JP2020028668A - Image processing system, image processing method and program - Google Patents

Image processing system, image processing method and program Download PDF

Info

Publication number
JP2020028668A
JP2020028668A JP2018157785A JP2018157785A JP2020028668A JP 2020028668 A JP2020028668 A JP 2020028668A JP 2018157785 A JP2018157785 A JP 2018157785A JP 2018157785 A JP2018157785 A JP 2018157785A JP 2020028668 A JP2020028668 A JP 2020028668A
Authority
JP
Japan
Prior art keywords
image
region
image processing
display
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018157785A
Other languages
Japanese (ja)
Other versions
JP2020028668A5 (en
Inventor
大樹 梶田
Daiki Kajita
大樹 梶田
宣晶 今西
Nobuaki Imanishi
宣晶 今西
貞和 相磯
Sadakazu Aiiso
貞和 相磯
萌美 浦野
Megumi Urano
萌美 浦野
長永 兼一
Kenichi Osanaga
兼一 長永
一仁 岡
Kazuhito Oka
一仁 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Keio University
Original Assignee
Canon Inc
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Keio University filed Critical Canon Inc
Priority to JP2018157785A priority Critical patent/JP2020028668A/en
Priority to PCT/JP2019/032586 priority patent/WO2020040181A1/en
Publication of JP2020028668A publication Critical patent/JP2020028668A/en
Priority to US17/179,446 priority patent/US20210169397A1/en
Publication of JP2020028668A5 publication Critical patent/JP2020028668A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

To provide an image processing system used for a system capable of improving convenience related to observation of a structure of a contrast object by photoacoustic imaging.SOLUTION: An image processing system in an embodiment, which is an image processing system for processing image data generated based on a photoacoustic wave generated from inside an analyte by light irradiation to the analyte, has display control means for displaying, on a display device, image data, and an input interface for receiving input to an area of interest which is a part of an area of a lymphatic vessel in the analyte in the image data, and storage control means for storing the image data, and information inputted through the input interface, correlatively in a storage device.SELECTED DRAWING: Figure 1

Description

本発明は、光音響イメージングにより生成された画像に対する画像処理に関する。   The present invention relates to image processing on an image generated by photoacoustic imaging.

血管やリンパ管等の検査において、造影剤を利用した光音響イメージング(「光超音波イメージング」ともよぶ。)が知られている。特許文献1には、リンパ節やリンパ管などの造影のために用いられる造影剤を評価対象とし、その造影剤が吸収して光音響波を発生する波長の光を出射する光音響画像生成装置が記載されている。   In the examination of blood vessels, lymph vessels, and the like, photoacoustic imaging using a contrast agent (also referred to as “optical ultrasonic imaging”) is known. Patent Literature 1 discloses a photoacoustic image generation device that evaluates a contrast agent used for imaging lymph nodes, lymph vessels, and the like, and emits light having a wavelength that generates a photoacoustic wave when the contrast agent is absorbed. Is described.

国際公開第2017/002337号International Publication No. WO 2017/002337

しかしながら、特許文献1に記載の光音響イメージングでは、被検体内部の造影対象の構造(例えば、血管やリンパ管等の走行)が描出されるに過ぎず、ユーザーが構造の観察を行う上での不便が生じる可能性があった。   However, in the photoacoustic imaging described in Patent Literature 1, a structure to be imaged inside the subject (for example, running of blood vessels, lymph vessels, and the like) is merely depicted, and a user may observe the structure. Inconvenience could have occurred.

そこで本発明は、光音響イメージングによって造影対象の構造の観察に係る利便性を向上するシステムに用いられる画像処理装置を提供することを目的とする。   Therefore, an object of the present invention is to provide an image processing apparatus used for a system that improves the convenience of observing a structure to be contrasted by photoacoustic imaging.

本発明の一つの態様は、
被検体への光照射により前記被検体内から発生した光音響波に基づいて生成された画像データを処理する画像処理装置であって、
前記画像データと、前記画像データのうちの前記被検体内のリンパ管の領域の一部である着目領域に対する入力を受け付ける入力インタフェースとを表示装置に表示させる表示制御手段と、
前記画像データと、前記入力インタフェースを介して入力された情報とを関連付けて記憶装置に保存する保存制御手段と、
を有する
ことを特徴とする画像処理装置である。
One embodiment of the present invention provides
An image processing apparatus that processes image data generated based on a photoacoustic wave generated from within the subject by irradiating the subject with light,
Display control means for displaying a display device with the image data and an input interface that receives an input for a region of interest that is a part of the region of the lymph vessel in the subject in the image data,
Storage control means for storing the image data in the storage device in association with information input via the input interface,
An image processing apparatus comprising:

本発明によれば、光音響イメージングによって造影対象の構造の観察に係る利便性を向上するシステムに用いられる画像処理装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the image processing apparatus used for the system which improves the convenience regarding the observation of the structure of a contrast target by photoacoustic imaging can be provided.

本発明の一実施形態に係るシステムのブロック図1 is a block diagram of a system according to an embodiment of the present invention. 本発明の一実施形態に係る画像処理装置とその周辺構成の具体例を示すブロック図FIG. 1 is a block diagram showing a specific example of an image processing apparatus according to an embodiment of the present invention and its peripheral configuration. 本発明の一実施形態に係る光音響装置の詳細なブロック図Detailed block diagram of a photoacoustic apparatus according to an embodiment of the present invention 本発明の一実施形態に係るプローブの模式図Schematic diagram of a probe according to one embodiment of the present invention 本発明の一実施形態に係る画像処理方法のフロー図Flow chart of an image processing method according to an embodiment of the present invention 実施例1に係る画像処理方法のフロー図Flow chart of the image processing method according to the first embodiment 波長の組み合わせを変化させたときの、造影剤に対応する式(1)の計算値の等高線グラフContour graph of the calculated value of equation (1) corresponding to the contrast agent when the combination of wavelengths is changed ICGの濃度を変化させたときの、造影剤に対応する式(1)の計算値を示す折れ線グラフLine graph showing the calculated value of equation (1) corresponding to the contrast agent when the concentration of ICG is changed オキシヘモグロビンとデオキシヘモグロビンのモラー吸収係数スペクトルを示すグラフGraph showing the molar absorption coefficient spectrum of oxyhemoglobin and deoxyhemoglobin 本発明の一実施形態に係るGUIを例示する図FIG. 2 is a diagram illustrating a GUI according to an embodiment of the present invention. 被検体の分光画像を例示する図Diagram illustrating a spectral image of a subject リンパ管の状態による分類を例示する図Diagram illustrating classification by lymphatic vessel condition 存在数、面積比、体積比に応じたリンパ管の分類を例示する図Diagram exemplifying classification of lymphatic vessels according to number, area ratio, and volume ratio 静脈との距離に応じたリンパ管の分類を例示する図Diagram illustrating classification of lymphatic vessels according to distance from vein 実施例2に係る画像処理方法のフロー図Flow chart of the image processing method according to the second embodiment 実施例2に係るGUIを例示する図FIG. 9 illustrates a GUI according to the second embodiment. 実施例2に係るリンパ管の分類結果の表示例を示す図FIG. 14 is a diagram illustrating a display example of a classification result of lymphatic vessels according to the second embodiment. 造影剤に対応する領域を抽出する処理を説明する図The figure explaining the process of extracting the area corresponding to the contrast agent 造影剤に対応する領域を抽出する処理を説明する図The figure explaining the process of extracting the area corresponding to the contrast agent

以下に図面を参照しつつ、本発明の好適な実施の形態について説明する。ただし、以下に記載されている構成部品の寸法、材質、形状およびそれらの相対配置などは、発明が適用される装置の構成や各種条件により適宜変更されるべきものである。よって、この発明の範囲を以下の記載に限定する趣旨のものではない。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. However, dimensions, materials, shapes, relative arrangements, and the like of the components described below should be appropriately changed depending on the configuration of the apparatus to which the invention is applied and various conditions. Therefore, it is not intended to limit the scope of the present invention to the following description.

本発明に係るシステムにより得られる光音響画像は、光エネルギーの吸収量や吸収率を反映している。光音響画像は、光音響波の発生音圧(初期音圧)、光吸収エネルギー密度、及び光吸収係数などの少なくとも1つの被検体情報の空間分布を表す画像である。光音響画像は、2次元の空間分布を表す画像であってもよいし、3次元の空間分布を表す画像(ボリュームデータ)であってもよい。本実施形態に係るシステムは、造影剤が導入された被検体を撮影することにより光音響画像を生成する。なお、造影対象の立体構造を把握するために、光音響画像は、被検体表面から深さ方向の2次元の空間分布を表す画像または3次元の空間分布を表す画像であってもよい。   The photoacoustic image obtained by the system according to the present invention reflects the absorption amount and the absorption rate of light energy. The photoacoustic image is an image representing a spatial distribution of at least one object information such as a generated sound pressure (initial sound pressure) of a photoacoustic wave, a light absorption energy density, and a light absorption coefficient. The photoacoustic image may be an image representing a two-dimensional spatial distribution or an image (volume data) representing a three-dimensional spatial distribution. The system according to the present embodiment generates a photoacoustic image by photographing a subject into which a contrast agent has been introduced. In order to grasp the three-dimensional structure of the contrast target, the photoacoustic image may be an image representing a two-dimensional spatial distribution or a three-dimensional spatial distribution in a depth direction from the subject surface.

また、本発明に係るシステムは、複数の波長に対応する複数の光音響画像を用いて被検体の分光画像を生成することができる。本発明の分光画像は、被検体に互いに異なる複数の波長の光を照射することにより発生した光音響波に基づいた、複数の波長のそれぞれに対応する光音響信号を用いて生成された画像である。
なお、分光画像は、複数の波長のそれぞれに対応する光音響信号を用いて生成された、被検体中の特定物質の濃度を示す画像であってもよい。使用する造影剤の光吸収係数スペクトルと、特定物質の光吸収係数スペクトルとが異なる場合、分光画像中の造影剤の画像値と分光画像中の特定物質の画像値とは異なる。よって、分光画像の画像値に応じて造影剤の領域と特定物質の領域とを区別することができる。なお、特定物質としては、ヘモグロビン、グルコース、コラーゲン、メラニン、脂肪や水など、被検体を構成する物質が挙げられる。この場合にも、特定物質の光吸収係数スペクトルとは異なる光吸収スペクトルを有する造影剤を選択する必要がある。また、特定物質の種類に応じて、異なる算出方法で分光画像を算出してもよい。
Further, the system according to the present invention can generate a spectral image of the subject using a plurality of photoacoustic images corresponding to a plurality of wavelengths. The spectral image of the present invention is based on a photoacoustic wave generated by irradiating a subject with light of a plurality of different wavelengths, and is an image generated using a photoacoustic signal corresponding to each of the plurality of wavelengths. is there.
Note that the spectral image may be an image generated using the photoacoustic signals corresponding to each of the plurality of wavelengths and indicating the concentration of the specific substance in the subject. When the light absorption coefficient spectrum of the contrast agent used and the light absorption coefficient spectrum of the specific substance are different, the image value of the contrast agent in the spectral image and the image value of the specific substance in the spectral image are different. Therefore, the region of the contrast agent and the region of the specific substance can be distinguished according to the image value of the spectral image. In addition, as the specific substance, a substance constituting the subject, such as hemoglobin, glucose, collagen, melanin, fat and water, may be mentioned. Also in this case, it is necessary to select a contrast agent having a light absorption spectrum different from the light absorption coefficient spectrum of the specific substance. Further, the spectral image may be calculated by a different calculation method according to the type of the specific substance.

以下に述べる実施形態では、酸素飽和度の計算式(1)を用いて算出された画像を分光画像として説明する。本発明者らは、複数の波長のそれぞれに対応する光音響信号に基づいて血中ヘモグロビンの酸素飽和度(酸素飽和度に相関をもつ指標でもよい)を計算する式(1)に対し、光吸収係数の波長依存性がオキシヘモグロビンおよびデオキシヘモグロビンとは異なる傾向を示す造影剤で得られた光音響信号の計測値I(r)を代入した場合
に、ヘモグロビンの酸素飽和度が取り得る数値範囲から大きくずれた計算値Is(r)が得られる、ということを見出した。それゆえ、この計算値Is(r)を画像値としてもつ分光画像を生成すれば、被検体内部におけるヘモグロビンの領域(血管領域)と造影剤の存在領域(例えばリンパ管に造影剤が導入された場合であればリンパ管の領域)とを画像上で分離(区別)することが容易となる。

Figure 2020028668

ここで、Iλ (r)は第1波長λの光照射により発生した光音響波に基づいた計測値であり、Iλ (r)は第2波長λの光照射により発生した光音響波に基づいた計測値である。εHb λ は第1波長λに対応するデオキシヘモグロビンのモラー吸収係数[mm−1mol−1]であり、εHb λ は第2波長λに対応するデオキシヘモグロビンのモラー吸収係数[mm−1mol−1]である。εHbO λ は第1波長λに対応するオキシヘモグロビンのモラー吸収係数[mm−1mol−1]であり、εHbO λ は第2波長λに対応するオキシヘモグロビンのモラー吸収係数[mm−1mol−1]である。rは位置である。なお、計測値Iλ (r)、Iλ (r)としては、吸収係数μ λ (r)、μ λ (r)を用いてもよいし、初期音圧P λ (r)、P λ (r)を用いてもよい。 In the embodiment described below, an image calculated using the oxygen saturation calculation formula (1) will be described as a spectral image. The present inventors have calculated the optical saturation of blood hemoglobin based on the photoacoustic signal corresponding to each of the plurality of wavelengths (or an index having a correlation with the oxygen saturation). When the measured value I (r) of a photoacoustic signal obtained with a contrast agent whose wavelength dependence of the absorption coefficient is different from that of oxyhemoglobin and deoxyhemoglobin is substituted, the numerical range in which the oxygen saturation of hemoglobin can be taken From the calculated value Is (r). Therefore, if a spectral image having the calculated value Is (r) as an image value is generated, the hemoglobin region (blood vessel region) and the contrast agent existing region (for example, the contrast agent is introduced into the lymphatic vessels) inside the subject. In this case, it is easy to separate (discriminate) the lymphatic region) from the image.
Figure 2020028668

Here, I λ 1 (r) is a measurement value based on a photoacoustic wave generated by light irradiation of the first wavelength λ 1 , and I λ 2 (r) is generated by light irradiation of the second wavelength λ 2 This is a measurement value based on a photoacoustic wave. ε Hb λ 1 is the molar absorption coefficient of deoxyhemoglobin corresponding to the first wavelength λ 1 [mm −1 mol −1 ], and ε Hb λ 2 is the molar absorption coefficient of deoxy hemoglobin corresponding to the second wavelength λ 2 [ mm -1 mol -1 ]. ε HbO λ 1 is the molar absorption coefficient of oxyhemoglobin [mm −1 mol −1 ] corresponding to the first wavelength λ 1 , and ε HbO λ 2 is the molar absorption coefficient of oxyhemoglobin corresponding to the second wavelength λ 2 [ mm -1 mol -1 ]. r is a position. As the measured values I λ 1 (r) and I λ 2 (r), the absorption coefficients μ a λ 1 (r) and μ a λ 2 (r) may be used, or the initial sound pressure P 0 λ 1 (r) and P 0 λ 2 (r) may be used.

ヘモグロビンの存在領域(血管領域)から発生した光音響波に基づいた計測値を式(1)に代入すると、計算値Is(r)として、ヘモグロビンの酸素飽和度(または酸素飽和度に相関をもつ指標)が得られる。一方、造影剤を導入した被検体において、造影剤の存在領域(例えばリンパ管領域)から発生した音響波に基づいた計測値を式(1)に代入すると、計算値Is(r)として、擬似的な造影剤の濃度分布が得られる。なお、造影剤の濃度分布を計算する場合でも、式(1)ではヘモグロビンのモラー吸収係数の数値をそのまま用いればよい。このようにして得られた分光画像Is(r)は、被検体内部のヘモグロビンの存在領域(血管)と造影剤の存在領域(例えばリンパ管)の両方が互いに分離可能(区別可能)な状態で描出された画像となる。   When a measurement value based on a photoacoustic wave generated from a region where a hemoglobin exists (a blood vessel region) is substituted into Expression (1), the oxygen saturation of hemoglobin (or a correlation with the oxygen saturation) is obtained as a calculated value Is (r). Index) is obtained. On the other hand, when a measurement value based on an acoustic wave generated from a region where the contrast agent is present (for example, a lymphatic region) in the subject into which the contrast agent is introduced is substituted into Expression (1), a pseudo value is calculated as a calculated value Is (r). A concentration distribution of the contrast agent is obtained. Note that even when calculating the concentration distribution of the contrast agent, the numerical value of the molar absorption coefficient of hemoglobin may be used as it is in Expression (1). The spectral image Is (r) obtained in this manner is in a state where both the hemoglobin existing region (blood vessel) and the contrast agent existing region (for example, lymphatic vessel) inside the subject are separable from each other (can be distinguished). The image is rendered.

なお、本実施形態では、酸素飽和度を計算する式(1)を用いて分光画像の画像値を計算するが、酸素飽和度以外の指標を分光画像の画像値として計算する場合には、式(1)以外の算出方法を用いればよい。指標およびその算出方法としては、公知のものを利用可能であるため、ここでは詳しい説明を割愛する。   In the present embodiment, the image value of the spectral image is calculated using Expression (1) for calculating the oxygen saturation. However, when an index other than the oxygen saturation is calculated as the image value of the spectral image, the expression A calculation method other than (1) may be used. As the index and the method for calculating the index, known ones can be used, and a detailed description thereof will be omitted here.

また、本発明に係るシステムは、第1波長λの光照射により発生した光音響波に基づいた第1光音響画像および第2波長λの光照射により発生した光音響波に基づいた第2光音響画像の比を示す画像を分光画像としてもよい。すなわち、第1波長λの光照射により発生した光音響波に基づいた第1光音響画像および第2波長λの光照射により発生した光音響波に基づいた第2光音響画像の比に基づいた画像を分光画像としてよい。なお、式(1)の変形式にしたがって生成される画像も、第1光音響画像および第2光音響画像の比によって表現できるため、第1光音響画像および第2光音響画像の比に基づいた画像(分光画像)といえる。 Further, the system according to the present invention was based on the photoacoustic wave generated by the first light irradiation of the photoacoustic image and the second wavelength lambda 2, based on the photoacoustic wave generated by light irradiation of the first wavelength lambda 1 An image indicating the ratio of the two photoacoustic images may be used as the spectral image. That is, the ratio of the second photoacoustic image based on the photoacoustic wave generated by light irradiation of the first photoacoustic image and the second wavelength lambda 2, based on the photoacoustic wave generated by light irradiation of the first wavelength lambda 1 The image based on this may be a spectral image. Note that an image generated according to the modified expression of Expression (1) can also be expressed by the ratio between the first photoacoustic image and the second photoacoustic image. Image (spectral image).

なお、造影対象の立体構造を把握するために、分光画像は、被検体表面から深さ方向の
2次元の空間分布を表す画像または3次元の空間分布を表す画像であってもよい。
以下、本実施形態のシステムの構成及び画像処理方法について説明する。
In order to grasp the three-dimensional structure of the contrast target, the spectral image may be an image representing a two-dimensional spatial distribution or a three-dimensional spatial distribution in the depth direction from the subject surface.
Hereinafter, a system configuration and an image processing method of the present embodiment will be described.

図1を用いて本実施形態に係るシステムを説明する。図1は、本実施形態に係るシステムの構成を示すブロック図である。本実施形態に係るシステムは、光音響装置1100、記憶装置1200、画像処理装置1300、表示装置1400、及び入力装置1500を備える。装置間のデータの送受信は有線で行われてもよいし、無線で行われてもよい。   A system according to the present embodiment will be described with reference to FIG. FIG. 1 is a block diagram illustrating a configuration of a system according to the present embodiment. The system according to the present embodiment includes a photoacoustic device 1100, a storage device 1200, an image processing device 1300, a display device 1400, and an input device 1500. Transmission and reception of data between the devices may be performed by wire or wirelessly.

光音響装置1100は、造影剤が導入された被検体を撮影することにより光音響画像を生成し、記憶装置1200に出力する。光音響装置1100は、光照射により発生した光音響波を受信することにより得られる受信信号を用いて、被検体内の複数位置のそれぞれに対応する特性値の情報を生成する装置である。すなわち、光音響装置1100は、光音響波に由来した特性値情報の空間分布を医用画像データ(光音響画像)として生成する装置である。   The photoacoustic device 1100 generates a photoacoustic image by capturing an image of the subject into which the contrast agent has been introduced, and outputs the photoacoustic image to the storage device 1200. The photoacoustic device 1100 is a device that generates information of characteristic values corresponding to each of a plurality of positions in a subject using a reception signal obtained by receiving a photoacoustic wave generated by light irradiation. That is, the photoacoustic apparatus 1100 is an apparatus that generates a spatial distribution of characteristic value information derived from a photoacoustic wave as medical image data (photoacoustic image).

記憶装置1200は、ROM(Read only memory)、磁気ディスクやフラッシュメモリなどの記憶媒体であってもよい。また、記憶装置1200は、PACS(Picture Archiving and Communication System)等のネットワークを介した記憶サーバであってもよい。   The storage device 1200 may be a storage medium such as a ROM (Read Only Memory), a magnetic disk, or a flash memory. Further, the storage device 1200 may be a storage server via a network such as a PACS (Picture Archiving and Communication System).

画像処理装置1300は、記憶装置1200に記憶された光音響画像や光音響画像の付帯情報等の情報を処理する装置である。
画像処理装置1300の演算機能を担うユニットは、CPUやGPU(Graphics Processing Unit)等のプロセッサ、FPGA(Field Programmable Gate Array)チップ等の演算回路で構成されることができる。これらのユニットは、単一のプロセッサや演算回路から構成されるだけでなく、複数のプロセッサや演算回路から構成されていてもよい。
The image processing device 1300 is a device that processes information such as a photoacoustic image and incidental information of the photoacoustic image stored in the storage device 1200.
A unit having an arithmetic function of the image processing apparatus 1300 can be configured by an arithmetic circuit such as a CPU, a processor such as a GPU (Graphics Processing Unit), or an FPGA (Field Programmable Gate Array) chip. These units may be configured not only from a single processor or arithmetic circuit, but also from a plurality of processors or arithmetic circuits.

画像処理装置1300の記憶機能を担うユニットは、ROM(Read only memory)、磁気ディスクやフラッシュメモリなどの非一時記憶媒体で構成することができる。また、記憶機能を担うユニットは、RAM(Random Access Memory)などの揮発性の媒体であってもよい。なお、プログラムが格納される記憶媒体は、非一時記憶媒体である。なお、記憶機能を担うユニットは、1つの記憶媒体から構成されるだけでなく、複数の記憶媒体から構成されていてもよい。   A unit having a storage function of the image processing apparatus 1300 can be configured by a non-temporary storage medium such as a ROM (Read Only Memory), a magnetic disk, or a flash memory. In addition, the unit having the storage function may be a volatile medium such as a RAM (Random Access Memory). The storage medium on which the program is stored is a non-temporary storage medium. Note that the unit having the storage function is not limited to a single storage medium, and may be configured from a plurality of storage media.

画像処理装置1300の制御機能を担うユニットは、CPUなどの演算素子で構成される。制御機能を担うユニットは、システムの各構成の動作を制御する。制御機能を担うユニットは、入力部からの測定開始などの各種操作による指示信号を受けて、システムの各構成を制御してもよい。また、制御機能を担うユニットは、コンピュータ150に格納されたプログラムコードを読み出し、システムの各構成の作動を制御してもよい。   A unit having a control function of the image processing apparatus 1300 is configured by an arithmetic element such as a CPU. A unit having a control function controls the operation of each component of the system. The unit having the control function may control each component of the system in response to an instruction signal from various operations such as the start of measurement from the input unit. Further, the unit having the control function may read out the program code stored in the computer 150 and control the operation of each component of the system.

表示装置1400は、液晶ディスプレイや有機EL(Electro Luminescence)などのディスプレイである。また、表示装置1400は、画像や装置を操作するためのGUIを表示してもよい。   The display device 1400 is a display such as a liquid crystal display or an organic EL (Electro Luminescence). The display device 1400 may display an image or a GUI for operating the device.

入力装置1500としては、ユーザーが操作可能な、マウスやキーボードなどで構成される操作コンソールを採用することができる。また、表示装置1400をタッチパネルで構成し、表示装置1400を入力装置1500として利用してもよい。   As the input device 1500, an operation console that can be operated by a user and includes a mouse, a keyboard, and the like can be employed. Further, the display device 1400 may be configured with a touch panel, and the display device 1400 may be used as the input device 1500.

図2は、本実施形態に係る画像処理装置1300の具体的な構成例を示す。本実施形態
に係る画像処理装置1300は、CPU1310、GPU1320、RAM1330、ROM1340、外部記憶装置1350から構成される。また、画像処理装置1300には、表示装置1400としての液晶ディスプレイ1410、入力装置1500としてのマウス1510、キーボード1520が接続されている。さらに、画像処理装置1300は、PACS(Picture Archiving and Communication
System)などの記憶装置1200としての画像サーバ1210と接続されている。これにより、画像データを画像サーバ1210上に保存したり、画像サーバ1210上の画像データを液晶ディスプレイ1410に表示したりすることができる。
次に、本実施形態に係るシステムに含まれる装置の構成例を説明する。図3は、本実施形態に係るシステムに含まれる装置の概略ブロック図である。
FIG. 2 shows a specific configuration example of the image processing apparatus 1300 according to the present embodiment. The image processing apparatus 1300 according to the present embodiment includes a CPU 1310, a GPU 1320, a RAM 1330, a ROM 1340, and an external storage device 1350. In addition, a liquid crystal display 1410 as a display device 1400, a mouse 1510 as an input device 1500, and a keyboard 1520 are connected to the image processing device 1300. Further, the image processing apparatus 1300 includes a PACS (Picture Archiving and Communication).
The system is connected to an image server 1210 as a storage device 1200 such as a System. Thus, the image data can be stored on the image server 1210 or the image data on the image server 1210 can be displayed on the liquid crystal display 1410.
Next, a configuration example of an apparatus included in the system according to the present embodiment will be described. FIG. 3 is a schematic block diagram of devices included in the system according to the present embodiment.

本実施形態に係る光音響装置1100は、駆動部130、信号収集部140、コンピュータ150、プローブ180、及び導入部190を有する。プローブ180は、光照射部110、及び受信部120を有する。図4は、本実施形態に係るプローブ180の模式図を示す。測定対象は、導入部190により造影剤が導入された被検体100である。駆動部130は、光照射部110と受信部120を駆動し、機械的な走査を行う。光照射部110が光を被検体100に照射し、被検体100内で音響波が発生する。光に起因して光音響効果により発生する音響波を光音響波とも呼ぶ。受信部120は、光音響波を受信することによりアナログ信号としての電気信号(光音響信号)を出力する。   The photoacoustic apparatus 1100 according to the present embodiment includes a drive unit 130, a signal collection unit 140, a computer 150, a probe 180, and an introduction unit 190. The probe 180 has a light irradiation unit 110 and a reception unit 120. FIG. 4 is a schematic diagram of the probe 180 according to the present embodiment. The measurement target is the subject 100 into which the contrast agent has been introduced by the introduction unit 190. The drive unit 130 drives the light irradiation unit 110 and the reception unit 120 to perform mechanical scanning. The light irradiation unit 110 irradiates the subject 100 with light, and an acoustic wave is generated in the subject 100. An acoustic wave generated by the photoacoustic effect due to light is also called a photoacoustic wave. The receiving unit 120 outputs an electric signal (photoacoustic signal) as an analog signal by receiving the photoacoustic wave.

信号収集部140は、受信部120から出力されたアナログ信号をデジタル信号に変換し、コンピュータ150に出力する。コンピュータ150は、信号収集部140から出力されたデジタル信号を、光音響波に由来する信号データとして記憶する。信号データは、受信信号データの一例である。   The signal collecting unit 140 converts the analog signal output from the receiving unit 120 into a digital signal, and outputs the digital signal to the computer 150. The computer 150 stores the digital signal output from the signal collection unit 140 as signal data derived from a photoacoustic wave. The signal data is an example of received signal data.

コンピュータ150は、記憶されたデジタル信号に対して信号処理を行うことにより、光音響画像を生成する。また、コンピュータ150は、得られた光音響画像に対して画像処理を施した後に、光音響画像を表示部160に出力する。表示部160は、光音響画像に基づいた画像を表示する。表示画像は、ユーザーやコンピュータ150からの保存指示に基づいて、コンピュータ150内のメモリや、モダリティとネットワークで接続されたデータ管理システムなどの記憶装置1200に保存される。   The computer 150 generates a photoacoustic image by performing signal processing on the stored digital signal. In addition, the computer 150 outputs the photoacoustic image to the display unit 160 after performing image processing on the obtained photoacoustic image. The display unit 160 displays an image based on the photoacoustic image. The display image is stored in a memory in the computer 150 or a storage device 1200 such as a data management system connected to the modality via a network based on a storage instruction from the user or the computer 150.

また、コンピュータ150は、光音響装置に含まれる構成の駆動制御も行う。また、表示部160は、コンピュータ150で生成された画像の他にGUIなどを表示してもよい。入力部170は、ユーザーが情報を入力できるように構成されている。ユーザーは、入力部170を用いて測定開始や終了、作成画像の保存指示などの操作を行うことができる。
以下、本実施形態に係る光音響装置1100の各構成の詳細を説明する。
The computer 150 also performs drive control of components included in the photoacoustic device. The display unit 160 may display a GUI or the like in addition to the image generated by the computer 150. The input unit 170 is configured to allow a user to input information. The user can use the input unit 170 to perform operations such as start and end of measurement, and an instruction to save a created image.
Hereinafter, details of each configuration of the photoacoustic apparatus 1100 according to the present embodiment will be described.

(光照射部110)
光照射部110は、光を発する光源111と、光源111から射出された光を被検体100へ導く光学系112とを含む。なお、光は、いわゆる矩形波、三角波などのパルス光を含む。
(Light irradiation unit 110)
The light irradiation unit 110 includes a light source 111 that emits light, and an optical system 112 that guides light emitted from the light source 111 to the subject 100. Note that the light includes pulse light such as a so-called rectangular wave and a triangular wave.

光源111が発する光のパルス幅としては、熱閉じ込め条件および応力封じ込め条件を考慮すると、100ns以下のパルス幅であることが好ましい。また、光の波長として400nmから1600nm程度の範囲の波長であってもよい。血管を高解像度でイメージングする場合は、血管での吸収が大きい波長(400nm以上、700nm以下)を用いてもよい。生体の深部をイメージングする場合には、生体の背景組織(水や脂肪など)において典型的に吸収が少ない波長(700nm以上、1100nm以下)の光を用いても
よい。
The pulse width of the light emitted from the light source 111 is preferably 100 ns or less in consideration of the thermal confinement condition and the stress confinement condition. Further, the wavelength of the light may be in the range of about 400 nm to 1600 nm. When imaging a blood vessel with high resolution, a wavelength (400 nm or more and 700 nm or less) at which absorption in the blood vessel is large may be used. When imaging a deep part of a living body, light having a wavelength (700 nm or more and 1100 nm or less) that typically absorbs little in a background tissue (water or fat) of the living body may be used.

光源111としては、レーザーや発光ダイオードを用いることができる。また、複数波長の光を用いて測定する際には、波長の変更が可能な光源であってもよい。なお、複数波長を被検体に照射する場合、互いに異なる波長の光を発生する複数台の光源を用意し、それぞれの光源から交互に照射することも可能である。複数台の光源を用いた場合もそれらをまとめて光源として表現する。レーザーとしては、固体レーザー、ガスレーザー、色素レーザー、半導体レーザーなど様々なレーザーを使用することができる。例えば、Nd:YAGレーザーやアレキサンドライトレーザーなどのパルスレーザーを光源として用いてもよい。また、Nd:YAGレーザー光を励起光とするTi:saレーザーやOPO(Optical Parametric Oscillators)レーザーを光源として用いてもよい。また、光源111としてフラッシュランプや発光ダイオードを用いてもよい。また、光源111としてマイクロウェーブ源を用いてもよい。   As the light source 111, a laser or a light emitting diode can be used. When measuring using light of a plurality of wavelengths, a light source whose wavelength can be changed may be used. When irradiating the subject with a plurality of wavelengths, it is also possible to prepare a plurality of light sources that generate light having different wavelengths from each other, and irradiate each of the light sources alternately. When a plurality of light sources are used, they are collectively expressed as a light source. Various lasers such as a solid-state laser, a gas laser, a dye laser, and a semiconductor laser can be used as the laser. For example, a pulsed laser such as an Nd: YAG laser or an alexandrite laser may be used as a light source. Alternatively, a Ti: sa laser using an Nd: YAG laser beam as an excitation light or an OPO (Optical Parametric Oscillators) laser may be used as a light source. Further, a flash lamp or a light emitting diode may be used as the light source 111. Further, a microwave source may be used as the light source 111.

光学系112には、レンズ、ミラー、光ファイバ等の光学素子を用いることができる。乳房等を被検体100とする場合、パルス光のビーム径を広げて照射するために、光学系の光出射部は光を拡散させる拡散板等で構成されていてもよい。一方、光音響顕微鏡においては、解像度を上げるために、光学系112の光出射部はレンズ等で構成し、ビームをフォーカスして照射してもよい。
なお、光照射部110が光学系112を備えずに、光源111から直接被検体100に光を照射してもよい。
Optical elements such as lenses, mirrors, and optical fibers can be used for the optical system 112. When a breast or the like is used as the subject 100, the light emitting unit of the optical system may be configured with a diffusion plate or the like that diffuses light in order to irradiate the pulsed light with a wider beam diameter. On the other hand, in the photoacoustic microscope, in order to increase the resolution, the light emitting portion of the optical system 112 may be configured by a lens or the like, and the beam may be focused and irradiated.
The light irradiating unit 110 may directly irradiate the subject 100 with light from the light source 111 without including the optical system 112.

(受信部120)
受信部120は、音響波を受信することにより電気信号を出力するトランスデューサ121と、トランスデューサ121を支持する支持体122とを含む。また、トランスデューサ121は、音響波を送信する送信手段としてもよい。受信手段としてのトランスデューサと送信手段としてのトランスデューサとは、単一(共通)のトランスデューサでもよいし、別々の構成であってもよい。
(Receiver 120)
The receiving unit 120 includes a transducer 121 that outputs an electric signal by receiving an acoustic wave, and a support 122 that supports the transducer 121. Further, the transducer 121 may be a transmitting unit that transmits an acoustic wave. The transducer as the receiving means and the transducer as the transmitting means may be a single (common) transducer or may have different configurations.

トランスデューサ121を構成する部材としては、PZT(チタン酸ジルコン酸鉛)に代表される圧電セラミック材料や、PVDF(ポリフッ化ビニリデン)に代表される高分子圧電膜材料などを用いることができる。また、圧電素子以外の素子を用いてもよい。例えば、静電容量型トランスデューサ(CMUT:Capacitive Micro−machined Ultrasonic Transducers)を用いたトランスデューサなどを用いることができる。なお、音響波を受信することにより電気信号を出力できる限り、いかなるトランスデューサを採用してもよい。また、トランスデューサにより得られる信号は時間分解信号である。つまり、トランスデューサにより得られる信号の振幅は、各時刻にトランスデューサで受信される音圧に基づく値(例えば、音圧に比例した値)を表したものである。   As a member constituting the transducer 121, a piezoelectric ceramic material represented by PZT (lead zirconate titanate), a polymer piezoelectric film material represented by PVDF (polyvinylidene fluoride), or the like can be used. Further, an element other than the piezoelectric element may be used. For example, a transducer using a capacitive micro-machined Ultrasonic Transducers (CMUT) or the like can be used. Note that any transducer may be employed as long as an electrical signal can be output by receiving an acoustic wave. The signal obtained by the transducer is a time-resolved signal. That is, the amplitude of the signal obtained by the transducer represents a value based on the sound pressure received by the transducer at each time (for example, a value proportional to the sound pressure).

光音響波を構成する周波数成分は、典型的には100KHzから100MHzであり、トランスデューサ121として、これらの周波数を検出することのできるものを採用してもよい。   The frequency component constituting the photoacoustic wave is typically 100 KHz to 100 MHz, and a transducer capable of detecting these frequencies may be employed as the transducer 121.

支持体122は、機械的強度が高い金属材料などから構成されていてもよい。照射光を被検体に多く入射させるために、支持体122の被検体100側の表面に、鏡面加工もしくは光散乱させる加工が行われていてもよい。本実施形態において支持体122は半球殻形状であり、半球殻上に複数のトランスデューサ121を支持できるように構成されている。この場合、支持体122に配置されたトランスデューサ121の指向軸は半球の曲率中心付近に集まる。そして、複数のトランスデューサ121から出力された信号を用いて
画像化したときに曲率中心付近の画質が高くなる。なお、支持体122はトランスデューサ121を支持できる限り、いかなる構成であってもよい。支持体122は、1Dアレイ、1.5Dアレイ、1.75Dアレイ、2Dアレイと呼ばれるような平面又は曲面内に、複数のトランスデューサを並べて配置してもよい。複数のトランスデューサ121が複数の受信手段に相当する。
The support 122 may be made of a metal material having high mechanical strength. In order to cause a large amount of irradiation light to enter the subject, the surface of the support 122 on the subject 100 side may be subjected to mirror finishing or light scattering. In the present embodiment, the support 122 has a hemispherical shell shape, and is configured to be able to support the plurality of transducers 121 on the hemispherical shell. In this case, the directional axes of the transducers 121 disposed on the support body 122 gather near the center of curvature of the hemisphere. Then, when an image is formed using the signals output from the plurality of transducers 121, the image quality near the center of curvature becomes high. The support 122 may have any configuration as long as it can support the transducer 121. The support 122 may arrange a plurality of transducers in a plane or a curved surface such as a 1D array, a 1.5D array, a 1.75D array, and a 2D array. The plurality of transducers 121 correspond to a plurality of receiving units.

また、支持体122は音響マッチング材を貯留する容器として機能してもよい。すなわち、支持体122をトランスデューサ121と被検体100との間に音響マッチング材を配置するための容器としてもよい。   Further, the support 122 may function as a container for storing the acoustic matching material. That is, the support 122 may be a container for disposing the acoustic matching material between the transducer 121 and the subject 100.

また、受信部120が、トランスデューサ121から出力される時系列のアナログ信号を増幅する増幅器を備えてもよい。また、受信部120が、トランスデューサ121から出力される時系列のアナログ信号を時系列のデジタル信号に変換するA/D変換器を備えてもよい。すなわち、受信部120が後述する信号収集部140を備えてもよい。   Further, receiving section 120 may include an amplifier that amplifies a time-series analog signal output from transducer 121. Further, the receiving unit 120 may include an A / D converter that converts a time-series analog signal output from the transducer 121 into a time-series digital signal. That is, the receiving unit 120 may include a signal collecting unit 140 described later.

受信部120と被検体100との間の空間は、光音響波が伝播することができる媒質で満たす。この媒質には、音響波が伝搬でき、被検体100やトランスデューサ121との界面において音響特性が整合し、できるだけ光音響波の透過率が高い材料を採用する。例えば、この媒質には、水、超音波ジェルなどを採用することができる。   The space between the receiving unit 120 and the subject 100 is filled with a medium through which a photoacoustic wave can propagate. For this medium, a material that can transmit an acoustic wave, has matching acoustic characteristics at the interface with the subject 100 and the transducer 121, and has the highest possible transmittance of the photoacoustic wave is used. For example, water, an ultrasonic gel, or the like can be used as the medium.

図4は、プローブ180の側面図を示す。本実施形態に係るプローブ180は、開口を有する半球状の支持体122に複数のトランスデューサ121が3次元に配置された受信部120を有する。また、支持体122の底部には、光学系112の光射出部が配置されている。   FIG. 4 shows a side view of the probe 180. The probe 180 according to the present embodiment has a receiving unit 120 in which a plurality of transducers 121 are three-dimensionally arranged on a hemispherical support body 122 having an opening. In addition, a light emitting portion of the optical system 112 is disposed at the bottom of the support 122.

本実施形態においては、図4に示すように被検体100は、保持部200に接触することにより、その形状が保持される。
受信部120と保持部200の間の空間は、光音響波が伝播することができる媒質で満たされる。この媒質には、光音響波が伝搬でき、被検体100やトランスデューサ121との界面において音響特性が整合し、できるだけ光音響波の透過率が高い材料を採用する。例えば、この媒質には、水、超音波ジェルなどを採用することができる。
In the present embodiment, as shown in FIG. 4, the shape of the subject 100 is held by contacting the holding unit 200.
The space between the receiving unit 120 and the holding unit 200 is filled with a medium through which a photoacoustic wave can propagate. For this medium, a material that can transmit a photoacoustic wave, matches acoustic characteristics at the interface with the subject 100 and the transducer 121, and has a transmittance of the photoacoustic wave as high as possible is used. For example, water, an ultrasonic gel, or the like can be used as the medium.

保持手段としての保持部200は被検体100の形状を測定中に保持するために使用される。保持部200により被検体100を保持することによって、被検体100の動きの抑制および被検体100の位置を保持部200内に留めることができる。保持部200の材料には、ポリカーボネートやポリエチレン、ポリエチレンテレフタレート等、樹脂材料を用いることができる。   The holding unit 200 as a holding unit is used to hold the shape of the subject 100 during measurement. By holding the subject 100 by the holding unit 200, the movement of the subject 100 can be suppressed and the position of the subject 100 can be kept in the holding unit 200. A resin material such as polycarbonate, polyethylene, or polyethylene terephthalate can be used as the material of the holding section 200.

保持部200は、取り付け部201に取り付けられている。取り付け部201は、被検体の大きさに合わせて複数種類の保持部200を交換可能に構成されていてもよい。例えば、取り付け部201は、曲率半径や曲率中心などの異なる保持部に交換できるように構成されていてもよい。   The holding unit 200 is attached to the attachment unit 201. The attachment unit 201 may be configured so that a plurality of types of holding units 200 can be exchanged according to the size of the subject. For example, the mounting portion 201 may be configured to be exchangeable with a different holding portion such as a radius of curvature or a center of curvature.

(駆動部130)
駆動部130は、被検体100と受信部120との相対位置を変更する部分である。駆動部130は、駆動力を発生させるステッピングモータなどのモータと、駆動力を伝達させる駆動機構と、受信部120の位置情報を検出する位置センサとを含む。駆動機構としては、リードスクリュー機構、リンク機構、ギア機構、油圧機構、などを用いることができる。また、位置センサとしては、エンコーダー、可変抵抗器、リニアスケール、磁気センサ、赤外線センサ、超音波センサなどを用いたポテンショメータなどを用いることがで
きる。
なお、駆動部130は被検体100と受信部120との相対位置をXY方向(二次元)に変更させるものに限らず、一次元または三次元に変更させてもよい。
(Drive unit 130)
The driving unit 130 is a unit that changes the relative position between the subject 100 and the receiving unit 120. The driving unit 130 includes a motor such as a stepping motor that generates a driving force, a driving mechanism that transmits the driving force, and a position sensor that detects position information of the receiving unit 120. As the driving mechanism, a lead screw mechanism, a link mechanism, a gear mechanism, a hydraulic mechanism, or the like can be used. As the position sensor, a potentiometer using an encoder, a variable resistor, a linear scale, a magnetic sensor, an infrared sensor, an ultrasonic sensor, or the like can be used.
The driving unit 130 is not limited to changing the relative position between the subject 100 and the receiving unit 120 in the XY directions (two-dimensional), and may change the relative position to one-dimensional or three-dimensional.

なお、駆動部130は、被検体100と受信部120との相対的な位置を変更できれば、受信部120を固定し、被検体100を移動させてもよい。被検体100を移動させる場合は、被検体100を保持する保持部を動かすことで被検体100を移動させる構成などが考えられる。また、被検体100と受信部120の両方を移動させてもよい。   The drive unit 130 may fix the receiving unit 120 and move the subject 100 as long as the relative position between the subject 100 and the receiving unit 120 can be changed. When the subject 100 is moved, a configuration in which the subject 100 is moved by moving a holding unit that holds the subject 100 can be considered. Further, both the subject 100 and the receiving unit 120 may be moved.

駆動部130は、相対位置を連続的に移動させてもよいし、ステップアンドリピートによって移動させてもよい。駆動部130は、プログラムされた軌跡で移動させる電動ステージであってもよいし、手動ステージであってもよい。   The drive unit 130 may move the relative position continuously, or may move the relative position by step and repeat. The drive unit 130 may be an electric stage that moves along a programmed trajectory, or may be a manual stage.

また、本実施形態では、駆動部130は光照射部110と受信部120を同時に駆動して走査を行っているが、光照射部110だけを駆動したり、受信部120だけを駆動したりしてもよい。
なお、プローブ180が、把持部が設けられたハンドヘルドタイプである場合、光音響装置1100は駆動部130を有していなくてもよい。
In the present embodiment, the driving unit 130 scans by simultaneously driving the light irradiation unit 110 and the reception unit 120. However, the drive unit 130 drives only the light irradiation unit 110 or drives only the reception unit 120. You may.
When the probe 180 is a hand-held type provided with a grip, the photoacoustic device 1100 may not include the driving unit 130.

(信号収集部140)
信号収集部140は、トランスデューサ121から出力されたアナログ信号である電気信号を増幅するアンプと、アンプから出力されたアナログ信号をデジタル信号に変換するA/D変換器とを含む。信号収集部140から出力されるデジタル信号は、コンピュータ150に記憶される。信号収集部140は、Data Acquisition System(DAS)とも呼ばれる。本明細書において電気信号は、アナログ信号もデジタル信号も含む概念である。なお、フォトダイオードなどの光検出センサが、光照射部110から光射出を検出し、信号収集部140がこの検出結果をトリガーに同期して上記処理を開始してもよい。
(Signal collection unit 140)
The signal collection unit 140 includes an amplifier that amplifies an electric signal that is an analog signal output from the transducer 121, and an A / D converter that converts an analog signal output from the amplifier into a digital signal. The digital signal output from the signal collection unit 140 is stored in the computer 150. The signal collection unit 140 is also called a Data Acquisition System (DAS). In the present specification, the electric signal is a concept including both an analog signal and a digital signal. Note that a light detection sensor such as a photodiode may detect light emission from the light irradiation unit 110, and the signal collection unit 140 may start the above process in synchronization with the detection result in response to a trigger.

(コンピュータ150)
情報処理装置としてのコンピュータ150は、画像処理装置1300と同様のハードウェアで構成されている。すなわち、コンピュータ150の演算機能を担うユニットは、CPUやGPU(Graphics Processing Unit)等のプロセッサ、FPGA(Field Programmable Gate Array)チップ等の演算回路で構成されることができる。これらのユニットは、単一のプロセッサや演算回路から構成されるだけでなく、複数のプロセッサや演算回路から構成されていてもよい。
(Computer 150)
The computer 150 as the information processing device is configured by the same hardware as the image processing device 1300. That is, the unit having the arithmetic function of the computer 150 can be configured by an arithmetic circuit such as a processor such as a CPU or a GPU (Graphics Processing Unit) or an FPGA (Field Programmable Gate Array) chip. These units may be configured not only from a single processor or arithmetic circuit, but also from a plurality of processors or arithmetic circuits.

コンピュータ150の記憶機能を担うユニットは、RAM(Random Access Memory)などの揮発性の媒体であってもよい。なお、プログラムが格納される記憶媒体は、非一時記憶媒体である。なお、コンピュータ150の記憶機能を担うユニットは、1つの記憶媒体から構成されるだけでなく、複数の記憶媒体から構成されていてもよい。   The unit that performs the storage function of the computer 150 may be a volatile medium such as a RAM (Random Access Memory). The storage medium on which the program is stored is a non-temporary storage medium. It should be noted that the unit having the storage function of the computer 150 may not only be constituted by one storage medium, but also constituted by a plurality of storage media.

コンピュータ150の制御機能を担うユニットは、CPUなどの演算素子で構成される。コンピュータ150の制御機能を担うユニットは、光音響装置の各構成の動作を制御する。コンピュータ150の制御機能を担うユニットは、入力部170からの測定開始などの各種操作による指示信号を受けて、光音響装置の各構成を制御してもよい。また、コンピュータ150の制御機能を担うユニットは、記憶機能を担うユニットに格納されたプログラムコードを読み出し、光音響装置の各構成の作動を制御する。すなわち、コンピュータ150は、本実施形態に係るシステムの制御装置として機能することができる。   A unit having a control function of the computer 150 is configured by an arithmetic element such as a CPU. A unit having a control function of the computer 150 controls the operation of each component of the photoacoustic apparatus. A unit having a control function of the computer 150 may control each component of the photoacoustic apparatus by receiving an instruction signal from the input unit 170 through various operations such as a start of measurement. Further, the unit having the control function of the computer 150 reads out the program code stored in the unit having the storage function, and controls the operation of each component of the photoacoustic apparatus. That is, the computer 150 can function as a control device of the system according to the present embodiment.

なお、コンピュータ150と画像処理装置1300は同じハードウェアで構成されていてもよい。1つのハードウェアがコンピュータ150と画像処理装置1300の両方の機能を担っていてもよい。すなわち、コンピュータ150が、画像処理装置1300の機能を担ってもよい。また、画像処理装置1300が、情報処理装置としてのコンピュータ150の機能を担ってもよい。   Note that the computer 150 and the image processing apparatus 1300 may be configured by the same hardware. One piece of hardware may perform the functions of both the computer 150 and the image processing device 1300. That is, the computer 150 may perform the function of the image processing apparatus 1300. Further, the image processing device 1300 may have the function of the computer 150 as the information processing device.

(表示部160)
表示部160は、液晶ディスプレイや有機EL(Electro Luminescence)などのディスプレイである。また、表示部160は、画像や装置を操作するためのGUIを表示してもよい。
(Display unit 160)
The display unit 160 is a display such as a liquid crystal display and an organic EL (Electro Luminescence). The display unit 160 may display an image or a GUI for operating the apparatus.

なお、表示部160と表示装置1400は同じディスプレイであってもよい。すなわち、1つのディスプレイが表示部160と表示装置1400の両方の機能を担っていてもよい。   Note that the display unit 160 and the display device 1400 may be the same display. That is, one display may have the functions of both the display unit 160 and the display device 1400.

(入力部170)
入力部170としては、ユーザーが操作可能な、マウスやキーボードなどで構成される操作コンソールを採用することができる。また、表示部160をタッチパネルで構成し、表示部160を入力部170として利用してもよい。
(Input unit 170)
As the input unit 170, an operation console that can be operated by a user and includes a mouse and a keyboard can be employed. Further, the display unit 160 may be configured by a touch panel, and the display unit 160 may be used as the input unit 170.

なお、入力部170と入力装置1500は同じ装置であってもよい。すなわち、1つの装置が入力部170と入力装置1500の両方の機能を担っていてもよい。   Note that the input unit 170 and the input device 1500 may be the same device. That is, one device may perform both functions of the input unit 170 and the input device 1500.

(導入部190)
導入部190は、被検体100の外部から被検体100の内部へ造影剤を導入可能に構成されている。例えば、導入部190は造影剤の容器と被検体に刺す注射針とを含むことができる。しかしこれに限られず、導入部190は、造影剤を被検体100に導入することができる限り種々のものを適用可能である。導入部190は、この場合、例えば、公知のインジェクションシステムやインジェクタなどであってもよい。なお、制御装置としてのコンピュータ150が、導入部190の動作を制御することにより、被検体100に造影剤を導入してもよい。また、ユーザーが導入部190を操作することにより、被検体100に造影剤を導入してもよい。
(Introduction section 190)
The introduction unit 190 is configured to be able to introduce a contrast agent from outside the subject 100 into the inside of the subject 100. For example, the introducer 190 can include a container for the contrast agent and a needle for piercing the subject. However, the present invention is not limited to this, and various types can be applied to the introduction unit 190 as long as the contrast agent can be introduced into the subject 100. In this case, the introduction unit 190 may be, for example, a known injection system, an injector, or the like. The contrast agent may be introduced into the subject 100 by controlling the operation of the introduction unit 190 by the computer 150 as a control device. Further, the contrast agent may be introduced into the subject 100 by operating the introduction unit 190 by the user.

(被検体100)
被検体100はシステムを構成するものではないが、以下に説明する。本実施形態に係るシステムは、人や動物の悪性腫瘍や血管疾患などの診断や化学治療の経過観察などを目的として使用できる。よって、被検体100としては、生体、具体的には人体や動物の乳房や各臓器、血管網、頭部、頸部、腹部、手指または足指を含む四肢などの診断の対象部位が想定される。例えば、人体が測定対象であれば、オキシヘモグロビンあるいはデオキシヘモグロビンやそれらを含む多く含む血管あるいは腫瘍の近傍に形成される新生血管などを光吸収体の対象としてもよい。また、頸動脈壁のプラークなどを光吸収体の対象としてもよい。また、皮膚等に含まれるメラニン、コラーゲン、脂質などを光吸収体の対象としてもよい。さらに、被検体100に導入する造影剤を光吸収体とすることができる。光音響イメージングに用いる造影剤としては、インドシアニングリーン(ICG)、メチレンブルー(MB)などの色素、金微粒子、及びそれらの混合物、またはそれらを集積あるいは化学的に修飾した外部から導入した物質を採用してもよい。また、生体を模したファントムを被検体100としてもよい。
(Subject 100)
The subject 100 does not constitute a system, but will be described below. The system according to the present embodiment can be used for the purpose of diagnosing malignant tumors and vascular diseases of humans and animals, monitoring the progress of chemotherapy and the like. Therefore, the subject 100 is assumed to be a body to be diagnosed, specifically, a living body, specifically, a breast or each organ of a human body or an animal, a vascular network, a head, a neck, an abdomen, a limb including a finger or a toe. You. For example, if the human body is a measurement target, oxyhemoglobin or deoxyhemoglobin, a blood vessel containing many of them, a new blood vessel formed near a tumor, or the like may be the target of the light absorber. In addition, plaque of the carotid artery wall or the like may be a target of the light absorber. In addition, melanin, collagen, lipids, and the like contained in the skin and the like may be targeted for the light absorber. Furthermore, the contrast agent introduced into the subject 100 can be a light absorber. As a contrast agent used for photoacoustic imaging, a dye such as indocyanine green (ICG) or methylene blue (MB), a fine gold particle, a mixture thereof, or a substance which is integrated or chemically modified and externally introduced is used. May be. Further, a phantom imitating a living body may be used as the subject 100.

なお、光音響装置の各構成はそれぞれ別の装置として構成されてもよいし、一体となっ
た1つの装置として構成されてもよい。また、光音響装置の少なくとも一部の構成が一体となった1つの装置として構成されてもよい。
Each configuration of the photoacoustic device may be configured as a separate device, or may be configured as one integrated device. Further, at least a part of the configuration of the photoacoustic apparatus may be configured as one integrated apparatus.

なお、本実施形態に係るシステムを構成する各装置は、それぞれが別々のハードウェアで構成されていてもよいし、全ての装置が1つのハードウェアで構成されていてもよい。本実施形態に係るシステムの機能は、いかなるハードウェアで構成されていてもよい。   Each device constituting the system according to the present embodiment may be constituted by separate hardware, or all devices may be constituted by one piece of hardware. The function of the system according to the present embodiment may be configured by any hardware.

次に、図5に示すフローチャートを用いて、本実施形態に係る画像生成方法を説明する。   Next, an image generation method according to the present embodiment will be described with reference to the flowchart shown in FIG.

(S400:照射光の波長を決定する工程)
波長決定手段としてのコンピュータ150は、造影剤に関する情報に基づいて、照射光の波長を決定する。本実施形態では、分光画像中の造影剤に対応する領域を識別しやすくように波長の組み合わせが決定される。なお、コンピュータ150は、例えば、医師等のユーザーが入力部170を用いて入力した、造影剤に関する情報を取得することができる。また、コンピュータ150は、あらかじめ複数の造影剤に関する情報を記憶しておき、その中からデフォルトで設定された造影剤に関する情報を取得してもよい。
(S400: Step of determining wavelength of irradiation light)
The computer 150 as the wavelength determining means determines the wavelength of the irradiation light based on the information on the contrast agent. In the present embodiment, a combination of wavelengths is determined so that a region corresponding to a contrast agent in a spectral image is easily identified. Note that the computer 150 can acquire information on the contrast agent, which is input by a user such as a doctor using the input unit 170, for example. Further, the computer 150 may store information on a plurality of contrast agents in advance, and acquire information on the contrast agent set by default from the information.

図10は、表示部160に表示されるGUIの例を示す。GUIのアイテム2500には、患者ID、検査ID、撮影日時などの検査オーダー情報が表示されている。アイテム2500は、HISやRISなどの外部装置から取得した検査オーダー情報を表示する表示機能や、ユーザーが入力部170を用いて検査オーダー情報を入力することのできる入力機能を備えていてもよい。GUIのアイテム2600には、造影剤の種類、造影剤の濃度などの造影剤に関する情報が表示されている。アイテム2600は、HISやRISなどの外部装置から取得した造影剤に関する情報を表示する表示機能や、ユーザーが入力部170を用いて造影剤に関する情報を入力することのできる入力機能を備えていてもよい。アイテム2600においては、造影剤の種類や濃度などの造影剤に関する情報を複数の選択肢の中からプルダウンなどの方法で入力できてもよい。なお、表示装置1400に図10に示すGUIを表示してもよい。   FIG. 10 shows an example of a GUI displayed on the display unit 160. In the item 2500 of the GUI, examination order information such as a patient ID, an examination ID, and an imaging date and time is displayed. The item 2500 may have a display function of displaying inspection order information acquired from an external device such as a HIS or RIS, or an input function of allowing a user to input inspection order information using the input unit 170. The GUI item 2600 displays information on the contrast agent such as the type of the contrast agent and the concentration of the contrast agent. The item 2600 may have a display function of displaying information on a contrast agent acquired from an external device such as an HIS or RIS, or an input function that allows a user to input information on a contrast agent using the input unit 170. Good. In the item 2600, information on the contrast agent such as the type and concentration of the contrast agent may be input from a plurality of options by a method such as pull-down. Note that the GUI shown in FIG. 10 may be displayed on the display device 1400.

なお、画像処理装置1300が、ユーザーから造影剤に関する情報の入力指示を受信しなかった場合に、複数の造影剤に関する情報の中からデフォルトで設定された造影剤に関する情報を取得してもよい。本実施形態の場合、造影剤の種類としてICG、造影剤の濃度として1.0mg/mLがデフォルトで設定されている場合を説明する。本実施形態では、GUIのアイテム2600にはデフォルトで設定されている造影剤の種類と濃度が表示されているが、造影剤に関する情報がデフォルトで設定されていなくてもよい。この場合、初期画面ではGUIのアイテム2600に造影剤に関する情報が表示されていなくてもよい。   Note that, when the image processing apparatus 1300 does not receive an instruction to input information on the contrast agent from the user, the information on the contrast agent set by default may be acquired from the information on the plurality of contrast agents. In the case of this embodiment, a case will be described in which ICG is set as the type of the contrast agent and 1.0 mg / mL is set as the concentration of the contrast agent by default. In the present embodiment, the type and density of the contrast agent set by default are displayed in the item 2600 of the GUI, but the information on the contrast agent may not be set by default. In this case, the information about the contrast agent may not be displayed on the GUI item 2600 on the initial screen.

ここで、波長の組み合わせを変更したときの分光画像中の造影剤に対応する画像値の変化について説明する。図7は、2波長の組み合わせのそれぞれにおける、分光画像中の造影剤に対応する画像値(酸素飽和度値)のシミュレーション結果を示す。図7の縦軸と横軸はそれぞれ第1波長と第2波長を表す。図7には、分光画像中の造影剤に対応する画像値の等値線が示されている。図7(a)〜図7(d)はそれぞれ、ICGの濃度が5.04μg/mL、50.4μg/mL、0.5mg/mL、1.0mg/mLのときの分光画像中の造影剤に対応する画像値を示す。図7に示すように、選択する波長の組み合わせによっては、分光画像中の造影剤に対応する画像値が60%〜100%となってしまう場合がある。前述したように、このような波長の組み合わせを選択してしまうと、分光画像中の血管の領域と造影剤の領域とを識別することが困難となってしまう。そのため、図7に示す波長の組み合わせにおいて、分光画像中の造影剤に対応する画像値が60%より小
さくなる、または、100%より大きくなるような波長の組み合わせを選択することが好ましい。さらには、図7に示す波長の組み合わせにおいて、分光画像中の造影剤に対応する画像値が負値となるような波長の組み合わせを選択することが好ましい。
Here, a change in an image value corresponding to a contrast agent in a spectral image when a combination of wavelengths is changed will be described. FIG. 7 shows a simulation result of an image value (oxygen saturation value) corresponding to a contrast agent in a spectral image in each combination of two wavelengths. The vertical axis and the horizontal axis in FIG. 7 represent the first wavelength and the second wavelength, respectively. FIG. 7 shows contour lines of image values corresponding to the contrast agent in the spectral image. FIGS. 7A to 7D show contrast agents in spectral images when the concentration of ICG is 5.04 μg / mL, 50.4 μg / mL, 0.5 mg / mL, and 1.0 mg / mL, respectively. Shows the image value corresponding to. As shown in FIG. 7, the image value corresponding to the contrast agent in the spectral image may be 60% to 100% depending on the combination of the wavelengths to be selected. As described above, if such a combination of wavelengths is selected, it becomes difficult to distinguish a blood vessel region and a contrast agent region in a spectral image. Therefore, in the combination of wavelengths shown in FIG. 7, it is preferable to select a combination of wavelengths such that the image value corresponding to the contrast agent in the spectral image is smaller than 60% or larger than 100%. Further, in the combination of wavelengths shown in FIG. 7, it is preferable to select a combination of wavelengths such that the image value corresponding to the contrast agent in the spectral image has a negative value.

例えば、ここで第1波長として797nmを選択し、第2波長として835nmを選択した場合を考える。図8は、第1波長として797nmを選択し、第2波長として835nmを選択した場合に、ICGの濃度と分光画像中の造影剤に対応する画像値(酸素飽和度値)との関係を示すグラフである。図8によれば、第1波長として797nmを選択し、第2波長として835nmを選択した場合、5.04μg/mL〜1.0mg/mLのいずれの濃度であっても、分光画像中の造影剤に対応する画像値は負値となる。そのため、このような波長の組み合わせにより生成された分光画像によれば、血管の酸素飽和度値は原理上負値をとることはないため、血管の領域と造影剤の領域とを明確に識別することができる。   For example, consider a case where 797 nm is selected as the first wavelength and 835 nm is selected as the second wavelength. FIG. 8 shows the relationship between the concentration of ICG and the image value (oxygen saturation value) corresponding to the contrast agent in the spectral image when 797 nm is selected as the first wavelength and 835 nm is selected as the second wavelength. It is a graph. According to FIG. 8, when 797 nm is selected as the first wavelength and 835 nm is selected as the second wavelength, the contrast in the spectral image is increased regardless of the concentration of 5.04 μg / mL to 1.0 mg / mL. The image value corresponding to the agent is a negative value. Therefore, according to the spectral image generated by such a combination of wavelengths, since the oxygen saturation value of the blood vessel does not take a negative value in principle, the blood vessel region and the contrast agent region are clearly distinguished. be able to.

以下、血管が存在する領域を血管領域と称し、造影剤が存在する領域を造影剤領域とも称する。血管領域は、動脈または静脈に対応する領域であり、造影剤領域はリンパ管に対応する領域である。   Hereinafter, a region where a blood vessel exists is referred to as a blood vessel region, and a region where a contrast agent exists is also referred to as a contrast agent region. The blood vessel region is a region corresponding to an artery or a vein, and the contrast agent region is a region corresponding to a lymph vessel.

なお、これまで造影剤に関する情報に基づいて波長を決定することを説明したが、波長の決定においてヘモグロビンの吸収係数を考慮してもよい。図9は、オキシヘモグロビンのモラー吸収係数(破線)とデオキシヘモグロビンのモラー吸収係数(実線)のスペクトルを示す。図9に示す波長レンジにおいては、797nmを境にオキシヘモグロビンのモラー吸収係数とデオキシヘモグロビンのモラー吸収係数の大小関係が逆転している。すなわち、797nmよりも短い波長においては静脈を把握しやすく、797nmよりも長い波長においては動脈を把握しやすいといえる。ところで、リンパ浮腫の治療においては、リンパ管と静脈との間にバイパスを作製するリンパ管細静脈吻合術が利用されている。この術前検査のために、光音響イメージングによって静脈と造影剤が蓄積したリンパ管との両方を画像化することが考えられる。この場合に、複数の波長の少なくとも1つを797nmよりも小さい波長とすることにより、静脈をより明確に画像化することができる。また、複数の波長の少なくとも1つを、オキシヘモグロビンのモラー吸収係数よりもデオキシヘモグロビンのモラー吸収係数が大きくなる波長とすることが静脈を画像化するうえで有利である。また、2波長に対応する光音響画像から分光画像を生成する場合、2波長のいずれもオキシヘモグロビンのモラー吸収係数よりもデオキシヘモグロビンのモラー吸収係数が大きい波長とすることが、静脈を画像化するうえで有利である。これらの波長を選択することにより、リンパ管細静脈吻合術の術前検査において、造影剤が導入されたリンパ管と静脈との両方を精度良く画像化することができる。   Although the wavelength is determined based on the information on the contrast agent, the absorption coefficient of hemoglobin may be considered in determining the wavelength. FIG. 9 shows the spectrum of the molar absorption coefficient of oxyhemoglobin (dashed line) and the molar absorption coefficient of deoxyhemoglobin (solid line). In the wavelength range shown in FIG. 9, the magnitude relationship between the molar absorption coefficient of oxyhemoglobin and the molar absorption coefficient of deoxyhemoglobin is reversed at the boundary of 797 nm. That is, it can be said that it is easy to grasp the vein at a wavelength shorter than 797 nm, and it is easy to grasp the artery at a wavelength longer than 797 nm. In the treatment of lymphedema, lymphatic venule anastomosis for creating a bypass between lymphatic vessels and veins is used. For this preoperative examination, it is conceivable to use photoacoustic imaging to image both the veins and the lymph vessels in which the contrast agent has accumulated. In this case, by setting at least one of the plurality of wavelengths to a wavelength smaller than 797 nm, a vein can be more clearly imaged. Further, it is advantageous for imaging a vein that at least one of the plurality of wavelengths is set to a wavelength at which the molar absorption coefficient of deoxyhemoglobin is larger than the molar absorption coefficient of oxyhemoglobin. In addition, when a spectral image is generated from a photoacoustic image corresponding to two wavelengths, the vein is imaged by setting the wavelength at which the molar absorption coefficient of deoxyhemoglobin is larger than the molar absorption coefficient of oxyhemoglobin at any of the two wavelengths. This is advantageous. By selecting these wavelengths, in the preoperative examination of the lymphatic venule anastomosis, it is possible to accurately image both the lymphatic vessels and the veins into which the contrast agent has been introduced.

ところで、複数の波長のいずれも血液よりも造影剤の吸収係数が大きい波長であると、造影剤由来のアーチファクトにより血液の酸素飽和度精度が低下してしまう。そこで、造影剤由来のアーチファクトを低減するために、複数の波長の少なくとも1つの波長が、血液の吸収係数に対して造影剤の吸収係数が小さくなる波長であってもよい。   By the way, if any of the plurality of wavelengths is a wavelength at which the absorption coefficient of the contrast agent is larger than that of the blood, the oxygen saturation accuracy of the blood decreases due to artifacts derived from the contrast agent. Therefore, in order to reduce artifacts derived from the contrast agent, at least one of the plurality of wavelengths may be a wavelength at which the absorption coefficient of the contrast agent is smaller than the absorption coefficient of blood.

ここでは、式(1)にしたがって分光画像を生成する場合の説明を行ったが、造影剤の条件や照射光の波長によって分光画像中の造影剤に対応する画像値が変化するような分光画像を生成する場合にも適用することができる。   Here, the case where the spectral image is generated according to Equation (1) has been described, but the spectral image in which the image value corresponding to the contrast agent in the spectral image changes depending on the condition of the contrast agent and the wavelength of the irradiation light. Can also be applied when generating

(S500:光を照射する工程)
光照射部110は、S400で決定された波長を光源111に設定する。光源111は、S400で決定された波長の光を発する。光源111から発生した光は、光学系112を介してパルス光として被検体100に照射される。そして、被検体100の内部でパル
ス光が吸収され、光音響効果により光音響波が生じる。このとき、導入された造影剤もパルス光を吸収し、光音響波を発生する。光照射部110はパルス光の伝送と併せて信号収集部140へ同期信号を送信してもよい。また、光照射部110は、複数の波長のそれぞれについて、同様に光照射を行う。
(S500: Light Irradiation Step)
The light irradiation unit 110 sets the wavelength determined in S400 to the light source 111. The light source 111 emits light having the wavelength determined in S400. Light generated from the light source 111 is applied to the subject 100 as pulse light via the optical system 112. Then, the pulse light is absorbed inside the subject 100, and a photoacoustic wave is generated by the photoacoustic effect. At this time, the introduced contrast agent also absorbs the pulse light and generates a photoacoustic wave. The light irradiation unit 110 may transmit a synchronization signal to the signal collection unit 140 together with the transmission of the pulse light. The light irradiating unit 110 similarly irradiates each of a plurality of wavelengths with light.

ユーザーが、光照射部110の照射条件(照射光の繰り返し周波数や波長など)やプローブ180の位置などの制御パラメータを、入力部170を用いて指定してもよい。コンピュータ150は、ユーザーの指示に基づいて決定された制御パラメータを設定してもよい。また、コンピュータ150が、指定された制御パラメータに基づいて、駆動部130を制御することによりプローブ180を指定の位置へ移動させてもよい。複数位置での撮影が指定された場合には、駆動部130は、まずプローブ180を最初の指定位置へ移動させる。なお、駆動部130は、測定の開始指示がなされたときに、あらかじめプログラムされた位置にプローブ180を移動させてもよい。   The user may use the input unit 170 to specify control parameters such as the irradiation conditions of the light irradiation unit 110 (such as the repetition frequency and wavelength of irradiation light) and the position of the probe 180. The computer 150 may set a control parameter determined based on a user's instruction. Further, the computer 150 may move the probe 180 to a specified position by controlling the driving unit 130 based on the specified control parameter. When imaging at a plurality of positions is designated, the drive unit 130 first moves the probe 180 to the first designated position. Note that the drive unit 130 may move the probe 180 to a position programmed in advance when a measurement start instruction is issued.

(S600:光音響波を受信する工程)
信号収集部140は、光照射部110から送信された同期信号を受信すると、信号収集の動作を開始する。すなわち、信号収集部140は、受信部120から出力された、光音響波に由来するアナログ電気信号を、増幅・AD変換することにより、増幅されたデジタル電気信号を生成し、コンピュータ150へ出力する。コンピュータ150は、信号収集部140から送信された信号を保存する。複数の走査位置での撮影を指定された場合には、指定された走査位置において、S500およびS600の工程を繰り返し実行し、パルス光の照射と音響波に由来するデジタル信号の生成を繰り返す。なお、コンピュータ150は、発光をトリガーとして、発光時の受信部120の位置情報を駆動部130の位置センサからの出力に基づいて取得し、記憶してもよい。
(S600: receiving a photoacoustic wave)
When receiving the synchronization signal transmitted from light irradiating section 110, signal collecting section 140 starts the signal collecting operation. That is, the signal collecting unit 140 generates an amplified digital electric signal by amplifying and AD converting the analog electric signal derived from the photoacoustic wave output from the receiving unit 120, and outputs the amplified digital electric signal to the computer 150. . The computer 150 stores the signal transmitted from the signal collecting unit 140. When imaging at a plurality of scanning positions is designated, the processes of S500 and S600 are repeatedly executed at the designated scanning positions, and irradiation of pulse light and generation of digital signals derived from acoustic waves are repeated. Note that the computer 150 may acquire and store the position information of the receiving unit 120 at the time of light emission based on the output from the position sensor of the drive unit 130 with the light emission as a trigger.

なお、本実施形態では、複数の波長の光のそれぞれを時分割に照射する例を説明したが、複数の波長のそれぞれに対応する信号データを取得できる限り、光の照射方法はこれに限らない。例えば、光照射によって符号化を行う場合に、複数の波長の光がほぼ同時に照射されるタイミングが存在してもよい。   Note that, in the present embodiment, an example in which each of a plurality of wavelengths of light is radiated in a time-division manner has been described. . For example, when encoding is performed by light irradiation, there may be a timing at which light of a plurality of wavelengths is irradiated almost simultaneously.

(S700:光音響画像を生成する工程)
光音響画像取得手段としてのコンピュータ150は、記憶された信号データに基づいて、光音響画像を生成する。コンピュータ150は、生成された光音響画像を記憶装置1200に出力し、記憶させる。本実施形態では、被検体への1回の光照射で得られた光音響信号を用いた画像再構成により1つのボリュームデータが生成される。さらに、複数回の光照射を行い、それぞれの光照射ごとに画像再構成を行うことで、時系列の3次元のボリュームデータが取得される。
(S700: Step of Generating Photoacoustic Image)
The computer 150 as a photoacoustic image acquisition unit generates a photoacoustic image based on the stored signal data. The computer 150 outputs the generated photoacoustic image to the storage device 1200 and stores it. In the present embodiment, one volume data is generated by image reconstruction using a photoacoustic signal obtained by one light irradiation on the subject. Further, by performing light irradiation a plurality of times and performing image reconstruction for each light irradiation, time-series three-dimensional volume data is obtained.

信号データを2次元または3次元の空間分布に変換する再構成アルゴリズムとしては、タイムドメインでの逆投影法やフーリエドメインでの逆投影法などの解析的な再構成法やモデルベース法(繰り返し演算法)を採用することができる。例えば、タイムドメインでの逆投影法として、Universal back−projection(UBP)、Filtered back−projection(FBP)、または整相加算(Delay−and−Sum)などが挙げられる。   Reconstruction algorithms for converting signal data into a two-dimensional or three-dimensional spatial distribution include analytic reconstruction methods such as backprojection in the time domain and backprojection in the Fourier domain, and model-based methods (repetitive computations). Law) can be adopted. For example, as a back projection method in the time domain, Universal back-projection (UBP), Filtered back-projection (FBP), phasing addition (Delay-and-Sum), and the like can be given.

本実施形態では、被検体への1回の光照射で得られた光音響信号を用いた画像再構成により1つの3次元の光音響画像(ボリュームデータ)が生成される。さらに、複数回の光照射を行い、それぞれの光照射ごとに画像再構成を行うことで、時系列の3次元画像データ(時系列のボリュームデータ)が取得される。複数回の光照射のそれぞれの光照射ごとに画像再構成して得られた3次元画像データを総称して、複数回の光照射に対応する3次
元画像データと呼ぶ。なお、時系列に複数回の光照射が実行されるため、複数回の光照射に対応する3次元画像データが、時系列の3次元画像データを構成する。
In the present embodiment, one three-dimensional photoacoustic image (volume data) is generated by image reconstruction using a photoacoustic signal obtained by a single light irradiation on the subject. Furthermore, by performing light irradiation a plurality of times and performing image reconstruction for each light irradiation, time-series three-dimensional image data (time-series volume data) is obtained. The three-dimensional image data obtained by reconstructing an image for each of the plurality of light irradiations is collectively referred to as three-dimensional image data corresponding to the plurality of light irradiations. Note that, since light irradiation is performed a plurality of times in a time series, three-dimensional image data corresponding to the light irradiations a plurality of times constitutes time-series three-dimensional image data.

コンピュータ150は、信号データに対して再構成処理することにより、初期音圧分布情報(複数の位置における発生音圧)を光音響画像として生成する。また、コンピュータ150は、被検体100に照射された光の被検体100の内部での光フルエンス分布を計算し、初期音圧分布を光フルエンス分布で除算することにより、吸収係数分布情報を光音響画像として取得してもよい。光フルエンス分布の計算手法については、公知の手法を適用することができる。また、コンピュータ150は、複数の波長の光のそれぞれに対応する光音響画像を生成することができる。具体的には、コンピュータ150は、第1波長の光照射により得られた信号データに対して再構成処理を行うことにより、第1波長に対応する第1光音響画像を生成することができる。また、コンピュータ150は、第2波長の光照射により得られた信号データに対して再構成処理を行うことにより、第2波長に対応する第2光音響画像を生成することができる。このように、コンピュータ150は、複数の波長の光に対応する複数の光音響画像を生成することができる。   The computer 150 generates initial sound pressure distribution information (generated sound pressures at a plurality of positions) as a photoacoustic image by performing a reconstruction process on the signal data. Further, the computer 150 calculates the optical fluence distribution of the light radiated on the subject 100 inside the subject 100, and divides the initial sound pressure distribution by the light fluence distribution to obtain the absorption coefficient distribution information by photoacoustic. It may be obtained as an image. A known method can be applied to the calculation method of the light fluence distribution. In addition, the computer 150 can generate a photoacoustic image corresponding to each of the light of a plurality of wavelengths. Specifically, the computer 150 can generate a first photoacoustic image corresponding to the first wavelength by performing a reconstruction process on signal data obtained by irradiating light of the first wavelength. Further, the computer 150 can generate a second photoacoustic image corresponding to the second wavelength by performing a reconstruction process on the signal data obtained by irradiating the second wavelength light. As described above, the computer 150 can generate a plurality of photoacoustic images corresponding to lights of a plurality of wavelengths.

本実施形態では、コンピュータ150は、複数の波長の光のそれぞれに対応する吸収係数分布情報を光音響画像として取得する。第1波長に対応する吸収係数分布情報を第1光音響画像とし、第2波長に対応する吸収係数分布情報を第2光音響画像とする。   In the present embodiment, the computer 150 acquires absorption coefficient distribution information corresponding to each of light of a plurality of wavelengths as a photoacoustic image. The absorption coefficient distribution information corresponding to the first wavelength is defined as a first photoacoustic image, and the absorption coefficient distribution information corresponding to the second wavelength is defined as a second photoacoustic image.

なお、本実施形態では、システムが光音響画像を生成する光音響装置1100を含む例を説明したが、光音響装置1100を含まないシステムにも本発明は適用可能である。光音響画像取得手段としての画像処理装置1300が、光音響画像を取得できる限り、いかなるシステムであっても本発明を適用することができる。例えば、光音響装置1100を含まず、記憶装置1200と画像処理装置1300とを含むシステムであっても本発明を適用することができる。この場合、光音響画像取得手段としての画像処理装置1300は、記憶装置1200に予め記憶された光音響画像群の中から指定された光音響画像を読み出すことにより、光音響画像を取得することができる。   In the present embodiment, an example has been described in which the system includes the photoacoustic apparatus 1100 that generates a photoacoustic image. However, the present invention is also applicable to a system that does not include the photoacoustic apparatus 1100. The present invention can be applied to any system as long as the image processing apparatus 1300 as a photoacoustic image acquisition unit can acquire a photoacoustic image. For example, the present invention can be applied to a system that does not include the photoacoustic device 1100 but includes the storage device 1200 and the image processing device 1300. In this case, the image processing device 1300 as the photoacoustic image acquisition unit can acquire the photoacoustic image by reading out the specified photoacoustic image from the photoacoustic image group stored in the storage device 1200 in advance. it can.

(S800:分光画像を生成する工程)
分光画像取得手段としてのコンピュータ150は、複数の波長に対応する複数の光音響画像に基づいて、分光画像を生成する。コンピュータ150は、分光画像を記憶装置1200に出力し、記憶装置1200に記憶させる。前述したように、コンピュータ150は、グルコース濃度、コラーゲン濃度、メラニン濃度、脂肪や水の体積分率など、被検体を構成する物質の濃度に相当する情報を示す画像を分光画像として生成してもよい。また、コンピュータ150は、第1波長に対応する第1光音響画像と第2波長に対応する第2光音響画像との比を表す画像を分光画像として生成してもよい。本実施形態では、コンピュータ150が、第1光音響画像と第2光音響画像とを用いて、式(1)にしたがって酸素飽和度画像を分光画像として生成する例を説明する。
(S800: Step of generating a spectral image)
The computer 150 as a spectral image acquisition unit generates a spectral image based on a plurality of photoacoustic images corresponding to a plurality of wavelengths. The computer 150 outputs the spectral image to the storage device 1200 and causes the storage device 1200 to store the spectral image. As described above, the computer 150 may generate, as a spectral image, an image indicating information corresponding to the concentration of a substance constituting the subject, such as glucose concentration, collagen concentration, melanin concentration, and volume fraction of fat and water. Good. Further, the computer 150 may generate, as a spectral image, an image representing a ratio between the first photoacoustic image corresponding to the first wavelength and the second photoacoustic image corresponding to the second wavelength. In the present embodiment, an example will be described in which the computer 150 generates an oxygen saturation image as a spectral image according to Expression (1) using the first photoacoustic image and the second photoacoustic image.

なお、分光画像取得手段としての画像処理装置1300は、記憶装置1200に予め記憶された分光画像群の中から指定された分光画像を読み出すことにより、分光画像を取得してもよい。また、光音響画像取得手段としての画像処理装置1300は、記憶装置1200に予め記憶された光音響画像群の中から、読み出した分光画像の生成に用いられた複数の光音響画像の少なくとも一つを読み出すことにより、光音響画像を取得してもよい。   Note that the image processing apparatus 1300 as the spectral image acquiring unit may acquire a spectral image by reading out a designated spectral image from a spectral image group stored in the storage device 1200 in advance. Further, the image processing apparatus 1300 as a photoacoustic image acquisition unit includes at least one of a plurality of photoacoustic images used to generate the read spectral image from a group of photoacoustic images stored in the storage device 1200 in advance. May be read to obtain a photoacoustic image.

複数回の光照射と、それに引き続く音響波受信と画像再構成が行われることにより、複数回の光照射に対応する時系列の3次元画像データが生成される。3次元画像データとしては光音響画像データや分光画像データが利用できる。ここでの光音響画像データは吸収係数等の分布を示す画像データを指し、分光画像データは複数の波長の光が被検体に照射
されたときに、それぞれの波長に対応する光音響画像データに基づいて生成される濃度等を示す画像データを指す。
A plurality of times of light irradiation, subsequent acoustic wave reception and image reconstruction are performed, thereby generating time-series three-dimensional image data corresponding to the plurality of times of light irradiation. Photoacoustic image data and spectral image data can be used as the three-dimensional image data. Here, the photoacoustic image data refers to image data indicating a distribution of an absorption coefficient or the like, and the spectral image data is converted to photoacoustic image data corresponding to each wavelength when light of a plurality of wavelengths is irradiated on the subject. Indicates image data indicating the density or the like generated based on the image data.

(S1100:分光画像を表示する工程)
表示制御手段としての画像処理装置1300は、造影剤に関する情報に基づいて、造影剤に対応する領域とそれ以外の領域とを識別できるように分光画像を表示装置1400に表示させる。なお、レンダリング手法としては、最大値投影法(MIP:Maximum
Intensity Projection)、ボリュームレンダリング、及びサーフェイスレンダリングなどのあらゆる方法を採用することができる。ここで、三次元画像を二次元にレンダリングする際の表示領域や視線方向などの設定条件は、観察対象に合わせて任意に指定することができる。
(S1100: Displaying a spectral image)
The image processing apparatus 1300 serving as a display control unit displays a spectral image on the display device 1400 based on the information on the contrast agent so that the region corresponding to the contrast agent and the other region can be identified. In addition, as a rendering method, a maximum intensity projection method (MIP: Maximum)
Any method can be employed, such as intensity projection, volume rendering, and surface rendering. Here, setting conditions such as a display area and a line-of-sight direction when rendering a three-dimensional image in two dimensions can be arbitrarily specified according to the observation target.

ここでは、S400で797nmと835nmを設定し、S800で式(1)にしたがって分光画像を生成する場合について説明する。図8で示したとおり、これらの2波長を選択した場合、ICGがいかなる濃度であっても、式(1)にしたがって生成される分光画像中の造影剤に対応する画像値は負値となる。   Here, a case will be described in which 797 nm and 835 nm are set in S400, and a spectral image is generated according to Expression (1) in S800. As shown in FIG. 8, when these two wavelengths are selected, the image value corresponding to the contrast agent in the spectral image generated according to Equation (1) is a negative value, regardless of the ICG concentration. .

なお、生体内の血管(動静脈)における酸素飽和度は、パーセント表示で概ね60%〜100%の範囲に収まる。そのため、被検体に照射する光の波長(2波長)は、分光画像中の造影剤に対応する酸素飽和度値(式(1)の計算値)が60%より小さくなる、または、100%より大きくなるような波長とすることが好ましい。このようにすることで、分光画像において、動静脈に対応する像と、造影剤に対応する像の判別が容易になる。例えば、造影剤としてICGを用いる場合、700nm以上、820nmより小さい波長と、820nm以上、1020nm以下の波長の2波長を選択し、式(1)により分光画像を生成することにより、造影剤の領域と血管の領域とを良好に識別することができる。   The oxygen saturation in blood vessels (arteries and veins) in a living body generally falls within a range of 60% to 100% in percent. Therefore, the wavelength (two wavelengths) of the light irradiating the subject is such that the oxygen saturation value (calculated value of the formula (1)) corresponding to the contrast agent in the spectral image is smaller than 60%, or smaller than 100%. Preferably, the wavelength is such that the wavelength becomes larger. This makes it easy to distinguish between an image corresponding to an artery and a vein and an image corresponding to a contrast agent in a spectral image. For example, when ICG is used as a contrast agent, two wavelengths of 700 nm or more and less than 820 nm and two wavelengths of 820 nm or more and 1020 nm or less are selected, and a spectral image is generated by Expression (1), thereby obtaining a region of the contrast agent. And a blood vessel region can be distinguished well.

図10に示すように、画像処理装置1300は、分光画像の画像値と表示色との関係を示すカラースケールとしてのカラーバー2400をGUIに表示させる。画像処理装置1300は、造影剤に関する情報(例えば、造影剤の種類がICGであることを示す情報)と、照射光の波長を示す情報とに基づいて、カラースケールに割り当てる画像値の数値範囲を決定してもよい。例えば、画像処理装置1300は、動脈の酸素飽和度、静脈の酸素飽和度、および造影剤に対応する負値の画像値を含む数値範囲を決定してもよい。画像処理装置1300は、−100%〜100%の数値範囲を決定し、青から赤に変化するカラーグラデーションに−100%〜100%を割り当てたカラーバー2400を設定してもよい。このような表示方法により、動静脈の識別に加え、負値の造影剤に対応する領域も識別することができる。また、画像処理装置1300は、造影剤に関する情報と、照射光の波長を示す情報とに基づいて、造影剤に対応する画像値の数値範囲を示すインジケータ2410を表示させてもよい。ここでは、カラーバー2400において、ICGに対応する画像値の数値範囲として負値の領域をインジケータ2410で示している。このように造影剤に対応する表示色を識別できるようにカラースケールを表示することにより、分光画像中の造影剤に対応する領域を容易に識別することができる。   As shown in FIG. 10, the image processing apparatus 1300 causes a GUI to display a color bar 2400 as a color scale indicating the relationship between the image value of the spectral image and the display color. The image processing apparatus 1300 determines a numerical range of image values to be assigned to the color scale based on information on the contrast agent (for example, information indicating that the type of the contrast agent is ICG) and information indicating the wavelength of irradiation light. You may decide. For example, the image processing apparatus 1300 may determine a numerical range including a negative image value corresponding to the arterial oxygen saturation, the venous oxygen saturation, and the contrast agent. The image processing apparatus 1300 may determine a numerical range of -100% to 100%, and set a color bar 2400 in which -100% to 100% is assigned to a color gradation that changes from blue to red. With such a display method, in addition to the identification of the artery and vein, it is also possible to identify the area corresponding to the negative contrast agent. In addition, the image processing apparatus 1300 may cause the indicator 2410 indicating the numerical value range of the image value corresponding to the contrast agent to be displayed based on the information regarding the contrast agent and the information indicating the wavelength of the irradiation light. Here, in the color bar 2400, a negative value area is indicated by an indicator 2410 as a numerical value range of an image value corresponding to ICG. By displaying the color scale so that the display color corresponding to the contrast agent can be identified in this way, the region corresponding to the contrast agent in the spectral image can be easily identified.

領域決定手段としての画像処理装置1300は、造影剤に関する情報と、照射光の波長を示す情報とに基づいて、分光画像中の造影剤に対応する領域を決定してもよい。例えば、画像処理装置1300は、分光画像のうち、負値の画像値を有する領域を造影剤に対応する領域として決定してもよい。そして、画像処理装置1300は、造影剤に対応する領域とそれ以外の領域とを識別できるように分光画像を表示装置1400に表示させてもよい。画像処理装置1300は、造影剤に対応する領域とそれ以外の領域との表示色を異ならせる、造影剤に対応する領域を点滅させる、造影剤に対応する領域を示すインジケータ(例えば、枠)を表示させるなどの識別表示を採用することができる。   The image processing device 1300 as the region determining means may determine a region corresponding to the contrast agent in the spectral image based on information on the contrast agent and information indicating the wavelength of the irradiation light. For example, the image processing apparatus 1300 may determine a region having a negative image value in the spectral image as a region corresponding to the contrast agent. Then, the image processing device 1300 may display the spectral image on the display device 1400 so that the region corresponding to the contrast agent and the other region can be identified. The image processing apparatus 1300 displays an indicator (for example, a frame) indicating a region corresponding to the contrast agent, causing the display color of the region corresponding to the contrast agent to be different from that of the other region, blinking the region corresponding to the contrast agent, and the like. An identification display such as display may be employed.

なお、図10に示すGUIに表示されたICGの表示に対応するアイテム2730を指示することにより、ICGに対応する画像値を選択的に表示させる表示モードに切り替え可能であってもよい。例えば、ユーザーがICGの表示に対応するアイテム2730を選択した場合に、画像処理装置1300が分光画像から画像値が負値のボクセルを選択し、選択されたボクセルを選択的にレンダリングすることにより、ICGの領域を選択的に表示してもよい。同様に、ユーザーが動脈の表示に対応するアイテム2710や静脈の表示に対応するアイテム2720を選択してもよい。ユーザーの指示に基づいて、画像処理装置1300が、動脈に対応する画像値(例えば、90%以上100%以下)や静脈に対応する画像値(例えば、60%以上90%未満)を選択的に表示させる表示モードに切り替えてもよい。動脈に対応する画像値や静脈に対応する画像値の数値範囲については、ユーザーの指示に基づいて変更可能であってもよい。   Note that by instructing the item 2730 corresponding to the display of the ICG displayed on the GUI shown in FIG. 10, it may be possible to switch to a display mode in which an image value corresponding to the ICG is selectively displayed. For example, when the user selects the item 2730 corresponding to the display of the ICG, the image processing apparatus 1300 selects a voxel having a negative image value from the spectral image and selectively renders the selected voxel, The ICG area may be selectively displayed. Similarly, the user may select an item 2710 corresponding to an artery display or an item 2720 corresponding to a vein display. Based on a user's instruction, the image processing apparatus 1300 selectively selects an image value corresponding to an artery (for example, 90% or more and 100% or less) or an image value corresponding to a vein (for example, 60% or more and less than 90%). The display mode may be switched to the display mode. The numerical value range of the image value corresponding to the artery or the image value corresponding to the vein may be changeable based on a user's instruction.

なお、分光画像の画像値に色相、明度、および彩度の少なくとも一つを割り当て、光音響画像の画像値に色相、明度、および彩度の残りのパラメータを割り当てた画像を分光画像として表示させてもよい。例えば、分光画像の画像値に色相および彩度を割り当て、光音響画像の画像値に明度を割り当てた画像を分光画像として表示させてもよい。このとき、造影剤に対応する光音響画像の画像値が、血管に対応する光音響画像の画像値よりも大きい場合や小さい場合、光音響画像の画像値に明度を割り当てると、血管と造影剤の両方を視認することが困難な場合がある。そこで、分光画像の画像値によって、光音響画像の画像値から明度への変換テーブルを変更してもよい。例えば、分光画像の画像値が造影剤に対応する画像値の数値範囲に含まれる場合、光音響画像の画像値に対応する明度を、血管に対応するそれよりも小さくしてもよい。すなわち、造影剤の領域と血管の領域を比べたときに、光音響画像の画像値が同じであれば、血管の領域よりも造影剤の領域の明度を小さくしてもよい。ここで変換テーブルとは、複数の画像値のそれぞれに対応する明度を示すテーブルである。また、分光画像の画像値が造影剤に対応する画像値の数値範囲に含まれる場合、光音響画像の画像値に対応する明度を、血管に対応するそれよりも大きくしてもよい。すなわち、造影剤の領域と血管の領域を比べたときに、光音響画像の画像値が同じであれば、血管の領域よりも造影剤の領域の明度を大きくしてもよい。また、分光画像の画像値によって、光音響画像の画像値を明度に変換しない光音響画像の画像値の数値範囲が異なっていてもよい。   Note that at least one of hue, lightness, and saturation is assigned to the image value of the spectral image, and an image in which the remaining parameters of hue, lightness, and saturation are assigned to the image value of the photoacoustic image is displayed as a spectral image. You may. For example, an image in which hue and saturation are assigned to image values of a spectral image and brightness is assigned to image values of a photoacoustic image may be displayed as a spectral image. At this time, when the image value of the photoacoustic image corresponding to the contrast agent is larger or smaller than the image value of the photoacoustic image corresponding to the blood vessel, if lightness is assigned to the image value of the photoacoustic image, the blood vessel and the contrast agent It may be difficult to see both of them. Therefore, the conversion table from the image value of the photoacoustic image to the brightness may be changed according to the image value of the spectral image. For example, when the image value of the spectral image is included in the numerical value range of the image value corresponding to the contrast agent, the brightness corresponding to the image value of the photoacoustic image may be smaller than that corresponding to the blood vessel. That is, when the contrast agent region and the blood vessel region are compared, if the image value of the photoacoustic image is the same, the brightness of the contrast agent region may be smaller than that of the blood vessel region. Here, the conversion table is a table indicating the brightness corresponding to each of the plurality of image values. When the image value of the spectral image is included in the numerical value range of the image value corresponding to the contrast agent, the brightness corresponding to the image value of the photoacoustic image may be larger than that corresponding to the blood vessel. That is, when the contrast agent region is compared with the blood vessel region, if the image value of the photoacoustic image is the same, the brightness of the contrast agent region may be greater than that of the blood vessel region. Further, the numerical value range of the image value of the photoacoustic image that does not convert the image value of the photoacoustic image into the brightness may differ depending on the image value of the spectral image.

変換テーブルは、造影剤の種類や濃度、また照射光の波長によって適したものに変更してもよい。そこで、画像処理装置1300は、造影剤に関する情報と、照射光の波長を示す情報とに基づいて、光音響画像の画像値から明度への変換テーブルを決定してもよい。画像処理装置1300は、造影剤に対応する光音響画像の画像値が血管に対応するそれよりも大きくなると推定される場合、造影剤に対応する光音響画像の画像値に対応する明度を血管に対応するそれよりも小さくしてもよい。反対に、画像処理装置1300は、造影剤に対応する光音響画像の画像値が血管に対応するそれよりも小さくなると推定される場合、造影剤に対応する光音響画像の画像値に対応する明度を血管に対応するそれよりも大きくしてもよい。   The conversion table may be changed to an appropriate one according to the type and concentration of the contrast agent and the wavelength of the irradiation light. Therefore, the image processing apparatus 1300 may determine the conversion table from the image value of the photoacoustic image to the brightness based on the information regarding the contrast agent and the information indicating the wavelength of the irradiation light. If it is estimated that the image value of the photoacoustic image corresponding to the contrast agent is larger than that corresponding to the blood vessel, the image processing apparatus 1300 sets the brightness corresponding to the image value of the photoacoustic image corresponding to the contrast agent to the blood vessel. It may be smaller than the corresponding one. Conversely, if the image value of the photoacoustic image corresponding to the contrast agent is estimated to be smaller than that corresponding to the blood vessel, the image processing apparatus 1300 may determine the brightness corresponding to the image value of the photoacoustic image corresponding to the contrast agent. May be larger than that corresponding to a blood vessel.

図10に示すGUIは、波長797nmに対応する吸収係数画像(第1光音響画像)2100、波長835nmに対応する吸収係数画像(第2光音響画像)2200、酸素飽和度画像(分光画像)2300を表示する。それぞれの画像がいずれの波長の光によって生成された画像であるかをGUIに表示してもよい。本実施形態では、光音響画像と分光画像の両方を表示しているが、分光画像だけを表示してもよい。また、画像処理装置1300は、ユーザーの指示に基づいて、光音響画像の表示と分光画像の表示とを切り替えてもよい。   The GUI shown in FIG. 10 includes an absorption coefficient image (first photoacoustic image) 2100 corresponding to a wavelength of 797 nm, an absorption coefficient image (second photoacoustic image) 2200 corresponding to a wavelength of 835 nm, and an oxygen saturation image (spectral image) 2300. Is displayed. The GUI may display which wavelength is generated by each image. In the present embodiment, both the photoacoustic image and the spectral image are displayed, but only the spectral image may be displayed. The image processing device 1300 may switch between displaying a photoacoustic image and displaying a spectral image based on a user's instruction.

なお、表示部160は動画像を表示可能であってもよい。例えば、画像処理装置1300が、第1光音響画像2100、第2光音響画像2200および分光画像2300の少なくともいずれかを時系列に生成し、生成された時系列の画像に基づいて動画像データを生成して表示部160に出力する構成としてもよい。なお、リンパの流れる回数が比較的少ないことに鑑みて、ユーザーの判断時間を短縮するために、静止画または時間圧縮された動画像として表示することも好ましい。また、動画像表示において、リンパが流れる様子を繰り返し表示することもできる。動画像の速度は、予め規定された所定の速度やユーザーに指定された所定の速度であってもよい。   The display unit 160 may be capable of displaying a moving image. For example, the image processing apparatus 1300 generates at least one of the first photoacoustic image 2100, the second photoacoustic image 2200, and the spectral image 2300 in time series, and generates moving image data based on the generated time-series image. It may be configured to generate and output to the display unit 160. In addition, in view of the relatively small number of lymph flows, it is also preferable to display a still image or a time-compressed moving image in order to reduce the user's judgment time. In addition, in the moving image display, it is possible to repeatedly display a state in which lymph flows. The speed of the moving image may be a predetermined speed specified in advance or a predetermined speed specified by the user.

また、動画像を表示可能な表示部160において、動画像のフレームレートを可変にすることも好ましい。フレームレートを可変にするために、図10のGUIに、ユーザーがフレームレートを手動で入力するためのウィンドウや、フレームレートを変更するためのスライドバーなどを追加してもよい。ここで、リンパ液はリンパ管内を間欠的に流れるため、取得された時系列のボリュームデータの中でも、リンパの流れの確認に利用できるのは一部だけである。そのため、リンパの流れの確認する際に実時間表示を行うと効率が低下する場合がある。そこで、表示部160に表示される動画像のフレームレートを可変にすることで、表示される動画像の早送り表示が可能になり、ユーザーがリンパ管内の流体の様子を短時間で確認できるようになる。   It is also preferable that the display unit 160 capable of displaying a moving image has a variable frame rate of the moving image. In order to make the frame rate variable, a window for the user to manually input the frame rate, a slide bar for changing the frame rate, and the like may be added to the GUI of FIG. Here, since the lymph fluid flows intermittently in the lymphatic vessels, only part of the acquired time-series volume data that can be used to confirm the lymph flow is used. Therefore, if real-time display is performed when checking the flow of lymph, efficiency may decrease. Therefore, by making the frame rate of the moving image displayed on the display unit 160 variable, the fast-moving display of the displayed moving image becomes possible, so that the user can confirm the state of the fluid in the lymphatic vessel in a short time. Become.

また、表示部160は、所定の時間範囲内の動画像を繰り返し表示可能であってもよい。その際、繰り返し表示を行う範囲をユーザーが指定可能とするためのウィンドウやスライドバーなどのGUIを、図10に追加することも好ましい。これにより、例えばリンパ管内を流体が流れる様子をユーザーが把握しやすくなる。   The display unit 160 may be capable of repeatedly displaying a moving image within a predetermined time range. At this time, it is also preferable to add a GUI such as a window or a slide bar for enabling the user to specify a range in which repeated display is performed, to FIG. This makes it easier for the user to grasp, for example, how the fluid flows in the lymphatic vessels.

リンパ管内を流体が流れる様子は、リンパ管の領域における流れ情報として表示部160に表示される。リンパ管の領域における流れ情報の表示方法は、上記には限られない。例えば、表示制御手段としての画像処理装置1300は、リンパ管の領域における流れ情報を、リンパ管の領域と関連付けて、輝度表示、カラー表示、グラフ表示、および数値表示の少なくともいずれかの方法で、表示装置1400の同一画面に表示させてもよい。また、表示制御手段としての画像処理装置1300は、少なくとも1つのリンパ管の領域を強調表示してもよい。   The state in which the fluid flows in the lymph vessels is displayed on the display unit 160 as flow information in the area of the lymph vessels. The display method of the flow information in the region of the lymphatic vessel is not limited to the above. For example, the image processing apparatus 1300 as a display control unit associates the flow information in the lymphatic vessel area with the lymphatic vessel area, and performs at least one of a luminance display, a color display, a graph display, and a numerical display, The information may be displayed on the same screen of the display device 1400. The image processing device 1300 as a display control unit may highlight at least one lymphatic vessel region.

(S1200:リンパ管の分類結果を表示する工程)
S1200において、状態推定手段としての画像処理装置1300は、画像データを解析して自動でリンパ管の領域を抽出し、リンパ管を分類する。表示制御手段としての画像処理装置1300は、リンパ管の分類結果を表示装置1400に表示させる。
(S1200: Step of displaying classification result of lymphatic vessel)
In step S1200, the image processing apparatus 1300 as the state estimating unit analyzes the image data, automatically extracts a region of a lymph vessel, and classifies the lymph vessel. The image processing device 1300 as a display control unit causes the display device 1400 to display the classification result of the lymphatic vessels.

状態推定手段としての画像処理装置1300は、S800で生成された分光画像の画像解析をすることにより、被検体内のリンパ管の領域を抽出する。分光画像において、例えば式(1)の計算値から被検体内のリンパ管と静脈とは区別することが可能であるため、画像処理装置1300は、被検体内のリンパ管の領域を抽出することができる。   The image processing apparatus 1300 as the state estimating unit extracts an area of a lymph vessel in the subject by performing image analysis of the spectral image generated in S800. In the spectral image, for example, the lymph vessels and the veins in the subject can be distinguished from the calculated value of Expression (1), so that the image processing apparatus 1300 extracts the region of the lymph vessels in the subject. Can be.

状態推定手段としての画像処理装置1300は、分光画像の解析により、抽出したリンパ管を分類する。画像処理装置1300は、例えば、リンパ管を複数の分割領域に分割し、各分割領域をShooting Star、収縮、滞留、停留、DBF(Dermal backflow)等の状態を判定して分類してもよい。Shooting Starは、リンパが流
星のように流れる健常な状態である。収縮は、リンパ管の特定部分の幅が変化し、リンパ(液)を送り出す状態である。滞留は、リンパの流れが見られない時間帯がある状態である。停滞は、リンパがほとんど流れない状態である。
The image processing device 1300 as the state estimating means classifies the extracted lymphatic vessels by analyzing the spectral image. The image processing apparatus 1300 may, for example, divide the lymphatic vessel into a plurality of divided regions, and determine and classify each divided region by determining a state such as Shooting Star, shrinkage, stay, stop, DBF (Dermal backflow), and the like. Shooting Star is a healthy state in which lymph flows like a meteor. Contraction is a condition in which the width of a specific portion of a lymphatic vessel changes and pumps out lymph (fluid). Retention is a condition in which there is a period of time when lymph flow is not seen. Stagnation is a condition in which little lymph flows.

DBFは、皮膚に向かってリンパ液が逆流している状態である。DBFには、さらに、間質漏れおよびリンパ管拡張の状態が含まれる。間質漏れは、リンパ液が逆流して間質に漏れている状態である。リンパ管拡張は、逆流するリンパ液が拡張した毛細リンパ管や前集合リンパ管内に残留している状態である。   DBF is a state in which lymph flows back toward the skin. DBF also includes conditions of interstitial leakage and lymphatic dilatation. Interstitial leakage is a condition in which lymph flows back and leaks into the interstitium. Lymphatic dilatation is a condition in which refluxing lymph remains in the dilated capillary lymphatics and pre-collecting lymphatics.

画像処理装置1300は、リンパ管の状態に限られず、単位面積あたりのリンパ管の存在数、単位面積あたりのリンパ管の存在比、または単位体積あたりのリンパ管の存在比に基づいて、リンパ管を分類してもよい。単位面積あたりのリンパ管の存在数、単位面積あたりのリンパ管の存在比、および単位体積あたりのリンパ管の存在比は、以下、リンパ管の存在数、面積比および体積比とも称する。また、画像処理装置1300は、リンパ管と静脈との距離、または被検体の皮膚からの深さに基づいて、リンパ管を分類してもよい。   The image processing apparatus 1300 is not limited to the state of the lymphatic vessels, and may be configured based on the number of lymphatic vessels per unit area, the ratio of lymphatic vessels per unit area, or the ratio of lymphatic vessels per unit volume. May be classified. The number of lymphatic vessels per unit area, the ratio of lymphatic vessels per unit area, and the ratio of lymphatic vessels per unit volume are hereinafter also referred to as the number of lymphatic vessels, area ratio, and volume ratio. In addition, the image processing apparatus 1300 may classify the lymphatic vessels based on the distance between the lymphatic vessels and the veins or the depth from the skin of the subject.

なお、リンパ管の領域は、上述のように自動で分類されてもよく、手動で分類されてもよい。手動で分類される場合、特定手段としての画像処理装置1300は、リンパ管の領域の一部を特定し、特定された領域を、ユーザーの指示に応じて分類することができる。   The region of the lymphatic vessel may be classified automatically as described above, or may be classified manually. When the classification is performed manually, the image processing apparatus 1300 as the specifying unit can specify a part of the lymphatic vessel region and classify the specified region according to a user instruction.

表示制御手段としての画像処理装置1300は、リンパ管の分類結果を表示装置1400に表示させる。画像処理装置1300は、例えば、リンパ管の領域を、各分割領域の状態に対応する色相により表示してもよい。また、画像処理装置1300は、被検体における単位面積ごとに、リンパ管の存在数、面積比、または体積比をユーザーが確認できるように表示してもよい。画像処理装置1300は、リンパ管と静脈との距離、リンパ管および静脈の皮膚からの深さを表示してもよい。   The image processing device 1300 as a display control unit causes the display device 1400 to display the classification result of the lymphatic vessels. The image processing apparatus 1300 may display, for example, the region of the lymphatic vessel with a hue corresponding to the state of each divided region. In addition, the image processing apparatus 1300 may display the number of lymph vessels, the area ratio, or the volume ratio for each unit area of the subject so that the user can confirm it. The image processing device 1300 may display the distance between the lymph vessels and the veins and the depth of the lymph vessels and the veins from the skin.

保存制御手段としての画像処理装置1300は、リンパ管の分類結果を、解析した画像データ、患者の情報と紐付けて、記憶装置1200に記憶させる。画像処理装置1300は、画像データまたは患者の情報を表示装置1400に表示させる場合、対応するリンパ管の分類結果を記憶装置1200から取得して、画像データとともに表示することができる。   The image processing apparatus 1300 serving as a storage control unit stores the classification result of the lymphatic vessels in the storage device 1200 in association with the analyzed image data and the patient information. When displaying the image data or the patient information on the display device 1400, the image processing device 1300 can acquire the corresponding lymphatic vessel classification result from the storage device 1200 and display it together with the image data.

以上説明したように、画像処理装置1300および情報処理装置としてのコンピュータ150の少なくとも1つは、分光画像取得手段、領域決定手段、光音響画像取得手段、状態推定手段、特定手段、表示制御手段および保存制御手段の少なくとも一つを有する装置として機能する。なお、それぞれの手段は、互いに異なるハードウェアで構成されていてもよいし、1つのハードウェアで構成されていてもよい。また、複数の手段が1つのハードウェアで構成されていてもよい。   As described above, at least one of the image processing apparatus 1300 and the computer 150 as the information processing apparatus includes a spectral image acquiring unit, an area determining unit, a photoacoustic image acquiring unit, a state estimating unit, a specifying unit, a display controlling unit, It functions as a device having at least one of the storage control means. In addition, each means may be comprised by mutually different hardware, and may be comprised by one hardware. Further, a plurality of units may be configured by one piece of hardware.

本実施形態では、造影剤に対応する画像値が負値となる波長を選択することにより、血管と造影剤とを識別できるようにしたが、造影剤に対応する画像値が血管と造影剤とを識別できる限り、造影剤に対応する画像値がいかなる値であってもよい。例えば、造影剤に対応する分光画像(酸素飽和度画像)の画像値が、60%より小さくなるまたは100%より大きくとなる場合などにも、本工程で説明した画像処理を適用することができる。   In the present embodiment, by selecting a wavelength at which the image value corresponding to the contrast agent has a negative value, the blood vessel and the contrast agent can be identified.However, the image value corresponding to the contrast agent is a blood vessel and the contrast agent. Can be any value as long as the image value corresponding to the contrast agent can be identified. For example, the image processing described in this step can be applied to a case where the image value of the spectral image (oxygen saturation image) corresponding to the contrast agent becomes smaller than 60% or larger than 100%. .

(実施例1)
実施例1では、画像処理装置1300は、被検体への光照射により、被検体内から発生した光音響波の受信信号データに基づいて生成した画像データを解析することにより、自動でリンパ管を分類し、リンパ管の状態を推定する。画像処理装置1300は、分類結果を表示装置1400に表示させる。以下、図6に示すフローチャートを用いて、実施例1に係る画像処理方法を説明する。
(Example 1)
In the first embodiment, the image processing apparatus 1300 analyzes the image data generated based on the received signal data of the photoacoustic wave generated from the inside of the subject by irradiating the subject with light, thereby automatically forming the lymphatic vessels. Classify and estimate lymphatic condition. The image processing device 1300 causes the display device 1400 to display the classification result. Hereinafter, the image processing method according to the first embodiment will be described with reference to the flowchart illustrated in FIG.

(S1211:リンパ管領域を抽出する工程)
状態推定手段としての画像処理装置1300は、画像データからリンパ管の領域を抽出する。リンパ管の領域を抽出するための画像データは、例えば、複数の波長に対応する複数の光音響画像を用いて生成された分光画像とすることができる。図11は、被検体の分光画像を例示する図である。図11に示す分光画像の取得方法は後述する。図11に例示する分光画像では、造影剤が導入されたリンパ管A1と静脈A2との両方が画像化されている。リンパ管A1および静脈A2は、それぞれの画像値に対応する色相、明度、および彩度の少なくとも一つを割り当てることにより、区別して視認可能である。したがって、画像処理装置1300は、画像解析により、リンパ管の領域を抽出することができる。なお、リンパ管の領域を抽出するための画像データは、単波長由来の光音響画像であってもよい。単波長由来の光音響画像においても、リンパ管の画像化は可能であり、画像処理装置1300は、画像解析により、リンパ管の領域を抽出することができる。単波長由来の光音響画像を用いたリンパ管の抽出方法の一例を説明する。複数回の光照射のそれぞれに対応する画像データ群を含む画像のうち、所定の期間内での光音響画像における画像値の変化の大きい領域は、上述した間欠的なリンパ液の流れを反映していると考え、当該領域をリンパ管の領域とすることが可能である。このほか、三次元画像としての光音響画像において、深さや構造の太さに応じたヘモグロビンおよび造影剤由来の画像値の参照値をあらかじめコンピュータ150に保持しておくことでも、リンパ管か血管かを識別することが可能である。
(S1211: Step of extracting lymphatic region)
The image processing device 1300 as a state estimating unit extracts a region of a lymph vessel from image data. The image data for extracting the region of the lymphatic vessel may be, for example, a spectral image generated using a plurality of photoacoustic images corresponding to a plurality of wavelengths. FIG. 11 is a diagram illustrating a spectral image of the subject. The method for acquiring the spectral image shown in FIG. 11 will be described later. In the spectral image illustrated in FIG. 11, both the lymphatic vessel A1 and the vein A2 into which the contrast agent has been introduced are imaged. The lymphatic vessels A1 and the veins A2 can be distinguished and visually recognized by assigning at least one of hue, lightness, and saturation corresponding to each image value. Therefore, the image processing apparatus 1300 can extract a region of a lymph vessel by image analysis. Note that the image data for extracting the lymphatic vessel region may be a photoacoustic image derived from a single wavelength. Even in a photoacoustic image derived from a single wavelength, imaging of lymph vessels is possible, and the image processing apparatus 1300 can extract a region of lymph vessels by image analysis. An example of a method for extracting lymphatic vessels using a photoacoustic image derived from a single wavelength will be described. Of the images including the image data group corresponding to each of the multiple times of light irradiation, the region where the change in the image value in the photoacoustic image within a predetermined period is large reflects the intermittent lymph fluid flow described above. Therefore, it is possible that the region is a region of a lymphatic vessel. In addition, in the photoacoustic image as a three-dimensional image, the reference value of the image value derived from hemoglobin and a contrast agent corresponding to the depth and the thickness of the structure may be stored in the computer 150 in advance, and the lymphatic vessel or the blood vessel may be used. Can be identified.

(S1212:リンパ管を分類する工程)
リンパ管は、リンパの流れの状態、静脈との距離といった各種の指標に基づいて分類される。これらの分類結果を確認することで、ユーザーは、リンパ管と静脈をつなぐ吻合手術において、吻合対象となるリンパ管を特定することができる。リンパ管を分類する方法を、以下に例示する。
(S1212: Step of Classifying Lymphatic Vessels)
Lymph vessels are classified based on various indicators such as the state of lymph flow and the distance from veins. By confirming these classification results, the user can specify a lymph vessel to be anastomosed in an anastomosis operation for connecting a lymph vessel and a vein. A method for classifying lymphatic vessels is exemplified below.

[リンパ管分類方法1]
図12を用いて、リンパ管の状態を指標として、リンパ管を分類する方法を説明する。ここでは、リンパ管の状態が、輝度値の時間変化に基づいて判定される例を示す。図12には、リンパ管A1および静脈A2が示される。画像処理装置1300は、リンパ管A1を所定の長さに分割し、分割領域A101、A102、A103を抽出する。分割領域A101、A102、A103は、例えば、Hesse行列、勾配ベクトルまたはHough変換によって近似され、それぞれ長軸方向および短軸方向が判定される。
[Lymphatic vessel classification method 1]
A method of classifying lymph vessels using the state of the lymph vessels as an index will be described with reference to FIG. Here, an example is shown in which the state of the lymphatic vessel is determined based on a temporal change in the luminance value. FIG. 12 shows a lymphatic vessel A1 and a vein A2. The image processing apparatus 1300 divides the lymphatic vessel A1 into a predetermined length, and extracts divided areas A101, A102, and A103. The divided areas A101, A102, and A103 are approximated by, for example, a Hessian matrix, a gradient vector, or a Hough transform, and the major axis direction and the minor axis direction are determined, respectively.

例えば、各分割領域のうち、輝度値のより高い部分が時間とともに長軸方向に移動する分割領域は、Shooting Starの状態であると判定することができる。また、輝度値のより高い部分が、短軸方向に狭くなったり広がったりする分割領域は、収縮の状態であると判定することができる。輝度値に変化のない時間帯がある分割領域は、滞留の状態であると判定することができる。輝度値が変化しない分割領域は、停留の状態であると判定することができる。   For example, in each divided region, a divided region in which a portion having a higher luminance value moves in the long-axis direction with time can be determined to be in the state of Shooting Star. In addition, it is possible to determine that a divided region in which a portion having a higher luminance value becomes narrower or wider in the short axis direction is in a contracted state. A divided region having a time zone in which the luminance value does not change can be determined to be in a stagnant state. The divided area where the luminance value does not change can be determined to be in a stationary state.

分割領域が、DBFの状態である場合に、間質漏れであるか、リンパ管拡張であるかは、例えば、画像の空間周波数により判定することができる。画像の空間周波数が閾値より低い場合は、間質漏れの状態であり、閾値より高い場合は、リンパ管拡張の状態であると判定することができる。   When the divided area is in the state of DBF, whether it is interstitial leakage or lymphatic vessel dilation can be determined by, for example, the spatial frequency of the image. If the spatial frequency of the image is lower than the threshold value, it can be determined that the state is interstitial leakage, and if it is higher than the threshold value, it is determined that the state is lymphatic dilatation.

このように、リンパ管は、状態を指標として分類することが可能である。ユーザーは、リンパ管の状態に基づいてリンパ管の健常度を判断し、吻合対象のリンパ管を選択したり、吻合位置を決定したりすることができる。   In this way, the lymphatic vessels can be classified using the condition as an index. The user can determine the degree of health of the lymph vessels based on the state of the lymph vessels, select the lymph vessels to be anastomosed, and determine the anastomosis position.

なお、本例では画像中の輝度値の時間変化を利用したが、輝度値以外にも上述した色相
、明度、彩度などの画像値に対応する情報に基づいてリンパ管の状態を判定してもよい。すなわち、本例は、各分割領域における画像値の時間変化に基づいて各分割領域の状態を判定しているとも言える。
In this example, the time change of the luminance value in the image is used, but the state of the lymphatic vessels is determined based on information corresponding to the image values such as the hue, lightness, and saturation other than the luminance value. Is also good. That is, in this example, it can be said that the state of each divided area is determined based on the time change of the image value in each divided area.

[リンパ管分類方法2]
図13を用いて、単位面積あたりのリンパ管の存在数、面積比、体積比を指標として、リンパ管を分類する方法を説明する。図13には、3本のリンパ管A1a、リンパ管A1b、リンパ管A1cが示される。図13に示される正方形の各ブロックは、単位面積に相当する領域を示す。画像処理装置1300は、画像データを解析することにより、被検体の単位面積(例えば、2cm)ごとに、リンパ管の存在数、単位面積に占める面積比を算出する。画像データが3次元の空間分布を表す画像である場合には、画像処理装置1300は、単位面積に対する(単位体積に占める)リンパ管の体積比を算出することができる。
[Lymphatic vessel classification method 2]
A method of classifying lymph vessels using the number of lymph vessels per unit area, the area ratio, and the volume ratio as indices will be described with reference to FIG. FIG. 13 shows three lymph vessels A1a, A1b, and A1c. Each square block shown in FIG. 13 indicates a region corresponding to a unit area. The image processing apparatus 1300 analyzes the image data to calculate the number of lymph vessels present and the area ratio of the lymph vessels to the unit area for each unit area (for example, 2 cm 2 ) of the subject. When the image data is an image representing a three-dimensional spatial distribution, the image processing apparatus 1300 can calculate the volume ratio of the lymphatic vessels (in the unit volume) to the unit area.

図13の例では、各ブロックは、リンパ管の存在数に応じて色分けされている。すなわち、リンパ管が2本存在するブロックB1、リンパ管が1本存在するブロックB2、リンパ管が存在しないブロックB3は、それぞれ異なる色で示される。画像処理装置1300は、単位面積あたりのリンパ管の存在数に限られず、単位面積に対するリンパ管の面積比、または単位体積に対するリンパ管の体積比に応じて、各ブロックを色分けして表示してもよい。   In the example of FIG. 13, each block is color-coded according to the number of lymph vessels present. That is, the block B1 having two lymph vessels, the block B2 having one lymph vessel, and the block B3 having no lymph vessel are shown in different colors. The image processing apparatus 1300 is not limited to the number of lymph vessels existing per unit area, and displays each block in different colors according to the area ratio of lymph vessels per unit area or the volume ratio of lymph vessels per unit volume. Is also good.

このように、リンパ管は、単位面積あたりの存在数、面積比、体積比を指標として、分類することができる。ユーザーは、リンパ管の存在数、面積比、体積比を考慮して、吻合対象のリンパ管を選択したり、吻合位置を決定したりすることができる。   As described above, lymph vessels can be classified using the number of existing per unit area, the area ratio, and the volume ratio as indices. The user can select an anastomosis target lymph vessel and determine an anastomosis position in consideration of the number of lymph vessels, the area ratio, and the volume ratio.

[リンパ管分類方法3]
図14を用いて、リンパ管と静脈との距離を指標として、リンパ管を分類する方法を説明する。画像処理装置1300は、画像データに表示されるリンパ管A1および静脈A2を抽出し、相互間の距離を算出する。画像処理装置1300は、図14に示すように、リンパ管A1と静脈A2との距離を表示することができる。なお、リンパ管A1と静脈A2との距離は、2次元の空間分布を表す画像における距離であってもよく、3次元の空間分布を表す画像における距離であってもよい。リンパ管A1と静脈A2との距離を表示する位置は、ユーザーによって指定されてもよい。また、リンパ管A1と静脈A2との距離は、リンパ管A1に沿って所定の間隔で表示されるようにしてもよい。この場合、画像処理装置1300は、リンパ管A1と静脈A2との距離が所定の閾値を超える位置では、距離を表示しないようにしてもよい。
[Lymphatic vessel classification method 3]
A method of classifying lymph vessels using the distance between the lymph vessels and veins as an index will be described with reference to FIG. The image processing apparatus 1300 extracts the lymph vessels A1 and veins A2 displayed in the image data and calculates the distance between them. The image processing apparatus 1300 can display the distance between the lymphatic vessel A1 and the vein A2, as shown in FIG. The distance between the lymphatic vessel A1 and the vein A2 may be a distance in an image representing a two-dimensional spatial distribution or a distance in an image representing a three-dimensional spatial distribution. The position at which the distance between the lymphatic vessel A1 and the vein A2 is displayed may be specified by the user. Further, the distance between the lymph vessel A1 and the vein A2 may be displayed at predetermined intervals along the lymph vessel A1. In this case, the image processing apparatus 1300 may not display the distance at a position where the distance between the lymphatic vessel A1 and the vein A2 exceeds a predetermined threshold.

さらに、画像処理装置1300は、リンパ管A1と静脈A2とが平面視において交差する位置(図14のA111およびA112)を強調表示してもよい。また、3次元画像データにおいて算出したリンパ管A1と静脈A2との間の距離が短い位置を強調表示してもよい。また、リンパ管A1および静脈A2は、皮膚からの深さに応じた輝度を割り当てて表示されるようにしてもよい。このように、リンパ管は、静脈との距離、皮膚からの深さを指標として分類することも可能である。ユーザーは、リンパ管と静脈との距離または皮膚からの深さに基づいて、吻合対象のリンパ管を選択し、吻合位置を決定することができる。ユーザーは、関心領域の位置に応じて、上述の各指標を選択することができる。画像処理装置1300は、選択された指標によって分類されたリンパ管の領域を、表示装置1400に表示させることができる。また、3次元画像データにおいて算出したリンパ管と静脈との間の距離が近い位置を強調表示してもよい。   Furthermore, the image processing apparatus 1300 may highlight the positions where the lymphatic vessels A1 and the veins A2 intersect in plan view (A111 and A112 in FIG. 14). Further, a position where the distance between the lymph vessel A1 and the vein A2 calculated in the three-dimensional image data is short may be highlighted. Further, the lymphatic vessels A1 and the veins A2 may be displayed by assigning luminance according to the depth from the skin. In this way, the lymphatic vessels can be classified using the distance from the vein and the depth from the skin as indices. The user can select the lymph vessel to be anastomosed and determine the anastomosis position based on the distance between the lymph vessel and the vein or the depth from the skin. The user can select each index described above according to the position of the region of interest. The image processing device 1300 can cause the display device 1400 to display the region of the lymphatic vessel classified by the selected index. Further, a position where the distance between the lymph vessel and the vein calculated in the three-dimensional image data is short may be highlighted.

(S1213:分類結果を表示する工程)
表示制御手段としての画像処理装置1300は、リンパ管の状態を指標として分類する場合(リンパ管分類方法1)、リンパ管の各分割領域を、状態に対応する色相で表示することができる。画像処理装置1300は、単位面積あたりのリンパ管の存在数、面積比、体積比を指標として分類する場合(リンパ管分類方法2)、単位面積を示す各ブロックを、リンパ管の存在数、面積比または体積比の値に応じた色相で表示してもよい。画像処理装置1300は、リンパ管と静脈との距離を指標として分類する場合(リンパ管分類方法3)、リンパ管と静脈との距離を表示してもよい。画像処理装置1300は、リンパ管と静脈との距離を示す他、皮膚からの深さに応じた輝度値、色相、明度、および彩度の少なくとも一つを割り当てて表示させてもよい。このとき皮膚からの深さに関する情報に対して割り当てられる指標は、ほかの情報と識別可能な指標とすることが視認性の観点では好ましい。例えば、リンパ管の状態を示す情報に色相を割り当てる場合に、皮膚からの深さに関する情報には、色相以外の指標を割り当てる。つまり、リンパ管の領域の画像値に、リンパ管の状態に応じた輝度値、色相、明度、および彩度の少なくとも一つを割り当てるとともに、リンパ管の状態に割り当てたものを除く輝度値、色相、明度、および彩度の少なくとも一つを、被検体の皮膚からの深さに関する情報に割り当てる。
(S1213: Step of Displaying Classification Result)
When the image processing apparatus 1300 as the display control unit classifies the lymphatic vessels as an index (lymphatic vessel classification method 1), the divided regions of the lymphatic vessels can be displayed in hues corresponding to the states. When the image processing apparatus 1300 classifies the number of lymph vessels per unit area, the area ratio, and the volume ratio as indices (lymphatic vessel classification method 2), the image processing apparatus 1300 divides each block indicating the unit area by the number of lymph vessels, the area The color may be displayed in a hue corresponding to the value of the ratio or the volume ratio. When the image processing apparatus 1300 classifies the distance between the lymph vessel and the vein as an index (lymphatic vessel classification method 3), the image processing apparatus 1300 may display the distance between the lymph vessel and the vein. The image processing device 1300 may display the distance by assigning at least one of a luminance value, a hue, a lightness, and a saturation according to the depth from the skin, in addition to indicating the distance between the lymph vessel and the vein. At this time, it is preferable that the index assigned to the information on the depth from the skin be an index that can be distinguished from other information from the viewpoint of visibility. For example, when assigning a hue to the information indicating the state of the lymphatic vessels, an index other than the hue is assigned to the information on the depth from the skin. That is, at least one of the luminance value, hue, brightness, and saturation according to the state of the lymphatic vessel is assigned to the image value of the lymphatic vessel area, and the luminance value and the hue excluding those assigned to the state of the lymphatic vessel are assigned. , Brightness, and saturation are assigned to information about the depth from the subject's skin.

また、画像処理装置1300は、リンパ管の状態、単位面積あたりの存在数等、静脈との距離、皮膚からの深さといった指標を評価し、吻合に適したリンパ管および静脈を強調表示するようにしてもよい。吻合に適したリンパ管は、好ましくは、リンパが流れて健常な状態(例えば、Shooting Starの状態)であって、静脈との距離がより短く、皮膚からの深さがより浅いリンパ管である。画像処理装置1300は、リンパ管の状態、単位面積あたりの存在数等、静脈との距離、皮膚からの深さといった指標が、所定の条件を満たすリンパ管を、吻合に適したリンパ管として特定することができる。画像処理装置1300は、さらに、リンパ管の上流および下流の領域での状態に基づいて、リンパ管が吻合に適しているか否かを評価してもよい。吻合に適したリンパ管が強調表示されることにより、ユーザーは、吻合により適したリンパ管を選択することができる。   In addition, the image processing apparatus 1300 evaluates indexes such as the state of the lymphatic vessels, the number of existing per unit area, the distance from the vein, and the depth from the skin, and highlights the lymphatic vessels and veins suitable for anastomosis. It may be. A lymphatic vessel suitable for anastomosis is preferably a lymphatic vessel in which lymph flows and is healthy (for example, in the state of Shoting Star), has a shorter distance from a vein, and has a smaller depth from the skin. . The image processing apparatus 1300 identifies lymphatic vessels satisfying predetermined conditions as lymphatic vessels suitable for anastomosis, based on indicators such as the state of lymphatic vessels, the number per unit area, distance from veins, and depth from skin. can do. The image processing device 1300 may further evaluate whether or not the lymphatic vessel is suitable for anastomosis based on the state in the upstream and downstream regions of the lymphatic vessel. By highlighting lymph vessels suitable for anastomosis, the user can select lymph vessels more suitable for anastomosis.

(S1214:データを保存する工程)
保存制御手段としての画像処理装置1300は、S1212でのリンパ管の分類結果を、解析した画像データおよび患者の情報と紐付けて、記憶装置1200に記憶させてもよい。この場合、画像処理装置1300は、記憶装置1200に記憶させたリンパ管の分類結果を、画像データとともに表示装置1400に表示することができる。画像処理装置1300は、ユーザーが選択した指標に応じた態様(例えば、図13、図14)によって、リンパ管の分類結果を表示することができる。ユーザーは、患者の情報と紐付けられたリンパ管の分類結果を、繰り返し確認することが可能となる。患者の情報としては、上述の患者ID以外にも、患者に対して行われた理化学療法に関する情報が含まれていてもよい。これにより、ユーザーは、理化学療法に伴うリンパ管の状態の変化を把握することが容易になる。また、ユーザーがいずれの態様を採用するのかを選択できるようなインタフェースを図10や図16に示すGUI上に追加してもよい。
(S1214: Step of saving data)
The image processing device 1300 as the storage control unit may store the classification result of the lymphatic vessels in S1212 in the storage device 1200 in association with the analyzed image data and patient information. In this case, the image processing device 1300 can display the classification result of the lymph vessels stored in the storage device 1200 on the display device 1400 together with the image data. The image processing apparatus 1300 can display the classification result of the lymphatic vessels in a mode (for example, FIGS. 13 and 14) according to the index selected by the user. The user can repeatedly check the classification result of the lymphatic vessels associated with the patient information. The patient information may include information on physiotherapy performed on the patient in addition to the above-described patient ID. This makes it easy for the user to grasp changes in the state of the lymphatic vessels due to physiotherapy. Further, an interface that allows the user to select which mode to employ may be added to the GUI shown in FIGS. 10 and 16.

(分光画像の取得方法)
図11に示す分光画像の取得方法(第一の取得方法)を以下に説明する。
分光画像によって、体内に導入された造影剤が存在する領域を描出することができるため、造影剤が導入されたリンパ管を描出することができる。しかし、一枚の画像のみでは、リンパ管の位置を正しく示せない場合がある。これは、リンパ液の流れが血液のように一定ではないという理由による。
(Method of acquiring spectral images)
The method for acquiring the spectral image shown in FIG. 11 (first acquisition method) will be described below.
Since the region in which the contrast agent introduced into the body is present can be depicted by the spectral image, the lymphatic vessels into which the contrast agent has been introduced can be depicted. However, there is a case where the position of the lymphatic vessel cannot be correctly indicated by only one image. This is because the lymph flow is not as constant as blood.

血液は、心臓の拍動によって絶えず循環しているが、リンパ管にはポンプの役割をする共通の臓器は存在せず、リンパ管を構成するリンパ管壁に内在する平滑筋が収縮することで、リンパ液の輸送が行われる。数十秒から数分に1度の頻度で生じるリンパ管壁の平滑
筋の収縮に加え、リンパ液は、人の動きとともに起こる筋肉の収縮、弛緩によって生じる圧力、呼吸によって生じる圧力変化、外部からのマッサージ刺激などに起因して移動する。よって、リンパ液の移動タイミングは一定ではなく、例えば、数十秒〜数分に一回といった不定期な感覚での間欠的な流れとなる。リンパ液が移動していないタイミングで分光画像を取得しても、十分な量の造影剤がリンパ管内に存在しないため、リンパ管を描出することができないか、リンパ管の一部のみしか描出することができないことが懸念される。つまり、動画像中の1フレームの画像だけでは、リンパ管のうち、造影剤が存在している部分のみが描出された状態になり得る。
Blood circulates constantly due to the pulsation of the heart, but there is no common organ that acts as a pump in the lymph vessels, and the smooth muscle inside the lymph vessel walls that make up the lymph vessels contracts. The transport of lymph fluid is performed. In addition to the contraction of the smooth muscle of the lymph vessel wall, which occurs once every few tens of seconds to several minutes, the lymph fluid also contains muscle contractions that occur with the movement of humans, pressure caused by relaxation, pressure changes caused by respiration, and external pressure. It moves due to massage stimulation. Therefore, the movement timing of the lymph fluid is not constant, but becomes an intermittent flow with an irregular sense, for example, once every several tens of seconds to several minutes. Even if a spectral image is acquired at a time when lymph fluid is not moving, the lymph vessels cannot be drawn because only a sufficient amount of contrast agent is not present in the lymph vessels, or only a part of the lymph vessels is drawn. I am concerned that I cannot do it. In other words, with only one frame image in the moving image, only a portion of the lymphatic vessel where the contrast agent exists may be depicted.

そこで、本実施形態に係るシステムでは、所定の期間において、時系列に沿った複数の分光画像(複数の第一の画像データ)を取得し、取得した複数の分光画像に基づいて、リンパ管が存在する領域(すなわち、造影剤が通過する領域)を抽出する。本実施形態では、光音響装置1100が、ステップS500〜S800の処理において、時系列に沿った複数の分光画像を取得し、記憶装置1200に記憶させる。なお、所定の期間は、リンパ液の移動が発生する周期より長いこと(例えば、40秒〜2分程度よりも長いこと)が好ましい。   Therefore, in the system according to the present embodiment, a plurality of spectral images (a plurality of first image data) are acquired in a time series in a predetermined period, and the lymphatic vessels are determined based on the acquired plurality of spectral images. The existing area (that is, the area through which the contrast agent passes) is extracted. In the present embodiment, the photoacoustic apparatus 1100 acquires a plurality of time-series spectral images in the processes of steps S500 to S800 and stores the spectral images in the storage device 1200. In addition, it is preferable that the predetermined period is longer than the cycle in which the movement of lymph occurs (for example, longer than about 40 seconds to 2 minutes).

ステップS800は、複数の分光画像に基づいて動画像を生成するステップである。
複数の分光画像を動画像として表示することで、装置のユーザーが、リンパ液が移動する様態を観察できるようになる。しかし、リンパ液はリンパ管内を間欠的に流れるため、時系列で取得された複数の分光画像の中でも、リンパ液の流れの確認に利用できるのは一部の分光画像だけとなる。すなわち、動画像のみによって分光画像を表示した場合、ユーザーは、リンパ液の移動が発生するまで画面を見続けなければならない。さらに、リンパ液(造影剤)の一回あたりの移動は短時間であるため、画面上において、リンパ管の位置をユーザーに正確に把握させることが難しい。
Step S800 is a step of generating a moving image based on a plurality of spectral images.
By displaying a plurality of spectral images as moving images, a user of the apparatus can observe a state in which lymph fluid moves. However, since the lymph fluid flows intermittently in the lymphatic vessels, only a part of the spectral images that can be used for confirming the flow of the lymph fluid among the plurality of spectral images acquired in a time series is used. That is, when the spectral image is displayed only with the moving image, the user must keep watching the screen until the movement of the lymph occurs. Furthermore, since the movement of the lymph (contrast agent) at one time is short, it is difficult for the user to accurately grasp the position of the lymph vessel on the screen.

そこで、本実施形態では、ステップS800を実行した後、画像処理装置1300が、複数の分光画像に基づいて、リンパ管の位置を示す静止画像(第二の画像データ)を生成する。このように特定されたリンパ管の位置を示しているのが図11の分光画像である。   Therefore, in the present embodiment, after executing step S800, the image processing apparatus 1300 generates a still image (second image data) indicating the position of the lymphatic vessel based on the plurality of spectral images. The spectral image of FIG. 11 shows the position of the lymphatic vessel specified in this way.

次に、ステップS800の処理が完了した後、画像処理装置1300は、記憶装置1200に記憶された複数の分光画像(複数フレームの分光画像)を取得し、リンパ管が存在する領域を表す画像を生成する。   Next, after the process of step S800 is completed, the image processing device 1300 acquires a plurality of spectral images (spectral images of a plurality of frames) stored in the storage device 1200, and displays an image representing a region where the lymphatic vessels are present. Generate.

本ステップでは、まず、時系列で得られた複数の分光画像のそれぞれについて、画像値が所定の範囲にある領域を抽出する。前述した例では、式(1)の計算値である画像値が負値である画素の集合を抽出する。これにより、図18(A)に示したように、動画像のフレームごと、すなわち、動画像を構成する分光画像ごと、に領域(黒線で図示)が抽出される。抽出された領域は、各フレームにおいて造影剤が存在する領域である。なお、図18では、二次元画像を例示しているが、分光画像が三次元分光画像である場合、三次元空間内から領域を抽出してもよい。   In this step, first, for each of a plurality of spectral images obtained in a time series, a region where the image value is within a predetermined range is extracted. In the example described above, a set of pixels in which the image value that is the calculated value of Expression (1) is a negative value is extracted. As a result, as shown in FIG. 18A, an area (shown by a black line) is extracted for each frame of the moving image, that is, for each spectral image forming the moving image. The extracted area is an area where a contrast agent exists in each frame. Note that FIG. 18 illustrates a two-dimensional image, but when the spectral image is a three-dimensional spectral image, an area may be extracted from the three-dimensional space.

そして、フレームごとに得られた領域を重ね合わせ(合成し)、リンパ管に対応する領域を生成する。図18(A)に示した領域を重ね合わせると、図18(B)に示したような、リンパ管に対応する領域(符号1101)が得られる。   Then, the regions obtained for each frame are superimposed (combined) to generate a region corresponding to the lymphatic vessel. When the regions shown in FIG. 18A are overlapped, a region (reference numeral 1101) corresponding to the lymphatic vessel is obtained as shown in FIG. 18B.

画像処理装置1300は、このようにして生成された領域に基づいて、リンパ管の位置を表す画像(第二の画像データ)を生成し、出力する。なお、リンパ管の位置を表す画像を生成する際は、元の画像値(すなわち、分光画像の画像値)に応じた色相を与えてもよいし、固有のマーキングを施すことで強調表示してもよい。また、吸収係数に対応する輝
度を与えてもよい。吸収係数は、分光画像を生成する際に使用した光音響画像から取得することができる。
The image processing device 1300 generates and outputs an image (second image data) representing the position of the lymphatic vessel based on the region generated in this manner. When an image representing the position of the lymphatic vessel is generated, a hue corresponding to the original image value (that is, the image value of the spectral image) may be given, or the image may be highlighted by applying a unique marking. Is also good. Further, a luminance corresponding to the absorption coefficient may be given. The absorption coefficient can be obtained from the photoacoustic image used when generating the spectral image.

生成した画像は、図10に示したGUIと同一の画面に出力してもよいし、別の画面に出力してもよい。第二の画像は、三次元画像であってもよいし、二次元画像であってもよい。また、上述のように生成された第二の画像データを画像サーバ1210や記憶装置1200等に保存するためのインタフェースを図10に示したGUIに追加してもよい。第二の画像データは、動画像である第一の画像データに比してデータ量が少ないため、処理能力の高くない端末を用いる場合であっても、リンパ管の位置を容易に把握することができる。   The generated image may be output on the same screen as the GUI shown in FIG. 10 or may be output on another screen. The second image may be a three-dimensional image or a two-dimensional image. Further, an interface for storing the second image data generated as described above in the image server 1210, the storage device 1200, or the like may be added to the GUI illustrated in FIG. Since the second image data has a smaller data amount than the first image data which is a moving image, even when using a terminal having a low processing capacity, it is easy to grasp the position of the lymphatic vessel. Can be.

分光画像の第一の取得方法によると、医師等のユーザーに対して、リンパ管の位置を表す静止画像を提供することが可能になる。リンパ液(造影剤)は周期的に移動するため、複数の分光画像を単純に加算(ないし平均化)した場合、リンパ管の位置を正確に提示することができない。一方、本実施形態では、画像値が所定の範囲にある領域を、分光画像の各フレームから抽出して合成するため、時間方向の情報が圧縮される。これにより、正確にリンパ管の位置を描出することができる。   According to the first spectral image acquisition method, it is possible to provide a user such as a doctor with a still image representing the position of a lymph vessel. Since the lymph (contrast agent) moves periodically, simply adding (or averaging) a plurality of spectral images cannot accurately indicate the position of the lymphatic vessel. On the other hand, in the present embodiment, information in the time direction is compressed in order to extract and combine an area having an image value within a predetermined range from each frame of the spectral image. Thereby, the position of the lymphatic vessel can be accurately depicted.

なお、例示した実施形態では、分光画像の画像値が所定の範囲にある領域を抽出したが、他の条件を併用して領域の抽出を行ってもよい。例えば、分光画像に対応する光音響画像(吸収係数を表す画像)を参照し、その輝度値が所定の閾値を下回る領域を除外してもよい。これは、分光画像の画像値が所定の範囲内にあっても、吸収係数が小さい領域はノイズである可能性が高いためである。また、フィルタリングを行うための輝度値の閾値は、ユーザーによって変更可能としてもよい。   In the illustrated embodiment, the region where the image value of the spectral image is within a predetermined range is extracted, but the region may be extracted using other conditions. For example, a photoacoustic image (an image representing an absorption coefficient) corresponding to a spectral image may be referred to, and an area whose luminance value is below a predetermined threshold may be excluded. This is because even if the image value of the spectral image is within a predetermined range, the region where the absorption coefficient is small is highly likely to be noise. Further, the threshold value of the luminance value for performing the filtering may be changeable by the user.

また、本実施形態では、血管領域に対応する画素の画像値が正になり、造影剤領域に対応する画素の画像値が負になるような照射光の波長(2波長)を選択したが、分光画像における双方の画像値の符号が逆になるような任意の2波長を選択してもよい。   In the present embodiment, the wavelength (two wavelengths) of the irradiation light is selected such that the image value of the pixel corresponding to the blood vessel region becomes positive and the image value of the pixel corresponding to the contrast agent region becomes negative. Any two wavelengths may be selected such that the signs of both image values in the spectral image are reversed.

(分光画像を取得する別の方法)
図11に示す分光画像を取得する別の方法(第二の取得方法)を以下に説明する。
上に説明した方法では、ステップS800の後の工程において、時系列で取得した分光画像の各フレームに対してそれぞれ領域の抽出処理を行い、抽出した複数の領域を合成した。これに対し、時系列で取得した分光画像の複数のフレームを参照し、所定の期間内において条件を満たした領域を直接抽出することも考えられる。
(Another way to acquire spectral images)
Another method (second acquisition method) for acquiring the spectral image shown in FIG. 11 will be described below.
In the method described above, in a process after step S800, an area extraction process is performed on each frame of the spectral image acquired in time series, and a plurality of extracted areas are combined. On the other hand, it is conceivable to directly extract a region that satisfies the condition within a predetermined period by referring to a plurality of frames of the spectral image acquired in time series.

本例では、ステップS800の後の工程において、所定の期間内に含まれる複数の分光画像を選択し、当該所定の期間内において画像値が所定の範囲に入った領域(前述した例では、画像値が負値となった領域)を抽出する。所定の期間内において、画像値が所定の範囲に入った領域は、すなわち、造影剤が通過した領域であると言える。なお、所定の期間は、リンパ液の移動が発生する周期より長いこと(例えば、40秒〜2分程度よりも長いこと)が好ましい。   In the present example, in a process after step S800, a plurality of spectral images included in a predetermined period are selected, and an area where the image value falls within a predetermined range within the predetermined period (in the above-described example, the image (A region where the value is a negative value) is extracted. An area where the image value falls within the predetermined range within the predetermined period can be said to be an area where the contrast agent has passed. In addition, it is preferable that the predetermined period is longer than the cycle in which the movement of lymph occurs (for example, longer than about 40 seconds to 2 minutes).

図19は、分光画像中のある画素P(x,y)における画像値の、所定の期間内における時間変化を例示した図である。図示した画素は、画像値が所定の範囲に入っているため、抽出の対象となる。
このように、造影剤領域は、所定の期間内において変化する画像値に基づいて抽出してもよい。なお、当該判定を行う際は、所定の期間内において光音響画像の画像値のピークホールドなどを行ってもよい。
FIG. 19 is a diagram exemplifying a temporal change of an image value at a certain pixel P (x, y) in a spectral image within a predetermined period. The illustrated pixels are to be extracted because the image values are within a predetermined range.
As described above, the contrast agent region may be extracted based on the image value that changes within a predetermined period. Note that when making the determination, a peak hold or the like of the image value of the photoacoustic image may be performed within a predetermined period.

なお、ノイズ対策のため、第二の取得方法においても、第一の取得方法と同様に、吸収係数が所定の値を下回る領域を除外してもよい。すなわち、分光画像の画像値が所定の範囲内にあり、かつ、対応する光音響画像の輝度が閾値を上回っている領域を抽出対象としてもよい。
また、ノイズ対策のため、前述した条件を満たした状態で、一定の時間が経過した領域を抽出対象としてもよい。また、前述した一定の時間は、ユーザーが調整可能としてもよい。
Note that, as a countermeasure against noise, in the second acquisition method, similarly to the first acquisition method, a region where the absorption coefficient is smaller than a predetermined value may be excluded. That is, a region where the image value of the spectral image is within a predetermined range and the brightness of the corresponding photoacoustic image is above the threshold may be set as the extraction target.
Further, in order to reduce noise, an area in which a predetermined time has elapsed while the above-described condition is satisfied may be set as an extraction target. Further, the above-mentioned fixed time may be adjustable by the user.

(実施例2)
実施例1では、画像処理装置1300は、リンパ管の領域を含む画像データに対する画像解析により、自動でリンパ管を分類し、リンパ管の状態を推定する。これに対し、実施例2では、ユーザーが、リンパ管の領域を含む画像データにおいて、リンパ管の領域の一部を特定し、特定した領域(以下、着目領域と称する)の状態を判定する。画像処理装置1300は、ユーザーが、着目領域に対する判定結果等の情報を入力するための入力インタフェースを、表示装置1400に表示する。ユーザーは、入力インタフェースを介して、着目領域の状態および着目領域に関する所見といった着目領域に関するデータを入力することができる。ユーザーが入力した情報は、画像データと関連付けて記憶装置1200に保存される。また、ユーザーが入力した情報は、対応する着目領域と関連付けて記憶装置1200に保存されてもよい。以下、図15に示すフローチャートを用いて、実施例2に係る画像処理方法を説明する。
(Example 2)
In the first embodiment, the image processing apparatus 1300 automatically classifies the lymph vessels and estimates the state of the lymph vessels by performing image analysis on image data including the area of the lymph vessels. In contrast, in the second embodiment, the user specifies a part of the lymphatic vessel region in the image data including the lymphatic vessel region, and determines the state of the specified region (hereinafter, referred to as a region of interest). The image processing apparatus 1300 displays, on the display device 1400, an input interface for the user to input information such as a determination result for the region of interest. The user can input data relating to the region of interest, such as the state of the region of interest and findings regarding the region of interest, via the input interface. The information input by the user is stored in the storage device 1200 in association with the image data. The information input by the user may be stored in the storage device 1200 in association with the corresponding region of interest. Hereinafter, an image processing method according to the second embodiment will be described with reference to a flowchart illustrated in FIG.

(S1221:リンパ管領域を特定する工程)
特定手段としての画像処理装置1300は、まず、実施例1におけるS1211の工程と同様に、画像データからリンパ管の領域を抽出する。画像処理装置1300は、抽出されたリンパ管の領域の一部を、着目領域として特定する。画像処理装置1300は、例えば、ユーザーが指定した位置を含む所定の長さの領域を、着目領域とすることができる。なお、画像処理装置1300は、図15に示す処理を繰り返すことにより、リンパ管の領域を複数の着目領域に分割し、各着目領域に対する情報の入力を受け付けることができる。
(Step S1221: Step of Specifying Lymphatic Vessel Region)
First, the image processing apparatus 1300 as a specifying unit extracts a region of a lymphatic vessel from image data, similarly to the process of S1211 in the first embodiment. The image processing apparatus 1300 specifies a part of the extracted lymphatic vessel region as a region of interest. The image processing apparatus 1300 can set, for example, a region of a predetermined length including a position designated by the user as the region of interest. Note that the image processing apparatus 1300 can divide the lymphatic vessel region into a plurality of regions of interest by repeating the processing shown in FIG. 15, and can receive input of information for each region of interest.

画像処理装置1300は、ユーザーの指示に基づいて、着目領域を特定してもよい。ユーザーは、例えば、表示装置1400に表示された画像データにおいて、リンパ管の領域のうち特定したい領域を、マウス等のポインティングデバイスによって指し示すことで、着目領域の位置を指示することができる。例えば、画像処理装置1300は、ユーザーが指定した位置を含む所定の長さの領域を、着目領域として特定してもよい。また、画像処理装置1300は、ユーザーに始点と終点の位置を指定させて着目領域を特定してもよい。   The image processing device 1300 may specify the region of interest based on a user's instruction. For example, in the image data displayed on the display device 1400, the user can indicate the position of the region of interest by pointing the region to be specified among the regions of the lymphatic vessels with a pointing device such as a mouse. For example, the image processing apparatus 1300 may specify a region of a predetermined length including a position designated by the user as the region of interest. Further, the image processing apparatus 1300 may allow the user to specify the positions of the start point and the end point to specify the region of interest.

図16を用いて、ユーザーが着目領域の位置を指示するためのGUIについて説明する。アイテム3100には、解析対象となる画像データが表示される。図16の例では、アイテム3100には、リンパ管A1および静脈A2が表示されている。なお、アイテム3100に表示される画像データは、動画像であってもよい。   A GUI for allowing the user to specify the position of the region of interest will be described with reference to FIG. The item 3100 displays image data to be analyzed. In the example of FIG. 16, the item 3100 displays a lymphatic vessel A1 and a vein A2. Note that the image data displayed on the item 3100 may be a moving image.

ユーザーは、着目領域として特定したい位置を、マウスで指し示す。図16の例では、ユーザーが指した位置は、矢印3110によって示される。画像処理装置1300は、ユーザーが指した位置を中心とする正方形の領域、すなわち点線で囲まれた領域3120を、アイテム3200に拡大表示する。領域3120内に含まれるリンパ管の領域が、特定された着目領域である。着目領域の大きさ(特定されるリンパ管の長さ)は、ユーザーによって指定されてもよく、画像処理装置1300によって予め定められた大きさに決定されてもよい。ユーザーが指定した着目領域に、複数本のリンパ管が含まれる場合には、い
ずれかのリンパ管のみが含まれるように、画像処理装置1300が、着目領域を変更するようにしてもよい。なお、アイテム3200には、領域3120に対応する動画像を表示させてもよい。さらに、アイテム3100に示された画像が動画像である場合には、領域3120の動画像と同期した画像とすることで、ユーザーは同時刻における画像を観察することができる。アイテム3300およびアイテム3400については、S1222の工程で説明する。
The user points the position to be specified as the region of interest with the mouse. In the example of FIG. 16, the position pointed by the user is indicated by an arrow 3110. The image processing apparatus 1300 enlarges and displays a square area centered on the position pointed by the user, that is, an area 3120 surrounded by a dotted line on the item 3200. The region of the lymphatic vessel included in the region 3120 is the specified region of interest. The size of the region of interest (the length of the identified lymphatic vessel) may be specified by the user, or may be determined by the image processing apparatus 1300 to a predetermined size. When the region of interest specified by the user includes a plurality of lymph vessels, the image processing apparatus 1300 may change the region of interest so that only one of the lymph vessels is included. Note that a moving image corresponding to the area 3120 may be displayed on the item 3200. Furthermore, when the image shown in the item 3100 is a moving image, the image can be synchronized with the moving image in the area 3120, so that the user can observe the image at the same time. Item 3300 and item 3400 will be described in the process of S1222.

(S1222:リンパ管の分類の入力を受け付ける工程)
表示制御手段としての画像処理装置1300は、S1221で特定された着目領域に対する入力を受付ける入力インタフェースを、表示装置1400に表示する。図16に例示するアイテム3300およびアイテム3400は、着目領域に対する入力を受付ける入力インタフェースに相当する。
(S1222: Step of Receiving Input of Lymphatic Vessel Classification)
The image processing apparatus 1300 as a display control unit displays on the display device 1400 an input interface that receives an input for the region of interest specified in S1221. An item 3300 and an item 3400 illustrated in FIG. 16 correspond to an input interface that receives an input for a region of interest.

アイテム3300は、アイテム3200に表示された着目領域の状態を入力するための入力インタフェースである。アイテム3300は、「走行リンパ管」および「DBF」のタブを含む。図16は、「走行リンパ管」タブが選択された状態を示す。ユーザーは、アイテム3300において、着目領域の状態として、Shooting Star、収縮、滞留、停留のいずれかを選択することができる。また、「DBF」タブが選択された場合、例えば、間質漏れおよびリンパ管拡張の状態が選択肢として表示される。   The item 3300 is an input interface for inputting the state of the region of interest displayed on the item 3200. Item 3300 includes “running lymph vessels” and “DBF” tabs. FIG. 16 shows a state where the “traveling lymphatic vessel” tab is selected. The user can select any one of Shooting Star, contraction, stay, and stop as the state of the attention area in the item 3300. When the “DBF” tab is selected, for example, the state of interstitial leakage and lymphatic dilatation are displayed as options.

アイテム3400は、アイテム3200に表示された着目領域に対する所見を入力するための入力インタフェースである。入力インタフェースは、着目領域の状態および着目領域に対する所見に限られず、リンパ管細静脈吻合術における吻合位置としての適合度などの各種情報の入力を受け付けるものであってもよい。   The item 3400 is an input interface for inputting a finding for the region of interest displayed on the item 3200. The input interface is not limited to the state of the region of interest and the findings for the region of interest, and may be an interface that accepts input of various information such as the degree of suitability as an anastomotic position in lymphatic venule anastomosis.

また、着目領域内に複数のリンパ管が含まれる場合には、ユーザーが入力するリンパ管の状態および所見の対象となるリンパ管を、アイテム3100あるいはアイテム3200内で特定することができるようなインタフェースとしてもよい。特定されたリンパ管の情報を、リンパ管の状態および所見情報とともに保存することで、後に観察する際にも、その評価がどのリンパ管を対象にしたものであるのかを容易に把握できるようになる。 When a plurality of lymph vessels are included in the region of interest, an interface that allows the user to specify the state of the lymph vessels and the lymph vessels to be found in the item 3100 or the item 3200 is input. It may be. By storing the information of the identified lymphatic vessels along with the state of the lymphatic vessels and findings, it is possible to easily understand which lymphatic vessels were evaluated for later observation. Become.

(S1223:分類結果を表示する工程)
表示制御手段としての画像処理装置1300は、リンパ管A1の分類結果として、アイテム3300で選択された状態に基づき、リンパ管A1を着目領域ごとに色分けをして、アイテム3100に表示することができる。
(S1223: Step of Displaying Classification Result)
The image processing apparatus 1300 as a display control unit can display the lymph vessels A1 in the item 3100 by color-coding the regions of interest based on the state selected in the item 3300 as the classification result of the lymph vessels A1. .

図17を用いて、実施例2に係るリンパ管の分類結果の表示例を説明する。図17は、図16に示すGUIのアイテム3100に分類結果が表示された例を示す。アイテム3100には、リンパ管A1および静脈A2が表示される。図17の例は、リンパ管A1において、着目領域A121、着目領域A122および着目領域A123が特定された状態を示す。領域A124は、着目領域として特定されていない未分類のリンパ管の領域である。凡例で示されるように、着目領域A121はShooting Star、着目領域A122は滞留、着目領域A123は収縮の状態である。なお、未分類の領域A124は、例えば、点滅表示されてもよい。画像処理装置1300は、未分類の領域を点滅表示させることで、ユーザーにリンパ管の分類の指示をするように促すことができる。なお、着目領域として特定された領域と着目領域として特定されていない領域とを異なる態様で表示する手法は、点滅表示に限られない。例えば、未分類の領域を分類済みの領域に付与される色とは異なる色で表示させたり、当該領域を示す枠を表示させたりすることでも同様の効果が得られる。   A display example of the classification result of lymph vessels according to the second embodiment will be described with reference to FIG. FIG. 17 shows an example in which the classification result is displayed on the item 3100 of the GUI shown in FIG. The item 3100 displays a lymphatic vessel A1 and a vein A2. The example of FIG. 17 shows a state in which the region of interest A121, the region of interest A122, and the region of interest A123 are specified in the lymphatic vessel A1. The region A124 is a region of an unclassified lymphatic vessel that is not specified as a region of interest. As shown in the legend, the region of interest A121 is a Shooting Star, the region of interest A122 is in a stagnant state, and the region of interest A123 is in a contracted state. The unclassified area A124 may be displayed by blinking, for example. The image processing apparatus 1300 can prompt the user to instruct the classification of the lymph vessels by blinking the unclassified area. Note that the method of displaying the region specified as the region of interest and the region not specified as the region of interest in different modes is not limited to blinking display. For example, the same effect can be obtained by displaying an unclassified region in a color different from the color assigned to the classified region, or by displaying a frame indicating the region.

(S1224:データを保存する工程)
画像処理装置1300は、S1212でのリンパ管の分類結果を、解析した画像データおよび患者の情報と紐付けて、記憶装置1200に記憶させてもよい。画像処理装置1300は、記憶装置1200に記憶させたリンパ管の分類結果を、画像データとともに表示装置1400に表示させることができる。画像データが動画像である場合、ユーザーは、動画像を再生しながら、自身の分類結果を確認することができる。
(S1224: Step of saving data)
The image processing apparatus 1300 may associate the classification result of the lymphatic vessels in S1212 with the analyzed image data and the information on the patient and store the result in the storage device 1200. The image processing apparatus 1300 can display the classification result of the lymphatic vessels stored in the storage device 1200 on the display device 1400 together with the image data. When the image data is a moving image, the user can check his or her classification result while reproducing the moving image.

図15に示すフローは、1つの着目領域に対して、状態または所見といった情報を入力する処理を例示する。未分類の領域に対して、図15に示すフローを繰り返すことで、リンパ管の領域は、複数の着目領域に分割され、それぞれの状態に応じて分類される。なお、分類結果を表示する工程(S1223)およびデータを保存する工程(S1224)は、図15に示すフローでは着目領域ごとに実行されるが、複数の着目領域に対する入力が完了した後に実行されてもよい。   The flow illustrated in FIG. 15 exemplifies a process of inputting information such as a state or a finding to one region of interest. By repeating the flow shown in FIG. 15 for an unclassified region, the region of the lymphatic vessel is divided into a plurality of regions of interest and classified according to each state. The step of displaying the classification result (S1223) and the step of saving the data (S1224) are executed for each attention area in the flow shown in FIG. 15, but are executed after the input to a plurality of attention areas is completed. Is also good.

(その他の実施例)
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
(Other Examples)
The present invention is also realized by executing the following processing. That is, software (program) that realizes the functions of the above-described embodiments is supplied to a system or apparatus via a network or various storage media, and a computer (or CPU, MPU, or the like) of the system or apparatus reads the program and reads the program. This is the process to be performed.

1100 光音響装置
1300 画像処理装置
1100 Photoacoustic device 1300 Image processing device

Claims (29)

被検体への光照射により前記被検体内から発生した光音響波に基づいて生成された画像データを処理する画像処理装置であって、
前記画像データと、前記画像データのうちの前記被検体内のリンパ管の領域の一部である着目領域に対する入力を受け付ける入力インタフェースとを表示装置に表示させる表示制御手段と、
前記画像データと、前記入力インタフェースを介して入力された情報とを関連付けて記憶装置に保存する保存制御手段と、
を有する
ことを特徴とする画像処理装置。
An image processing apparatus that processes image data generated based on a photoacoustic wave generated from within the subject by irradiating the subject with light,
Display control means for displaying a display device with the image data and an input interface that receives an input for a region of interest that is a part of the region of the lymph vessel in the subject in the image data,
Storage control means for storing the image data in the storage device in association with information input via the input interface,
An image processing apparatus comprising:
前記被検体内の前記リンパ管の領域を含む前記画像データに対する画像解析により、前記リンパ管の領域の一部を前記着目領域として特定する特定手段をさらに有する
ことを特徴とする請求項1に記載の画像処理装置。
2. The apparatus according to claim 1, further comprising a specifying unit configured to specify a part of the lymphatic vessel region as the region of interest by performing image analysis on the image data including the lymphatic vessel region in the subject. 3. Image processing device.
前記特定手段は、ユーザーの指示に基づいて、前記着目領域を特定する
ことを特徴とする請求項2に記載の画像処理装置。
The image processing apparatus according to claim 2, wherein the specifying unit specifies the region of interest based on a user's instruction.
前記入力インタフェースは、前記着目領域の状態に関する情報の入力を受け付ける
ことを特徴とする請求項1から3のいずれか1項に記載の画像処理装置。
The image processing apparatus according to claim 1, wherein the input interface receives an input of information regarding a state of the region of interest.
前記入力インタフェースは、前記着目領域に関する所見に関する情報の入力を受け付ける
ことを特徴とする請求項1から4のいずれか1項に記載の画像処理装置。
The image processing apparatus according to claim 1, wherein the input interface receives an input of information regarding a finding regarding the region of interest.
前記表示制御手段は、前記リンパ管の領域のうち、前記着目領域として特定されていない領域を、前記着目領域とは異なる態様で表示する
ことを特徴とする請求項1から5のいずれか1項に記載の画像処理装置。
The said display control means displays the area | region which is not specified as the said area | region of attention among the area | regions of the said lymphatic vessel in a different mode from the said area | region of interest, The Claim 1 characterized by the above-mentioned. An image processing apparatus according to claim 1.
前記表示制御手段は、前記表示装置に表示された前記画像データと関連付けて前記記憶装置に保存された情報を、前記表示装置に表示させる
ことを特徴とする請求項1から6のいずれか1項に記載の画像処理装置。
7. The display control device according to claim 1, wherein the display control unit causes the display device to display information stored in the storage device in association with the image data displayed on the display device. An image processing apparatus according to claim 1.
前記画像データは、前記被検体への複数回の光照射により発生した光音響波に基づいて生成された、前記複数回の光照射のそれぞれに対応する画像を含む時系列の3次元画像データである、
ことを特徴とする請求項1から7のいずれか1項に記載の画像処理装置。
The image data is time-series three-dimensional image data generated based on photoacoustic waves generated by a plurality of light irradiations on the subject and including images corresponding to each of the plurality of light irradiations. is there,
The image processing apparatus according to claim 1, wherein:
前記表示制御手段は、前記画像データを動画像として表示することを特徴とする、請求項8に記載の画像処理装置。   The image processing apparatus according to claim 8, wherein the display control unit displays the image data as a moving image. 前記表示制御手段は、前記動画像を所定の速度で繰り返し表示可能である
ことを特徴とする、請求項9に記載の画像処理装置。
The image processing device according to claim 9, wherein the display control unit is capable of repeatedly displaying the moving image at a predetermined speed.
前記表示制御手段は、前記動画像を早送り表示可能である
ことを特徴とする、請求項9または10に記載の画像処理装置。
The image processing device according to claim 9, wherein the display control unit is capable of fast-forward displaying the moving image.
前記表示制御手段は、前記動画像のフレームレートの変更を受け付けるGUIを表示する
ことを特徴とする請求項9から11のいずれか1項に記載の画像処理装置。
The image processing apparatus according to claim 9, wherein the display control unit displays a GUI for receiving a change in a frame rate of the moving image.
前記表示制御手段は、前記動画像において前記リンパ管を流れるリンパの情報を、前記リンパ管の領域と関連付けて、輝度表示、カラー表示、グラフ表示、および数値表示の少なくともいずれかの方法で表示する
ことを特徴とする請求項9から12のいずれか1項に記載の画像処理装置。
The display control means displays information of lymph flowing through the lymph vessel in the moving image in association with an area of the lymph vessel, and displays the information by at least one of a luminance display, a color display, a graph display, and a numerical display. The image processing apparatus according to claim 9, wherein:
前記表示制御手段は、少なくとも一つの前記リンパ管の領域を強調表示する
ことを特徴とする請求項9から13のいずれか1項に記載の画像処理装置。
14. The image processing apparatus according to claim 9, wherein the display control unit highlights at least one region of the lymphatic vessel.
被検体への光照射により前記被検体内から発生した光音響波に基づいて画像データを生成することと、
前記画像データと、前記画像データのうちの前記被検体内のリンパ管の領域の一部である着目領域に対する入力を受け付ける入力インタフェースとを表示装置に表示させる表示制御と、
前記画像データと、前記入力インタフェースを介して入力された情報とを関連付けて記憶装置に保存することと
を含むことを特徴とする画像処理方法。
Generating image data based on photoacoustic waves generated from within the subject by irradiating the subject with light,
A display control to display a display device with the image data and an input interface for receiving an input to a region of interest that is a part of a region of the lymph vessel in the subject in the image data;
An image processing method, comprising: associating the image data with information input via the input interface and storing the image data in a storage device.
前記被検体内の前記リンパ管の領域を含む前記画像データに対する画像解析により、前記リンパ管の領域の一部を前記着目領域として特定することをさらに含む
ことを特徴とする請求項15に記載の画像処理方法。
16. The method according to claim 15, further comprising: identifying a part of the lymphatic vessel region as the region of interest by performing image analysis on the image data including the lymphatic vessel region in the subject. Image processing method.
ユーザーの指示に基づいて、前記着目領域を特定する
ことを特徴とする請求項16に記載の画像処理方法。
17. The image processing method according to claim 16, wherein the region of interest is specified based on a user's instruction.
前記入力インタフェースは、前記着目領域の状態に関する情報の入力を受け付ける
ことを特徴とする請求項15から17のいずれか1項に記載の画像処理方法。
18. The image processing method according to claim 15, wherein the input interface receives an input of information on a state of the region of interest.
前記入力インタフェースは、前記着目領域に関する所見に関する情報の入力を受け付ける
ことを特徴とする請求項15から18のいずれか1項に記載の画像処理方法。
19. The image processing method according to claim 15, wherein the input interface receives an input of information on a finding regarding the region of interest.
前記表示制御は、前記リンパ管の領域のうち、前記着目領域として特定されていない領域を、前記着目領域とは異なる態様で表示する
ことを特徴とする請求項15から19のいずれか1項に記載の画像処理方法。
The display control according to any one of claims 15 to 19, wherein, in the lymphatic vessel region, a region not specified as the region of interest is displayed in a mode different from the region of interest. The image processing method described in the above.
前記表示制御は、前記表示装置に表示された前記画像データと関連付けて前記記憶装置に保存された情報を、前記表示装置に表示する
ことを特徴とする請求項15から20のいずれか1項に記載の画像処理方法。
21. The display device according to claim 15, wherein the display control displays information stored in the storage device in association with the image data displayed on the display device on the display device. The image processing method described in the above.
前記画像データは、前記被検体への複数回の光照射により発生した光音響波に基づいて生成された、前記複数回の光照射のそれぞれに対応する画像を含む時系列の3次元画像データである、
ことを特徴とする請求項15から21のいずれか1項に記載の画像処理方法。
The image data is time-series three-dimensional image data generated based on photoacoustic waves generated by a plurality of light irradiations on the subject and including images corresponding to each of the plurality of light irradiations. is there,
The image processing method according to any one of claims 15 to 21, wherein:
前記表示制御は、前記画像データを動画像として表示することを特徴とする、請求項22に記載の画像処理方法。   The image processing method according to claim 22, wherein the display control displays the image data as a moving image. 前記表示制御は、前記動画像を所定の速度で繰り返し表示可能である
ことを特徴とする、請求項23に記載の画像処理方法。
The image processing method according to claim 23, wherein the display control is capable of repeatedly displaying the moving image at a predetermined speed.
前記表示制御は、前記動画像を早送り表示可能である
ことを特徴とする、請求項23または24に記載の画像処理方法。
The image processing method according to claim 23, wherein the display control is capable of fast-forwarding display of the moving image.
前記表示制御は、前記動画像のフレームレートの変更を受け付けるGUIを表示する
ことを特徴とする請求項23から25のいずれか1項に記載の画像処理方法。
26. The image processing method according to claim 23, wherein the display control displays a GUI for receiving a change in a frame rate of the moving image.
前記表示制御は、前記動画像において前記リンパ管を流れるリンパの情報を、前記リンパ管の領域と関連付けて、輝度表示、カラー表示、グラフ表示、および数値表示の少なくともいずれかの方法で表示する
ことを特徴とする請求項23から26のいずれか1項に記載の画像処理方法。
The display control is to display information of lymph flowing through the lymph vessel in the moving image in association with a region of the lymph vessel, and to display at least one of a luminance display, a color display, a graph display, and a numerical display. The image processing method according to any one of claims 23 to 26, wherein:
前記表示制御は、少なくとも一つの前記リンパ管の領域を強調表示する
ことを特徴とする請求項23から27のいずれか1項に記載の画像処理方法。
28. The image processing method according to claim 23, wherein the display control highlights at least one region of the lymphatic vessel.
請求項15から28のいずれか1項に記載の画像処理方法をコンピュータに実行させるためのプログラム。   A program for causing a computer to execute the image processing method according to any one of claims 15 to 28.
JP2018157785A 2018-08-24 2018-08-24 Image processing system, image processing method and program Pending JP2020028668A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018157785A JP2020028668A (en) 2018-08-24 2018-08-24 Image processing system, image processing method and program
PCT/JP2019/032586 WO2020040181A1 (en) 2018-08-24 2019-08-21 Image processing device, image processing method, and program
US17/179,446 US20210169397A1 (en) 2018-08-24 2021-02-19 Image processing apparatus, image processing method, and non-transitory computer-readable medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018157785A JP2020028668A (en) 2018-08-24 2018-08-24 Image processing system, image processing method and program

Publications (2)

Publication Number Publication Date
JP2020028668A true JP2020028668A (en) 2020-02-27
JP2020028668A5 JP2020028668A5 (en) 2021-10-28

Family

ID=69623266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018157785A Pending JP2020028668A (en) 2018-08-24 2018-08-24 Image processing system, image processing method and program

Country Status (1)

Country Link
JP (1) JP2020028668A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017070608A (en) * 2015-10-09 2017-04-13 コニカミノルタ株式会社 Ultrasonic diagnostic imaging apparatus
JP2018057695A (en) * 2016-10-07 2018-04-12 キヤノン株式会社 Image display system, image display method, and program
JP2018089371A (en) * 2016-11-30 2018-06-14 キヤノン株式会社 Information processing device, information processing method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017070608A (en) * 2015-10-09 2017-04-13 コニカミノルタ株式会社 Ultrasonic diagnostic imaging apparatus
JP2018057695A (en) * 2016-10-07 2018-04-12 キヤノン株式会社 Image display system, image display method, and program
JP2018089371A (en) * 2016-11-30 2018-06-14 キヤノン株式会社 Information processing device, information processing method, and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FORBRICH, ALEX ET AL: "Photoacoustic imaging of lymphatic pumping", JOURNAL OF BIOMEDICAL OPTICS, vol. 22, no. 10, JPN7022001936, October 2017 (2017-10-01), pages 106003, XP060093849, ISSN: 0004759771, DOI: 10.1117/1.JBO.22.10.106003 *

Similar Documents

Publication Publication Date Title
US10945678B2 (en) Image processing apparatus, image processing method, and non-transitory storage medium
JP2023123874A (en) Photoacoustic imaging system, photoacoustic imaging system control method, and program
US20180228377A1 (en) Object information acquiring apparatus and display method
JP2019024733A (en) Image processing apparatus, image processing method, and program
JP2018126389A (en) Information processing apparatus, information processing method, and program
JP7108985B2 (en) Image processing device, image processing method, program
JP7226728B2 (en) Image processing device, image processing method, program
US20210169397A1 (en) Image processing apparatus, image processing method, and non-transitory computer-readable medium
JP2020028668A (en) Image processing system, image processing method and program
JP7142832B2 (en) Image processing device, image processing method, program
JP7125709B2 (en) Image processing device, image processing method and program
JP7144805B2 (en) Image processing device, image processing method, program
US20190321005A1 (en) Subject information acquisition apparatus, subject information processing method, and storage medium using probe to receive acoustic wave
WO2018230409A1 (en) Information processing device, information processing method, and program
JP7205821B2 (en) system
WO2020039640A1 (en) Information processing device, system, information processing method, and program
JP7187336B2 (en) Information processing device, information processing method, and program
JP7277212B2 (en) Image processing device, image processing method and program
JP2020028670A (en) Image processing device, system, image processing method, and program
US11599992B2 (en) Display control apparatus, display method, and non-transitory storage medium

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221018