JP2020030986A - Method for establishing acceleration electric fields in rf cavities at high speed - Google Patents

Method for establishing acceleration electric fields in rf cavities at high speed Download PDF

Info

Publication number
JP2020030986A
JP2020030986A JP2018156295A JP2018156295A JP2020030986A JP 2020030986 A JP2020030986 A JP 2020030986A JP 2018156295 A JP2018156295 A JP 2018156295A JP 2018156295 A JP2018156295 A JP 2018156295A JP 2020030986 A JP2020030986 A JP 2020030986A
Authority
JP
Japan
Prior art keywords
cavity
frequency
power
cavities
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018156295A
Other languages
Japanese (ja)
Other versions
JP7079489B2 (en
Inventor
志高 方
Zhi Gao Fang
志高 方
佑治 福井
Yuji Fukui
佑治 福井
高志 杉村
Takashi Sugimura
高志 杉村
健太 二ツ川
Kenta Futatsukawa
健太 二ツ川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
High Energy Accelerator Research Organization
Original Assignee
High Energy Accelerator Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by High Energy Accelerator Research Organization filed Critical High Energy Accelerator Research Organization
Priority to JP2018156295A priority Critical patent/JP7079489B2/en
Publication of JP2020030986A publication Critical patent/JP2020030986A/en
Application granted granted Critical
Publication of JP7079489B2 publication Critical patent/JP7079489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide "a method for establishing acceleration electric fields in RF cavities at high speed" for forming predetermined electric fields in two RF cavities having different characteristics at high speed using a single RF source.SOLUTION: A high-frequency accelerator comprising a first RF cavity and a second RF cavity having a tuner and a single RF source for making the RF cavities having different characteristics form acceleration electric fields forms the acceleration electric fields of both RF cavities to predetermined electric fields at high speed by: detecting resonant frequencies of both of the RF cavities at the time of actuating the RF cavities; modulating an RF frequency of RF power so as to agree with either of the resonant frequencies obtained via the detection and outputs the RF power; and making the resonant frequencies of both RF cavities agree with each other by controlling the tuner and reducing reflection power from both RF cavities by making resonant frequencies of the first RF cavity and the second RF cavity agree with the RF frequency of the RF power to make the RF power and RF frequency output from the RF source reach predetermined values in a short period of time.SELECTED DRAWING: Figure 1

Description

本発明は、一台のRF源を用いて、二つの特性が異なるRF空洞を駆動するRF電力とRF電力の出力周波数であるRF周波数をそれぞれの所定の値に高速で到達させ、RF空洞に所定の電場を形成する、「RF空洞に加速電場を高速で立ち上げる方法」に関する。 The present invention uses a single RF source to quickly reach an RF power that drives an RF cavity having two different characteristics and an RF frequency that is an output frequency of the RF power to respective predetermined values, and to reach the RF cavity. The present invention relates to a method of forming an electric field at a high speed in an RF cavity.

一.BNCT陽子加速器におけるRF空洞について
特許文献1に示すように、中性子捕捉療法(BNCT)に用いる高周波加速器(ここでは、BNCT陽子加速器)におけるRF空洞はRFQ(Radio Frequency Quadrupole Linac:高周波4重極型リニアック)空洞と、DTL(Drift Tube Linac:ドリフトチューブリニアック)空洞の二種類のRF空洞で構成され、その二つのRF空洞は構成と特性が大きく異なっている。
one. Regarding the RF cavity in the BNCT proton accelerator As shown in Patent Document 1, the RF cavity in the high frequency accelerator (here, the BNCT proton accelerator) used for neutron capture therapy (BNCT) is RFQ (Radio Frequency Quadrupole Linac: high frequency quadrupole linac). ) And two types of RF cavities, a DTL (Drift Tube Linac) cavity, and the two RF cavities have greatly different configurations and characteristics.

構成面では、RFQ空洞とDLT空洞(以下、単に「それらRF空洞」ともいう)に備えられている共振周波数調整システムが異なっている。RFQ空洞の共振周波数調整システムは冷却水循環システムを用いて水温で共振周波数を調整する。一方、DTL空洞の共振周波数調整システムは冷却水循環システムと可動式機械チューナーを用いて共振周波数を調整する。   In terms of configuration, the resonance frequency adjustment systems provided in the RFQ cavity and the DLT cavity (hereinafter, also simply referred to as “their RF cavities”) are different. The RFQ cavity resonance frequency adjustment system uses a cooling water circulation system to adjust the resonance frequency at the water temperature. On the other hand, the resonance frequency adjustment system of the DTL cavity adjusts the resonance frequency using a cooling water circulation system and a movable mechanical tuner.

他方、RFQ空洞とDLT空洞の高周波の特性面では、主に次のような違いがある。
(1)
二つのRF空洞は、負荷品質係数(loaded quality factor、以下「Q値」という)が大きく異なっている。Q値が大きいほうが、RF空洞の周波数帯域は狭くて、消耗電力は少ない。
RFQ空洞のQ値は約3500で、DTL空洞のQ値は約16000でRFQ空洞のQ値の約5倍である。またQ値が大きく異なっていることから、Q値に関連するすべての特性が大きく異なっている。例えば、RF空洞自身の消費電力の割合、RF空洞のRF立上げ時の充填時間(filling time)などが大きく異なっている。
(2)
二つのRF空洞は、ビームに対しての機能と負荷も大きく異なっている。
RFQ空洞の加速電場はビームを加速しながらbunchingする。DTL空洞の加速電場はビームを加速するだけである。
さらに、二つのRF空洞は、ビームに与えるエネルギー及びビーム負荷が異なっている。RFQ空洞はビームを3MeVまで加速し、ピーク電流50mAの場合のビーム負荷は150kWである。一方、DTL空洞はビームを更に8MeVまで加速するので、50mAの場合にビーム負荷は250kWとなる。
On the other hand, there are mainly the following differences in the high frequency characteristics of the RFQ cavity and the DLT cavity.
(1)
The two RF cavity, load quality factor (loaded quality factor, hereinafter referred to as "Q L value") is significantly different. More Q L value is large, the frequency band of the RF cavity is narrow, power consumption is small.
Q L value of RFQ cavity is about 3500, Q L value of DTL cavity is about 5 times the Q L values RFQ cavity at about 16000. Further, since the QL values are largely different, all the characteristics related to the QL values are largely different. For example, the ratio of the power consumption of the RF cavity itself, the filling time at the time of RF startup of the RF cavity, and the like are greatly different.
(2)
The two RF cavities also have very different functions and loads on the beam.
The accelerating electric field in the RFQ cavity bunch while accelerating the beam. The accelerating electric field in the DTL cavity only accelerates the beam.
Furthermore, the two RF cavities differ in the energy imparted to the beam and the beam load. The RFQ cavity accelerates the beam to 3 MeV and the beam load is 150 kW for a peak current of 50 mA. On the other hand, the DTL cavity accelerates the beam further to 8 MeV, so at 50 mA the beam load is 250 kW.

二.RFQ空洞とDTL空洞を駆動するRF源について
特性の異なる二つのRF空洞であるFQ空洞とDLT空洞を駆動するRF源は、2台の独立なRF源を用いる場合と、一台のRF源で行う場合がある。それぞれの利点と欠点を表1にまとめた。
two. Regarding the RF source driving the RFQ cavity and the DTL cavity The two RF cavities having different characteristics, the FQ cavity and the DLT cavity, are driven by two independent RF sources. May be done. The advantages and disadvantages of each are summarized in Table 1.

通常の加速器研究開発では、複数の特性が異なるRF空洞は、各々独立したRF源で駆動することが一般的である。特に、RFQ空洞とDTL空洞の特性は大きく異なっていることから、2台の独立したRF源が必要であるということが今までの常識的な考えであった。   In ordinary accelerator R & D, it is common that a plurality of RF cavities having different characteristics are driven by independent RF sources. Particularly, since the characteristics of the RFQ cavity and the DTL cavity are greatly different, it has been a common sense that two independent RF sources are required.

しかし、BNCT陽子加速器は、大型科学研究施設用ではなく、将来的に多くの医療機関に普及することを目指しているため、できるだけ低コストで、高性能であることが望まれる。   However, since the BNCT proton accelerator is not intended for large-scale scientific research facilities but is intended to be widely used in many medical institutions in the future, it is desirable that the BNCT proton accelerator be as low-cost as possible and have high performance.

従って、低コストと高性能の両立は重要課題で、BNCT陽子加速器では敢えて一台のRF源で二つのRF空洞を駆動する構成を採用し、医療用高周波加速器としての実現性を最優先にすることにした。   Therefore, achieving both low cost and high performance is an important issue, and the BNCT proton accelerator dare adopts a configuration in which two RF cavities are driven by one RF source, placing the highest priority on the feasibility as a medical radio frequency accelerator. It was to be.

三.加速電場立ち上げ制御について
一台のRF源で、二つのRF空洞に、RF電源をRF周波数で供給して加速電場を形成する場合に、LLRF制御に多くの課題がある。特に、加速電場立ち上げ時の制御は非常に重要で、医療利用できる高周波加速器の要求を満たす性能を実現しなければならない。
three. Acceleration Electric Field Startup Control When a single RF source supplies RF power to two RF cavities at an RF frequency to form an acceleration electric field, LLRF control has many problems. In particular, the control at the time of starting the accelerating electric field is very important, and it is necessary to realize the performance that satisfies the requirements of the medically applicable high-frequency accelerator.

医療用高周波加速器の加速電場立ち上げについて、基本的な要求は二つある。
一つは、加速電場立ち上げの際、それらのRF空洞からの反射電力を同時にできるだけ最小に抑えなければならないことである。
そうしないと、どちらの一方から大きな反射電力があった場合に、設備の重故障を避けるための自動インターロック保護システムが作動し、立ち上げ失敗となり、途中で終了してしまうためである。
There are two basic requirements for setting up the accelerating electric field of a medical high-frequency accelerator.
One is that during the start-up of the accelerating electric field, the reflected power from their RF cavities must be minimized at the same time.
Otherwise, if there is a large reflected power from either one, the automatic interlock protection system for avoiding a serious failure of the equipment will be activated, the start-up will fail, and the operation will be terminated halfway.

もう一つは、加速電場立ち上げの所要時間をできるだけ短くしなければならないことである。目標は5分間以内である。
そうしないと、治療中に加速器運転再開が必要な場合に、患者の待ち時間が長くなって、医療用治療装置としての条件を満たさなくなる。
Second, the time required to start up the accelerating electric field must be as short as possible. The goal is within 5 minutes.
Otherwise, when it is necessary to restart the accelerator during the treatment, the waiting time of the patient becomes longer, and the condition as a medical treatment device is not satisfied.

一方、RFQ空洞とDTL空洞の特性は大きく異なっているから、加速電場立ち上げの際に、それらRF空洞の温度と共振周波数は、時間の経過に伴い、それぞれ異なる変化を示し、一般的なLLRFの手法では、上記の二つの要求を満たすのは非常に困難である。
従って、加速電場立ち上げの制御について、一台のRF源で二つのRF空洞を駆動する場合、二台の場合よりも、より正確かつ精密な制御システムの開発が必要である。
On the other hand, since the characteristics of the RFQ cavity and the DTL cavity are significantly different, when the accelerating electric field is started, the temperature and the resonance frequency of the RF cavity show different changes over time, and a general LLRF cavity. It is very difficult to satisfy the above two requirements by the method of (1).
Therefore, for controlling the start-up of the accelerating electric field, when two RF cavities are driven by one RF source, it is necessary to develop a more accurate and precise control system than when two RF cavities are used.

特開2007−95553JP 2007-95553

そこで、本発明は、一台のRF源を用いて、二つの特性が異なるRF空洞を駆動するRF電力とRF電力の出力周波数であるRF周波数をそれぞれの所定の値に高速で到達させ、RF空洞に所定の電場を形成する、「RF空洞に加速電場を高速で立ち上げる方法」を提供することを目的とする。   Therefore, the present invention uses a single RF source to cause RF power for driving an RF cavity having two different characteristics and RF frequency, which is the output frequency of RF power, to reach their respective predetermined values at high speed, It is an object of the present invention to provide a "method of quickly setting up an accelerating electric field in an RF cavity" in which a predetermined electric field is formed in a cavity.

(1)
第一RF空洞及びチューナーを有する第二RF空洞と、特性が異なる前記第一RF空洞及び前記第二RF空洞に、駆動電力であるRF電力をRF周波数で出力、供給することで、前記第一RF空洞及び前記第二RF空洞に加速電場を形成させる一台のRF源を備える高周波加速器において、
前記第一RF空洞及び前記第二RF空洞の起動時に、前記第一RF空洞及び前記第二RF空洞の両方の共振周波数を検出し、
前記RF源から前記第一RF空洞及び前記第二RF空洞に出力する前記RF電力の前記RF周波数を、前記検出にて得た前記共振周波数のいずれか一方に一致させるよう変調し、変調した周波数である変調周波数で、前記第一RF空洞及び前記第二RF空洞に前記RF電力を出力するとともに、
前記チューナーを制御して、前記第一RF空洞及び前記第二RF空洞の共振周波数を同じにすることで、
前記第一RF空洞及び前記第二RF空洞の共振周波数と前記RF電力の前記RF周波数を同じにし、
前記第一RF空洞及び前記第二RF空洞からの反射電力を低減させることで、
前記RF源から出力され、前記第一RF空洞及び前記第二RF空洞を駆動する前記RF電力及び前記RF周波数を所定値に短時間で到達させ、前記第一RF空洞及び前記第二RF空洞の加速電場を高速に所定の電場に形成することを特徴とする
RF空洞に加速電場を高速で立ち上げ方法。
(2)
前記第一RF空洞がRFQ空洞で、前記第二RF空洞がDTL空洞であることを特徴とする
(1)に記載のRF空洞に加速電場を高速で立ち上げ方法。
(3)
前記共振周波数の検出を、Q値が高い前記RF空洞から行うことを特徴とする(1)に記載のRF空洞に加速電場を高速で立ち上げ方法。
(4)
前記加速電場高速立ち上げ方法が、BNCT陽子加速器に利用される場合においては、前記Q値が高いRF空洞が、前記DTL空洞であることを特徴とする(3)に記載のRF空洞に加速電場を高速で立ち上げ方法。
とした。
(1)
The first RF cavity having the first RF cavity and the tuner, and the first RF cavity and the second RF cavity having different characteristics are output and supplied with RF power as driving power at an RF frequency, so that the first RF cavity and the second RF cavity have different characteristics. A high frequency accelerator comprising an RF cavity and an RF source for forming an accelerating electric field in the second RF cavity,
Upon activation of the first RF cavity and the second RF cavity, detecting a resonance frequency of both the first RF cavity and the second RF cavity,
The RF frequency of the RF power output from the RF source to the first RF cavity and the second RF cavity is modulated to match one of the resonance frequencies obtained in the detection, and the modulated frequency Outputting the RF power to the first RF cavity and the second RF cavity at a modulation frequency that is
By controlling the tuner to make the resonance frequency of the first RF cavity and the second RF cavity the same,
The resonance frequency of the first RF cavity and the second RF cavity and the RF frequency of the RF power are the same,
By reducing the reflected power from the first RF cavity and the second RF cavity,
The RF power and the RF frequency that are output from the RF source and drive the first RF cavity and the second RF cavity reach a predetermined value in a short time, and the first RF cavity and the second RF cavity A method for rapidly setting up an accelerating electric field in an RF cavity, wherein the accelerating electric field is rapidly formed into a predetermined electric field.
(2)
The method according to (1), wherein the first RF cavity is an RFQ cavity and the second RF cavity is a DTL cavity.
(3)
The method according to (1), wherein the detection of the resonance frequency is performed from the RF cavity having a high QL value.
(4)
Accelerating the accelerating electric field fast startup method, when utilized in BNCT proton accelerator, said Q L value is higher RF cavity, it the RF cavity according to (3) the a DTL cavity How to start electric field at high speed.
And

本発明は、上記構成であるので、次の効果を奏する。
本発明の方法では
(一)従来法に比して、4−10倍も短く(3−5分に短縮)、加速電場を高速に立ち上げることが可能となる。
(二)RFQ空洞とDTL空洞など異なる複数の型のRF空洞を有する高周波加速器に対し、一台のRF源でRF電力供給が可能になる。
(三)加速電場立ち上げの時、RFQ空洞とDTL空洞の共振周波数とRF源の出力RF周波数は同じであり、それらRF空洞からの反射電力を極めて少ないレベルに維持することができる。その結果、高周波加速器の運転維持は容易になるし、高周波加速システム全体(RF源、RF dummy loadなど)に対する負荷は最少となり、機器故障確率も低減するので、高周波加速器システム全体は長寿命になる。
(四)加速電場立ち上げの時、入口水温は一定でも高速で立ち上げが可能となる。
(五)RF源とLLRF制御はそれぞれ一台で、建設費用は約半分になり、敷地もコンパクトになり、高周波加速器は小型化できる。
との効果がある。
Since the present invention has the above configuration, the following effects can be obtained.
According to the method of the present invention, (1) the acceleration electric field can be started up at a high speed, which is 4 to 10 times shorter (3 to 5 minutes) than the conventional method.
(2) A single RF source can supply RF power to a high-frequency accelerator having a plurality of different types of RF cavities such as an RFQ cavity and a DTL cavity.
(3) When the accelerating electric field is started, the resonance frequency of the RFQ cavity and the DTL cavity and the output RF frequency of the RF source are the same, and the reflected power from these RF cavities can be maintained at an extremely small level. As a result, the operation and maintenance of the high-frequency accelerator are facilitated, the load on the entire high-frequency accelerator system (RF source, RF dummy load, etc.) is minimized, and the probability of equipment failure is reduced, so that the entire high-frequency accelerator system has a long life. .
(4) When the accelerating electric field is started, it can be started at a high speed even if the inlet water temperature is constant.
(5) The RF source and the LLRF control are each one, and the construction cost is reduced by about half, the site is compact, and the high frequency accelerator can be downsized.
Has the effect.

図1は、BNCT陽子加速器におけるRF源、RF空洞、LLRFシステムの配置図、及び加速電場立ち上げ周波数制御方式の説明図であり、(1)従来技術と(2)本発明の対比説明図である。FIG. 1 is an arrangement diagram of an RF source, an RF cavity, and an LLRF system in a BNCT proton accelerator, and an explanatory diagram of an accelerating electric field start-up frequency control method. FIG. 1 is a comparative explanatory diagram of (1) conventional technology and (2) the present invention. is there. 図2は、加速電場立ち上げ時間について、(1)従来技術と(2)本発明との比較試験結果である。FIG. 2 shows the results of a comparison test between (1) the prior art and (2) the present invention with respect to the acceleration electric field startup time. 図3は、本発明におけるRF空洞の停止時間の長短と、加速電場立ち上げ時間の関係を示すグラフである。FIG. 3 is a graph showing the relationship between the length of the stop time of the RF cavity and the rise time of the accelerating electric field in the present invention.

以下、添付の図面を参照し、本発明の実施の形態について、従来技術と対比しながら、詳細に説明する。なお、本発明は下記形態例に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings in comparison with the related art. The present invention is not limited to the following embodiment.

・従来技術
加速電場を所定の値に立ち上げる従来技術は、図1(1)に示すように、「RF空洞の共振周波数を加速器運転周波数fに維持しながら、徐々にRF源の出力RF電力を上げる」方法であった。
なお、図1の記号の意味は次の通りである。
:加速器運転周波数
:RFQ共振周波数
:DTL共振周波数
rf:RF源の出力RF周波数
· Prior art accelerating electric field of the prior art launching a predetermined value, as shown in FIG. 1 (1), while keeping the resonant frequency of the "RF cavity accelerator operation frequency f 0, and gradually the output RF of the RF source It was a way to "power up."
The meanings of the symbols in FIG. 1 are as follows.
f 0 : accelerator operating frequency f 1 : RFQ resonance frequency f 2 : DTL resonance frequency f rf : output RF frequency of RF source

従来技術では、RFQ空洞3及びDTL空洞4の立ち上げの際は、加速器運転周波数fを持つ一台のRF源2から、徐々に、RF源の出力RF電力を上げて、それらRF空洞に与える。そうすると、それらRF空洞が昇温するので、それらRF空洞に付いている共振周波数調整システムを使って、それらRF空洞のRFQ共振周波数f及びDTL共振周波数fを、共に、加速器運転周波数fに近づけていく。 In the prior art, upon start-up of the RFQ cavity 3 and DTL cavity 4, from a single RF source 2 with accelerator operating frequency f 0, gradually increasing the output RF power of the RF source, their RF cavity give. Then, since the RF cavities heat up, the RFQ resonance frequency f 1 and the DTL resonance frequency f 2 of the RF cavities are both changed to the accelerator operating frequency f 0 by using the resonance frequency adjusting system attached to the RF cavities. Approaching.

RFQ空洞3は冷却水6の入口水温を調整することで、RFQ共振周波数fを加速器運転周波数fに維持する。一方、DTL空洞4は冷却水6の入口水温調整とチューナー5の調整で、DTL共振周波数fを加速器運転周波数fに維持する。 RFQ cavity 3 by adjusting the inlet temperature of the cooling water 6, to maintain the RFQ resonance frequency f 1 to the accelerator operation frequency f 0. On the other hand, DTL cavity 4 by adjusting the inlet water temperature adjusting a tuner 5 the cooling water 6, to maintain the DTL resonant frequency f 2 to the accelerator operation frequency f 0.

このような調整を行うことで、それらRF空洞からの反射電力をある設定した閾値の以内に維持しながら、少しずつRF源の出力RF電力を高めていく必要がある。冷却水6を提供する冷却水循環システムは、一回の温度調整に相当時間がかかるため、通常水温から目標水温まで安定するには10分以上必要である。   By performing such an adjustment, it is necessary to gradually increase the output RF power of the RF source while maintaining the reflected power from the RF cavities within a set threshold. Since the cooling water circulation system that provides the cooling water 6 takes a considerable amount of time for one temperature adjustment, it takes 10 minutes or more to stabilize from the normal water temperature to the target water temperature.

従って、RF源2は時間をかけて、少しずつ出力RF電力を高めいくしかない。そうしないと、共振周波数の維持が間に合わない。実際BNCT陽子加速器では、この従来の方法を使って要求された出力までにRFを立ち上げるのに、約20分〜30分ぐらいの時間が必要である。   Therefore, the RF source 2 has no choice but to gradually increase the output RF power over time. Otherwise, the maintenance of the resonance frequency cannot be made in time. In fact, in the BNCT proton accelerator, it takes about 20 to 30 minutes to raise RF to the required output using this conventional method.

故に、従来技術の方法では、加速電場立ち上げの時間がかかるため、医療用の施設としての要求を満たすことができない。その問題を解決しないと、BNCT陽子加速器は最終的に普及可能な信頼できる医療装置に至らない。   Therefore, according to the method of the related art, since it takes time to start up the accelerating electric field, it cannot meet the requirements as a medical facility. Unless that problem is solved, the BNCT proton accelerator will not eventually become a viable and reliable medical device.

ここで、従来技術を整理すると、
BNCT陽子加速器のような高周波加速器において、一台のRF源を用いて、二つの特性が異なる第一RF空洞(RFQ空洞)、チューナーを備える第二RF空洞(DTL空洞)に加速電場を所定の値に到達させる立ち上げ方法であって、
前記RF源から前記第一RF空洞及び第二RF空洞に前記高周波加速器の加速器運転周波数を持つ加速電場を供給し、
前記第一RF空洞及び前記第二空洞が共振するように、前記第一RF空洞及び前記第二RF空洞の冷却水の水温及びチューナーを調整することで、前記第一RF空洞及び前記第二空洞からの反射を低減させる共振調整工程を経た後、
前記RF源の出力RF電力を上げて前記前記第一RF空洞及び前記第二RF空洞の温度を上昇させることで前記共振にズレを生じさせ昇温工程を行い、
再び、前記前記第一RF空洞及び前記第二RF空洞が共振するように、前記第一RF空洞及び前記第二RF空洞の前記冷却水の水温及び前記チューナーを調整し、前記第一RF空洞及び前記第二空洞からの反射を低減させる再共振調整工程を経る、
一連の前記共振調整工程、昇温工程、再共振調整工程を、
前記RF源の出力RF電力が所定の値に到達するまで繰り返す、立ち上げ方法を採用していた。
Here, when the prior art is organized,
In a high-frequency accelerator such as a BNCT proton accelerator, a single RF source is used to apply an acceleration electric field to a first RF cavity (RFQ cavity) having two different characteristics and a second RF cavity (DTL cavity) having a tuner. Start-up method to reach the value,
Supplying an accelerating electric field having an accelerator operating frequency of the high-frequency accelerator to the first RF cavity and the second RF cavity from the RF source;
The first RF cavity and the second cavity are adjusted by adjusting the cooling water temperature and the tuner of the first RF cavity and the second RF cavity so that the first RF cavity and the second cavity resonate. After a resonance adjustment step to reduce reflection from
Raising the temperature of the first RF cavity and the second RF cavity by raising the output RF power of the RF source to cause a shift in the resonance and perform a temperature raising step,
Again, the water temperature and the tuner of the cooling water of the first RF cavity and the second RF cavity are adjusted so that the first RF cavity and the second RF cavity resonate, and the first RF cavity and Through a re-resonance adjustment step of reducing reflection from the second cavity,
A series of the resonance adjustment step, a temperature raising step, a re-resonance adjustment step,
A start-up method of repeating until the output RF power of the RF source reaches a predetermined value has been adopted.

RF空洞の温度調整は、水冷機構であり、水の温度を設定してからRF空洞の温度が安定するまで数分以上かかる。従来技術における、上記繰り返しサイクルは数十サイクル必要であり、20分から30分の立ち上げ時間を要している。医療用高周波加速器などでは患者を待たせる必要があるなど著しい時間的損失が避けられない。   The adjustment of the temperature of the RF cavity is a water cooling mechanism, and it takes several minutes or more until the temperature of the RF cavity is stabilized after setting the temperature of the water. In the prior art, the repetition cycle requires several tens of cycles, and requires a startup time of 20 to 30 minutes. In medical high-frequency accelerators and the like, significant time loss is inevitable, such as the need to make patients wait.

・本発明
他方、本発明は、図1(2)に示すように、主に、BNCT用に「二つの特性が異なるRF空洞に対して、一台のRF源の出力RF周波数変調よるRF空洞の加速電場早い立ち上げ方法」という新しい技術を開発した。
具体的には、RFQ空洞3及びDTL空洞4の立ち上げの際は、Q値が高いRF空洞、BNCT陽子加速器ではDTL空洞4の共振周波数fを検出して、RF源の出力RF周波数frfをDTL共振周波数fに変調し、それらRF空洞に出力する。同時にDTL空洞4のチューナー5を調整して、DTL空洞4のDTL共振周波数fをRFQ共振周波数fにする。
そうすると、それらRF源の出力RF周波数frfとDTL空洞の共振周波数fとRFQ空洞の共振周波数f、その三つの周波数は同じになるため、それらRF空洞からの反射電力は同時に最小に維持できる。その理由は、RF電力はRF空洞に入る時、そのRF電力のRF周波数により、RF空洞内で形成した加速電場と、RF空洞からの反射電力が変わる。RF周波数はRF空洞の共振周波数で、RF空洞内に形成した電場は最大となり、RF空洞からの反射電力は最小となる。
従って、RF源の出力RF電力が所定の値に到達する時間を大幅に短縮することが可能となる。
本発明の方法によれば、立ち上げ中も冷却水入口温度は一定のままでよく、その点からも、加速電場高速立ち上げが可能である。
The present invention On the other hand, as shown in FIG. 1 (2), the present invention is mainly used for BNCT for “RF cavities by RF power modulation of one RF source for RF cavities having two different characteristics. A new technology called "Rapid start-up method of the accelerating electric field".
Specifically, upon start-up of the RFQ cavity 3 and DTL cavity 4, Q L value is high RF cavity, in BNCT proton accelerator and detects the resonance frequency f 2 of the DTL cavity 4, the output RF frequency of the RF source modulate f rf to the DTL resonance frequency f 2 and output to those RF cavities. At the same time by adjusting the tuner 5 the DTL cavity 4, the DTL resonance frequency f 2 of the DTL cavity 4 in RFQ resonance frequency f 1.
Then, since the output RF frequency f rf of these RF sources, the resonance frequency f 2 of the DTL cavity, and the resonance frequency f 1 of the RFQ cavity become the same, the reflected power from these RF cavities is simultaneously kept at a minimum. it can. The reason is that when the RF power enters the RF cavity, the RF frequency of the RF power changes the accelerating electric field formed in the RF cavity and the reflected power from the RF cavity. The RF frequency is the resonance frequency of the RF cavity, the electric field formed in the RF cavity becomes maximum, and the reflected power from the RF cavity becomes minimum.
Therefore, the time required for the output RF power of the RF source to reach the predetermined value can be significantly reduced.
According to the method of the present invention, the cooling water inlet temperature may be kept constant during the startup, and from that point, the acceleration electric field can be started at a high speed.

そして、BNCT陽子加速器の立ち上げ試験では、冷却水6の入口水温を一定にして、本発明の新しい加速電場立ち上げの方法を適用すると、加速電場立ち上げの時間は、従来の20分〜30分から、3分〜5分に短縮することができた。
この新しいRFの立ち上げの方法である本発明は、現時点で同類の高周波加速器において、はじめての研究開発、実用例である。
In the start-up test of the BNCT proton accelerator, when the inlet water temperature of the cooling water 6 is kept constant and the new method of starting up the accelerating electric field of the present invention is applied, the time required for starting up the accelerating electric field is 20 minutes to 30 minutes. Minutes to 3-5 minutes.
The present invention, which is a method of starting up a new RF, is the first R & D and practical example of a high-frequency accelerator of the same kind at present.

図2に、(1)従来技術と、(2)本発明を適用したBNCT陽子加速器における加速電場立上げの試験結果を示した。   FIG. 2 shows the test results of (1) the prior art and (2) the start-up of the accelerating electric field in the BNCT proton accelerator to which the present invention is applied.

図2の記号の意味は次の通りである。
pf_kly:RF源(ここではklystron)の出力RF電力
Pr_RFQ:RFQ空洞からの反射電力
Pr_DTL:DTL空洞からの反射電力
Dfrq_DTL=f−f
Dfrq_RFQ=f−f
:加速器運転周波数
:RFQ共振周波数
:DTL共振周波数
The meanings of the symbols in FIG. 2 are as follows.
pf_kly: output RF power of RF source (here, klystron) Pr_RFQ: reflected power from RFQ cavity Pr_DTL: reflected power from DTL cavity Dfrq_DTL = f 2 −f 0
Dfrq_RFQ = f 1 −f 0
f 0 : accelerator operating frequency f 1 : RFQ resonance frequency f 2 : DTL resonance frequency

試験条件は、加速器の運転繰り返しは50Hz、RF幅は1ms、RF源の出力RF電力の所定値は850kW、加速器運転周波数(f)は324MHzである。 The test conditions were as follows: the repetition of the accelerator operation was 50 Hz, the RF width was 1 ms, the predetermined value of the output RF power of the RF source was 850 kW, and the accelerator operation frequency (f 0 ) was 324 MHz.

従来技術では、(1)のグラフに、RF源の出力RF電力が、縦軸0から所定値まで、つまり、加速電場立上げ所要時間は20〜30分であった。他方、本発明では、(2)のグラフに、RF源の出力RF電力が0から所定値まで、また両空洞(RFQ空洞とDTL空洞)の共振周波数f1及びf2が加速器運転周波数fと一致するまで、すなわち、縦軸において、Dfrq_RFQ=f−f=0、Dfrq_DTL=f−f=0になるまでつまり、加速電場立上げ所要時間は3〜5分に短縮され、加速電場高速立ち上げ方法であることがわかる。 In the prior art, in the graph of (1), the output RF power of the RF source is from the vertical axis 0 to a predetermined value, that is, the time required to start up the acceleration electric field is 20 to 30 minutes. On the other hand, in the present invention, (2) the graph of the output RF power of the RF source is 0 to a predetermined value, also coincides with the resonance frequencies f1 and f2 is the accelerator operating frequency f 0 of the two cavities (RFQ cavity and the DTL cavity) Until, ie, on the vertical axis, Dfrq_RFQ = f 1 −f 0 = 0 and Dfrq_DTL = f 2 −f 0 = 0 , that is, the time required to start up the acceleration electric field is reduced to 3 to 5 minutes, It turns out that it is an electric field high-speed starting method.

グラフに、RF源の出力RF電力が0(縦軸)から所定値まで、また両空洞(RFQ空洞とDTL空洞)の共振周波数が加速器運転周波数と一致(特にDTL空洞の共振周波数が加速器運転周波数と一致)なったころから、つまり、加速電場立ち上げ時間は、2分50秒であることがわかる。   The graph shows that the output RF power of the RF source ranges from 0 (vertical axis) to a predetermined value, and that the resonance frequencies of both cavities (RFQ cavity and DTL cavity) match the accelerator operating frequency (particularly, the resonance frequency of the DTL cavity is the accelerator operating frequency). It can be seen from the time when the above-mentioned condition is satisfied), that is, the acceleration electric field start-up time is 2 minutes and 50 seconds.

図3の記号の意味は次の通りである。
Dfrq_RFQ=f−f
Dfrq_DTL=f−f
その中
:加速器運転周波数
:RFQ共振周波数
:DTL共振周波数
pf_kly/10:RF源(ここではklystron)の出力RF電力の10分の1という
Pr_RFQ:RFQ空洞からの反射電力
Pr_DTL:DTL空洞からの反射電力
The meanings of the symbols in FIG. 3 are as follows.
Dfrq_RFQ = f 1 −f 0
Dfrq_DTL = f 2 −f 0
Among them, f 0 : accelerator operating frequency f 1 : RFQ resonance frequency f 2 : DTL resonance frequency pf_kly / 10: Pr_RFQ: 1/10 of the output RF power of the RF source (here, klystron): Pr_DTL: reflected power from the RFQ cavity : Power reflected from DTL cavity

試験条件は、加速器の運転繰り返しは50Hz、RF幅は1ms、RF源の出力RF電力の所定値は850kW、加速器運転周波数(f)は324MHzである。 The test conditions were as follows: the repetition of the accelerator operation was 50 Hz, the RF width was 1 ms, the predetermined value of the output RF power of the RF source was 850 kW, and the accelerator operation frequency (f 0 ) was 324 MHz.

本発明は、医療用分野において、低コスト、省スペースで、医療用高周波加速器を提供することができる。   INDUSTRIAL APPLICABILITY The present invention can provide a low-cost, space-saving medical high-frequency accelerator in the medical field.

1 LLRFシステム
2 RF源
3 RFQ空洞
4 DTl空洞
5 チューナー
6 冷却水
1 LLRF system 2 RF source 3 RFQ cavity 4 DTl cavity 5 Tuner 6 Cooling water

Claims (4)

第一RF空洞及びチューナーを有する第二RF空洞と、特性が異なる前記第一RF空洞及び前記第二RF空洞に、駆動電力であるRF電力をRF周波数で出力、供給することで、前記第一RF空洞及び前記第二RF空洞に加速電場を形成させる一台のRF源を備える高周波加速器において、
前記第一RF空洞及び前記第二RF空洞の起動時に、前記第一RF空洞及び前記第二RF空洞の両方の共振周波数を検出し、
前記RF源から前記第一RF空洞及び前記第二RF空洞に出力する前記RF電力の前記RF周波数を、前記検出にて得た前記共振周波数のいずれか一方に一致させるよう変調し、変調した周波数である変調周波数で、前記第一RF空洞及び前記第二RF空洞に前記RF電力を出力するとともに、
前記チューナーを制御して、前記第一RF空洞及び前記第二RF空洞の共振周波数を同じにすることで、
前記第一RF空洞及び前記第二RF空洞の共振周波数と前記RF電力の前記RF周波数を同じにし、
前記第一RF空洞及び前記第二RF空洞からの反射電力を低減させることで、
前記RF源から出力され、前記第一RF空洞及び前記第二RF空洞を駆動する前記RF電力及び前記RF周波数を所定値に短時間で到達させ、前記第一RF空洞及び前記第二RF空洞の加速電場を高速に所定の電場に形成することを特徴とする
RF空洞に加速電場を高速で立ち上げ方法。
The first RF cavity having the first RF cavity and the tuner, and the first RF cavity and the second RF cavity having different characteristics are output and supplied with RF power as driving power at an RF frequency, so that the first RF cavity and the second RF cavity have different characteristics. A high frequency accelerator comprising an RF cavity and an RF source for forming an accelerating electric field in the second RF cavity,
Upon activation of the first RF cavity and the second RF cavity, detecting a resonance frequency of both the first RF cavity and the second RF cavity,
The RF frequency of the RF power output from the RF source to the first RF cavity and the second RF cavity is modulated to match one of the resonance frequencies obtained in the detection, and the modulated frequency Outputting the RF power to the first RF cavity and the second RF cavity at a modulation frequency that is
By controlling the tuner to make the resonance frequency of the first RF cavity and the second RF cavity the same,
The resonance frequency of the first RF cavity and the second RF cavity and the RF frequency of the RF power are the same,
By reducing the reflected power from the first RF cavity and the second RF cavity,
The RF power and the RF frequency, which are output from the RF source and drive the first RF cavity and the second RF cavity, reach a predetermined value in a short time, and the first RF cavity and the second RF cavity A method for rapidly setting up an accelerating electric field in an RF cavity, wherein the accelerating electric field is rapidly formed into a predetermined electric field.
前記第一RF空洞がRFQ空洞で、前記第二RF空洞がDTL空洞であることを特徴とする
請求項1に記載のRF空洞に加速電場を高速で立ち上げ方法。
The method of claim 1, wherein the first RF cavity is an RFQ cavity and the second RF cavity is a DTL cavity.
前記共振周波数の検出を、Q値が高い前記RF空洞から行うことを特徴とする請求項1に記載のRF空洞に加速電場を高速で立ち上げ方法。 The method according to claim 1, wherein the detection of the resonance frequency is performed from the RF cavity having a high QL value. 前記加速電場高速立ち上げ方法が、BNCT陽子加速器に利用される場合においては、前記Q値が高いRF空洞が、前記DTL空洞であることを特徴とする請求項3に記載のRF空洞に加速電場を高速で立ち上げ方法。 Accelerating the accelerating electric field fast startup method, when utilized in BNCT proton accelerator, said Q L value is higher RF cavity, the RF cavity according to claim 3, wherein a DTL cavity How to start electric field at high speed.
JP2018156295A 2018-08-23 2018-08-23 How to set up an accelerated electric field in an RF cavity at high speed Active JP7079489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018156295A JP7079489B2 (en) 2018-08-23 2018-08-23 How to set up an accelerated electric field in an RF cavity at high speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018156295A JP7079489B2 (en) 2018-08-23 2018-08-23 How to set up an accelerated electric field in an RF cavity at high speed

Publications (2)

Publication Number Publication Date
JP2020030986A true JP2020030986A (en) 2020-02-27
JP7079489B2 JP7079489B2 (en) 2022-06-02

Family

ID=69622873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018156295A Active JP7079489B2 (en) 2018-08-23 2018-08-23 How to set up an accelerated electric field in an RF cavity at high speed

Country Status (1)

Country Link
JP (1) JP7079489B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004198236A (en) * 2002-12-18 2004-07-15 Hitachi Ltd Device for producing radioactive nuclide for medical purpose

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004198236A (en) * 2002-12-18 2004-07-15 Hitachi Ltd Device for producing radioactive nuclide for medical purpose

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P.F. MA ET AL.: "Physical design of a single-amplifier-driven proton linac injector for a synchrotron-based proton-th", NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH SECTION A: ACCELERATORS, SPECTROMETERS, DETECTOR, vol. 900, JPN6022016544, 8 April 2022 (2022-04-08), pages 32 - 39, ISSN: 0004766006 *

Also Published As

Publication number Publication date
JP7079489B2 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
US9854662B2 (en) Hybrid linear accelerator with a broad range of regulated electron and X-ray beam parameters includes both standing wave and traveling wave linear sections for providing a multiple-energy high-efficiency electron beam or X-ray beam useful for security inspection, non-destructive testing, radiation therapy, and other applications
US9622333B2 (en) Linear accelerator system with stable interleaved and intermittent pulsing
JP2014164855A (en) Ion accelerator and medical device
WO2014132391A1 (en) Method for manufacturing high frequency accelerator, high frequency accelerator, and circular accelerator system
CN211050740U (en) Proton linac system for irradiating tissue
US20150084549A1 (en) Methods for controlling standing wave accelerator and systems therof
JP7079489B2 (en) How to set up an accelerated electric field in an RF cavity at high speed
Rossi et al. The radiofrequency quadrupole accelerator for the Linac4
JP2014186939A (en) Particle beam irradiation system and operation method thereof
CN110393864A (en) The operating method of variable energy proton linac system and proton beam
WO2021261033A1 (en) Particle beam therapy system and control method thereof
CN112888141A (en) High-gradient backward wave type traveling wave accelerator and rapid energy adjusting method thereof
CN108235556B (en) Microwave device, control method thereof and linear accelerator
Liu et al. Progress of Shanghai HIgh repetitioN rate XFEL and Extreme light facility (SHINE)
Jensen et al. Applications of high power induction output tubes in high intensity superconducting proton linacs
Benedikt Design optimization of PS2
Shinya et al. Commissioning of Linear IFMIF Prototype Accelerator (LIPAc) RFQ and RF system towards high current and high duty operation
Corsini et al. Beam Tests at the CLIC Test Facility, CTF3
Fabris et al. Installation and commissioning of the RF system for the new Elettra Booster
Kourbanis FNAL Accelerator Complex Upgrade Possibilities
RU2812932C2 (en) System of linear proton accelerator for irradiation of tissue with two or more radio-frequency sources
Lenci et al. Recent progress in CW klystrons at CPI
Christou et al. Operation of the Diamond Light Source Injector
Farias et al. Commissioning of the LNLS 500-MeV booster synchrotron
Vretenar et al. Linear accelerator designs for the upgrade of the CERN proton injector complex (Linac4, SPL)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220408

TRDD Decision of grant or rejection written
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220516

R150 Certificate of patent or registration of utility model

Ref document number: 7079489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150