JP2020028923A - Control device of articulated robot - Google Patents

Control device of articulated robot Download PDF

Info

Publication number
JP2020028923A
JP2020028923A JP2018154168A JP2018154168A JP2020028923A JP 2020028923 A JP2020028923 A JP 2020028923A JP 2018154168 A JP2018154168 A JP 2018154168A JP 2018154168 A JP2018154168 A JP 2018154168A JP 2020028923 A JP2020028923 A JP 2020028923A
Authority
JP
Japan
Prior art keywords
external force
movable
torque
arm
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018154168A
Other languages
Japanese (ja)
Other versions
JP7148321B2 (en
Inventor
応朗 本橋
Masao Motohashi
応朗 本橋
嵩博 北野
Takahiro Kitano
嵩博 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2018154168A priority Critical patent/JP7148321B2/en
Publication of JP2020028923A publication Critical patent/JP2020028923A/en
Application granted granted Critical
Publication of JP7148321B2 publication Critical patent/JP7148321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a control device of an articulated robot enabling exact determination of a movable shaft capable of sensitively detecting external force applied to an arm of a plurality of movable shafts.SOLUTION: A control device 20 of an articulated robot 10 includes: a storage section which stores a correction coefficient or a correction function determined on the basis of a detection value of torque around each movable shaft J1 to J6 when applying sample external force F to a tip of an arm 10a or a motor current value; and torque sensitivity arithmetic means which calculates torque detection sensitivity in each movable shaft J1 to J6 changed according to the direction of the external force F applied to the tip of the arm 10a on the basis of at least a formula element indicating the relation between a rotary shaft direction of each movable shaft J1 to J6 and a direction of the external force F and the correction coefficient or the correction function. The torque detection sensitivity indicates sensitivity of a current detection value of a motor or a detection value of a torque sensor to the external force F in each movable shaft J1 to J6.SELECTED DRAWING: Figure 1

Description

本発明は多関節ロボットの制御装置に関する。   The present invention relates to a control device for an articulated robot.

従来、ロボットの各可動軸に生ずるトルクであって、溶接点からロボットに加わる外力によって生ずるトルクを正確に算出するために、外積及び内積を用いた論理的な式を用いるスポット溶接ロボットが知られている(例えば、特許文献1参照。)。   2. Description of the Related Art Conventionally, a spot welding robot using a logical formula using an outer product and an inner product in order to accurately calculate a torque generated on each movable axis of the robot, which is generated by an external force applied to the robot from a welding point, is known. (For example, see Patent Document 1).

特開2001−105152号公報JP 2001-105152 A

前記スポット溶接ロボットでも、外力の方向と各可動軸の回転軸方向延びる方向との関係を考慮して、各可動軸に生ずるトルクが計算されている。しかし、各可動軸は減速機を介してサーボモータが接続されており、減速機内の回転抵抗、サーボモータ内の回転抵抗等が実際は存在しているので、抵抗を考慮しない理論式で各可動軸に生ずるトルクを求めると、実際に生ずるトルクと異なることが多い。特に、外力モーメントの方向と各可動軸の回転軸方向とがなす角度が大きくなる程、理論式から得られる結果に対する差が大きくなり、当該角度が10°、20°程度で差が無視できないものとなる場合も多い。   Even in the spot welding robot, the torque generated in each movable shaft is calculated in consideration of the relationship between the direction of the external force and the direction in which each movable shaft extends in the rotation axis direction. However, each movable axis is connected to a servomotor via a speed reducer, and the rotational resistance in the reducer, the rotational resistance in the servomotor, etc. actually exist. Is often different from the torque actually generated. In particular, the larger the angle between the direction of the external force moment and the direction of the rotation axis of each movable shaft is, the larger the difference from the result obtained from the theoretical formula becomes. In many cases.

一方、ロボットの複数の可動軸のうち典型的には選択した1つの可動軸をワークの動き、ツールの動作によって生ずる力等に追従させる制御を行う場合がある。この追従制御は、選択された可動軸に対して、モータの電流値を制限したり、位置/速度ループゲインを下げたりすることによって行われる。外力によるトルクの影響を受けやすい可動軸でトルク制限等を行うと追従性がよくなるため、外力によって各可動軸モータに生ずるトルクを精度よく推定できることが望ましい。   On the other hand, there is a case in which control is typically performed such that one selected movable axis of the plurality of movable axes of the robot follows the movement of the work, the force generated by the operation of the tool, and the like. This follow-up control is performed by limiting the current value of the motor or reducing the position / speed loop gain for the selected movable axis. If torque is limited by a movable shaft that is easily affected by torque due to an external force, the followability is improved. Therefore, it is desirable to be able to accurately estimate the torque generated in each movable shaft motor by the external force.

本発明は、前述の事情に鑑みてなされている。本発明の目的の一つは、複数の可動軸のうちアームに加わる外力を感度よく検出できる可動軸の正確な判断を可能とする多関節ロボットの制御装置の提供である。   The present invention has been made in view of the above circumstances. An object of the present invention is to provide a control apparatus for an articulated robot that enables accurate determination of a movable axis capable of detecting an external force applied to an arm with high sensitivity among a plurality of movable axes.

上記課題を解決するために、本発明は以下の手段を採用する。
本発明の一態様は、ロボットのアームを構成する複数のアーム部材が複数の可動軸周りに動く多関節ロボットの制御装置であって、前記アームの先端部にサンプル外力を加えた時の前記各可動軸周りのトルク又はモータ電流値の検出値に基づいて求められた補正係数又は補正関数が格納されている記憶部と、前記アームの前記先端部に加わる外力の方向に応じて変化する前記各可動軸におけるトルク検出感度を、前記各可動軸の回転軸方向と前記外力の方向との関係を示す数式要素と、前記補正係数又は前記補正関数とに少なくとも基づき演算するトルク感度演算手段と、を備え、前記トルク検出感度は、前記各可動軸におけるモータの電流検出値又はトルクセンサの検出値の前記外力に対する感度を示すものである。
In order to solve the above problems, the present invention employs the following solutions.
One aspect of the present invention is a control device for an articulated robot in which a plurality of arm members constituting a robot arm move around a plurality of movable axes, wherein each of the plurality of arm members when a sample external force is applied to a tip portion of the arm. A storage unit in which a correction coefficient or a correction function obtained based on a detected value of a torque or a motor current value around a movable axis is stored, and each of the storage units that changes according to a direction of an external force applied to the distal end of the arm. A torque detection sensitivity of the movable shaft, a mathematical element indicating a relationship between the rotation axis direction of each of the movable shafts and the direction of the external force, and a torque sensitivity calculating unit that calculates based on at least the correction coefficient or the correction function. The torque detection sensitivity indicates the sensitivity of the motor current detection value or the torque sensor detection value of each of the movable shafts to the external force.

上記態様では、大きさおよび方向がわかっているサンプル外力に基づいて補正係数又は補正関数が求められ、各可動軸の回転軸方向と外力の方向との関係を示す数式要素に加え、補正係数又は補正関数を用いて、各可動軸のトルク検出感度が算出される。このため、複数の可動軸のうちアームに加わる外力を感度よく検出できる可動軸の正確な選択が可能となる。   In the above aspect, the correction coefficient or the correction function is obtained based on the sample external force whose magnitude and direction are known, and in addition to the mathematical elements indicating the relationship between the rotation axis direction of each movable shaft and the direction of the external force, the correction coefficient or The torque detection sensitivity of each movable shaft is calculated using the correction function. For this reason, it is possible to accurately select a movable shaft that can detect the external force applied to the arm with high sensitivity among the plurality of movable shafts.

上記態様において、好ましくは、前記トルク感度演算手段が、前記各可動軸と前記外力の作用点との距離と、前記数式要素と、前記補正係数又は前記補正関数とを少なくとも用いて前記各可動軸における前記トルク検出感度を演算する。
当該態様では、各可動軸と外力の作用点との距離も用いて、各可動軸のトルク検出感度が算出される。このため、複数の可動軸のうちアームに加わる外力を感度よく検出できる可動軸の正確な判断が可能となる。
In the above aspect, preferably, the torque sensitivity calculation means uses at least the distance between each of the movable shafts and the point of action of the external force, the mathematical element, and the correction coefficient or the correction function to each of the movable shafts. Calculate the torque detection sensitivity at.
In this aspect, the torque detection sensitivity of each movable shaft is calculated using the distance between each movable shaft and the point of action of the external force. For this reason, it is possible to accurately determine the movable shaft that can detect the external force applied to the arm with high sensitivity among the plurality of movable shafts.

上記態様において、好ましくは、前記複数の可動軸のうち前記トルク検出感度が優位である少なくとも1つを前記外力に追従する可動軸として選択する軸決定手段を備える。
当該態様では、前述のように正確に算出されたトルク検出感度を用いて、複数の可動軸のうち優位である少なくとも1つが外力に追従する可動軸として決定される。これは、ワークの動き、ツールの動作によって生ずる力等にロボットを追従させる制御を正確に行う上で有利である。
In the above aspect, preferably, there is provided an axis determining means for selecting at least one of the plurality of movable axes, in which the torque detection sensitivity is superior, as a movable axis that follows the external force.
In this aspect, at least one of the plurality of movable axes that is superior is determined as the movable axis that follows the external force, using the torque detection sensitivity accurately calculated as described above. This is advantageous in accurately controlling the robot to follow the movement of the work, the force generated by the operation of the tool, and the like.

上記態様において、好ましくは、前記アームにおいて前記外力が加わる位置の検出又は推定を行う外力位置取得手段をさらに備え、前記外力位置取得手段は、前記複数の可動軸のうち前記トルク検出感度が優位である少なくとも1つの前記可動軸周りのトルク又はモータ電流値の検出値を、前記検出又は前記推定に用いる。
当該態様では、トルク検出感度が優位である可動軸周りのトルク又はモータ電流値の検出値が、外力が加わる位置の検出又は推定に用いられるので、外力が加わる位置をより正確に知ることができる。
In the above aspect, preferably, the arm further includes an external force position acquisition unit that detects or estimates a position where the external force is applied to the arm, wherein the external force position acquisition unit is superior in the torque detection sensitivity among the plurality of movable shafts. A detected value of a torque or a motor current value around at least one of the movable axes is used for the detection or the estimation.
In this aspect, since the detected value of the torque or the motor current value around the movable axis where the torque detection sensitivity is superior is used for detecting or estimating the position where the external force is applied, it is possible to more accurately know the position where the external force is applied. .

本発明によれば、複数の可動軸のうちアームに加わる外力を感度よく検出できる可動軸の正確な判断を可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the exact determination of the movable shaft which can detect the external force applied to the arm with high sensitivity among several movable shafts is attained.

本発明の一実施形態のロボットおよび制御装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a robot and a control device according to an embodiment of the present invention. 本実施形態のロボットの動作説明図である。FIG. 5 is an explanatory diagram of the operation of the robot according to the embodiment. 本実施形態の制御装置のブロック図である。It is a block diagram of a control device of this embodiment.

本発明の一実施形態に係る多関節ロボットであるロボット10の制御装置20が、図面を用いながら以下説明されている。
本実施形態のロボット10は、図1に示されるように、ベースBとアーム10aとを有する。アーム10aは複数のアーム部材11,12,13,14,15,16を有し、複数のアーム部材11,12,13,14,15,16がそれぞれ可動軸J1,J2,J3,J4,J5,J6周りに動く。なお、図1に示されるロボット10は垂直多関節ロボットであるが、水平多関節ロボットであってもよく、特定の種類のロボットに限定されない。
A control device 20 of a robot 10 that is an articulated robot according to an embodiment of the present invention will be described below with reference to the drawings.
The robot 10 of the present embodiment has a base B and an arm 10a as shown in FIG. The arm 10a has a plurality of arm members 11, 12, 13, 14, 15, 16 and the plurality of arm members 11, 12, 13, 14, 15, 16 are respectively movable axes J1, J2, J3, J4, J5. , Move around J6. Although the robot 10 shown in FIG. 1 is a vertical articulated robot, it may be a horizontal articulated robot, and is not limited to a specific type of robot.

ロボット10は、複数の可動軸J1,J2,J3,J4,J5,J6周りにそれぞれアーム部材11,12,13,14,15,16を駆動する複数のサーボモータ11a,12a,13a,14a,15a,16a(図3)を有する。サーボモータ11a,12a,13a,14a,15a,16aにそれぞれ減速機11b,12b,13b,14b,15b,16b(図3)が接続され、サーボモータ11a,12a,13a,14a,15a,16aの駆動力が減速機11b,12b,13b,14b,15b,16bによって減速されてアーム部材11,12,13,14,15,16に伝達される。また、各サーボモータ11a,12a,13a,14a,15a,16aはその作動位置を検出するための作動位置検出装置(図示せず)を有し、作動位置検出装置は一例としてエンコーダである。作動位置検出装置の検出結果は制御装置20に送信される。   The robot 10 includes a plurality of servomotors 11a, 12a, 13a, 14a, which drive arm members 11, 12, 13, 14, 15, 16 around the plurality of movable axes J1, J2, J3, J4, J5, J6, respectively. 15a and 16a (FIG. 3). The reduction gears 11b, 12b, 13b, 14b, 15b, 16b (FIG. 3) are connected to the servo motors 11a, 12a, 13a, 14a, 15a, 16a, respectively. The driving force is reduced by the reduction gears 11b, 12b, 13b, 14b, 15b, and 16b and transmitted to the arm members 11, 12, 13, 14, 15, and 16. Each of the servomotors 11a, 12a, 13a, 14a, 15a, 16a has an operating position detecting device (not shown) for detecting its operating position, and the operating position detecting device is, for example, an encoder. The detection result of the operating position detecting device is transmitted to the control device 20.

制御装置20は、図3に示されるように、CPU等であるプロセッサ21と、表示装置22と、不揮発性ストレージ、ROM、RAM等を有する記憶部23と、キーボード等の入力装置24と、送受信部25と、サーボモータ11a〜16aに各々対応したサーボ制御器26とを備え、ロボット10のサーボモータ11a〜16aを制御する。記憶部23にはシステムプログラム23aが格納されており、システムプログラム23aが制御装置20の基本機能を担っている。   As shown in FIG. 3, the control device 20 includes a processor 21 such as a CPU, a display device 22, a storage unit 23 having a nonvolatile storage, a ROM, a RAM, and the like, an input device 24 such as a keyboard, The robot 10 includes a unit 25 and servo controllers 26 corresponding to the servo motors 11a to 16a, respectively, and controls the servo motors 11a to 16a of the robot 10. The storage unit 23 stores a system program 23a, and the system program 23a has a basic function of the control device 20.

記憶部23には、動作プログラム23bと、補正係数取得プログラム23cと、感度演算プログラム(トルク感度演算手段)23dと、軸決定プログラム(軸決定手段)23eとが格納されている。プロセッサ21は、動作プログラム23bに基づきサーボモータ11a〜16aを制御し、これによりロボット10がアーム10aの先端部に設けられたツールTを用いて所定の作業を行う。   The storage unit 23 stores an operation program 23b, a correction coefficient acquisition program 23c, a sensitivity calculation program (torque sensitivity calculation means) 23d, and an axis determination program (axis determination means) 23e. The processor 21 controls the servomotors 11a to 16a based on the operation program 23b, whereby the robot 10 performs a predetermined operation using the tool T provided at the tip of the arm 10a.

また、プロセッサ21は、入力装置24から所定の開始信号の入力があった時、又は、送受信部25において所定の開始信号が受信された時に、補正係数取得プログラム23cに基づき各可動軸J1,J2,J3,J4,J5,J6の補正係数を求め、求めた補正係数を記憶部23に格納する。   Further, when a predetermined start signal is input from the input device 24 or when a predetermined start signal is received by the transmission / reception unit 25, the processor 21 determines whether each of the movable axes J1 and J2 is based on the correction coefficient acquisition program 23c. , J3, J4, J5, and J6 are determined, and the determined correction coefficients are stored in the storage unit 23.

例えば、プロセッサ21は、サーボモータ11a〜16aを制御することによって、アーム10aを第1の姿勢にする。この時、ツールTにサンプル外力Fが加えられる。プロセッサ21によるサーボモータ11a〜16aの制御によってツールTを所定の部材に押し当て、これによってサンプル外力FがツールTに加えられてもよく、所定の装置によってツールTを押すこと、ツールTが所定の物体を保持すること等によって、ツールTにサンプル外力Fが加えられてもよい。   For example, the processor 21 controls the servomotors 11a to 16a to bring the arm 10a to the first posture. At this time, a sample external force F is applied to the tool T. The tool T may be pressed against a predetermined member by the control of the servomotors 11a to 16a by the processor 21, whereby a sample external force F may be applied to the tool T. Pressing the tool T by a predetermined device, The sample external force F may be applied to the tool T by holding the object.

この時のサンプル外力Fの方向および大きさがわかっており、サンプル外力Fの方向および大きさは制御装置20に入力される。サンプル外力Fの方向および大きさが入力装置24又は送受信部25を介して制御装置20に入力されてもよく、サンプル外力Fの方向および大きさがアーム10aの先端部、ツールT等に設けられた力センサDによって検出され、検出結果が制御装置20に送信されてもよい。   At this time, the direction and magnitude of the sample external force F are known, and the direction and magnitude of the sample external force F are input to the control device 20. The direction and magnitude of the sample external force F may be input to the control device 20 via the input device 24 or the transmission / reception unit 25, and the direction and magnitude of the sample external force F are provided at the tip of the arm 10a, the tool T, or the like. May be detected by the force sensor D, and the detection result may be transmitted to the control device 20.

なお、サンプル外力Fの方向および大きさは制御装置20が認識しているアーム10aの基準座標系に対応したものである。一例では、サンプル外力FはツールTの一部に可動軸J6に沿った方向又は垂直な方向に加わるものであり、サンプル外力Fの方向がアーム10aの姿勢の変更に応じて変化する。   The direction and magnitude of the sample external force F correspond to the reference coordinate system of the arm 10a recognized by the control device 20. In one example, the sample external force F is applied to a part of the tool T in a direction along the movable axis J6 or in a perpendicular direction, and the direction of the sample external force F changes according to a change in the posture of the arm 10a.

プロセッサ21は、補正係数取得プログラム23cに基づき、可動軸J1,J2,J3,J4,J5,J6のそれぞれについて、補正係数R、R、R、・・・Rを求める。補正係数R、R、R、・・・Rを求めるため、一例として、プロセッサ21は、アーム10aの姿勢情報又は各サーボモータ11a,12a,13a,14a,15a,16aの作動位置検出装置の情報からわかる位置ベクトルPおよび回転軸ベクトル方向の単位ベクトルAUiと、サンプル外力Fの方向および大きさとを、下記式(1)に適用して、理論的なトルクを求める。 The processor 21, based on the correction coefficient acquiring program 23c, for each of the movable axes J1, J2, J3, J4, J5, J6, the correction factor R 1, R 2, R 3 , obtaining the · · · R n. In order to obtain the correction coefficients R 1 , R 2 , R 3 ,... R n , as an example, the processor 21 determines the attitude information of the arm 10 a or the operating positions of the servomotors 11 a, 12 a, 13 a, 14 a, 15 a, 16 a. The theoretical torque is obtained by applying the position vector P i and the unit vector A Ui in the rotation axis vector direction, which are known from the information of the detection device, and the direction and magnitude of the sample external force F to the following equation (1).

Figure 2020028923
位置ベクトルP、単位ベクトルAUi、垂線の長さ(各可動軸J1〜J6と外力Fの作用点との距離)r等のiには可動軸J1〜J6に対応する1〜6の数字が入り、例えば、Pは可動軸J1に関する位置ベクトル、Pは可動軸J2に関する位置ベクトル、・・・Pは可動軸J6に関する位置ベクトルである。
Figure 2020028923
The position vector P i , the unit vector A Ui , the length of the perpendicular (the distance between each movable axis J1 to J6 and the point of action of the external force F) r i, and the like correspond to the movable axes J1 to J6. numbers entered, for example, P 1 is the position vector about movable axis J1, P 2 is the position vector about the movable shaft J2, · · · P 6 is the position vector for the movable axis J6.

は、サンプル外力Fの作用点から各可動軸J1,J2,J3,J4,J5,J6に下ろした垂線と回転軸の交点を点Oとして、点OからFの作用点を結ぶ位置ベクトルであり、AUiは、各可動軸J1,J2,J3,J4,J5,J6に沿った方向に延びる単位ベクトルであり、φは、回転軸ベクトルとP×F(外積)の成す角度である。P×F(外積)で得られるベクトルは、ベクトルPとベクトルFの両方に直交する。
×F(外積)およびcosφは、各可動軸J1,J2,J3,J4,J5,J6の回転軸方向と外力Fの方向との関係を示す数式要素である。
P i, each movable axis from the point of sample external force F J1, J2, J3, J4, J5, a perpendicular intersection of the rotation axis down to J6 as a point O, the position vector connecting the point of action of F from the point O A Ui is a unit vector extending in a direction along each of the movable axes J1, J2, J3, J4, J5, and J6, and φ is an angle formed by the rotation axis vector and P i × F (outer product). is there. A vector obtained by P i × F (cross product) is orthogonal to both the vector P i and the vector F.
P i × F (outer product) and cos φ are mathematical elements indicating the relationship between the rotation axis directions of the movable axes J1, J2, J3, J4, J5, and J6 and the direction of the external force F.

そして、プロセッサ21は、補正係数取得プログラム23cに基づき、可動軸J1,J2,J3,J4,J5,J6の各々について、サンプル外力Fに対し式(1)によって理論的に得られる理論トルク(モーメントMai)と、サンプル外力Fを加えた時にサーボモータ11a,12a,13a,14a,15a,16aによって各々実測されるモータ電流値又はトルク値とに基づき、補正係数を求め、求められた補正係数を対応する可動軸J1,J2,J3,J4,J5,J6の番号と共に記憶部23に格納する。各サーボモータ11a〜16aにトルクセンサが設けられている場合、各サーボモータ11a〜16aのトルクセンサの検出値が前記補正係数の計算に用いられてもよい。 Then, based on the correction coefficient acquisition program 23c, the processor 21 calculates, for each of the movable axes J1, J2, J3, J4, J5, and J6, a theoretical torque (moment) that is theoretically obtained by the equation (1) with respect to the sample external force F. M ai ), and a correction coefficient is obtained based on the motor current value or the torque value actually measured by the servomotors 11a, 12a, 13a, 14a, 15a, 16a when the sample external force F is applied, and the obtained correction coefficient is obtained. Is stored in the storage unit 23 together with the corresponding numbers of the movable axes J1, J2, J3, J4, J5, and J6. When a torque sensor is provided for each of the servomotors 11a to 16a, the detection value of the torque sensor of each of the servomotors 11a to 16a may be used for calculating the correction coefficient.

ここで、好ましくは補正係数はφに対応するように求められ、記憶部23に格納される。例えば、第1の姿勢において、式(1)に示される位置ベクトルPとサンプル外力Fの外積と、可動軸J1の回転軸方向(可動軸J1の単位ベクトルAUi)とが成す角度φが10°である場合、記憶部23には、第1の姿勢およびサンプル外力Fの時の可動軸J1の補正係数Rが角度φに対応して格納される。第2の姿勢、第3の姿勢、・・・第nの姿勢の時に同様に補正係数R、R、・・・Rが角度φに対応して格納される。図1は可動軸J1に関する位置ベクトルP、可動軸J1の単位ベクトルAUi等が示されているが、可動軸J2,J3,J4,J5,J6の各々について、同様に補正係数R、R、R、・・・Rが角度φに対応して格納される。 Here, preferably, the correction coefficient is obtained so as to correspond to φ and stored in the storage unit 23. For example, in the first position, the outer product of the position vector P i and sample the external force F represented by formula (1), the angle φ formed between the direction of the rotation axis of the movable shaft J1 (unit vector A Ui of the movable shaft J1) If it is 10 °, the storage unit 23, the correction coefficient R 1 of the movable shaft J1 when the first orientation and sample the external force F is stored in correspondence with the angle phi. Similarly, correction coefficients R 2 , R 3 ,..., R n are stored corresponding to the angle φ in the second posture, the third posture,. FIG. 1 shows a position vector P i relating to the movable axis J1, a unit vector A Ui of the movable axis J1, and the like. For each of the movable axes J2, J3, J4, J5, and J6, similarly, the correction coefficient R 1 , R 2 , R 3 ,..., R n are stored corresponding to the angle φ.

記憶部23に格納される補正係数R、R、R、・・・Rは、角度φを所定の角度おきに変化させて得られるものであってもよく、角度φをランダムに変化させて得られるものであってもよい。 The correction coefficients R 1 , R 2 , R 3 ,..., R n stored in the storage unit 23 may be obtained by changing the angle φ at every predetermined angle. It may be obtained by changing.

プロセッサ21は感度演算プログラム23dにより作動し、記憶部23に格納されている補正係数R、R、R、・・・Rに基づき得られる補正関数f(φ)を下記式(2)に適用することによって、実際にアーム10aに働く外力Fに対するトルク検出感度Sを演算する。

Figure 2020028923
The processor 21 operates by the sensitivity calculating program 23d, the correction coefficient is stored in the storage unit 23 R 1, R 2, R 3, ··· obtained based on R n correction function f i (phi) the following formula ( by applying the 2), calculates the torque detection sensitivity S i against an external force F acting on the actual arm 10a.
Figure 2020028923

トルク検出感度S、回転軸ベクトルAUi、垂線の長さ(各可動軸J1〜J6と外力Fの作用点との距離)r、ギヤ比G等のiには可動軸J1〜J6に対応する1〜6の数字が入り、例えば、Sは可動軸J1のトルク感度、Sは可動軸J2のトルク感度、・・・Sは可動軸J6のトルク感度である。rは外力Fの作用点から各回転軸ベクトルAUiに下した垂線の長さであり、Gは減速機11b,12b,13b,14b,15b,16bの各々のギヤ比である。 The torque detection sensitivity S i , the rotation axis vector A Ui , the length of the perpendicular (the distance between each of the movable axes J1 to J6 and the point of application of the external force F) r i , and the gear ratio G i and other movable axes J1 to J6 Contains the 1-6 digits corresponding to, for example, S 1 is the torque sensitivity of the movable shaft J1, S 2 is the torque sensitivity of the movable shaft J2, · · · S 6 is a torque sensitivity of the movable shaft J6. r i is the length of a perpendicular line from the point of action of the external force F to each rotation axis vector A Ui , and G i is the gear ratio of each of the reduction gears 11b, 12b, 13b, 14b, 15b, 16b.

補正関数f(φ)のiには可動軸J1〜J6に対応する1〜6の数字が入り、f(φ)は可動軸J1の補正関数、f(φ)は可動軸J2の補正関数、・・・f(φ)は可動軸J6の補正関数である。
補正関数f(φ)は、可動軸J1〜J6の各々について、補正係数R、R、R、・・・Rとその時の角度φとの関係から得られる式である。補正関数f(φ)の代わりに、可動軸J1〜J6の各々について、補正係数R、R、R、・・・Rとその時の角度φとを対応させた補正テーブルを用いることも可能である。
The numbers 1 to 6 corresponding to the movable axes J1 to J6 are entered in i of the correction function f i (φ), f 1 (φ) is the correction function of the movable axis J1, and f 2 (φ) is the correction function of the movable axis J2. The correction function,... F 6 (φ) is a correction function of the movable axis J6.
The correction function f i (φ) is an expression obtained from the relationship between the correction coefficients R 1 , R 2 , R 3 ,... R n and the angle φ at that time for each of the movable axes J1 to J6. Instead of the correction function f i (φ), a correction table is used in which the correction coefficients R 1 , R 2 , R 3 ,... R n and the angle φ at that time are associated with each of the movable axes J1 to J6. It is also possible.

一例として、可動軸J1のトルク検出感度Sについて、図1および図2を用いて説明する。図1と図2は、アーム部材14の可動軸J4周りの回転位置が互いに異なるが、他の可動軸J1,J2,J3,J5,J6の回転位置は同じである。この場合、図1と図2は、可動軸J1の回転軸ベクトルAU1とP×F(外積)との成す角度φが互いに異なり、角度φは図1よりも図2の方が大きくなる。 As an example, the torque detection sensitivity S 1 of the movable shaft J1, will be described with reference to FIGS. 1 and 2, the rotational positions of the arm member 14 around the movable axis J4 are different from each other, but the rotational positions of the other movable axes J1, J2, J3, J5, and J6 are the same. In this case, FIGS. 1 and 2 are different from each other in the angle φ between the rotation axis vector A U1 of the movable axis J1 and P 1 × F (outer product), and the angle φ is larger in FIG. 2 than in FIG. .

一方、前述のように、可動軸J2の補正係数R、R、・・・Rが角度φに対応して格納され、例えば、角度φが10°、20°、および30°の時の補正係数R、R、およびRが0.85、0.65、および0.4である時、可動軸J1の補正関数f(φ)は、両者を対応付けるための例えば二次曲線の近似関数となる。近似関数はその他のn次関数、対数関数、指数関数等であってもよい。 On the other hand, as described above, the correction coefficients R 1 , R 2 ,..., R n of the movable axis J2 are stored corresponding to the angle φ, and for example, when the angle φ is 10 °, 20 °, and 30 °. When the correction coefficients R 1 , R 2 , and R 3 are 0.85, 0.65, and 0.4, the correction function f 1 (φ) of the movable axis J1 Approximate function of the curve. The approximate function may be another n-order function, logarithmic function, exponential function, or the like.

例えば、図1においてφが10°であり、図2においてφが20°である場合、図1の状態で可動軸J1の補正係数Rが0.85となり、図2の状態で可動軸J1の補正係数Rが0.65となる。このように角度φと補正係数Rとが対応するように、各可動軸J1,J2,J3,J4,J5,J6の補正関数f(φ)が作成される。 For example, when φ is 10 ° in FIG. 1 and φ is 20 ° in FIG. 2, the correction coefficient R of the movable axis J1 becomes 0.85 in the state of FIG. 1, and the correction coefficient R of the movable axis J1 in the state of FIG. The correction coefficient R becomes 0.65. In this way, a correction function f i (φ) of each movable axis J1, J2, J3, J4, J5, J6 is created such that the angle φ corresponds to the correction coefficient R.

式(2)に示されるように、各可動軸J1,J2,J3,J4,J5,J6のトルク検出感度Sは、垂線の長さrが大きい程、または、補正関数f(φ)により求められる補正係数が大きいほど、大きくなる(良好になる)が、角度φが大きい程小さくなる。なお、補正係数はφが小さいほど大きくなる傾向がある。
また、式(2)に示されるように、ギヤ比が小さい方がトルク検出感度Sが大きくなる。
As shown in equation (2), the torque detection sensitivity S i of each of the movable axes J1, J2, J3, J4, J5, J6 are as length r i perpendiculars is large, or the correction function f i (phi ) Increases (increases) as the correction coefficient increases, but decreases as the angle φ increases. The correction coefficient tends to increase as φ decreases.
Further, as shown in equation (2), towards the gear ratio is small and the torque detection sensitivity S i increases.

実際にツールTに働く外力Fの大きさおよび方向が入力装置24、送受信部25等を介して入力された時、又は、実際にツールTに働く外力Fである力センサDの検出値を受信した時に、プロセッサ21は、式(2)を用いて可動軸J1〜J6の各々のトルク検出感度Sを求める。
なお、補正関数f(φ)を作成する代わりに、角度φと補正係数R、R、・・・Rとが対応している補正テーブルを作成してもよい。この場合、プロセッサ21は、補正テーブルに基づき補正係数を決定し、決定された補正係数を式(2)のf(φ)の位置に代入し、可動軸J1〜J6の各々のトルク検出感度Sを求める。
また、可動軸J1〜J6にそれぞれ1つの補正係数が決定されており、当該補正係数が補正関数f(φ)および補正テーブルの代わりに記憶部23に格納されていてもよい。この場合、プロセッサ21は、記憶部23に格納されている補正係数を式(2)のf(φ)の位置に代入し、可動軸J1〜J6の各々のトルク検出感度Sを求める。
When the magnitude and direction of the external force F actually acting on the tool T are input via the input device 24, the transmitting / receiving unit 25, or the like, or when the detection value of the force sensor D which is the external force F actually acting on the tool T is received. when the processor 21 obtains the torque detection sensitivity S i of each of the movable axes J1~J6 using equation (2).
Instead of creating the correction function f i (φ), a correction table in which the angles φ correspond to the correction coefficients R 1 , R 2 ,..., R n may be created. In this case, the processor 21 determines a correction coefficient based on the correction table, substitutes the determined correction coefficient for the position of f i (φ) in Expression (2), and determines the torque detection sensitivity of each of the movable axes J1 to J6. Find Si.
Also, one correction coefficient is determined for each of the movable axes J1 to J6, and the correction coefficient may be stored in the storage unit 23 instead of the correction function f i (φ) and the correction table. In this case, the processor 21, the correction coefficients stored in the storage unit 23 substitutes the position of the f i (phi) of the formula (2), determining each of the torque detection sensitivity S i of the movable shaft J1 to J6.

そして、プロセッサ21は、可動軸J1〜J6のうちトルク検出感度Sが優位である典型的には1つの可動軸を、動作プログラム23bに基づく所定の作業中に作業相手に追従させる可動軸として設定する。優位であるとは、例えば、可動軸J1〜J6のトルク検出感度Sのうち最も数値が大きいもの、又は2番目に数値が大きいものである。 Then, the processor 21, one movable shaft is typically the torque detection sensitivity S i of the movable shaft J1~J6 predominates, as a movable axis to follow the working party during predetermined work based on the operation program 23b Set. To be superior, for example, the most numerically of torque detection sensitivity S i of the movable shaft J1~J6 is large or numerical Second denotes larger.

なお、プロセッサ21が、可動軸J1〜J6の各々のトルク検出感度Sを所定の表示装置22に表示してもよく、トルク検出感度Sが優位である1つ、2つ、又は複数の可動軸を表示装置22に表示してもよい。また、プロセッサ21が、可動軸J1〜J6の各々のトルク検出感度Sを表示のために他の装置に送信してもよく、トルク検出感度Sが優位である1つ、2つ、又は複数の可動軸を表示のために他の装置に送信してもよい。 Incidentally, the processor 21 may display each of the torque detection sensitivity S i of the movable shaft J1~J6 on a predetermined display device 22, one torque detection sensitivity S i is dominant, two, or more The movable axis may be displayed on the display device 22. The processor 21 may be transmitted to another device for display of each of the torque detection sensitivity S i of the movable shaft J1 to J6, one torque detection sensitivity S i is dominant, two, or Multiple movable axes may be sent to other devices for display.

トルク検出感度Sが優位である可動軸が表示される場合、操作者は、優位である可動軸のうち少なくとも1つを、動作プログラム23bに基づく所定の作業中に作業相手に追従させる可動軸として設定する。 If the movable shaft torque detection sensitivity S i is dominant is displayed, the operator, at least one of a dominant movable shaft, the movable shaft to follow the working party during predetermined work based on the operation program 23b Set as

また、上位制御装置30が、制御装置20から、求められた補正係数を対応する可動軸J1〜J6の番号と共に受信し、受信した補正係数を可動軸J1〜J6の番号と共にメモリ31に格納してもよい。又は、上位制御装置30が、制御装置20から、求められた補正関数又は補正テーブルを可動軸J1〜J6の番号と共に受信し、受信した補正関数又は補正テーブルを可動軸J1〜J6の番号と共にメモリ31に格納してもよい。   Further, the higher-level control device 30 receives the obtained correction coefficient from the control device 20 together with the number of the corresponding movable axis J1 to J6, and stores the received correction coefficient in the memory 31 together with the number of the movable axis J1 to J6. You may. Alternatively, the upper control device 30 receives the obtained correction function or correction table from the control device 20 together with the numbers of the movable axes J1 to J6, and stores the received correction function or correction table together with the numbers of the movable axes J1 to J6 in the memory. 31 may be stored.

この時、上位制御装置30は、好ましくは、ロボット10の機種の情報、ロボット10のサイズの情報、ロボット10の作業に関する情報、動作プログラム23bの種類の情報、サーボモータの種類の情報、およびツールTの種類の情報のうち少なくとも1つを含む適用情報も制御装置20から受信し、受信した補正係数、補正関数、又は補正テーブルを適用情報と対応付けてメモリ31に格納する。上位制御装置30は、他のロボットの制御装置から同様の情報を受信し、受信した情報をメモリ31に格納する。   At this time, the host controller 30 preferably includes information on the model of the robot 10, information on the size of the robot 10, information on work of the robot 10, information on the type of the operation program 23b, information on the type of the servomotor, and Application information including at least one of the information of the type T is also received from the control device 20, and the received correction coefficient, correction function, or correction table is stored in the memory 31 in association with the application information. The upper control device 30 receives similar information from the control devices of the other robots, and stores the received information in the memory 31.

上位制御装置30は、例えば新たに設置されたロボットの制御装置から、要求および情報を受信する。受信する情報は、新たに設置されたロボットの機種、ロボットのサイズ、動作プログラムの種類、ロボットの作業、サーボモータの種類、ツールの種類等である。
この場合、上位制御装置30は、メモリ31に格納されている適用情報のうち受信した情報に近い又は一致する適用情報を決定し、決定された適用情報に応じた補正係数、補正関数、又は補正テーブルを新たに設置されたロボットの制御装置に送信し、新たに設置されたロボットの制御装置において、受信する補正係数、補正関数、又は補正テーブルが用いられる。
The upper control device 30 receives a request and information from, for example, a newly installed robot control device. The information to be received includes the model of the newly installed robot, the size of the robot, the type of operation program, the operation of the robot, the type of servomotor, the type of tool, and the like.
In this case, the higher-level control device 30 determines application information that is close to or coincides with the received information among the application information stored in the memory 31, and determines a correction coefficient, a correction function, or a correction function corresponding to the determined application information. The table is transmitted to the newly installed robot controller, and the newly installed robot controller uses the received correction coefficient, correction function, or correction table.

[実施例1]
上記実施形態は、移動するワークをロボット10によって支持する場合に使用できる。この場合、ワークは、例えばロール成形、押出し成形等によって順次成形されたワークをロボット10の先端部のツールTによって支持し、ロボット10はツールTをワークに追従させる。ロボット10は成形機およびワークに対して所定の位置に配置されており、当該位置においてワークを支持する。その時のロボット10の姿勢と、当該姿勢においてワークからツールTに加わる力の方向と、記憶部23に格納されている補正係数、補正関数、又は補正テーブルとに基づき、プロセッサ21が可動軸J1〜J6の各々のトルク検出感度Sを求める。
[Example 1]
The above embodiment can be used when the moving workpiece is supported by the robot 10. In this case, the work is sequentially formed by, for example, roll forming, extrusion forming, or the like, and is supported by the tool T at the tip of the robot 10, and the robot 10 causes the tool T to follow the work. The robot 10 is arranged at a predetermined position with respect to the molding machine and the work, and supports the work at the position. Based on the posture of the robot 10 at that time, the direction of the force applied to the tool T from the work in the posture, and the correction coefficient, the correction function, or the correction table stored in the storage unit 23, the processor 21 determining each of the torque detection sensitivity S i of J6.

そして、プロセッサ21又は操作者が、可動軸J1〜J6のうちトルク検出感度Sが優位である少なくとも1つの可動軸を、動作プログラム23bに基づくワークの支持作業中にワークに追従させる可動軸として選択する。プロセッサ21は、ワークからツールTに加わる力に選択された可動軸を追従させる制御を行う。例えば、選択された可動軸のサーボモータで検出される検出電流値に基づき当該サーボモータを制御し、必要に応じて他のサーボモータも前記検出電流値に基づき制御する。 Then, the processor 21 or the operator, at least one movable shaft torque detection sensitivity S i of the movable shaft J1~J6 predominates, as a movable axis to follow the workpiece in the support work of the work based on the operation program 23b select. The processor 21 performs control for causing the selected movable axis to follow the force applied to the tool T from the workpiece. For example, the servomotor is controlled based on the detected current value detected by the servomotor of the selected movable shaft, and other servomotors are controlled based on the detected current value as needed.

[実施例2]
上記実施形態は、ロボット10の先端部のツールTによってワークを把持する場合、ロボットの先端部のスポット溶接ガンであるツールTによって溶接点を挟む場合等に使用できる。
例えば、スポット溶接ガンであるツールTによってワークの溶接点を挟む時に、ロボット10の各可動軸J1〜J6が完全に固定されていると、ツールTの挟む力によってワークに変形等が生じる恐れがある。このため、可動軸J1〜J6のうち少なくとも1つの可動軸をツールT側からの力に追従できる状態にする。
[Example 2]
The above embodiment can be used when a workpiece is gripped by the tool T at the tip of the robot 10, when a welding point is sandwiched by the tool T which is a spot welding gun at the tip of the robot, and the like.
For example, when the welding point of the workpiece is sandwiched by the tool T, which is a spot welding gun, if the movable axes J1 to J6 of the robot 10 are completely fixed, the workpiece may be deformed by the clamping force of the tool T. is there. Therefore, at least one of the movable axes J1 to J6 is brought into a state in which it can follow the force from the tool T side.

追従する可動軸の選択の際、ツールTで溶接点を挟む時のロボット10の姿勢と、当該姿勢において溶接点からツールTに加わる力の方向と、記憶部23に格納されている補正係数、補正関数、又は補正テーブルとに基づき、プロセッサ21が可動軸J1〜J6の各々のトルク検出感度Sを求める。そして、プロセッサ21又は操作者が、可動軸J1〜J6のうちトルク検出感度Sが優位である少なくとも1つの可動軸を、ツールT側からの力に追従する可動軸として選択する。プロセッサ21は、溶接点からツールTに加わる力に選択された可動軸を追従させる制御を行う。例えば、選択された可動軸のサーボモータで検出される検出電流値に基づき当該サーボモータを制御し、必要に応じて他のサーボモータも前記検出電流値に基づき制御する。 When selecting the movable axis to be followed, the posture of the robot 10 when sandwiching the welding point with the tool T, the direction of the force applied to the tool T from the welding point in the posture, the correction coefficient stored in the storage unit 23, correction function, or based on the correction table, the processor 21 obtains the torque detection sensitivity S i of each of the movable axes J1 to J6. Then, the processor 21 or the operator selects at least one movable shaft torque detection sensitivity S i of the movable shaft J1~J6 predominates, as a movable axis to follow the force from the tool T side. The processor 21 performs control to cause the selected movable axis to follow the force applied to the tool T from the welding point. For example, the servomotor is controlled based on the detected current value detected by the servomotor of the selected movable shaft, and other servomotors are controlled based on the detected current value as needed.

なお、前述のようにプロセッサ21が可動軸J1〜J6の各々のトルク検出感度Sを求めた後、プロセッサ21がトルク検出感度Sが優位である少なくとも1つの可動軸のトルク(モータ電流値)を監視し、溶接点、ワーク等とツールTとの接触により監視トルクが所定値を超えると、サーボモータ11a〜16aの制御によって監視トルクが所定値以下となる方向にロボット10のアーム10aの位置および姿勢を制御することも可能である。 Incidentally, after the processor 21 as described above was determined torque detection sensitivity S i of each of the movable axes J1 to J6, at least one torque of the movable shaft processor 21 dominates the torque detection sensitivity S i (motor current value ) Is monitored, and when the monitored torque exceeds a predetermined value due to contact between the welding point, the workpiece, etc. and the tool T, the servo motors 11a to 16a control the arm 10a of the robot 10 in a direction in which the monitored torque becomes a predetermined value or less. It is also possible to control the position and attitude.

なお、上記実施形態では、式(1)および式(2)において、各可動軸J1〜J6の回転軸方向と外力Fの方向との関係を示す数式要素としてP×F(外積)、cosφ等を用いているが、各可動軸J1〜J6の回転軸方向と外力Fの方向とが成す角度が大きくなる程小さくなる1次関数、2次関数等の数式要素を用いることも可能である。 In the above embodiment, in equations (1) and (2), P i × F (outer product) and cos φ are used as mathematical elements indicating the relationship between the direction of the rotation axis of each movable axis J1 to J6 and the direction of the external force F. However, it is also possible to use mathematical elements such as a linear function, a quadratic function, etc., which become smaller as the angle formed between the direction of the external force F and the rotation axis direction of each of the movable shafts J1 to J6 becomes larger. .

上記実施形態では、大きさおよび方向がわかっているサンプル外力Fに基づいて補正係数又は補正関数が求められる。また、各可動軸J1〜J6の回転軸方向と外力Fの方向との関係を示す数式要素に加え、補正係数又は補正関数を用いて、各可動軸J1〜J6のトルク検出感度が算出される。このため、複数の可動軸J1〜J6のうちアーム10aに加わる外力Fを感度よく検出できる可動軸の正確な選択が可能となる。   In the above embodiment, the correction coefficient or the correction function is obtained based on the sample external force F whose magnitude and direction are known. In addition, the torque detection sensitivity of each of the movable axes J1 to J6 is calculated using a correction coefficient or a correction function in addition to a mathematical element indicating the relationship between the rotation axis direction of each of the movable axes J1 to J6 and the direction of the external force F. . Therefore, it is possible to accurately select a movable shaft that can detect the external force F applied to the arm 10a with high sensitivity among the plurality of movable shafts J1 to J6.

また、上記実施形態では、各可動軸J1〜J6と外力Fの作用点との距離rと、各可動軸J1〜J6の回転軸方向と外力Fの方向との関係を示す数式要素と、補正係数又は補正関数とを少なくとも用いて、各可動軸J1〜J6におけるトルク検出感度が演算される。
当該構成では、各可動軸J1〜J6と外力Fの作用点との距離rも用いて、各可動軸J1〜J6のトルク検出感度が算出される。このため、複数の可動軸J1〜J6のうちアーム10aに加わる外力Fを感度よく検出できる可動軸J1〜J6の正確な判断が可能となる。
In the above embodiment, the formula element indicating the distance r i between the point of action of the movable axes J1 to J6 and the external force F, the relationship between the direction of the rotation axis and the external force F of the movable axes J1 to J6, The torque detection sensitivity in each of the movable axes J1 to J6 is calculated using at least the correction coefficient or the correction function.
In this configuration, also used the distance r i between the point of action of the movable axes J1~J6 and the external force F, the torque detection sensitivity of the movable shaft J1~J6 is calculated. Therefore, it is possible to accurately determine the movable axes J1 to J6 which can detect the external force F applied to the arm 10a with high sensitivity among the plurality of movable axes J1 to J6.

また、上記実施形態では、複数の可動軸J1〜J6のうちトルク検出感度が優位である少なくとも1つが外力Fに追従する可動軸として決定される。
当該構成では、前述のように正確に算出されたトルク検出感度を用いて、複数の可動軸J1〜J6のうち優位である少なくとも1つが外力Fに追従する可動軸として決定される。これは、ワークの動き、ツールの動作によって生ずる力等にロボット10を追従させる制御を正確に行う上で有利である。
In the above-described embodiment, at least one of the plurality of movable axes J1 to J6 having superior torque detection sensitivity is determined as the movable axis that follows the external force F.
In this configuration, at least one of the plurality of movable axes J1 to J6 that is superior is determined as the movable axis that follows the external force F using the torque detection sensitivity accurately calculated as described above. This is advantageous in accurately controlling the robot 10 to follow the movement of the work, the force generated by the operation of the tool, and the like.

なお、プロセッサ21が、記憶部23に格納されている外力位置取得プログラム(外力位置取得手段)23fに基づき、アーム10aにおいて外力が加わる位置の検出又は推定を行うことも可能である。この場合、プロセッサ21が前述のように可動軸J1〜J6の各々のトルク検出感度Sを求めた後、トルク検出感度Sが優位である少なくとも1つの可動軸の検出トルク(モータ電流値)を用いて、アーム10aにおいて外力が加わる位置の検出又は推定を行う。プロセッサ21は各サーボモータ11a,12a,13a,14a,15a,16aの作動位置検出装置に基づきアーム10aの位置および姿勢を認識している。一例では、認識しているアーム10aの位置および姿勢と、トルク検出感度Sが優位である可動軸の検出トルク(モータ電流値)とを用いて、プロセッサ21がアーム10aにおいて外力が加わる位置の検出又は推定を行う。その他、トルク検出感度Sが優位である可動軸の検出トルク(モータ電流値)と公知の方法とを用いて外力が加わる位置の検出又は推定を行うことも可能である。 Note that the processor 21 can also detect or estimate the position where the external force is applied to the arm 10a based on the external force position acquisition program (external force position acquisition means) 23f stored in the storage unit 23. In this case, after the processor 21 has determined the respective torque detection sensitivity S i of the movable shaft J1~J6 As described above, the detected torque (motor current value) of the at least one movable shaft is torque detection sensitivity S i is dominant Is used to detect or estimate the position of the arm 10a where an external force is applied. The processor 21 recognizes the position and the posture of the arm 10a based on the operating position detecting devices of the servo motors 11a, 12a, 13a, 14a, 15a, 16a. In one example, the position and attitude of the arm 10a that is recognized, using the detected torque of the movable shaft (motor current value) is superior torque detection sensitivity S i, the position processor 21 an external force is applied in the arm 10a Perform detection or estimation. Other, it is also possible to detect or estimate the external force is applied position by using the detected torque (motor current) with known methods of the movable shaft torque detection sensitivity S i is dominant.

10 ロボット
10a アーム
11〜16 アーム部材
11a〜16a サーボモータ
11b〜16b 減速機
20 制御装置
21 プロセッサ
22 表示装置
23 記憶部
23a システムプログラム
23b 動作プログラム
23c 補正係数取得プログラム
23d 感度演算プログラム(トルク感度演算手段)
23e 軸決定プログラム(軸決定手段)
23f 外力位置取得プログラム(外力位置取得手段)
24 入力装置
25 送受信部
26 サーボ制御器
30 上位制御装置
31 メモリ
J1〜J6 可動軸
B ベース
T ツール
D 力センサ
Reference Signs List 10 robot 10a arms 11 to 16 arm members 11a to 16a servo motors 11b to 16b reduction gear 20 control device 21 processor 22 display device 23 storage unit 23a system program 23b operation program 23c correction coefficient acquisition program 23d sensitivity calculation program (torque sensitivity calculation means )
23e Axis determination program (axis determination means)
23f External force position acquisition program (External force position acquisition means)
24 Input device 25 Transmitter / receiver 26 Servo controller 30 Host controller 31 Memory J1-J6 Movable axis B Base T Tool D Force sensor

Claims (4)

ロボットのアームを構成する複数のアーム部材が複数の可動軸周りに動く多関節ロボットの制御装置であって、
前記アームの先端部にサンプル外力を加えた時の前記各可動軸周りのトルク又はモータ電流値の検出値に基づいて求められた補正係数又は補正関数が格納されている記憶部と、
前記アームの前記先端部に加わる外力の方向に応じて変化する前記各可動軸におけるトルク検出感度を、前記各可動軸の回転軸方向と前記外力の方向との関係を示す数式要素と、前記補正係数又は前記補正関数とに少なくとも基づき演算するトルク感度演算手段と、を備え、
前記トルク検出感度は、前記各可動軸におけるモータの電流検出値又はトルクセンサの検出値の前記外力に対する感度を示すものである、多関節ロボットの制御装置。
A control device for an articulated robot in which a plurality of arm members constituting a robot arm move around a plurality of movable axes,
A storage unit that stores a correction coefficient or a correction function obtained based on a torque around each movable axis or a detected value of a motor current value when a sample external force is applied to the tip of the arm,
The torque detection sensitivity of each of the movable shafts, which varies in accordance with the direction of the external force applied to the distal end of the arm, is defined by a mathematical element indicating the relationship between the rotation axis direction of each of the movable shafts and the direction of the external force; And a torque sensitivity calculating means for calculating based on at least the coefficient or the correction function,
The control device for an articulated robot, wherein the torque detection sensitivity indicates a sensitivity of the detected current value of the motor or the detected value of the torque sensor in each of the movable shafts to the external force.
前記トルク感度演算手段が、前記各可動軸と前記外力の作用点との距離と、前記数式要素と、前記補正係数又は前記補正関数とを少なくとも用いて前記各可動軸における前記トルク検出感度を演算する、請求項1に記載の多関節ロボットの制御装置。   The torque sensitivity calculating means calculates the torque detection sensitivity of each movable shaft using at least the distance between each movable shaft and the point of action of the external force, the mathematical element, the correction coefficient or the correction function. The control device for an articulated robot according to claim 1, wherein 前記複数の可動軸のうち前記トルク検出感度が優位である少なくとも1つを前記外力に追従する可動軸として選択する軸決定手段を備える、請求項1又は2に記載の多関節ロボットの制御装置。   3. The control device for an articulated robot according to claim 1, further comprising an axis determining unit that selects at least one of the plurality of movable axes, in which the torque detection sensitivity is superior, as a movable axis that follows the external force. 4. 前記アームにおいて前記外力が加わる位置の検出又は推定を行う外力位置取得手段をさらに備え、
前記外力位置取得手段は、前記複数の可動軸のうち前記トルク検出感度が優位である少なくとも1つの前記可動軸周りのトルク又はモータ電流値の検出値を、前記検出又は前記推定に用いる、請求項1〜3の何れかに記載の多関節ロボットの制御装置。
The apparatus further includes an external force position acquisition unit that detects or estimates a position where the external force is applied to the arm,
The said external force position acquisition means uses the detected value of the torque or the motor current value around at least one of the plurality of movable shafts around which the torque detection sensitivity is superior, for the detection or the estimation. The control device for an articulated robot according to any one of claims 1 to 3.
JP2018154168A 2018-08-20 2018-08-20 Control device for articulated robot Active JP7148321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018154168A JP7148321B2 (en) 2018-08-20 2018-08-20 Control device for articulated robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018154168A JP7148321B2 (en) 2018-08-20 2018-08-20 Control device for articulated robot

Publications (2)

Publication Number Publication Date
JP2020028923A true JP2020028923A (en) 2020-02-27
JP7148321B2 JP7148321B2 (en) 2022-10-05

Family

ID=69623466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018154168A Active JP7148321B2 (en) 2018-08-20 2018-08-20 Control device for articulated robot

Country Status (1)

Country Link
JP (1) JP7148321B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11618156B2 (en) 2020-04-24 2023-04-04 Seiko Epson Corporation Horizontal articulated robot and horizontal articulated robotic system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005881A (en) * 1998-06-19 2000-01-11 Fanuc Ltd Control device for robot used in spot welding
JP2001105152A (en) * 1999-10-12 2001-04-17 Kawasaki Heavy Ind Ltd Robot for spot welding
JP2001105153A (en) * 1999-10-08 2001-04-17 Kawasaki Heavy Ind Ltd Robot for spot welding
JP2001138060A (en) * 1999-11-10 2001-05-22 Kawasaki Heavy Ind Ltd Spot welding robot
JP2003220584A (en) * 2002-01-28 2003-08-05 Honda Motor Co Ltd Floor reaction working point estimating method of two- foot walk moving body
JP2010253676A (en) * 2009-04-22 2010-11-11 Kuka Roboter Gmbh Control method and control device for manipulator
JP2011189430A (en) * 2010-03-12 2011-09-29 Denso Wave Inc Robot system
JP2014226752A (en) * 2013-05-23 2014-12-08 三菱電機株式会社 Robot cell system, robot cell device and method
JP2016036858A (en) * 2014-08-05 2016-03-22 ファナック株式会社 Apparatus for controlling robot performing work by pressing tool against workpiece
JP2017177297A (en) * 2016-03-31 2017-10-05 ソニー株式会社 Control device and control method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005881A (en) * 1998-06-19 2000-01-11 Fanuc Ltd Control device for robot used in spot welding
JP2001105153A (en) * 1999-10-08 2001-04-17 Kawasaki Heavy Ind Ltd Robot for spot welding
JP2001105152A (en) * 1999-10-12 2001-04-17 Kawasaki Heavy Ind Ltd Robot for spot welding
JP2001138060A (en) * 1999-11-10 2001-05-22 Kawasaki Heavy Ind Ltd Spot welding robot
JP2003220584A (en) * 2002-01-28 2003-08-05 Honda Motor Co Ltd Floor reaction working point estimating method of two- foot walk moving body
JP2010253676A (en) * 2009-04-22 2010-11-11 Kuka Roboter Gmbh Control method and control device for manipulator
JP2011189430A (en) * 2010-03-12 2011-09-29 Denso Wave Inc Robot system
JP2014226752A (en) * 2013-05-23 2014-12-08 三菱電機株式会社 Robot cell system, robot cell device and method
JP2016036858A (en) * 2014-08-05 2016-03-22 ファナック株式会社 Apparatus for controlling robot performing work by pressing tool against workpiece
JP2017177297A (en) * 2016-03-31 2017-10-05 ソニー株式会社 Control device and control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11618156B2 (en) 2020-04-24 2023-04-04 Seiko Epson Corporation Horizontal articulated robot and horizontal articulated robotic system

Also Published As

Publication number Publication date
JP7148321B2 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
CN110997249B (en) Work robot and control method for work robot
EP3242775B1 (en) Method for estimation of external forces and torques on a robot arm
JP2016168651A (en) Robot controlling method, robot apparatus, program, and recording medium
JP5849451B2 (en) Robot failure detection method, control device, and robot
JP2013184235A (en) Calibration method and calibration apparatus for robot
US11173614B2 (en) Control apparatus and robot system
JP2024015086A (en) Robot system, control method, article manufacturing method, control program, recording medium
JP2019188514A (en) Device, method, and program for estimating weight and centroid position of load using robot
JP7148321B2 (en) Control device for articulated robot
KR20130000496A (en) Teaching apparatus of robot having acceleration sensor and gyro-sensor and teaching method for robot using the same
CN110871456B (en) Robot
JP5316396B2 (en) Robot spring constant identification method and robot spring constant identification apparatus
JP2009045678A (en) Method for judging success or failure of operation of robot, and robot system
WO2019171516A1 (en) Inertial parameter identification system of vertically articulated robot, inertial parameter identification method, and control device and control method for vertically articulated robot
JP5316395B2 (en) Robot spring constant identification method and robot spring constant identification apparatus
JP6565622B2 (en) Robot system and robot control method
JP2020110861A (en) Control device of articulated robot
JP3671694B2 (en) Robot teaching method and apparatus
JPH01222311A (en) Curve profile controller for multidegree of freedom work machine
JP4449693B2 (en) Robot control apparatus and control method thereof
JP2020037172A (en) robot
JP2021062436A (en) Teaching method
US11654576B2 (en) Robot system including robot having handle and method of controlling robot
US20210154851A1 (en) Coordinate-system setting system and coordinate-system setting method
JP5343725B2 (en) Robot controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220922

R150 Certificate of patent or registration of utility model

Ref document number: 7148321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150