FIG. 4 is a diagram showing the results (X-ray diffraction pattern of glass ceramic) of Test Example 1. 試験例2の結果(ガラスセラミックのイオン伝導率)を示す図である。It is a figure which shows the result (ion conductivity of glass ceramics) of Test Example 2. 試験例3の結果(ガラスセラミックのインピーダンスプロット)を示す図である。It is a figure showing the result (impedance plot of glass ceramics) of example 3 of an examination. 試験例4の結果(ガラスセラミックの直流電流曲線)を示す図である。It is a figure showing the result (DC current curve of glass ceramics) of example 4 of an examination. 試験例5の結果(全固体リチウム硫黄電池の充放電特性1)を示す図である。FIG. 9 is a view showing the results of Test Example 5 (charge / discharge characteristics 1 of an all-solid lithium-sulfur battery). 試験例6の結果(全固体リチウム硫黄電池の充放電特性2)を示す図である。FIG. 9 is a diagram showing the results of Test Example 6 (charge / discharge characteristics 2 of an all-solid lithium-sulfur battery). 全固体リチウム硫黄電池における正極材料1、固体電解質2、負極材料3、及びステンレススチールディスク4の配置の一例を示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing an example of the arrangement of a positive electrode material 1, a solid electrolyte 2, a negative electrode material 3, and a stainless steel disk 4 in an all-solid lithium sulfur battery.

全固体リチウム硫黄(Li−S)電池用固体電解質
(固体電解質)
本発明の全固体リチウム硫黄電池用固体電解質(以下、「本発明の固体電解質」ともいう)は、LiS−P系ガラスセラミックにおいて、前記Pの一部がSeSに置換されており、SeSの含有量がPの含有量の1〜6モル%であるLiS−P−SeS系ガラスセラミックからなることを特徴とする。
Solid electrolyte for all-solid lithium sulfur (Li-S) batteries (solid electrolyte)
The solid electrolyte for an all-solid lithium-sulfur battery of the present invention (hereinafter, also referred to as “the solid electrolyte of the present invention”) is a Li 2 S—P 2 S 5 based glass ceramic, in which a part of P 2 S 5 is SeS 2. is substituted in, characterized by comprising the Li 2 S-P 2 S 5 -SeS 2 based glass ceramic content SeS 2 is 1-6 mol% of the content of P 2 S 5.

上記特徴を有する本発明の固体電解質は、特定組成のLiS−P−SeS系ガラスセラミックからなり、従来品のLiS−P系ガラスセラミックと比べてリチウムイオン伝導率が向上している。また、当該固体電解質を備えた全固体リチウム硫黄電池は充放電を繰り返した際の電池容量の安定性が向上している。 The solid electrolyte of the present invention having the above characteristics is made of a Li 2 S—P 2 S 5 —SeS 2 system glass ceramic having a specific composition, and has a higher lithium ion concentration than a conventional Li 2 S—P 2 S 5 system glass ceramic. The conductivity has improved. Further, the all-solid-state lithium-sulfur battery provided with the solid electrolyte has improved stability in battery capacity when charging and discharging are repeated.

本発明の固体電解質は、LiS−P系ガラスセラミックにおいて、前記Pの一部がSeSに置換されたLiS−P−SeS系ガラスセラミックであって、SeSの含有量がPの含有量の1〜6モル%であればよいが、その中でも1〜5.3モル%が好ましく、3〜3.5モル%がより好ましい。 The solid electrolyte of the present invention, Li in 2 S-P 2 S 5 based glass ceramics, wherein P 2 part of S 5 is in been Li 2 S-P 2 S 5-SES 2 based glass ceramics substituted SeS 2 Therefore, the content of SeS 2 may be 1 to 6 mol% of the content of P 2 S 5 , but among them, 1 to 5.3 mol% is preferable, and 3 to 3.5 mol% is more preferable. .

本発明の固体電解質は、上記の中でも、特にガラスセラミックの組成が、
7LiS−(3−x)P−xSeS
〔但し、SeSのモル比を示すxは、0<x≦0.1である。〕
であるものが好ましい。Pの含有量に対するSeSの含有量(モル%)を示すxは0<x≦0.1であればよいが、その中でも0.03≦x≦0.1が好ましく、特に0.08≦x≦0.1が好ましい。
The solid electrolyte of the present invention, among the above, especially the composition of the glass ceramic,
7Li 2 S- (3-x) P 2 S 5 -xSeS 2
[However, x indicating the molar ratio of SeS 2 is 0 <x ≦ 0.1. ]
Is preferred. X indicating the content (mol%) of SeS 2 with respect to the content of P 2 S 5 may be 0 <x ≦ 0.1, and among them, 0.03 ≦ x ≦ 0.1 is preferable, and 0 is particularly preferable. 0.08 ≦ x ≦ 0.1 is preferred.

また、他の態様として、特にガラスセラミックの組成が、
8LiS−(2−x)P−xSeS
〔但し、SeSのモル比を示すxは、0<x≦0.1である。〕
であるものが好ましい。Pの含有量に対するSeSの含有量(モル%)を示すxは0<x≦0.1であればよいが、その中でも0.03≦x≦0.1が好ましく、特に0.08≦x≦0.1が好ましい。
Further, as another aspect, particularly the composition of the glass ceramic,
8Li 2 S- (2-x) P 2 S 5 -xSeS 2
[However, x indicating the molar ratio of SeS 2 is 0 <x ≦ 0.1. ]
Is preferred. X indicating the content (mol%) of SeS 2 with respect to the content of P 2 S 5 may be 0 <x ≦ 0.1, and among them, 0.03 ≦ x ≦ 0.1 is preferable, and 0 is particularly preferable. 0.08 ≦ x ≦ 0.1 is preferred.

本発明の固体電解質は、更にFe,Mg,Ca,V,Se及びSnからなる群から選択される少なくとも一種の元素を含有することが好ましい。これらの元素を含有することにより、固体電解質の導電率増大の効果が得られやすい。なお、これらの元素の含有量は限定的ではないが、Pの含有量に対するこれらの元素の含有量(モル%)は0.03〜0.3モル%が好ましく、0.08〜0.1モル%がより好ましい。これらの元素は、例えばPの一部をFeCl,FeCl,MgS,CaS,V,SeCl,SnCl等の少なくとも一種(添加物)により置換することにより含有することができる。
(固体電解質の製造方法)
本発明の固体電解質の製造方法は限定的ではないが、LiS粉末,P粉末及びSeS粉末を含有する原料混合物(更に必要に応じて前記添加物を含む)をボールミルを用いて室温下で粉砕した後、粉砕物を不活性ガス雰囲気中で焼成することにより好適に製造することができる。原料混合物における各成分の粉末の含有量は限定されず、前記本発明の固体電解質を構成するガラスセラミックの組成となるように各成分を配合すればよい。
The solid electrolyte of the present invention preferably further contains at least one element selected from the group consisting of Fe, Mg, Ca, V, Se and Sn. By containing these elements, the effect of increasing the conductivity of the solid electrolyte is easily obtained. The content of these elements is not limited, but the content (mol%) of these elements with respect to the content of P 2 S 5 is preferably 0.03 to 0.3 mol%, and 0.08 to 0.3 mol%. 0.1 mol% is more preferred. These elements are contained by, for example, substituting a part of P 2 S 5 with at least one (additive) such as FeCl 2 , FeCl 3 , MgS, CaS, V 2 S 3 , SeCl 2 , and SnCl 2. Can be.
(Method of manufacturing solid electrolyte)
Although the method for producing the solid electrolyte of the present invention is not limited, a raw material mixture containing Li 2 S powder, P 2 S 5 powder, and SeS 2 powder (and further containing the above additives, if necessary) is prepared using a ball mill. After pulverizing at room temperature, the pulverized product can be suitably manufactured by firing in an inert gas atmosphere. The content of the powder of each component in the raw material mixture is not limited, and each component may be blended so as to have a composition of the glass ceramic constituting the solid electrolyte of the present invention.

原料混合物を粉砕する際は室温下でボールミルを用いて粉砕すればよいが、例えば、高速遊星型ボールミルを用いて10〜60時間粉砕することが好ましく、25〜35時間粉砕することがより好ましい。また、粉砕物は不活性ガス雰囲気中で焼成して所望のガラスセラミックとすればよいが、特にアルゴンガス雰囲気下、230〜280℃で焼成することが好ましく、255〜265℃で焼成することがより好ましい。焼成時間は焼成温度によって適宜調整できるが、1〜4時間が好ましく、2〜3時間がより好ましい。   When the raw material mixture is pulverized, it may be pulverized using a ball mill at room temperature. For example, pulverization is preferably performed using a high-speed planetary ball mill for 10 to 60 hours, more preferably 25 to 35 hours. The pulverized material may be fired in an inert gas atmosphere to obtain a desired glass ceramic, and is preferably fired at 230 to 280 ° C under an argon gas atmosphere, and more preferably fired at 255 to 265 ° C. More preferred. The firing time can be appropriately adjusted depending on the firing temperature, but is preferably 1 to 4 hours, more preferably 2 to 3 hours.

全固体リチウム硫黄(Li−S)電池
前記本発明の固体電解質は全固体リチウム硫黄(Li−S)電池の固体電解質として有用であり、当該固体電解質と、正極材料と、負極材料とを組み合わせることにより全固体リチウム硫黄電池を構成することができる。
All-solid lithium-sulfur (Li-S) battery The solid electrolyte of the present invention is useful as a solid electrolyte for an all-solid lithium-sulfur (Li-S) battery, and the solid electrolyte is combined with a positive electrode material and a negative electrode material. Thereby, an all solid lithium sulfur battery can be configured.

(正極材料)
正極材料としては限定されず、全固体リチウム硫黄電池で公知の正極材料(例えば、S−LiS−P−C複合体)を使用することができるが、本発明では、前記固体電解質と組み合わせて用いるための正極材料としてLiS−P−SeS系ガラスセラミックと、硫黄と、炭素との複合物である、S−LiS−P−SeS−C系複合体からなる正極材料が好ましい。
(Positive electrode material)
As the cathode material is not limited, a known positive electrode materials in all-solid lithium sulfur battery (e.g., S-Li 2 S-P 2 S 5 -C complex) can be used, in the present invention, the solid and Li 2 S-P 2 S 5 -SeS 2 based glass ceramics as a positive electrode material for use in combination with the electrolyte, and sulfur, which is a composite of carbon, S-Li 2 S-P 2 S 5 -SeS 2 A cathode material composed of a —C-based composite is preferred.

このような正極材料は、従来品のS−LiS−P−C複合体において、前記Pの一部がSeSに置換されたS−LiS−P−SeS−Cで表される複合材料であればよいが、その中でも、本発明の固体電解質と同様にSeSの含有量がPの含有量の1〜6モル%であるものが好ましく、その中でも1〜5.3モル%が好ましく、3〜3.5モル%がより好ましい。具体的には、
S−7LiS−(3−x)P−xSeS−C
〔但し、SeSのモル比を示すxは、0<x≦0.1である。〕
であるもの、及び、
S−8LiS−(2−x)P−xSeS−C
〔但し、SeSのモル比を示すxは、0<x≦0.1である。〕
であるものが好ましい。このような複合材料を用いることにより、全固体リチウム硫黄電池の充放電を繰り返した際の電池容量の安定性が向上され易い。
Such cathode materials are in S-Li 2 S-P 2 S 5 -C complex of conventional, S-Li 2 partially substituted into SeS 2 of the P 2 S 5 S-P 2 S Any composite material represented by 5- SeS 2 -C may be used. Among them, the content of SeS 2 is 1 to 6 mol% of the content of P 2 S 5 similarly to the solid electrolyte of the present invention. Is preferred, and among them, 1 to 5.3 mol% is preferable, and 3 to 3.5 mol% is more preferable. In particular,
S-7Li 2 S- (3- x) P 2 S 5 -xSeS 2 -C
[However, x indicating the molar ratio of SeS 2 is 0 <x ≦ 0.1. ]
And
S-8Li 2 S- (2- x) P 2 S 5 -xSeS 2 -C
[However, x indicating the molar ratio of SeS 2 is 0 <x ≦ 0.1. ]
Is preferred. By using such a composite material, the stability of the battery capacity when charging and discharging of the all-solid-state lithium-sulfur battery is repeated is likely to be improved.

上記正極材料の製造方法は限定的ではないが、硫黄及び炭素材料をボールミルを用いて室温下で粉砕した後、粉砕物とLiS−P−SeS系ガラスセラミックとの混合物をボールミルを用いて室温下で粉砕することにより好適に製造することができる。硫黄、炭素材料及びLiS−P−SeS系ガラスセラミックの配合割合は、得られる正極材料が所望の組成となるように適宜設定することができる。 Method for producing the positive electrode material is not limited, after trituration at room temperature sulfur and carbon material by using a ball mill, pulverized and Li 2 S-P 2 S 5 -SeS mixture of 2 glass ceramics It can be suitably manufactured by pulverizing at room temperature using a ball mill. The mixing ratio of the sulfur, the carbon material, and the Li 2 S—P 2 S 5 —SeS 2 based glass ceramic can be appropriately set so that the obtained positive electrode material has a desired composition.

上記炭素材料としては、アセチレンカーボンブラック(AB)、人造黒鉛(スーパーP)、グラファイト、気相成長炭素繊維、カーボンナノチューブ等が挙げられる。   Examples of the carbon material include acetylene carbon black (AB), artificial graphite (Super P), graphite, vapor grown carbon fiber, and carbon nanotube.

硫黄及び炭素材料をボールミルを用いて室温下で粉砕する際は、例えば、高エネルギー遊星型ボールミルを用いて5〜15時間粉砕することが好ましく、8〜10時間粉砕することがより好ましい。また、粉砕物とLiS−P−SeS系ガラスセラミックとの混合物をボールミルを用いて室温下で粉砕する際は、例えば、高エネルギー遊星型ボールミルを用いて5〜15時間粉砕することが好ましく、8〜10時間粉砕することがより好ましい。 When pulverizing the sulfur and carbon materials at room temperature using a ball mill, for example, it is preferable to pulverize using a high energy planetary ball mill for 5 to 15 hours, more preferably 8 to 10 hours. Further, when the ground under room temperature using a ball mill a mixture of pulverized material and Li 2 S-P 2 S 5 -SeS 2 based glass ceramics, for example, 5-15 hours milled using a high energy planetary ball mill It is more preferable to grind for 8 to 10 hours.

(負極材料)
負極材料としては限定されず、全固体リチウム硫黄電池で公知の負極材料を使用することができる。例えば、金属リチウム、リチウム合金(Li−In,Li−Al,Li−Si等)、リチウム−グラファイト層間化合物などのリチウムと炭素材料との複合材料等が挙げられる。これらの負極材料は通常金属箔の状態で使用することができる。
(Negative electrode material)
The negative electrode material is not limited, and a known negative electrode material for an all solid lithium sulfur battery can be used. For example, a composite material of lithium and a carbon material such as lithium metal, a lithium alloy (Li-In, Li-Al, Li-Si, etc.), a lithium-graphite intercalation compound, and the like can be given. These negative electrode materials can be used usually in the form of a metal foil.

(Li−S電池の一例)
図7に全固体リチウム硫黄電池における正極材料1、固体電解質2、負極材料3、及びステンレススチールディスク4の配置の一例の断面模式図を示す。
(Example of Li-S battery)
FIG. 7 is a schematic cross-sectional view showing an example of the arrangement of the positive electrode material 1, the solid electrolyte 2, the negative electrode material 3, and the stainless steel disk 4 in the all-solid lithium sulfur battery.

Li−S電池は、例えば、乾燥アルゴン充填グローブボックス中で組み立てることができる。組み立て方法の一例としては、先ず正極材料粉末と固体電解質粉末とを直径8〜12mmのセルに順番に充填した後、200〜400MPaの圧力で1〜5分間プレスする。次いで、負極材料であるリチウム金属箔を固体電解質の表面に置き、この3層のペレットを2枚のステンレススチールディスクで挟み込む。次いで、挟み込んだペレットを室温で1〜5分間、50〜200MPaで加圧することによりLi−S電池が得られる。   Li-S batteries can be assembled, for example, in a dry argon-filled glove box. As an example of an assembling method, first, a positive electrode material powder and a solid electrolyte powder are sequentially filled in a cell having a diameter of 8 to 12 mm, and then pressed at a pressure of 200 to 400 MPa for 1 to 5 minutes. Next, a lithium metal foil as a negative electrode material is placed on the surface of the solid electrolyte, and the three-layered pellet is sandwiched between two stainless steel disks. Next, the sandwiched pellet is pressed at 50 to 200 MPa at room temperature for 1 to 5 minutes to obtain a Li-S battery.

以下に実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。   Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples. However, the present invention is not limited to the embodiments.

実施例1(ガラスセラミックの調製)
モル比7:2.9:0.1であるLiS、P及びSeSの粉末の混合物を、10個のメノウボール(直径10mm)を有するアルゴン充填メノウポット(容量45cm)に入れ、遊星型ボールミル装置を用いて、510rpmの回転速度で、室温、30時間機械的に粉砕・混合した。次に、得られた粉末をアルゴン雰囲気中で260℃、2時間加熱することで、70LiS−29P−1SeSガラスセラミックを得た。
Example 1 (Preparation of glass ceramic)
A mixture of powders of Li 2 S, P 2 S 5 and SeS 2 with a molar ratio of 7: 2.9: 0.1 was charged in an argon-filled agate pot (capacity 45 cm 3 ) with 10 agate balls (diameter 10 mm). And mechanically pulverized and mixed at room temperature for 30 hours at a rotation speed of 510 rpm using a planetary ball mill. Next, the obtained powder was heated at 260 ° C. for 2 hours in an argon atmosphere to obtain 70Li 2 S-29P 2 S 5 -1SeS 2 glass ceramic.

実施例2(ガラスセラミックの調製)
モル比7:2.95:0.05であるLiS、P及びSeSの粉末の混合物を、10個のメノウボール(直径10mm)を有するアルゴン充填メノウポット(容量45cm)に入れ、遊星型ボールミル装置を用いて、510rpmの回転速度で、室温、30時間機械的に粉砕・混合した。次に、得られた粉末をアルゴン雰囲気中で260℃、2時間加熱することで、70LiS−29.5P−0.5SeSガラスセラミックを得た。
Example 2 (Preparation of glass ceramic)
A mixture of powders of Li 2 S, P 2 S 5 and SeS 2 with a molar ratio of 7: 2.95: 0.05 was charged in an argon-filled agate pot (capacity 45 cm 3 ) with 10 agate balls (diameter 10 mm). And mechanically pulverized and mixed at room temperature for 30 hours at a rotation speed of 510 rpm using a planetary ball mill. Next, the obtained powder was heated in an argon atmosphere at 260 ° C. for 2 hours to obtain 70Li 2 S−29.5P 2 S 5 −0.5SeS 2 glass ceramic.

実施例3(ガラスセラミックの調製)
モル比7:2.97:0.03であるLiS、P及びSeSの粉末の混合物を、10個のメノウボール(直径10mm)を有するアルゴン充填メノウポット(容量45cm)に入れ、遊星型ボールミル装置を用いて、510rpmの回転速度で、室温、30時間機械的に粉砕・混合した。次に、得られた粉末をアルゴン雰囲気中で260℃、2時間加熱することで、70LiS−29.7P−0.3SeSガラスセラミックを得た。
Example 3 (Preparation of glass ceramic)
A mixture of powders of Li 2 S, P 2 S 5 and SeS 2 with a molar ratio of 7: 2.97: 0.03 was charged to an argon-filled agate pot with 10 agate balls (diameter 10 mm) (capacity 45 cm 3 ) And mechanically pulverized and mixed at room temperature for 30 hours at a rotation speed of 510 rpm using a planetary ball mill. Next, the obtained powder was heated in an argon atmosphere at 260 ° C. for 2 hours to obtain 70Li 2 S−29.7P 2 S 5 −0.3SeS 2 glass ceramic.

比較例1(ガラスセラミックの調製)
モル比7:3であるLiS及びPの粉末の混合物を、10個のメノウボール(直径10mm)を有するアルゴン充填メノウポット(容量45cm)に入れ、遊星型ボールミル装置を用いて、510rpmの回転速度で、室温、30時間機械的に粉砕・混合した。次に、得られた粉末をアルゴン雰囲気中で260℃、2時間加熱することで、70LiS−30Pガラスセラミックを得た。
Comparative Example 1 (Preparation of glass ceramic)
A mixture of powders of Li 2 S and P 2 S 5 having a molar ratio of 7: 3 was placed in an argon-filled agate pot (capacity: 45 cm 3 ) having 10 agate balls (diameter: 10 mm), and a planetary ball mill was used. Then, the mixture was mechanically pulverized and mixed at a rotation speed of 510 rpm at room temperature for 30 hours. Next, the obtained powder was heated in an argon atmosphere at 260 ° C. for 2 hours to obtain 70Li 2 S-30P 2 S 5 glass ceramic.

比較例2(ガラスセラミックの調製)
モル比7:2.7:0.3であるLiS、P及びSeSの粉末の混合物を、10個のメノウボール(直径10mm)を有するアルゴン充填メノウポット(容量45cm)に入れ、遊星型ボールミル装置を用いて、510rpmの回転速度で、室温、30時間機械的に粉砕・混合した。次に、得られた粉末をアルゴン雰囲気中で260℃、2時間加熱することで、70LiS−27P−3SeSガラスセラミックを得た。
Comparative Example 2 (Preparation of glass ceramic)
A mixture of powders of Li 2 S, P 2 S 5 and SeS 2 having a molar ratio of 7: 2.7: 0.3 was charged to an agate pot (45 cm 3 capacity) with 10 agate balls (diameter 10 mm). And mechanically pulverized and mixed at room temperature for 30 hours at a rotation speed of 510 rpm using a planetary ball mill. Next, the obtained powder was heated at 260 ° C. for 2 hours in an argon atmosphere to obtain 70Li 2 S-27P 2 S 5 -3SeS 2 glass ceramic.

比較例3(ガラスセラミックの調製)
モル比7:2.5:0.5であるLiS、P及びSeSの粉末の混合物を、10個のメノウボール(直径10mm)を有するアルゴン充填メノウポット(容量45cm)に入れ、遊星型ボールミル装置を用いて、510rpmの回転速度で、室温、30時間機械的に粉砕・混合した。次に、得られた粉末をアルゴン雰囲気中で260℃、2時間加熱することで、70LiS−25P−5SeSガラスセラミックを得た。
Comparative Example 3 (Preparation of glass ceramic)
A mixture of powders of Li 2 S, P 2 S 5 and SeS 2 with a molar ratio of 7: 2.5: 0.5 was charged to an agate pot (45 cm 3 capacity) with 10 agate balls (diameter 10 mm). And mechanically pulverized and mixed at room temperature for 30 hours at a rotation speed of 510 rpm using a planetary ball mill. Next, the obtained powder was heated in an argon atmosphere at 260 ° C. for 2 hours to obtain 70Li 2 S-25P 2 S 5 -5SeS 2 glass ceramic.

実施例4(全固体Li−S電池の製造)
S−70LiS−29P−1SeS−C複合正極電極を得るために、最初に、硫黄(S)とカーボンブラック粉末(C)を3:1(重量%)の割合でメノウポットに入れ、遊星型ボールミル装置を用いて、室温で8時間、370rpmで機械的に粉砕・混合した。
Example 4 (Production of all-solid Li-S battery)
To obtain a S-70Li 2 S-29P 2 S 5 -1SeS 2 -C composite positive electrode, first, sulfur (S) and carbon black powder (C) 3: 1 agate pot (wt.%) And mechanically pulverized and mixed at 370 rpm for 8 hours at room temperature using a planetary ball mill.

次に、S−C複合材と70LiS−29P−1SeSガラスセラミックを2:3(wt%)の割合で混合し、370rpmで8時間機械的に粉砕し、S−70LiS−29P−1SeS−C複合正極電極用粉末材料を得た。 Next, the SC composite material and 70Li 2 S-29P 2 S 5 -1SeS 2 glass ceramic were mixed at a ratio of 2: 3 (wt%), mechanically pulverized at 370 rpm for 8 hours, and S-70Li 2 A powder material for an S-29P 2 S 5 -1SeS 2 -C composite positive electrode was obtained.

図7に示す全固体電池を組立てるために、複合正極及び固体電解質粉末を直径12mmの電池用セルに充填し、次に380MPaの圧力で3分間プレスした。固体電解質の反対側にLi箔を対向電極として設置し、120MPaの圧力をかけて、固体電池を得た。   In order to assemble the all-solid-state battery shown in FIG. 7, the composite positive electrode and the solid electrolyte powder were filled in a battery cell having a diameter of 12 mm, and then pressed at 380 MPa for 3 minutes. A Li foil was placed on the opposite side of the solid electrolyte as a counter electrode, and a pressure of 120 MPa was applied to obtain a solid battery.

比較例4(全固体Li−S電池の製造)
S−70LiS−30P−C複合正極電極を得るために、最初に、硫黄(S)とカーボンブラック粉末(C)を3:1(重量%)の割合でメノウポットに入れ、遊星型ボールミル装置を用いて、室温で8時間、370rpmで機械的に粉砕・混合した。
Comparative Example 4 (Production of all-solid Li-S battery)
To obtain a S-70Li 2 S-30P 2 S 5 -C composite positive electrode, first, sulfur (S) and carbon black powder (C) 3: placed in an agate pot at a ratio of 1 (wt%), The mixture was mechanically pulverized and mixed at 370 rpm for 8 hours at room temperature using a planetary ball mill.

次に、S−C複合材とLiS−Pガラスセラミックを2:3(wt%)の割合で混合し、370rpmで8時間機械的に粉砕し、S−70LiS−30P−C複合正極電極用粉末材料を得た。 Next, the SC composite material and the Li 2 SP 2 S 5 glass ceramic were mixed at a ratio of 2: 3 (wt%), and mechanically pulverized at 370 rpm for 8 hours to obtain S-70Li 2 S-30P. It was obtained 2 S 5 -C composite positive electrode powder materials.

図7に示す全固体電池を組立てるために、複合正極及び固体電解質粉末を直径12mmの電池用セルに充填し、次に380MPaの圧力で3分間プレスした。固体電解質の反対側にLi箔を対向電極として設置し、120MPaの圧力をかけて、固体電池を得た。   In order to assemble the all-solid-state battery shown in FIG. 7, the composite positive electrode and the solid electrolyte powder were filled in a battery cell having a diameter of 12 mm, and then pressed at 380 MPa for 3 minutes. A Li foil was placed on the opposite side of the solid electrolyte as a counter electrode, and a pressure of 120 MPa was applied to obtain a solid battery.

試験例1
実施例1〜3及び比較例1〜3で調製したガラスセラミックのX線回折パターンを調べた。X線回折スペクトル測定結果を図1に示す。
Test example 1
The X-ray diffraction patterns of the glass ceramics prepared in Examples 1 to 3 and Comparative Examples 1 to 3 were examined. FIG. 1 shows the results of X-ray diffraction spectrum measurement.

図1の結果によれば、実施例1〜3及び比較例2のガラスセラミックのX線回折パターンは比較例1(標準)のX線回析パターンとほぼ同じであった。しかしながら、比較例3のガラスセラミックのX線回折パターンは比較例1(標準)のX線回折パターンから変化しておりガラスセラミックの結晶構造が変化したことが分かった。   According to the results of FIG. 1, the X-ray diffraction patterns of the glass ceramics of Examples 1 to 3 and Comparative Example 2 were almost the same as the X-ray diffraction patterns of Comparative Example 1 (standard). However, the X-ray diffraction pattern of the glass ceramic of Comparative Example 3 changed from the X-ray diffraction pattern of Comparative Example 1 (standard), indicating that the crystal structure of the glass ceramic changed.

試験例2
実施例1〜5で調製したガラスセラミックのイオン伝導率を測定した。測定結果を図2に示す。
Test example 2
The ionic conductivity of the glass ceramics prepared in Examples 1 to 5 was measured. FIG. 2 shows the measurement results.

図2の結果によれば、7LiS−(3−x)P−xSeS
〔但し、SeSのモル比を示すxは、0<x≦0.1である。〕
で表される本発明の固体電解質において、x=0.1の場合にイオン伝導率の向上効果が最も大きいことが分かった。
According to the results of FIG. 2, 7Li 2 S- (3- x) P 2 S 5 -xSeS 2
[However, x indicating the molar ratio of SeS 2 is 0 <x ≦ 0.1. ]
It has been found that in the solid electrolyte of the present invention represented by the following formula, the effect of improving the ionic conductivity is greatest when x = 0.1.

試験例3
実施例1及び比較例1で調製したガラスセラミックのインピーダンスプロットを調べた。測定結果を図3に示す。
Test example 3
The impedance plots of the glass ceramics prepared in Example 1 and Comparative Example 1 were examined. FIG. 3 shows the measurement results.

図3の結果によれば、実施例1のガラスセラミックのバルク抵抗(R)は、比較例1のガラスセラミックのバルク抵抗(R)よりも小さいことが分かった。実施例1のガラスセラミックはより速い反応動力学を伴い、より低いバルク抵抗及び界面抵抗、並びにより高いイオン伝導度(5.28×10−3S・cm−1)を有することが分かった。 According to the results of FIG. 3, the bulk resistance (R 1 ) of the glass ceramic of Example 1 was smaller than the bulk resistance (R 2 ) of the glass ceramic of Comparative Example 1. The glass-ceramic of Example 1 was found to have faster reaction kinetics, lower bulk and interface resistance, and higher ionic conductivity (5.28 × 10 −3 S · cm −1 ).

試験例4
実施例1及び比較例1で調製したガラスセラミックの直流電流曲線を調べた。測定時の印加電圧は1.0V、試料サイズは12φ、試料厚さは0.51mmとした。測定結果を図4に示す。
Test example 4
The direct current curves of the glass ceramics prepared in Example 1 and Comparative Example 1 were examined. The applied voltage at the time of measurement was 1.0 V, the sample size was 12 φ, and the sample thickness was 0.51 mm. FIG. 4 shows the measurement results.

図4の結果によれば、比較例1のガラスセラミックはイオン導電率が2.4×10−3S・cm−1であるのに対し、実施例1のガラスセラミックのイオン伝導度は約5.7×10−3S・cm−1であった。SeSの添加により、ガラスセラミックのイオン伝導度が2倍以上に大きく増加した。また、実施例1のガラスセラミックのリチウム金属との長期的な適合性は、比較例1のガラスセラミックよりも良好である。 According to the results of FIG. 4, the ionic conductivity of the glass ceramic of Comparative Example 1 is 2.4 × 10 −3 S · cm −1 , whereas the ionic conductivity of the glass ceramic of Example 1 is about 5 0.7 × 10 −3 S · cm −1 . The addition of SeS 2 greatly increased the ionic conductivity of the glass ceramic by more than twice. Further, the long-term compatibility of the glass ceramic of Example 1 with lithium metal is better than the glass ceramic of Comparative Example 1.

試験例5
実施例4と比較例4の固体電池の充放電特性を比較した。充放電レートは0.05Cである。測定結果を図5に示す。
Test example 5
The charge and discharge characteristics of the solid state batteries of Example 4 and Comparative Example 4 were compared. The charge / discharge rate is 0.05C. FIG. 5 shows the measurement results.

固体電池は、硫黄からLiSへの変換に対応して1.8Vで単一のプラトーを示す。充電過程においては、どちらの固体電池もLiSの硫黄への酸化反応に起因する約2.4V付近に明確な電位プラトーを示す。充放電電位には大きな差が見られないが、5サイクルの充放電の繰り返しにおける放電容量の低下は実施例4の固体電池の方が少なかった。 Solid battery shows a single plateau at 1.8V corresponding to the conversion of sulfur to Li 2 S. In the charging process, both solid-state batteries show a distinct potential plateau around about 2.4 V due to the oxidation reaction of Li 2 S to sulfur. Although there was no significant difference in charge / discharge potential, the solid-state battery of Example 4 showed a smaller decrease in discharge capacity in repeated charge / discharge cycles of 5 cycles.

試験例6
実施例4と比較例4の固体電池の充放電特性を比較した。充放電レートは0.05C、充電電位は1.0〜3.0V、放電電位は3.0〜1.0Vである。測定結果を図6に示す。
Test example 6
The charge and discharge characteristics of the solid state batteries of Example 4 and Comparative Example 4 were compared. The charge / discharge rate is 0.05 C, the charge potential is 1.0 to 3.0 V, and the discharge potential is 3.0 to 1.0 V. FIG. 6 shows the measurement results.

実施例4と比較例4の固体電池は、1.0〜3.0Vの電圧範囲においてそれぞれ950mAh・g−1及び1187mAh・g−1の放電容量を示した。どちらも充放電の繰り返しにより容量の低下がみられるが、実施例4の固体電池の方が容量の低下が少なかった。 Solid state battery of Comparative Example 4 and Example 4, respectively, in the voltage range of 1.0~3.0V shows the discharge capacity of 950mAh · g -1 and 1187mAh · g -1. In both cases, a decrease in capacity was observed due to repetition of charge / discharge, but the solid-state battery of Example 4 showed a smaller decrease in capacity.

比較例4の固体電池のクーロン効率は、初期のサイクルで約91%であったが、実施例4の固体電池の場合、クーロン効率は約92%になった。なお、10サイクル以降では、どちらも約98.5%の効率を示した。実施例4の固体電池は、比較例4の固体電池よりも安定性に優れていることが分かる。   The coulomb efficiency of the solid state battery of Comparative Example 4 was about 91% in the initial cycle, whereas the coulomb efficiency of the solid state battery of Example 4 was about 92%. In addition, after 10 cycles, both showed an efficiency of about 98.5%. It can be seen that the solid state battery of Example 4 has better stability than the solid state battery of Comparative Example 4.

以上の試験例の結果から、本発明の全固体リチウム硫黄電池用固体電解質は、従来品のLiS−P系ガラスセラミックからなる固体電解質と比べてリチウムイオン伝導率が向上しており、また、本発明の固体電解質を備えた全固体リチウム硫黄電池は充放電を繰り返した際の電池容量の安定性が向上していることが分かる。 From the results of the above test examples, the solid electrolyte for an all-solid lithium-sulfur battery of the present invention has an improved lithium ion conductivity as compared with a solid electrolyte composed of a conventional Li 2 S—P 2 S 5 based glass ceramic. In addition, it can be seen that the all-solid-state lithium-sulfur battery provided with the solid electrolyte of the present invention has improved stability in battery capacity when charging and discharging are repeated.

1.正極材料
2.固体電解質
3.負極材料
4.ステンレススチールディスク
1. 1. Cathode material Solid electrolyte3. Negative electrode material4. Stainless steel disc

Claims (8)

LiS−P系ガラスセラミックにおいて、
前記Pの一部がSeSに置換されており、SeSの含有量がPの含有量の1〜6モル%であるLiS−P−SeS系ガラスセラミックからなることを特徴とする全固体リチウム硫黄電池用固体電解質。
In a Li 2 SP 2 S 5 glass ceramic,
The portion of the P 2 S 5 has been substituted with a SeS 2, Li 2 S-P 2 S 5 -SeS 2 based content SeS 2 is 1-6 mol% of the content of P 2 S 5 A solid electrolyte for an all-solid lithium-sulfur battery, comprising a glass ceramic.
前記LiS−P−SeS系ガラスセラミックの組成が、
7LiS−(3−x)P−xSeS
〔但し、SeSのモル比を示すxは、0<x≦0.1である。〕
である、請求項1に記載の固体電解質。
The composition of the Li 2 S—P 2 S 5 —SeS 2 based glass ceramic is:
7Li 2 S- (3-x) P 2 S 5 -xSeS 2
[However, x indicating the molar ratio of SeS 2 is 0 <x ≦ 0.1. ]
The solid electrolyte according to claim 1, wherein
前記LiS−P−SeS系ガラスセラミックの組成が、
8LiS−(2−x)P−xSeS
〔但し、SeSのモル比を示すxは、0<x≦0.1である。〕
である、請求項1に記載の固体電解質。
The composition of the Li 2 S—P 2 S 5 —SeS 2 based glass ceramic is:
8Li 2 S- (2-x) P 2 S 5 -xSeS 2
[However, x indicating the molar ratio of SeS 2 is 0 <x ≦ 0.1. ]
The solid electrolyte according to claim 1, wherein
更にFe,Mg,Ca,V,Se及びSnからなる群から選択される少なくとも一種の元素を含有する、請求項1〜3のいずれかに記載の固体電解質。   The solid electrolyte according to claim 1, further comprising at least one element selected from the group consisting of Fe, Mg, Ca, V, Se, and Sn. LiS粉末,P粉末及びSeS粉末を含有する原料混合物をボールミルを用いて室温下で粉砕した後、粉砕物を不活性ガス雰囲気中で焼成することを特徴とする、請求項1〜4のいずれかに記載の固体電解質の製造方法。 After grinding at room temperature Li 2 S powder, a raw material mixture containing P 2 S 5 powder and SeS 2 powder using a ball mill, and firing the pulverized product in an inert gas atmosphere, claim 5. The method for producing a solid electrolyte according to any one of 1 to 4. 全固体リチウム硫黄電池において、請求項1〜4のいずれかに記載の固体電解質と組み合わせて用いるための正極材料であって、前記LiS−P−SeS系ガラスセラミックと、硫黄と、炭素との複合物であるS−LiS−P−SeS−C系複合体からなることを特徴とする全固体リチウム硫黄電池用正極材料。 An all-solid-state lithium-sulfur battery, a positive electrode material for use in combination with a solid electrolyte according to any one of claims 1 to 4, and the Li 2 S-P 2 S 5 -SeS 2 system glass ceramics, sulfur When, S-Li 2 S-P 2 S 5 -SeS 2 -C based positive electrode material for all-solid lithium-sulfur battery, characterized by comprising a complex which is a composite of carbon. 硫黄及び炭素材料をボールミルを用いて室温下で粉砕した後、粉砕物と前記LiS−P−SeS系ガラスセラミックとの混合物をボールミルを用いて室温下で粉砕することを特徴とする、請求項6に記載の正極材料の製造方法。 After grinding at room temperature using a ball mill sulfur and carbon material, characterized in that ground under room temperature pulverized material and the Li 2 S-P 2 S 5 -SeS mixture of 2 glass ceramics with a ball mill The method for producing a positive electrode material according to claim 6, wherein 正極材料、負極材料、及び請求項1〜4のいずれかに記載の固体電解質を備えた、全固体リチウム硫黄電池。
An all-solid lithium sulfur battery comprising a positive electrode material, a negative electrode material, and the solid electrolyte according to claim 1.
JP2018157667A 2018-08-24 2018-08-24 A solid electrolyte for an all-solid lithium-sulfur battery made of Li2S-P2S5-SeS2-based glass ceramic, a positive electrode material suitable for the solid electrolyte, a method for producing these, and an all-solid lithium-sulfur battery containing these. Active JP7093078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018157667A JP7093078B2 (en) 2018-08-24 2018-08-24 A solid electrolyte for an all-solid lithium-sulfur battery made of Li2S-P2S5-SeS2-based glass ceramic, a positive electrode material suitable for the solid electrolyte, a method for producing these, and an all-solid lithium-sulfur battery containing these.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018157667A JP7093078B2 (en) 2018-08-24 2018-08-24 A solid electrolyte for an all-solid lithium-sulfur battery made of Li2S-P2S5-SeS2-based glass ceramic, a positive electrode material suitable for the solid electrolyte, a method for producing these, and an all-solid lithium-sulfur battery containing these.

Publications (2)

Publication Number Publication Date
JP2020031027A true JP2020031027A (en) 2020-02-27
JP7093078B2 JP7093078B2 (en) 2022-06-29

Family

ID=69622769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018157667A Active JP7093078B2 (en) 2018-08-24 2018-08-24 A solid electrolyte for an all-solid lithium-sulfur battery made of Li2S-P2S5-SeS2-based glass ceramic, a positive electrode material suitable for the solid electrolyte, a method for producing these, and an all-solid lithium-sulfur battery containing these.

Country Status (1)

Country Link
JP (1) JP7093078B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022260056A1 (en) * 2021-06-09 2022-12-15 株式会社Gsユアサ All-solid-state electrochemical element and sulfur-carbon complex
WO2023217260A1 (en) * 2022-05-13 2023-11-16 上海屹锂新能源科技有限公司 Sulfide solid state electrolyte, as well as preparation method therefor and use thereof
CN117936882A (en) * 2024-03-25 2024-04-26 四川新能源汽车创新中心有限公司 Modification method of sulfide electrolyte, sulfide electrolyte and application of sulfide electrolyte
CN117936882B (en) * 2024-03-25 2024-06-04 四川新能源汽车创新中心有限公司 Modification method of sulfide electrolyte, sulfide electrolyte and application of sulfide electrolyte

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238587A (en) * 2008-03-27 2009-10-15 Sumitomo Chemical Co Ltd Positive electrode active material powder
JP2014093262A (en) * 2012-11-06 2014-05-19 Idemitsu Kosan Co Ltd Solid electrolyte

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238587A (en) * 2008-03-27 2009-10-15 Sumitomo Chemical Co Ltd Positive electrode active material powder
JP2014093262A (en) * 2012-11-06 2014-05-19 Idemitsu Kosan Co Ltd Solid electrolyte

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022260056A1 (en) * 2021-06-09 2022-12-15 株式会社Gsユアサ All-solid-state electrochemical element and sulfur-carbon complex
WO2023217260A1 (en) * 2022-05-13 2023-11-16 上海屹锂新能源科技有限公司 Sulfide solid state electrolyte, as well as preparation method therefor and use thereof
CN117936882A (en) * 2024-03-25 2024-04-26 四川新能源汽车创新中心有限公司 Modification method of sulfide electrolyte, sulfide electrolyte and application of sulfide electrolyte
CN117936882B (en) * 2024-03-25 2024-06-04 四川新能源汽车创新中心有限公司 Modification method of sulfide electrolyte, sulfide electrolyte and application of sulfide electrolyte

Also Published As

Publication number Publication date
JP7093078B2 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
Li et al. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage
JP6611949B2 (en) Solid electrolyte materials
KR101986236B1 (en) All-solid-state secondary cell
Boulineau et al. Electrochemical properties of all-solid-state lithium secondary batteries using Li-argyrodite Li6PS5Cl as solid electrolyte
JP5278437B2 (en) Manufacturing method of all solid-state lithium battery
US10553857B2 (en) Vanadium oxysulfide based cathode materials for rechargeable battery
CN105977458B (en) Nano-diamond powder and the combination electrode material of graphene and preparation method thereof
CN104795550A (en) Tunnel type oxide material, and preparation method and application thereof
Wang et al. Facile Synthesis of Carbon‐Coated Li3VO4 Anode Material and its Application in Full Cells
Park et al. C-Na3V1. 96Fe0. 04 (PO4) 3/Fe2P nanoclusters with stable charge-transfer interface for high-power sodium ion batteries
KR20170017716A (en) Solid electrolyte material and all solid lithium battery
JP7223367B2 (en) Electrolyte for all-solid secondary battery
CN109841898A (en) Solid electrolyte and its preparation method and electrochemical appliance and electronic device comprising it
JP2020167151A (en) Sulfide solid electrolyte, sulfide solid electrolyte precursor, all-solid-state battery and method for producing sulfide solid electrolyte
WO2013133020A1 (en) Ion conducting glass-ceramics, method for manufacturing same and all-solid-state secondary battery including same
JP7093078B2 (en) A solid electrolyte for an all-solid lithium-sulfur battery made of Li2S-P2S5-SeS2-based glass ceramic, a positive electrode material suitable for the solid electrolyte, a method for producing these, and an all-solid lithium-sulfur battery containing these.
KR20200115295A (en) Sulfide solid electrolyte, precursor of sulfide solid electrolyte, all solid state battery and method for producing sulfide solid electrolyte
Wang et al. LiFeTiO 4/CNTs composite as a cathode material with high cycling stability for lithium-ion batteries
JP7164939B2 (en) All-solid secondary battery
JP2017157473A (en) Lithium ion secondary battery
JP2020087525A (en) All-solid secondary battery and solid electrolyte material
JP2017084686A (en) Electrode active material, battery and method for manufacturing electrode active material
JP2019091599A (en) Solid electrolyte for all-solid secondary battery, all-solid secondary battery, and method for manufacturing solid electrolyte
JPWO2020022342A1 (en) Solid electrolytes for all-solid-state sodium batteries, their manufacturing methods, and all-solid-state sodium batteries
WO2023032473A1 (en) Positive electrode material and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220608

R150 Certificate of patent or registration of utility model

Ref document number: 7093078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150