JP2020030082A - Optical module for optical displacement measurement, and heat radiation method of optical module for optical displacement measurement - Google Patents
Optical module for optical displacement measurement, and heat radiation method of optical module for optical displacement measurement Download PDFInfo
- Publication number
- JP2020030082A JP2020030082A JP2018155124A JP2018155124A JP2020030082A JP 2020030082 A JP2020030082 A JP 2020030082A JP 2018155124 A JP2018155124 A JP 2018155124A JP 2018155124 A JP2018155124 A JP 2018155124A JP 2020030082 A JP2020030082 A JP 2020030082A
- Authority
- JP
- Japan
- Prior art keywords
- cover
- light source
- laser light
- housing
- adhesive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
本発明は、光学式変位計測用光モジュール及び光学式変位計測用光モジュールの放熱方法に係り、特に、被検物の変位を光学的に計測するのに好適な光学式変位計測用光モジュール及び光学式変位計測用光モジュールの放熱方法に関する。 The present invention relates to an optical module for optical displacement measurement and a method for radiating heat of the optical module for optical displacement measurement, and more particularly to an optical module for optical displacement measurement suitable for optically measuring the displacement of a test object. The present invention relates to a heat radiation method for an optical module for optical displacement measurement.
測定対象物の変位を測定する光学式変位計測用光モジュールとして、レーザ光源を用いて測定対象物にレーザ光を照射し、その反射光から測定対象物の変位を測定する光学式の
変位計測用光モジュールが種々知られている。
As an optical displacement measurement optical module that measures the displacement of the measurement object, it is used for optical displacement measurement that irradiates the measurement object with laser light using a laser light source and measures the displacement of the measurement object from the reflected light Various optical modules are known.
例えば、レーザ光源が発したレーザ光を対物レンズにより絞って測定対象物体の表面に焦点を結ぶようにし、同じ光学系を通って返る反射光をビームスプリッタで分けて光検出器で受光し、受光により検出した光電流を増幅器により増幅して演算することで変位量に関係した信号として測定対象物体の変位を検出する技術は、特開平7−4919号公報に知られている。 For example, the laser light emitted from the laser light source is focused by an objective lens so that the laser beam emitted from the laser light source is focused on the surface of the object to be measured. A technique for detecting the displacement of an object to be measured as a signal related to the amount of displacement by amplifying and calculating a photocurrent detected by an amplifier using an amplifier is known from Japanese Patent Application Laid-Open No. 7-4919.
レーザ光を用いて測定対象物の変位を測定する場合、レーザ光の焦点を測定対象物の表面近傍に設定して測定が行われる。このとき、測定対象物の位置の変化が、検出光学系の変位検出範囲よりも大きいと、測定中に対象物を検出できないことが生じてしまう。そこで、複数のレーザ光源と複数のレーザ光に対応した検出器を用いて、変位検出範囲をずらしておくことで、測定対象物の変位が大きい場合でも、いずれかの検出光学系の検出範囲に入る可能性を高くすることができる。 When measuring the displacement of the measurement object using the laser light, the measurement is performed with the focus of the laser light set near the surface of the measurement object. At this time, if the change in the position of the measurement object is larger than the displacement detection range of the detection optical system, the object may not be detected during the measurement. Therefore, by displacing the displacement detection range by using a plurality of laser light sources and detectors corresponding to the plurality of laser beams, even if the displacement of the measurement object is large, the displacement can be detected by any one of the detection optical systems. The possibility of entering can be increased.
このように複数のレーザ光源を同時に発光させる場合、光源の数に応じて発熱量が増加する。このような発熱が光学式変位計測用光モジュールの筐体に伝わると、筐体の温度が上昇し、筐体が熱膨張する。この熱膨張によって、筐体に取り付けられた対物レンズの位置が変化し、測定対象物との距離が変化する。これは、測定対象物の位置が変化したように誤って検出されることになる。そのため、レーザ光源の温度上昇を低減するのに、筐体の温度上昇に伴う熱変形について考慮する必要がある。すなわち、レーザ光源から筐体に伝わる熱を低減し、筐体の温度上昇を抑え、筐体の熱変形を抑えることが求められる。 When a plurality of laser light sources emit light at the same time, the amount of heat generated increases according to the number of light sources. When such heat is transmitted to the housing of the optical displacement measuring optical module, the temperature of the housing increases, and the housing expands thermally. Due to this thermal expansion, the position of the objective lens attached to the housing changes, and the distance to the measurement object changes. This is erroneously detected as if the position of the measurement object has changed. Therefore, in order to reduce the temperature rise of the laser light source, it is necessary to consider thermal deformation accompanying the temperature rise of the housing. That is, it is required to reduce heat transmitted from the laser light source to the housing, suppress a rise in temperature of the housing, and suppress thermal deformation of the housing.
本発明の目的は、筐体の熱変形を抑えた光学式変位計測用光モジュール及び光学式変位計測用光モジュールの放熱方法を提供することである。 An object of the present invention is to provide an optical module for optical displacement measurement and a method of radiating heat of the optical module for optical displacement measurement in which thermal deformation of a housing is suppressed.
上記目的を達成するために本発明は、測定対象物の変位を光学的に測定する光学式変位計測用光モジュールにおいて、第一のレーザ光源と、第二のレーザ光源と、第一の光検出器と、第二の光検出器と、筐体と、前記筐体を覆うよう設けられた第一のカバーと、前記第一のカバーと対向する側で前記筐体を覆う第二のカバーとを備え、前記第一のレーザ光源からの光に基づいた前記測定対象物の光は前記第一の光検出器で検出され、前記第二のレーザ光源からの光に基づいた前記測定対象物の光は前記第二の光検出器で検出されるものであって、前記第一のレーザ光源が接着剤を介して前記筐体或いは前記筐体から延長された壁に取り付けられ、前記第二のレーザ光源が接着剤を介して前記筐体或いは前記筐体から延長された壁に取り付けられ、前記第一のレーザ光源は前記接着剤よりも熱伝導率の大きい熱伝導部材を介して前記第一のカバーに接続され、前記第二のレーザ光源は前記接着剤よりも熱伝導率の大きい熱伝導部材を介して前記第二のカバーに接続されるように構成する。 In order to achieve the above object, the present invention provides an optical displacement measurement optical module for optically measuring a displacement of a measurement object, comprising: a first laser light source, a second laser light source, and a first light detection device. Container, a second photodetector, a housing, a first cover provided to cover the housing, and a second cover that covers the housing on a side facing the first cover. Comprising, the light of the measurement target based on light from the first laser light source is detected by the first photodetector, the light of the measurement target based on the light from the second laser light source The light is detected by the second light detector, and the first laser light source is attached to the housing or a wall extended from the housing via an adhesive, and the second laser light source is attached to the second laser light source. A laser light source is attached to the housing or a wall extended from the housing via an adhesive. The first laser light source is connected to the first cover via a heat conductive member having a higher thermal conductivity than the adhesive, and the second laser light source has a higher thermal conductivity than the adhesive It is configured to be connected to the second cover via a heat conducting member.
あるいは、測定対象物の変位を光学的に測定する光学式変位計測用光モジュールにおいて、第一のレーザ光源と、第二のレーザ光源と、第一の光検出器と、第二の光検出器と、筐体と、前記筐体の一つの面に設けられた第一のカバーと、前記筐体の一つの面とは反対側の面に設けられた第二のカバーとを備え、前記第一のレーザ光源の一つの面が接着剤を介して前記筐体に取り付けられ、前記第二のレーザ光源の一つの面が接着剤を介して前記筐体に取り付けられ、前記第一のレーザ光源の前記第一のカバーに対向する面が前記接着剤よりも熱伝導率の大きい熱伝導部材を介して前記第一のカバーに接続され、前記第二のレーザ光源の前記第二のカバーに対向する面が前記接着剤よりも熱伝導率の大きい熱伝導部材を介して前記第二のカバーに接続された構成とする。 Alternatively, in an optical displacement measurement optical module that optically measures the displacement of a measurement object, a first laser light source, a second laser light source, a first light detector, and a second light detector And a housing, a first cover provided on one surface of the housing, and a second cover provided on a surface opposite to the one surface of the housing, One surface of one laser light source is attached to the housing via an adhesive, and one surface of the second laser light source is attached to the housing via an adhesive, the first laser light source The surface facing the first cover is connected to the first cover via a heat conductive member having a higher thermal conductivity than the adhesive, and faces the second cover of the second laser light source. The second cover has a heat conducting member whose heat conductivity is higher than that of the adhesive. And connected to each other.
本発明によれば、筐体の熱変形を抑えることができる。 According to the present invention, thermal deformation of the housing can be suppressed.
以下、図面を用いて本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本発明の実施例1に係る光学式変位計測用光モジュール1を、図1から図4を用いて説明する。図1は本実施例の光学式変位計測用光モジュール1の斜視図である。光学式変位計測用光モジュール1は、第一のレーザ光源2と、第二のレーザ光源3と、対物レンズ4と、第一の光検出器5と、第二の光検出器6を筐体7に備える。筐体7の一つの面に第一のカバー8が設けられ、第一のカバー8が設けられた筐体7の一つの面とは反対側の面に第二のカバー9が設けられる。なお、図1では、筐体7の内部に備えられる第一のレーザ光源2と第二のレーザ光源3と対物レンズ4と第一の光検出器5と第二の光検出器6を破線で示している。また、第一のレーザ光源2と第二のレーザ光源3には後述する接着剤10a、10bと熱伝導部材11a、11bが接続され、図1では、これらの接着剤10a、10bと熱伝導部材11a、11bも破線で示している。接着剤10a、10bは例えば一般的な紫外線硬化型の接着剤である。熱伝導部材11a、11bは例えばゴム状の放熱シートであり、シリコン含有の有機化合物で構成されるいわゆる放熱シリコーンである。ここで、第一のレーザ光源2と熱伝導部材11aは直接に接しており、熱伝導部材11aと第一のカバー8は直接に接しており、図示しない付勢部材により第一のレーザ光源2は熱伝導部材11aを挟んで第一のカバー8に押圧されて保持される。また、第二のレーザ光源3と熱伝導部材11bは直接に接しており、熱伝導部材11bと第二のカバー9は直接に接しており、図示しない付勢部材により第二のレーザ光源3は熱伝導部材11bを挟んで第二のカバー9に押圧されて保持される。
First Embodiment An optical displacement measuring
図2は光学式変位計測用光モジュール1の正面図であり、第一のカバー8を表示していない状態で、光学系の構成を示している。
FIG. 2 is a front view of the optical displacement measuring
本発明の実施例である光学式変位計測用光モジュール1は、測定対象物の同軸上の検出範囲を拡大するために2個のレーザ光源と2個の光検出器を備える。第一のレーザ光源2と第二のレーザ光源3は、それらの一つの面が筐体7の内側に設けられた壁7a、7bに接着剤10a、10bを介して取り付けられる。壁7a、7bは筐体7と同じ材質で一体的に形成されている。壁7a、7bの肉厚と筐体7の肉厚は実質的に同じであり、壁7a、7bの熱伝導率と筐体7の熱伝導率は実質的に同じである。そのため、第一のレーザ光源2或いは第二のレーザ光源3で発生した熱は、まず、壁7a、7b(筐体7と熱伝導率は実質的に同じ)に伝わり、その後、筐体7に伝わる。本実施例では、壁7a、7bを筐体7に含めて記載し、或いは、壁7a、7bを筐体7を延長して構成する壁7a、7bとして記載する。
The optical displacement measuring
第一のレーザ光源2から発せられた光はコリメートレンズ12aで平行光となり、ビームスプリッタ13aとビームスプリッタ13bで反射し、対物レンズ4で集光されて、測定対象物に照射される。第二のレーザ光源3から発せられた光はコリメートレンズ12bで平行光となり、ビームスプリッタ13aを透過し、ビームスプリッタ13bで反射し、対物レンズ4で集光されて、測定対象物に照射される。測定対象物で反射した第一のレーザ光源2からの光は、対物レンズ4を透過し、ビームスプリッタ13bとビームスプリッタ13cを通過し、検出レンズ14aで集光されて第一の光検出器5に入射する。測定対象物で反射した第二のレーザ光源3からの光は、対物レンズ4を透過し、ビームスプリッタ13bを透過し、ビームスプリッタ13cで反射し、検出レンズ14bで集光されて第二の光検出器6に入射する。
Light emitted from the first
測定対象物の変位の測定は、対物レンズ4と測定対象物の距離の変化から算出される。対物レンズ4と測定対象物の距離は、非点収差法やナイフエッジ法などの検出方式によって測定することができる。第一のレーザ光源2と第二のレーザ光源3からのレーザ光に対して、第一の光検出器5と第二の光検出器6の検出において、集光位置、伝搬時間、空間的位相、時間的位相の相対的な偏差等に基づいて、対物レンズ4と測定対象物の距離の変化を検出する。このとき、各検出方式の焦点検出範囲よりも測定対象物の位置の変化が大きいと、測定中に対象物を検出できないことが生じる。そこで、複数のレーザ光源を用いて、変位の異なる測定範囲を対象とすることで、変位の大きい場合でも、測定対象物の変位を測定することができる。
The measurement of the displacement of the measurement target is calculated from a change in the distance between the
図3は光学式変位計測用光モジュール1の側面図であり、筐体7の内部に備えられる第一のレーザ光源2と第二のレーザ光源3と対物レンズ4と第一の光検出器5と熱伝導部材11a、11bを破線で示している。第一のレーザ光源2は、第一のカバー8に対向する面が熱伝導部材11aを介して第一のカバー8に接続される。第二のレーザ光源3は、第二のカバー9に対向する面が熱伝導部材11bを介して第二のカバー9に接続される。
FIG. 3 is a side view of the optical displacement measuring
ここで、熱伝導部材11a、11bは接着剤10a、10bよりも熱伝導率の大きい部材である。すなわち、第一のレーザ光源2から接着剤10aを介して筐体7に伝わる経路の熱抵抗よりも、第一のレーザ光源2から熱伝導部材11aを介して第一のカバー8に伝わる経路の熱抵抗の方が小さく、第二のレーザ光源3から接着剤10bを介して筐体7に伝わる経路の熱抵抗よりも、第二のレーザ光源3から熱伝導部材11bを介して第二のカバー9に伝わる経路の熱抵抗の方が小さい。
Here, the heat
このように構成することで、第一のレーザ光源2から接着剤10aを介して筐体7に伝わる熱よりも、第一のレーザ光源2から熱伝導部材11aを介して第一のカバー8に伝わる熱を大きく、第二のレーザ光源3から接着剤10bを介して筐体7に伝わる熱よりも、第二のレーザ光源3から熱伝導部材11bを介して第二のカバー9に伝わる熱を大きくすることができる。
With such a configuration, the heat from the first
また、第一のレーザ光源2と第二のレーザ光源3で発生した熱を、それぞれ第一のカバー8と第二のカバー9に放熱することで、熱干渉を低減して、放熱面積を確保できる。
Further, heat generated by the first
図4は光学式変位計測用光モジュール1を用いて測定対象物15の変位を測定する場合の説明図である。図4では、測定対象物15の表面位置が第一の表面15aと第二の表面15bのように大きく2種類に分かれている場合を示している。光学式変位計測用光モジュール1を固定部材17に取り付け、図示していない調整機構によって、光学式変位計測用光モジュール1を対物レンズ4の光軸方向に移動させ、対物レンズ4の焦点位置を測定対象物15近傍に設定する。第一のレーザ光源2から照射された光を用いて、測定対象物15の第一の表面15aと対物レンズ4の距離h1を検出し、第二のレーザ光源3から照射された光を用いて、測定対象物15の第二の表面15bと対物レンズ4の距離h2を検出する。
FIG. 4 is an explanatory diagram in the case of measuring the displacement of the measuring
このような測定時において、第一のレーザ光源2、第二のレーザ光源3の発光に伴って生じた熱が筐体7に伝わると、筐体7の温度上昇によって筐体7が熱膨張する。この熱膨張によって、筐体7に取り付けられた対物レンズ4の位置が変化すると、測定対象物が変位したように誤って検出される。これを防止するためには、レーザ光源から筐体7に伝わる熱を低減する必要がある。本実施例のように複数のレーザ光源を同時に発効させる場合には、レーザ光源が1個の場合よりも発熱量が増加することになるので、レーザ光源から筐体7に伝わる熱を低減することが極めて重要になる。
At the time of such measurement, when the heat generated by the light emission of the first
本実施例では上記のように、第一のレーザ光源2、第二のレーザ光源3から筐体7に伝わる熱よりも、第一のレーザ光源2、第二のレーザ光源3から第一のカバー8、第二のカバー9に伝わる熱を大きくすることで、第一のレーザ光源2と第二のレーザ光源3から筐体7に伝わる熱を低減し、筐体7の温度上昇を抑え、筐体7の熱変形を抑制することができる。
In this embodiment, as described above, the first
なお、第一のカバー8、第二のカバー9の筐体7への取り付けは、図示していないねじ等で行うことで、第一のカバー8、第二のカバー9と筐体7の熱的な接続箇所を限定的にしている。これにより、第一のレーザ光源2、第二のレーザ光源3から第一のカバー8、第二のカバー9に伝わった熱が、再び筐体7に伝わることを低減できる。
The
次に、本発明の実施例2に係る光学式変位計測用光モジュール101を、図5、図6を用いて説明する。なお、以下の実施例において、実施例1と共通の部品には実施例1と同じ番号を付与し、詳細な説明は省略する。
Next, an optical displacement measuring
図5は本実施例の光学式変位計測用光モジュール101の斜視図、図6はその側面図である。光学式変位計測用光モジュール101は、第一のレーザ光源2と、第二のレーザ光源3と、対物レンズ4と、第一の光検出器5と、第二の光検出器6を筐体7に備える。筐体7の一つの面に第一のカバー8が設けられ、第一のカバー8が設けられた筐体7の一つの面とは反対側の面に第二のカバー9が設けられる。
FIG. 5 is a perspective view of the optical displacement measuring
第一のレーザ光源2は、その一つの面が接着剤10aを介して筐体7の内側に設けられた壁に取り付けられ、第一のカバー8に対向する面が熱伝導部材11aを介して第一のカバー8に接続され、第二のカバー9に対向する面が熱伝導部材11cを介して第二のカバー9に接続される。第二のレーザ光源3は、その一つの面が接着剤10bを介して筐体7の内側に設けられた壁に取り付けられ、第二のカバー9に対向する面が熱伝導部材11bを介して第二のカバー9に接続され、第一のカバー8に対向する面が熱伝導部材11dを介して第一のカバー8に接続される。熱伝導部材11c及び熱伝導部材11dは熱伝導部材11a及び熱伝導部材11bと同様に構成される。そのほかの光学系の構成や測定対象物の変位の検出方法は、実施例1と同様である。
The first
ここで、熱伝導部材11a、11b、11c、11dは接着剤10a、10bのいずれもよりも熱伝導率の大きい部材である。
Here, the heat
このように構成することで、第一のレーザ光源2から熱伝導部材11aを介して第一のカバー8と、熱伝導部材11cを介して第二のカバー9に放熱でき、また、第二のレーザ光源3から熱伝導部材11bを介して第二のカバー9と、熱伝導部材11dを介して第一のカバー8に放熱できる。これによって、第一のレーザ光源2と第二のレーザ光源3から第一のカバー8と第二のカバー9に熱を効率的に伝えることができ、筐体7に伝わる熱を低減し、筐体7の温度上昇を抑え、筐体7の熱変形を抑制することができる。
With this configuration, heat can be radiated from the first
また、このように構成することで、第一のレーザ光源2と第二のレーザ光源3の発熱量が異なる場合でも、第一のレーザ光源2と第二のレーザ光源3から第一のカバー8と第二のカバー9への放熱を同程度にできる効果もある。
Further, with this configuration, even when the first
次に、本発明の実施例3に係る光学式変位計測用光モジュール201を、図7を用いて説明する。
Next, an optical displacement measuring
図7は本実施例の光学式変位計測用光モジュール201の斜視図である。光学式変位計測用光モジュール201は、第一のレーザ光源2と、第二のレーザ光源3と、対物レンズ4と、第一の光検出器5と、第二の光検出器6を筐体7に備える。筐体7の一つの面の一部に第一のカバー208が設けられ、第一のカバー208が設けられた筐体7の一つの面の他部に第三のカバー210が設けられ、第一のカバー208および第三のカバー210が設けられた筐体7の一つの面とは反対側の面に第二のカバー209が設けられる。
FIG. 7 is a perspective view of the optical displacement measuring
第一のレーザ光源2は、その一つの面が接着剤10aを介して筐体7の内側に設けられた壁に取り付けられ、第一のカバー208に対向する面が熱伝導部材11aを介して第一のカバー208に接続される。第二のレーザ光源3は、その一つの面が接着剤10bを介して筐体7の内側に設けられた壁に取り付けられ、第二のカバー209に対向する面が熱伝導部材11bを介して第二のカバー209に接続される。
The first
第一の光検出器5と第三のカバー210の間には熱伝導部材11eが備えられ、第一の光検出器5と第三のカバー210を熱的に接続している。ここで、熱伝導部材11eは、熱伝導部材11a、熱伝導部材11b、熱伝導部材11c及び熱伝導部材11dはと同様に構成される。なお、図7では、第三のカバー210は、第一のカバー208が設けられた筐体7の面に設けられているが、第二のカバー209が設けられた筐体7の面に設けてもよい。また、第一の光検出器5と第三のカバー210を熱的に接続しているが、第二の光検出器6と第三のカバー210を熱的に接続してもかまわない。
A
そのほかの光学系の構成や測定対象物の変位の検出方法は、実施例1あるいは実施例2と同様である。 Other configurations of the optical system and a method of detecting the displacement of the measurement object are the same as those in the first or second embodiment.
このように構成することで、光検出器5から熱伝導部材11eを介して第三のカバー210に熱を効率的に伝えることができ、光検出器5から筐体7に伝わる熱を低減することができる。これによって、筐体7の温度上昇を抑え、筐体7の熱変形を抑制することができる。
With this configuration, heat can be efficiently transmitted from the
ここで、第三のカバー210の表面積は第一のカバー208の表面積よりも小さい。第三のカバー210を設けることで第一のカバー208の表面積は実施例1よりも小さくなるので、第一のレーザ光源2から第一のカバー208に伝わって外部に放熱される効率は低下する。しかし、第三のカバー210の表面積を第一のカバー208の表面積よりも小さくすることで、光検出器5から第三のカバー210に伝わる熱の経路を確保しつつ、第一のレーザ光源2から第一のカバー208に伝わって外部に放熱される効率の低下を限定的にできる。
Here, the surface area of the
なお、第三のカバー210を第二のカバー209と同じ側に設ける場合は、第三のカバー210の表面積を第二のカバー209の表面積よりも小さくすれば良い。
When the
次に、本発明の実施例4に係る光学式変位計測用光モジュールにおける第一のカバー308と第二のカバー309を、図8、図9を用いて説明する。
Next, the
第一のカバー308は第一のレーザ光源2と接続する近傍の一部が、第一のレーザ光源2の方向に折り曲げられ、第一のカバー308の折り曲げ部308aと第一のレーザ光源2が熱的に接続する。なお、第一のカバー308の折り曲げ部308aと第一のレーザ光源2は直接接しても良いし、熱伝導部材を介して接続しても良い。
A part of the
第二のカバー309は第二のレーザ光源3と接続する近傍の一部が、第二のレーザ光源3の方向に折り曲げられ、第二のカバー309の折り曲げ部309aと第二のレーザ光源3が熱的に接続する。なお、第二のカバー309の折り曲げ部309aと第二のレーザ光源3は直接接しても良いし、熱伝導部材を介して接続しても良い。
A part of the
そのほかの構成は実施例1から実施例3のいずれかと同様である。 The other configuration is the same as any one of the first to third embodiments.
このように構成することで、第一のカバー308の折り曲げ部308aと第一のレーザ光源2の距離、および第二のカバー309の折り曲げ部309aと第二のレーザ光源3の距離を短くできるので、第一のレーザ光源2から第一のカバー308への熱抵抗、および第二のレーザ光源3から第二のカバー309への熱抵抗を低減することができる。これによって、筐体の温度上昇を抑え、筐体の熱変形を抑制することができる。
With this configuration, the distance between the
以上、本発明の実施例によれば、対物レンズの変位を低減でき、測定誤差の小さい光学式変位計測用光モジュールを提供することができる。 As described above, according to the embodiment of the present invention, it is possible to provide an optical module for optical displacement measurement that can reduce the displacement of the objective lens and has a small measurement error.
なお、本発明は上記の実施例に限定されるものではなく、様々な変形例を含む。例えば、上記の実施例は本発明をわかりやすくするために詳細に説明したものであり、本発明は必ずしも説明したすべての構成を備える態様に限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能である。また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の実施例の構成を追加・削除・置換することが可能である。 It should be noted that the present invention is not limited to the above embodiments, but includes various modifications. For example, the above embodiments have been described in detail in order to make the present invention easy to understand, and the present invention is not necessarily limited to an aspect having all the described configurations. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, for a part of the configuration of each embodiment, the configuration of another embodiment can be added, deleted, or replaced.
1・・・光学式変位計測用光モジュール、2・・・第一のレーザ光源、3・・・第二のレーザ光源、4・・・対物レンズ、5・・・第一の光検出器、6・・・第二の光検出器、7・・・筐体、8・・・第一のカバー、9・・・第二のカバー、10a、10b・・・接着剤、11a、11b、11c、11d、11e・・・熱伝導部材、12a、12b・・・コリメートレンズ、13a、13b、13c・・・ビームスプリッタ、14a、14b・・・検出レンズ、15、16・・・測定対象物、17・・・固定部材
DESCRIPTION OF
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018155124A JP2020030082A (en) | 2018-08-22 | 2018-08-22 | Optical module for optical displacement measurement, and heat radiation method of optical module for optical displacement measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018155124A JP2020030082A (en) | 2018-08-22 | 2018-08-22 | Optical module for optical displacement measurement, and heat radiation method of optical module for optical displacement measurement |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020030082A true JP2020030082A (en) | 2020-02-27 |
Family
ID=69622276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018155124A Pending JP2020030082A (en) | 2018-08-22 | 2018-08-22 | Optical module for optical displacement measurement, and heat radiation method of optical module for optical displacement measurement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020030082A (en) |
-
2018
- 2018-08-22 JP JP2018155124A patent/JP2020030082A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK2363726T3 (en) | Compact laser rangefinder | |
US11309683B2 (en) | Laser module and laser apparatus | |
JP2016157863A (en) | Laser light source device and adjustment method therefor | |
JP2019533153A5 (en) | ||
JP2014240782A (en) | Measurement apparatus | |
JP2011238698A (en) | Laser module | |
JP2014090099A (en) | Optical sensor | |
JP2007512148A (en) | Optical beam translation device and method using pivoting optical fiber | |
WO2010058322A1 (en) | Laser self-mixing differential doppler velocimetry and vibrometry | |
EP3540371B1 (en) | Laser projection module, depth camera and electronic device | |
NO20011684D0 (en) | Semiconductor laser-based sensing device | |
US8723102B2 (en) | Optical module | |
US20160349493A1 (en) | Scanning unit, laser scanning microscope, and temperature adjustment method | |
CN105556650A (en) | Method and system for high speed height control of a substrate surface within a wafer inspection system | |
JP2020030082A (en) | Optical module for optical displacement measurement, and heat radiation method of optical module for optical displacement measurement | |
US9945656B2 (en) | Multi-function spectroscopic device | |
US20180180738A1 (en) | Optical triangulation sensor for distance measurement | |
JP2014228492A (en) | Laser device | |
JP2006337320A (en) | Optical range finder sensor | |
JP2010256183A (en) | Reflection-type photoelectric sensor | |
CN106104230B (en) | For measuring the device of the amplitude of the capillary of wire bonding device | |
JP2014126518A (en) | Optical device, michelson interferometer, and fourier transformation spectroscopic analyzer | |
JP6789441B2 (en) | Wave surface measuring device | |
KR102200281B1 (en) | Optical system and method thereof | |
US7821631B1 (en) | Architecture of laser sources in a flow cytometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180824 |