JP2020024228A - Light detecting device and electronic apparatus - Google Patents

Light detecting device and electronic apparatus Download PDF

Info

Publication number
JP2020024228A
JP2020024228A JP2019203281A JP2019203281A JP2020024228A JP 2020024228 A JP2020024228 A JP 2020024228A JP 2019203281 A JP2019203281 A JP 2019203281A JP 2019203281 A JP2019203281 A JP 2019203281A JP 2020024228 A JP2020024228 A JP 2020024228A
Authority
JP
Japan
Prior art keywords
light receiving
receiving unit
light
filter
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019203281A
Other languages
Japanese (ja)
Inventor
祥嗣 上平
Yoshitsugu Kamihira
祥嗣 上平
崇博 北原
Takahiro Kitahara
崇博 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2019203281A priority Critical patent/JP2020024228A/en
Publication of JP2020024228A publication Critical patent/JP2020024228A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Optical Filters (AREA)

Abstract

To provide a light detecting device capable of reducing the sensitivity in the infrared wavelength region well, and to provide an electronic apparatus including the same.SOLUTION: A light detecting device includes a semiconductor substrate, a light receiving section B1 for signal detection and an infrared ray receiving section B2 formed on the semiconductor substrate, and covered at least with a blue filter of common color, and a red filter superposed on the blue filter above the infrared ray receiving section B2, and capable of blocking the blue light passing through the blue filter. An output signal (information) close to the actual visible light component of incident light is obtained by excluding or attenuating (B1-B2) the infrared wavelength region selectively from the output signal of the light receiving section B1 for signal detection, on the basis of the magnitude of the output signal from the infrared ray receiving section B2.SELECTED DRAWING: Figure 6A

Description

本発明は、カラーフィルタを備える光検出装置およびこれを備える電子機器に関する。   The present invention relates to a light detection device including a color filter and an electronic device including the same.

従来、カラーセンサへの入射光の赤外線を分離するために、赤外線カットフィルタが使用されている。
たとえば、特許文献1は、複数のセンサを有する基板と、基板上でセンサを覆う赤外線カットフィルタと、赤外線カットフィルタ上の可視光線フィルタとを含む、光電子センサを開示している。この赤外線カットフィルタは、たとえば、約50層の誘電体膜を積層することによって形成された多層膜からなる。
Conventionally, an infrared cut filter has been used to separate infrared light of light incident on a color sensor.
For example, Patent Document 1 discloses an optoelectronic sensor including a substrate having a plurality of sensors, an infrared cut filter that covers the sensors on the substrate, and a visible light filter on the infrared cut filter. This infrared cut filter is composed of, for example, a multilayer film formed by laminating about 50 dielectric films.

米国特許第8274051号明細書U.S. Pat. No. 8,274,051

しかしながら、多層膜の赤外線カットフィルタは、フィルタに対して光が垂直に入射することを前提に設計されているため、斜めから入射する光の赤外線を完全に分離することが難しいという課題がある。
本発明の一実施形態は、赤外線の波長域の感度を良好に低減することができる光検出装置を提供する。
However, the multilayer infrared cut filter has a problem that it is difficult to completely separate infrared rays of light obliquely incident because the infrared cut filter is designed on the assumption that light is incident perpendicularly on the filter.
One embodiment of the present invention provides a photodetector capable of favorably reducing the sensitivity in the infrared wavelength range.

本発明の一実施形態は、赤外線の波長域の感度を良好に低減できる光検出装置を備える電子機器を提供する。   One embodiment of the present invention provides an electronic apparatus including a photodetector capable of favorably reducing sensitivity in a wavelength region of infrared light.

本発明の一実施形態は、半導体基板と、前記半導体基板に形成され、少なくとも共通色のカラーフィルタで覆われた信号検出用受光部および赤外線受光部と、前記赤外線受光部上で前記カラーフィルタに重なっており、前記カラーフィルタを透過する波長域の光を阻止可能な第2カラーフィルタとを含む、光検出装置を提供する。
この構成によれば、共通色のカラーフィルタで覆われた信号検出用受光部および赤外線受光部のうち、赤外線受光部のみが選択的に第2カラーフィルタで覆われている。これにより、信号検出用受光部および赤外線受光部に同じ光が入射した場合に、信号検出用受光部では所定の波長域の可視光および赤外線が検出される一方、赤外線受光部では、可視光を第2カラーフィルタで選択的に阻止し、信号検出用受光部で検出された赤外線と同レベルの赤外線のみを検出することができる。したがって、前記光検出装置の内部または外部に備えられた論理回路等によって、信号検出用受光部の出力信号から赤外線の波長域分を、赤外線受光部の出力信号の大きさに基づいて選択的に排除または減弱することで、入射光の実際の可視光成分に近い出力信号(情報)を得ることができる。したがって、本発明の一実施形態に係る光検出装置を用いれば、少ない誤差で、照度および色温度を精度よく算出することができる。
One embodiment of the present invention provides a semiconductor substrate, a signal detection light receiving unit and an infrared light receiving unit formed on the semiconductor substrate and covered by at least a color filter of a common color, and the color filter on the infrared light receiving unit. And a second color filter that overlaps and is capable of blocking light in a wavelength range that passes through the color filter.
According to this configuration, of the signal detection light receiving unit and the infrared light receiving unit covered with the color filter of the common color, only the infrared light receiving unit is selectively covered with the second color filter. Thus, when the same light is incident on the signal detection light-receiving unit and the infrared light reception unit, the signal detection light-receiving unit detects visible light and infrared light in a predetermined wavelength range, while the infrared light reception unit emits visible light. It can be selectively blocked by the second color filter, and can detect only infrared rays of the same level as the infrared rays detected by the signal detection light-receiving unit. Therefore, by a logic circuit or the like provided inside or outside the photodetector, the wavelength range of the infrared light from the output signal of the signal detection light-receiving unit can be selectively selected based on the magnitude of the output signal of the infrared light-receiving unit. By eliminating or attenuating, an output signal (information) close to the actual visible light component of the incident light can be obtained. Therefore, with the use of the photodetector according to the embodiment of the present invention, it is possible to accurately calculate the illuminance and the color temperature with a small error.

そして、このような信号の分別処理は、論理演算によって赤外線の波長域分の信号のみがデジタル的に分離されるものなので、光の入射方向に関係なく、赤外線の波長域の感度を良好に低減することができる。
本発明の一実施形態では、前記信号検出用受光部および前記赤外線受光部は、それぞれ、前記半導体基板の表面から同じ深さ位置にある第1pn接合部と、前記第1pn接合部よりも深い位置にある第2pn接合部とを含む。
In such signal separation processing, only signals in the infrared wavelength range are digitally separated by a logical operation, so that the sensitivity in the infrared wavelength range is favorably reduced regardless of the incident direction of light. can do.
In one embodiment of the present invention, the signal detection light-receiving unit and the infrared light-receiving unit are respectively located at a first pn junction located at the same depth from the surface of the semiconductor substrate, and at a position deeper than the first pn junction. And a second pn junction portion.

半導体基板における光の透過深さは、波長が長いほど深くなるという関係がある。したがって、検出対象の光の波長に応じてpn接合部を使い分けることで、光を効率よく検出することができる。
本発明の一実施形態では、前記カラーフィルタは、青色フィルタまたは緑色フィルタを含み、前記第2カラーフィルタは、赤色フィルタを含む。
There is a relationship that the depth of light transmission through a semiconductor substrate increases as the wavelength increases. Therefore, light can be efficiently detected by properly using the pn junction according to the wavelength of the light to be detected.
In one embodiment, the color filter includes a blue filter or a green filter, and the second color filter includes a red filter.

青色フィルタまたは緑色フィルタを透過する光の分光感度曲線は、青色または緑色の波長域、および赤外線の波長域のそれぞれに、互いに独立したピークを持つ。したがって、これらのピークが現れた分光感度曲線から青色または緑色の波長域にピークを有する山形の曲線を分離すれば、赤外線に由来するとみなしてよい山形の曲線が明確に残ることになる。すなわち、この構成によれば、赤外線受光部において、青色または緑色の波長域の光を赤色フィルタで分離することで、赤外線を簡単に判別することができる。   The spectral sensitivity curve of light transmitted through the blue filter or the green filter has independent peaks in each of the blue or green wavelength range and the infrared wavelength range. Therefore, if a mountain-shaped curve having a peak in the blue or green wavelength region is separated from the spectral sensitivity curve in which these peaks appear, the mountain-shaped curve that can be considered to be derived from infrared rays will remain clearly. That is, according to this configuration, the infrared light can be easily determined by separating the light in the blue or green wavelength range by the red filter in the infrared light receiving unit.

本発明の一実施形態では、前記カラーフィルタは、赤色フィルタを含み、前記第2カラーフィルタは、青色フィルタまたは緑色フィルタを含む。この場合、前記信号検出用受光部および前記赤外線受光部は、それぞれ、前記半導体基板の表面から同じ深さ位置にある第1pn接合部と、前記第1pn接合部よりも深い位置にある第2pn接合部とを含むことが好ましい。   In one embodiment of the present invention, the color filter includes a red filter, and the second color filter includes a blue filter or a green filter. In this case, the signal detection light receiving unit and the infrared light receiving unit are respectively a first pn junction at the same depth position from the surface of the semiconductor substrate and a second pn junction at a position deeper than the first pn junction. It is preferable to include a part.

前述のように青色フィルタまたは緑色フィルタを透過する光とは異なり、赤色フィルタを透過する光の分光感度曲線は、赤色の波長域および赤外線の波長域のそれぞれに、明確に独立したピークを持つわけではない。したがって、赤外線受光部において、青色フィルタまたは緑色フィルタを用いて赤色の光を単に分離するやり方では、赤外線を選択的に判別することは難しい。そこで、この構成によれば、光の波長が長いほど半導体基板における透過深さが深くなるという関係を利用している。すなわち、信号検出用受光部では、相対的に浅い位置に形成され、赤外線よりも波長が短い赤色の光の検出に適した第1pn接合部において主に赤色の光を検出する。一方、赤外線受光部では、相対的に深い位置にあり、赤色の光よりも波長が長い赤外線の検出に適した第2pn接合部において赤外線を検出することができる。これにより、赤外線を選択的に判別し易くなる。   Unlike the light that passes through the blue or green filter as described above, the spectral sensitivity curve of the light that passes through the red filter does not have distinctly independent peaks in each of the red and infrared wavelength ranges. is not. Therefore, it is difficult to selectively discriminate infrared light by a method of simply separating red light using a blue filter or a green filter in the infrared light receiving unit. Therefore, according to this configuration, the relationship is used that the longer the wavelength of light, the deeper the transmission depth in the semiconductor substrate. That is, the signal detection light-receiving portion mainly detects red light at the first pn junction, which is formed at a relatively shallow position and is suitable for detecting red light having a shorter wavelength than infrared light. On the other hand, in the infrared light receiving unit, the infrared light can be detected at the second pn junction, which is located at a relatively deep position and is suitable for detecting infrared light having a longer wavelength than red light. This makes it easier to selectively distinguish infrared light.

本発明の一実施形態では、前記信号検出用受光部は、前記半導体基板上の受光領域の中央部を対称の中心として点対称となる位置にそれぞれ設けられている。
この構成によれば、半導体基板の受光領域全体に光が均一に当たらない等の理由によって一方の信号検出用受光部に十分な光が入射しなくても、他方の信号検出用受光部で光を検出できるので、信頼性が良い。
In one embodiment of the present invention, the signal detection light-receiving units are provided at positions that are point-symmetric with respect to a center of a light-receiving region on the semiconductor substrate.
According to this configuration, even if sufficient light does not enter one of the signal detection light receiving units because light does not uniformly hit the entire light receiving region of the semiconductor substrate, the other signal detection light receiving unit receives light. Can be detected, so the reliability is good.

本発明の一実施形態は、前記信号検出用受光部および前記赤外線受光部を覆う赤外線カットフィルタをさらに含む。
この構成によれば、より確実に、赤外線の波長域の感度を低減することができる。
本発明の一実施形態では、前記カラーフィルタは、カラーレジストを含む。
本発明の一実施形態は、半導体基板と、前記半導体基板に形成され、少なくとも共通色のカラーフィルタで覆われた信号検出用受光部および赤外線受光部と、前記赤外線受光部上で前記カラーフィルタに重なっており、前記カラーフィルタを透過する波長域の光を阻止可能な第2カラーフィルタとを含む、光検出装置と、前記光検出装置を収容した筐体とを含む、電子機器を提供する。
One embodiment of the present invention further includes an infrared cut filter that covers the signal detection light receiving unit and the infrared light receiving unit.
According to this configuration, the sensitivity in the infrared wavelength region can be reduced more reliably.
In one embodiment of the present invention, the color filter includes a color resist.
One embodiment of the present invention provides a semiconductor substrate, a signal detection light receiving unit and an infrared light receiving unit formed on the semiconductor substrate and covered by at least a color filter of a common color, and the color filter on the infrared light receiving unit. Provided is an electronic apparatus including: a photodetector; and a housing accommodating the photodetector, wherein the photodetector includes a second color filter that overlaps and can block light in a wavelength range that passes through the color filter.

この構成によれば、赤外線の波長域の感度を良好に低減できる光検出装置を備えているので、電子機器に形成された受光用の窓の可視光線透過率が低くても実用可能である。そのため、受光用の窓のデザインの自由度を広げることができる。   According to this configuration, since the photodetector capable of satisfactorily reducing the sensitivity in the infrared wavelength region is provided, it is practical even if the visible light transmittance of the light receiving window formed in the electronic device is low. Therefore, the degree of freedom in designing the light receiving window can be increased.

図1は、本発明の一実施形態に係る光検出装置の電気的構成を示すブロック図である。FIG. 1 is a block diagram illustrating an electrical configuration of a photodetector according to an embodiment of the present invention. 図2は、前記光検出装置の受光領域のレイアウト図である。FIG. 2 is a layout diagram of a light receiving area of the photodetector. 図3は、前記光検出装置の断面図(図2のA−A´線断面図)である。FIG. 3 is a cross-sectional view (a cross-sectional view along the line AA ′ in FIG. 2) of the photodetector. 図4は、前記光検出装置の断面図(図2のB−B´線断面図)である。FIG. 4 is a cross-sectional view (a cross-sectional view taken along line BB ′ in FIG. 2) of the photodetector. 図5は、図3および図4のフォトダイオードの拡大図である。FIG. 5 is an enlarged view of the photodiode of FIGS. 3 and 4. 図6Aは、青色受光部での赤外線分離の演算を説明するための図である。FIG. 6A is a diagram for describing calculation of infrared separation in the blue light receiving unit. 図6Bは、青色受光部における最終の分光感度特性を示す図である。FIG. 6B is a diagram illustrating a final spectral sensitivity characteristic in the blue light receiving unit. 図7Aは、緑色受光部での赤外線分離の演算を説明するための図である。FIG. 7A is a diagram for explaining the calculation of infrared separation in the green light receiving unit. 図7Bは、緑色受光部における最終の分光感度特性を示す図である。FIG. 7B is a diagram illustrating a final spectral sensitivity characteristic in the green light receiving unit. 図8Aは、赤色受光部での赤外線分離の演算を説明するための図である。FIG. 8A is a diagram for explaining the calculation of infrared separation in the red light receiving unit. 図8Bは、赤色受光部における最終の分光感度特性を示す図である。FIG. 8B is a diagram illustrating a final spectral sensitivity characteristic in the red light receiving unit. 図9は、前記光検出装置の最終的な分光感度特性を示す図である。FIG. 9 is a diagram showing a final spectral sensitivity characteristic of the photodetector. 図10は、前記光検出装置が用いられる電子機器の一例であるスマートフォンの外観を示す斜視図である。FIG. 10 is a perspective view showing an external appearance of a smartphone, which is an example of an electronic device using the light detection device.

以下では、本発明の実施の形態を、添付図面を参照して詳細に説明する。
図1は、本発明の一実施形態に係る光検出装置1の電気的構成を示すブロック図である。
光検出装置1は、赤色受光部2R、緑色受光部2Gおよび青色受光部2Bと、これらの受光部2R,2G,2Bを覆う赤外線カットフィルタ3と、演算部4とを含む。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a block diagram showing an electrical configuration of a photodetector 1 according to one embodiment of the present invention.
The light detection device 1 includes a red light receiving unit 2R, a green light receiving unit 2G, and a blue light receiving unit 2B, an infrared cut filter 3 that covers these light receiving units 2R, 2G, and 2B, and a calculation unit 4.

赤色受光部2R、緑色受光部2Gおよび青色受光部2Bは、それぞれ、フォトダイオード5R,5G,5Bを有している。フォトダイオード5R,5G,5Bは、それぞれ、演算部4に電気的に接続されている。フォトダイオード5R,5G,5Bと演算部4との間には、ADC(アナログ・デジタル・コンバータ)6が介挿されている。各フォトダイオード5R,5G,5Bのpn接合部に光が入射すると、光起電力効果によって電流が発生し、その電流がADC6においてアナログ信号からデジタル信号に変換され、演算部4に入力される。演算部4では、入力信号に基づいて演算処理が実行される。   The red light receiving unit 2R, the green light receiving unit 2G, and the blue light receiving unit 2B have photodiodes 5R, 5G, and 5B, respectively. The photodiodes 5R, 5G, 5B are each electrically connected to the operation unit 4. An ADC (analog-to-digital converter) 6 is interposed between the photodiodes 5R, 5G, 5B and the arithmetic unit 4. When light enters the pn junction of each of the photodiodes 5R, 5G, and 5B, a current is generated by the photovoltaic effect, and the current is converted from an analog signal to a digital signal by the ADC 6 and input to the arithmetic unit 4. The arithmetic unit 4 performs an arithmetic process based on the input signal.

演算部4は、たとえばLSI(Large Scale Integration)等の集積回路からなり、トランジスタ、キャパシタ、レジスタ等の各種回路素子を含んでいる。演算部4は、光検出装置1の最表面に形成された複数の外部電極7に電気的に接続されている。複数の外部電極7を介して、演算部4からの信号出力、演算部4やフォトダイオード5R,5G,5Bへの電源入力等が行われる。   The arithmetic unit 4 is formed of an integrated circuit such as an LSI (Large Scale Integration), and includes various circuit elements such as transistors, capacitors, and registers. The operation unit 4 is electrically connected to a plurality of external electrodes 7 formed on the outermost surface of the light detection device 1. Through the plurality of external electrodes 7, signal output from the arithmetic unit 4, power input to the arithmetic unit 4 and the photodiodes 5R, 5G, and 5B are performed.

図2は、光検出装置1の受光領域9のレイアウト図である。
光検出装置1は、半導体基板8と、半導体基板8上に受光領域9とを有している。赤色受光部2R、緑色受光部2Gおよび青色受光部2Bは、それぞれ、複数の受光部を有しており、それらが受光領域9に配列されている。
具体的には、赤色受光部2Rが信号検出用受光部R1および赤外線受光部R2,R3を含み、緑色受光部2Gが信号検出用受光部G1および赤外線受光部G2を含み、青色受光部2Bが信号検出用受光部B1および赤外線受光部B2を含んでいる。信号検出用受光部R1,G1,B1、および赤外線受光部R2,R3,G2,B2は、それぞれ、複数備えられている。これらの受光部のうち、少なくとも複数の信号検出用受光部R1,G1,B1は、たとえば、平面視四角形の受光領域9の中心C(重心)を対称の中心として点対称となる位置に、それぞれ設けられている。複数の赤外線受光部R2,R3,G2,B2についても同様に、図2に示すように、点対称の位置にそれぞれ設けられていてもよい。これにより、半導体基板8の受光領域9全体に光が均一に当たらない等の理由によって一方の信号検出用受光部R1,G1,B1に十分な光が入射しなくても、他方の信号検出用受光部R1,G1,B1で光を検出できるので、信頼性が良い。たとえば、受光領域9の紙面下側の縁部への光の入射が乏しく、当該縁部上の信号検出用受光部R1,B1においてうまく光を検出できなくても、受光領域9の紙面上側の縁部上の信号検出用受光部R1,B1で光を検出することができる。
FIG. 2 is a layout diagram of the light receiving region 9 of the light detection device 1.
The light detection device 1 has a semiconductor substrate 8 and a light receiving region 9 on the semiconductor substrate 8. Each of the red light receiving section 2R, the green light receiving section 2G, and the blue light receiving section 2B has a plurality of light receiving sections, which are arranged in the light receiving area 9.
Specifically, the red light receiving section 2R includes a signal detecting light receiving section R1 and infrared light receiving sections R2 and R3, the green light receiving section 2G includes a signal detecting light receiving section G1 and an infrared light receiving section G2, and the blue light receiving section 2B includes It includes a signal detection light receiving portion B1 and an infrared light receiving portion B2. A plurality of signal detection light receiving units R1, G1, B1 and a plurality of infrared light receiving units R2, R3, G2, B2 are provided. Of these light receiving units, at least a plurality of signal detection light receiving units R1, G1, and B1 are respectively located at point-symmetric positions with respect to the center C (center of gravity) of the light receiving region 9 having a rectangular shape in plan view. Is provided. Similarly, the plurality of infrared light receiving units R2, R3, G2, and B2 may be provided at point-symmetric positions as shown in FIG. Accordingly, even if sufficient light does not enter one of the signal detection light receiving portions R1, G1, and B1 because light does not uniformly hit the entire light receiving region 9 of the semiconductor substrate 8, the other signal detection Since light can be detected by the light receiving units R1, G1, and B1, reliability is high. For example, even if the light incident on the lower edge of the light receiving region 9 on the paper is poor, and the signal detection light receiving units R1 and B1 on the edge do not detect the light well, even if the light is not detected well, Light can be detected by the signal detection light receiving units R1 and B1 on the edge.

なお、図2では、明瞭化のため、赤色受光部2R、緑色受光部2Gおよび青色受光部2Bの参照符号を省略すると共に、信号検出用受光部R1,G1,B1を白抜きの四角形で示し、赤外線受光部R2,R3,G2,B2をクロスハッチングが付された四角形で示している。
平面視四角形状の受光領域9の角部には、可視光および赤外線を受光可能なクリア受光部10が形成されている。たとえば、クリア受光部10は、平面視において、少なくとも受光領域9の一対の対角を構成する角部に一つずつ配置されていてもよい。クリア受光部10はフォトダイオードを備え、赤外線カットフィルタ3で覆われていないものである。
In FIG. 2, for the sake of clarity, reference numerals for the red light receiving unit 2R, the green light receiving unit 2G, and the blue light receiving unit 2B are omitted, and the light detecting units R1, G1, and B1 for signal detection are indicated by white squares. , The infrared light receiving units R2, R3, G2, and B2 are indicated by cross-hatched squares.
A clear light receiving portion 10 capable of receiving visible light and infrared light is formed at a corner of the light receiving region 9 having a rectangular shape in a plan view. For example, the clear light receiving units 10 may be arranged at least at corners forming a pair of diagonals of the light receiving region 9 in a plan view. The clear light receiving unit 10 includes a photodiode and is not covered with the infrared cut filter 3.

次に、信号検出用受光部R1,G1,B1、および赤外線受光部R2,R3,G2,B2の断面構造を、図3〜図5を参照して説明する。
図3は、光検出装置1の断面図(図2のA−A´線断面図)である。図4は、光検出装置1の断面図(図2のB−B´線断面図)である。図5は、図3および図4のフォトダイオードの拡大図である。
Next, the sectional structures of the signal detection light receiving units R1, G1, B1 and the infrared light receiving units R2, R3, G2, B2 will be described with reference to FIGS.
FIG. 3 is a cross-sectional view (a cross-sectional view along line AA ′ in FIG. 2) of the photodetector 1. FIG. 4 is a cross-sectional view (a cross-sectional view taken along line BB ′ of FIG. 2) of the photodetector 1. FIG. 5 is an enlarged view of the photodiode of FIGS. 3 and 4.

信号検出用受光部R1,G1,B1、および赤外線受光部R2,R3,G2,B2は、共通する要素として、半導体基板8と、半導体基板8に形成されたフォトダイオード11と、半導体基板8上の全面を覆う層間絶縁膜12とを含む。なお、フォトダイオード11は、図1のフォトダイオード5R,5G,5Bのそれぞれに対応するものであるが、図3〜図5では明瞭化のため、フォトダイオード5R,5G,5Bの参照符号を省略する。   The signal detection light receiving units R1, G1, B1 and the infrared light receiving units R2, R3, G2, B2 are common elements such as a semiconductor substrate 8, a photodiode 11 formed on the semiconductor substrate 8, and a semiconductor substrate 8. And an interlayer insulating film 12 covering the entire surface of the substrate. Although the photodiode 11 corresponds to each of the photodiodes 5R, 5G, and 5B in FIG. 1, reference numerals of the photodiodes 5R, 5G, and 5B are omitted in FIGS. I do.

半導体基板8は、この実施形態では、p型シリコン基板からなる。
フォトダイオード11は、p型の半導体基板8の表面8Aから順に形成された第1n型領域13、第1p型領域14、第2n型領域15、p型半導体基板8によって構成されたnpnp構造を有している。第2n型領域15がp型半導体基板8の表面部に形成され、この第2n型領域15の内方領域に第1p型領域14が形成され、さらに第1p型領域14の内方領域に第1n型領域13が形成されている。これにより、図5に示すように、フォトダイオード11は、半導体基板8の表面8Aからの深さが互いに異なるpn接合部を含むフォトDi1、フォトDi2およびフォトDi3を有している。
In this embodiment, the semiconductor substrate 8 is formed of a p-type silicon substrate.
The photodiode 11 has an npnp structure including a first n-type region 13, a first p-type region 14, a second n-type region 15, and a p-type semiconductor substrate 8 formed in order from the surface 8 </ b> A of the p-type semiconductor substrate 8. are doing. A second n-type region 15 is formed on the surface of the p-type semiconductor substrate 8, a first p-type region 14 is formed in an inner region of the second n-type region 15, and a second p-type region 14 is formed in an inner region of the first p-type region 14. 1n type region 13 is formed. Thereby, as shown in FIG. 5, the photodiode 11 has a photo Di1, a photo Di2, and a photo Di3 including pn junctions having different depths from the surface 8A of the semiconductor substrate 8.

フォトDi1は、第1p型領域14と第1n型領域13とのpn接合部を含み、表面8Aからの当該pn接合部の深さは、たとえば、0.09μm〜0.17μmである。フォトDi2は、第1p型領域14と第2n型領域15とのpn接合部を含み、表面8Aからの当該pn接合部の深さは、フォトDi1のpn接合部よりも深く、たとえば、1.0μm〜1.8μmである。フォトDi3は、p型の半導体基板8と第2n型領域15とのpn接合部を含み、表面8Aからの当該pn接合部の深さは、フォトDi2のpn接合部よりも深く、たとえば、3.2μm〜5.9μmである。   Photo Di1 includes a pn junction between first p-type region 14 and first n-type region 13, and the depth of the pn junction from surface 8A is, for example, 0.09 μm to 0.17 μm. The photo Di2 includes a pn junction between the first p-type region 14 and the second n-type region 15, and the depth of the pn junction from the surface 8A is deeper than the pn junction of the photo Di1. 0 μm to 1.8 μm. The photo Di3 includes a pn junction between the p-type semiconductor substrate 8 and the second n-type region 15, and the depth of the pn junction from the surface 8A is deeper than the pn junction of the photo Di2. 0.2 μm to 5.9 μm.

フォトダイオード11が、互いに深さの異なるフォトDi1〜Di3を有する利点は次の通りである。すなわち、シリコン基板に対しては、光の波長が長いほど透過深さが深くなる傾向にあり、光検出装置1のように検出すべき光成分の波長域が複数ある場合には、フォトDi1〜Di3のいずれかにおいて効率よく光を検出することができる。たとえば、フォトDi1は、青色の波長域(たとえば420nm〜480nm)および緑色の波長域(たとえば500nm〜560nm)の成分の検出に適しており、フォトDi2は、緑色の波長域および赤色の波長域(たとえば590nm〜680nm)の成分の検出に適している。また、フォトDi3は、赤外線の波長域(たとえば700nm〜1300nm)の成分の検出に適している。   The advantages of the photodiode 11 having the photos Di1 to Di3 having different depths are as follows. That is, for a silicon substrate, the longer the wavelength of light, the longer the transmission depth tends to be. If there are a plurality of wavelength ranges of light components to be detected as in the photodetection device 1, the photo Di1 Light can be detected efficiently in any of Di3. For example, the photo Di1 is suitable for detecting components in a blue wavelength range (for example, 420 nm to 480 nm) and a green wavelength range (for example, 500 nm to 560 nm), and the photo Di2 is suitable for detecting a green wavelength range and a red wavelength range (for example. For example, it is suitable for detecting a component of 590 nm to 680 nm). Further, the photo Di3 is suitable for detecting a component in a wavelength region of infrared rays (for example, 700 nm to 1300 nm).

なお、半導体基板8には、フォトダイオード11の他、たとえば、演算部4を構成するトランジスタの不純物領域が形成されていてもよい。この場合、第1n型領域13、第1p型領域14、第2n型領域15は、トランジスタを構成するソース領域(S)、ドレイン領域(D)、素子分離用の埋め込み層(L/I、B/L)等の不純物領域と同じ工程で形成されてもよい。   Note that, in addition to the photodiode 11, for example, an impurity region of a transistor included in the arithmetic unit 4 may be formed in the semiconductor substrate 8. In this case, the first n-type region 13, the first p-type region 14, and the second n-type region 15 are composed of a source region (S), a drain region (D), and a buried layer (L / I, B / L) may be formed in the same step as the impurity region.

層間絶縁膜12は、酸化シリコン(SiO)等の絶縁材料からなる。層間絶縁膜12は、図3および図4で示したように単層であってもよいし、複数層であってもよい。
層間絶縁膜12上には、赤色フィルタ16R、緑色フィルタ16Gおよび青色フィルタ16Bが形成され、これらのフィルタ16R,16G,16Bを覆うように赤外線カットフィルタ3が形成されている。赤外線カットフィルタ3は、たとえば、SiO/TiO構造が複数(たとえば50層程度)積層された多層誘電体膜からなっていてもよい。赤外線カットフィルタ3は、全ての信号検出用受光部R1,G1,B1、および赤外線受光部R2,R3,G2,B2に対して共通の被覆膜となっている。また、赤色フィルタ16R、緑色フィルタ16Gおよび青色フィルタ16Bは、たとえば、顔料をベースとしたカラーレジスト、ナノインプリント技術を用いて形成した透過型レジスト、ゼラチン膜等で構成することができる。
The interlayer insulating film 12 is made of an insulating material such as silicon oxide (SiO 2 ). The interlayer insulating film 12 may be a single layer as shown in FIGS. 3 and 4, or may be a plurality of layers.
A red filter 16R, a green filter 16G, and a blue filter 16B are formed on the interlayer insulating film 12, and an infrared cut filter 3 is formed so as to cover these filters 16R, 16G, and 16B. The infrared cut filter 3 may be formed of, for example, a multilayer dielectric film in which a plurality of (for example, about 50) SiO 2 / TiO 2 structures are stacked. The infrared cut filter 3 is a coating film common to all the signal detection light receiving units R1, G1, B1 and the infrared light receiving units R2, R3, G2, B2. In addition, the red filter 16R, the green filter 16G, and the blue filter 16B can be composed of, for example, a color resist based on a pigment, a transmission resist formed using a nanoimprint technique, a gelatin film, or the like.

赤色フィルタ16R、緑色フィルタ16Gおよび青色フィルタ16Bは、その下の受光部の種類によって設けられるか否か決定されるが、同じ色の光を検出するための受光部には、共通色のカラーフィルタが必ず設けられている。つまり、赤色用の信号検出用受光部R1および赤外線受光部R2,R3には赤色フィルタ16Rが必ず設けられ、信号検出用受光部G1および赤外線受光部G2における緑色フィルタ16G、信号検出用受光部B1および赤外線受光部B2における青色フィルタ16Bについても同じことである。   Whether or not the red filter 16R, the green filter 16G, and the blue filter 16B are provided depending on the type of the light receiving unit thereunder, a light receiving unit for detecting light of the same color includes a color filter of a common color. Is always provided. That is, the red light filter 16R is always provided in the red signal detection light receiving portion R1 and the infrared light receiving portions R2 and R3, and the green filter 16G and the signal detection light receiving portion B1 in the signal detection light receiving portion G1 and the infrared light receiving portion G2. The same applies to the blue filter 16B in the infrared light receiving section B2.

カラーフィルタ16R,16G,16Bの配置形態をより具体的に説明すると、信号検出用受光部R1には赤色フィルタ16Rの単層膜が設けられ、赤外線受光部R2には赤色フィルタ16Rの単層膜が設けられ、赤外線受光部R3には赤色フィルタ16Rと緑色フィルタ16Gの積層膜(16Rが上側)が設けられている。また、信号検出用受光部G1には緑色フィルタ16Gの単層膜が設けられ、赤外線受光部G2には赤色フィルタ16Rと緑色フィルタ16Gの積層膜(16Rが上側)が設けられている。さらに、信号検出用受光部B1には青色フィルタ16Bの単層膜が設けられ、赤外線受光部B2には赤色フィルタ16Rと青色フィルタ16Bの積層膜(16Rが上側)が設けられている。   More specifically, the arrangement of the color filters 16R, 16G, and 16B will be described. A single layer film of the red filter 16R is provided in the signal detection light receiving unit R1, and a single layer film of the red filter 16R is provided in the infrared light receiving unit R2. Is provided, and a laminated film (16R is on the upper side) of the red filter 16R and the green filter 16G is provided in the infrared receiving section R3. The signal detection light-receiving portion G1 is provided with a single-layer film of a green filter 16G, and the infrared light-receiving portion G2 is provided with a laminated film of a red filter 16R and a green filter 16G (16R is on the upper side). Further, the signal detection light receiving portion B1 is provided with a single layer film of the blue filter 16B, and the infrared light receiving portion B2 is provided with a laminated film of the red filter 16R and the blue filter 16B (16R is on the upper side).

次に、赤色受光部2R、緑色受光部2Gおよび青色受光部2Bにおける赤外線分離の演算によって得られる分光感度特性を個別に説明する。
(1)青色(Blue)特性
青色受光部2Bに関しては、まず、信号検出用受光部B1および赤外線受光部B2に光が入射すると、信号検出用受光部B1のフォトDi1では、青色の光および赤外線が検出される。一方、赤外線受光部B2のフォトDi1では、青色の光が赤色フィルタ16Rで選択的に阻止され、信号検出用受光部B1で検出された赤外線と同レベルの赤外線のみが検出される。そのときの分光感度特性を曲線で示すと、図6Aの左端および真ん中の通りになる。演算部4には、信号検出用受光部B1から青色の光および赤外線の検出に応じた大きさの信号が入力され、赤外線受光部B2から赤外線の検出に応じた大きさの信号が入力される。そして、信号検出用受光部B1の出力信号から赤外線の波長域分を、赤外線受光部B2の出力信号の大きさに基づいて選択的に排除または減弱することで(B1−B2)、入射光の実際の青色の光成分に近い出力信号(情報)が得られる。この信号の分別処理によって得られる分光感度特性を曲線で示すと、図6Aの右端の通りとなる。この実施形態では、さらに、赤外線カットフィルタ3によっても赤外線の一部がフィルタリング(分離)されるので、最終的には、図6Bに示すような分光感度曲線が得られる。
Next, spectral sensitivity characteristics obtained by calculation of infrared separation in the red light receiving unit 2R, the green light receiving unit 2G, and the blue light receiving unit 2B will be individually described.
(1) Blue (Blue) Characteristics Regarding the blue light receiving portion 2B, first, when light enters the signal detecting light receiving portion B1 and the infrared light receiving portion B2, the blue light and the infrared light are detected in the photo Di1 of the signal detecting light receiving portion B1. Is detected. On the other hand, in the photo Di1 of the infrared light receiving unit B2, blue light is selectively blocked by the red filter 16R, and only infrared light of the same level as the infrared light detected by the signal detecting light receiving unit B1 is detected. The spectral sensitivity characteristic at that time is shown by a curve in the left end and the middle of FIG. 6A. The arithmetic unit 4 receives a signal having a magnitude corresponding to the detection of blue light and infrared light from the signal detection light-receiving unit B1, and a signal having a magnitude corresponding to detection of infrared light from the infrared light-receiving unit B2. . Then, by selectively excluding or attenuating the infrared wavelength range component from the output signal of the signal detection light receiving portion B1 based on the magnitude of the output signal of the infrared light receiving portion B2 (B1-B2), the incident light is reduced. An output signal (information) close to the actual blue light component is obtained. The spectral sensitivity characteristic obtained by this signal classification processing is represented by a curve as shown in the right end of FIG. 6A. In this embodiment, since a part of the infrared light is further filtered (separated) by the infrared cut filter 3, a spectral sensitivity curve as shown in FIG. 6B is finally obtained.

図6Aから明らかなように、信号検出用受光部B1において青色フィルタ16Bの単層膜を透過する光の分光感度曲線は、青色の波長域および赤外線の波長域のそれぞれに、互いに独立したピークを持つ。したがって、これらのピークが現れた分光感度曲線から青色の波長域にピークを有する山形の曲線を分離すれば、赤外線に由来するとみなしてよい山形の曲線が明確に残ることになる。すなわち、この実施形態によれば、赤外線受光部B2において、青色の波長域の光を赤色フィルタ16Rで分離することで、図6Aの赤外線受光部B2の分光感度曲線で示されるように、赤外線を簡単に判別することができる。
(2)緑色(Green)特性
緑色受光部2Gに関しては、まず、信号検出用受光部G1および赤外線受光部G2に光が入射すると、信号検出用受光部G1のフォトDi1およびフォトDi2では、緑色の光および赤外線が検出される。一方、赤外線受光部G2のフォトDi1およびフォトDi2では、緑色の光が赤色フィルタ16Rで選択的に阻止され、信号検出用受光部G1で検出された赤外線と同レベルの赤外線のみが検出される。そのときの分光感度特性を曲線で示すと、図7Aの左端および真ん中の通りになる。演算部4には、信号検出用受光部G1から緑色の光および赤外線の検出に応じた大きさの信号が入力され、赤外線受光部G2から赤外線の検出に応じた大きさの信号が入力される。そして、信号検出用受光部G1の出力信号から赤外線の波長域分を、赤外線受光部G2の出力信号の大きさに基づいて選択的に排除または減弱することで(G1−G2)、入射光の実際の緑色の光成分に近い出力信号(情報)が得られる。この信号の分別処理によって得られる分光感度特性を曲線で示すと、図7Aの右端の通りとなる。この実施形態では、さらに、赤外線カットフィルタ3によっても赤外線の一部がフィルタリング(分離)されるので、最終的には、図7Bに示すような分光感度曲線が得られる。
As is clear from FIG. 6A, the spectral sensitivity curve of light transmitted through the single-layer film of the blue filter 16B in the signal detection light-receiving portion B1 has independent peaks in the blue wavelength region and the infrared wavelength region, respectively. Have. Therefore, if the peak-shaped curve having a peak in the blue wavelength region is separated from the spectral sensitivity curve in which these peaks appear, the peak-shaped curve that may be considered to be derived from infrared rays will remain clearly. That is, according to this embodiment, the infrared light receiving unit B2 separates the light in the blue wavelength range with the red filter 16R, and as shown by the spectral sensitivity curve of the infrared light receiving unit B2 in FIG. It can be easily determined.
(2) Green (Green) Characteristics Regarding the green light receiving portion 2G, first, when light enters the signal detecting light receiving portion G1 and the infrared light receiving portion G2, the green light appears in the photo Di1 and the photo Di2 of the signal detecting light receiving portion G1. Light and infrared are detected. On the other hand, in the photo Di1 and the photo Di2 of the infrared light receiving unit G2, green light is selectively blocked by the red filter 16R, and only infrared light of the same level as the infrared light detected by the signal detection light receiving unit G1 is detected. The spectral sensitivity characteristic at that time is shown by a curve in the left end and the middle of FIG. 7A. The arithmetic unit 4 receives a signal having a magnitude corresponding to the detection of green light and infrared light from the signal detection light-receiving unit G1, and a signal having a magnitude corresponding to detection of infrared light from the infrared light-receiving unit G2. . Then, by selectively removing or attenuating the wavelength range of the infrared ray from the output signal of the signal detection light receiving section G1 based on the magnitude of the output signal of the infrared light receiving section G2 (G1-G2), the incident light is reduced. An output signal (information) close to the actual green light component is obtained. The spectral sensitivity characteristic obtained by this signal classification processing is represented by a curve as shown in the right end of FIG. 7A. In this embodiment, since a part of the infrared light is also filtered (separated) by the infrared cut filter 3, a spectral sensitivity curve as shown in FIG. 7B is finally obtained.

図7Aから明らかなように、信号検出用受光部G1において緑色フィルタ16Gの単層膜を透過する光の分光感度曲線は、緑色の波長域および赤外線の波長域のそれぞれに、互いに独立したピークを持つ。したがって、これらのピークが現れた分光感度曲線から緑色の波長域にピークを有する山形の曲線を分離すれば、赤外線に由来するとみなしてよい山形の曲線が明確に残ることになる。すなわち、この実施形態によれば、赤外線受光部G2において、緑色の波長域の光を赤色フィルタ16Rで分離することで、図7Aの赤外線受光部G2の分光感度曲線で示されるように、赤外線を簡単に判別することができる。
(3)赤色(Red)特性
一方、赤色受光部2Rに関しては、前述の青色受光部2Bおよび緑色受光部2Gの場合とは異なり、図8Aの左端に示されるように、信号検出用受光部R1において赤色フィルタ16Rの単層膜を透過する光の分光感度曲線は、赤色の波長域および赤外線の波長域のそれぞれに、明確に独立したピークを持つわけではない。したがって、赤外線受光部R2,R3において、青色フィルタ16Bまたは緑色フィルタ16Gを用いて赤色の光を単に分離するやり方では、赤外線を選択的に判別することは難しい。そこで、この実施形態では、光の波長が長いほど半導体基板8における透過深さが深くなるという関係を利用している。
As is clear from FIG. 7A, the spectral sensitivity curve of the light transmitted through the single-layer film of the green filter 16G in the signal detection light-receiving portion G1 has independent peaks in the green wavelength region and the infrared wavelength region, respectively. Have. Therefore, if the peak-shaped curve having a peak in the green wavelength region is separated from the spectral sensitivity curve in which these peaks appear, the peak-shaped curve that may be regarded as being derived from infrared rays will remain clearly. That is, according to this embodiment, the infrared light receiving unit G2 separates the light in the green wavelength range by the red filter 16R, thereby reducing the infrared light as shown by the spectral sensitivity curve of the infrared light receiving unit G2 in FIG. 7A. It can be easily determined.
(3) Red (Red) Characteristics On the other hand, the red light receiving unit 2R is different from the blue light receiving unit 2B and the green light receiving unit 2G described above, and as shown at the left end of FIG. In the above, the spectral sensitivity curve of the light transmitted through the single-layer film of the red filter 16R does not have clearly independent peaks in each of the red wavelength region and the infrared wavelength region. Therefore, it is difficult to selectively distinguish infrared light by a method of simply separating red light using the blue filter 16B or the green filter 16G in the infrared light receiving units R2 and R3. Therefore, this embodiment utilizes the relationship that the longer the wavelength of light, the deeper the transmission depth in the semiconductor substrate 8.

すなわち、図8Aに示すように、信号検出用受光部R1においては、相対的に浅い位置に形成されたフォトDi2で主に赤色の光が検出される。フォトDi2で検出することによって、赤外線よりも波長が短い赤色の光を良好に検出することができる。
一方、赤外線受光部R2,R3によって、信号検出用受光部R1の赤外帯域に近い分光特性を作り出す。具体的には、赤外線受光部R2のフォトDi3で赤色の光および赤外線が検出される。一方、赤外線受光部R3のフォトDi3では、赤色の光が緑色フィルタ16Gで選択的に阻止され、信号検出用受光部R1で検出された赤外線と同レベルの赤外線のみが検出される。信号検出用受光部R1の赤外線と同レベルの赤外線の検出は、赤外線受光部R3の面積を赤外線受光部R2よりも若干(10〜20%程度)小さくし、また、カラーフィルタの素材を変えることによって可能となる。そして、信号検出用受光部R1の出力信号から赤外線の波長域分を、赤外線受光部R2および赤外線受光部R3の組み合わせによって得られた情報に基づいて選択的に排除または減弱することで(R1−(R2−R3))、入射光の実際の赤色の光成分に近い出力信号(情報)が得られる。この信号の分別処理によって得られる分光感度特性を曲線で示すと、図8Aの下段の通りとなる。この実施形態では、さらに、赤外線カットフィルタ3によっても赤外線の一部がフィルタリング(分離)されるので、最終的には、図8Bに示すような分光感度曲線が得られる。
That is, as shown in FIG. 8A, in the signal detection light receiving unit R1, mainly red light is detected by the photo Di2 formed at a relatively shallow position. By detecting with the photo Di2, red light having a shorter wavelength than infrared light can be detected favorably.
On the other hand, the infrared light receiving units R2 and R3 create spectral characteristics close to the infrared band of the signal detection light receiving unit R1. Specifically, red light and infrared light are detected by the photo Di3 of the infrared light receiving unit R2. On the other hand, in the photo Di3 of the infrared light receiving portion R3, red light is selectively blocked by the green filter 16G, and only infrared light of the same level as the infrared light detected by the signal detecting light receiving portion R1 is detected. In order to detect infrared rays at the same level as the infrared rays of the signal detection light receiving unit R1, the area of the infrared light receiving unit R3 is made slightly smaller (about 10 to 20%) than that of the infrared light receiving unit R2, and the material of the color filter is changed. Enabled by: Then, by selectively removing or attenuating the infrared wavelength range component from the output signal of the signal detection light receiving unit R1 based on information obtained by the combination of the infrared light receiving unit R2 and the infrared light receiving unit R3 (R1- (R2-R3)), an output signal (information) close to the actual red light component of the incident light is obtained. A spectral sensitivity characteristic obtained by this signal classification processing is shown by a curve in the lower part of FIG. 8A. In this embodiment, a part of the infrared light is further filtered (separated) by the infrared cut filter 3, so that a spectral sensitivity curve as shown in FIG. 8B is finally obtained.

以上より、上記の演算処理によって、各受光部2R,2G,2Bにおける赤外線の波長域の感度が低減されるので、光検出装置1の分光感度特性として図9に示すものが得られる。図9から明らかなように、赤外線の波長域の感度をほぼゼロに近い値にまで低減することができている。したがって、本発明の一実施形態に係る光検出装置1を用いれば、少ない誤差で、照度および色温度を精度よく算出することができる。   As described above, the sensitivity in the infrared wavelength range in each of the light receiving units 2R, 2G, and 2B is reduced by the above arithmetic processing, so that the spectral sensitivity characteristics of the photodetector 1 shown in FIG. As is clear from FIG. 9, the sensitivity in the infrared wavelength region can be reduced to a value close to zero. Therefore, with the use of the photodetector 1 according to the embodiment of the present invention, it is possible to accurately calculate the illuminance and the color temperature with a small error.

光検出装置1は、カラーセンサの他、照度センサ、近接センサ等の複数の光学フィルタを有する光センサに適用することができる。さらに、これらの光センサは、たとえば、スマートフォン、携帯電話、デジタルカメラ、カーナビゲーションシステム、ノートパソコン、タブレットPC等に搭載することができる。
具体的に、スマートフォンに適用される場合の形態を次に示す。
The light detection device 1 can be applied to an optical sensor having a plurality of optical filters, such as an illuminance sensor and a proximity sensor, in addition to a color sensor. Furthermore, these optical sensors can be mounted on, for example, smartphones, mobile phones, digital cameras, car navigation systems, notebook computers, tablet PCs, and the like.
Specifically, a form when applied to a smartphone is shown below.

図10は、光検出装置1が用いられる電子機器の一例であるスマートフォン21の外観を示す斜視図である。
スマートフォン21は、扁平な直方体形状の筐体22の内部に電子部品を収納して構成されている。筐体22は表側および裏側に長方形状の一対の主面を有しており、その一対の主面が4つの側面で結合されている。筐体22の一つの主面には、液晶パネルや有機ELパネル等で構成された表示パネル23の表示面が露出している。表示パネル23の表示面は、タッチパネルを構成しており、使用者に対する入力インターフェースを提供している。
FIG. 10 is a perspective view illustrating an external appearance of a smartphone 21 which is an example of an electronic device using the light detection device 1.
The smartphone 21 is configured by housing electronic components inside a flat rectangular parallelepiped housing 22. The housing 22 has a pair of rectangular main surfaces on the front side and the back side, and the pair of main surfaces is connected by four side surfaces. A display surface of a display panel 23 composed of a liquid crystal panel, an organic EL panel, or the like is exposed on one main surface of the housing 22. The display surface of the display panel 23 constitutes a touch panel, and provides an input interface for a user.

表示パネル23は、筐体22の一つの主面の大部分を占める長方形形状に形成されている。表示パネル23の一つの短辺に沿うように、操作ボタン24が配置されている。この実施形態では、複数(3つ)の操作ボタン24が表示パネル23の短辺に沿って配列されている。使用者は、操作ボタン24およびタッチパネルを操作することによって、スマートフォン21に対する操作を行い、必要な機能を呼び出して実行させることができる。   The display panel 23 is formed in a rectangular shape that occupies most of one main surface of the housing 22. The operation buttons 24 are arranged along one short side of the display panel 23. In this embodiment, a plurality (three) of operation buttons 24 are arranged along a short side of the display panel 23. By operating the operation buttons 24 and the touch panel, the user can operate the smartphone 21 to call and execute necessary functions.

表示パネル23の別の一つの短辺の近傍には、スピーカ25が配置されている。スピーカ25は、電話機能のための受話口を提供すると共に、音楽データ等を再生するための音響化ユニットとしても用いられる。スピーカ25の隣には、レンズ窓26が配置されている。レンズ窓26に対向するように、筐体22内に光検出装置1が配置されている。一方、操作ボタン24の近くには、筐体22の一つの側面にマイクロフォン27が配置されている。マイクロフォン27は、電話機能のための送話口を提供するほか、録音用のマイクロフォンとして用いることもできる。   In the vicinity of another short side of the display panel 23, a speaker 25 is arranged. The speaker 25 provides an earpiece for a telephone function and is also used as an acoustic unit for reproducing music data and the like. A lens window 26 is arranged next to the speaker 25. The light detection device 1 is arranged in the housing 22 so as to face the lens window 26. On the other hand, near the operation button 24, a microphone 27 is arranged on one side surface of the housing 22. The microphone 27 provides a mouthpiece for a telephone function, and can also be used as a microphone for recording.

このスマートフォン21は、赤外線の波長域の感度を良好に低減できる光検出装置1を備えているので、スマートフォン21に形成された受光用のレンズ窓26の可視光線透過率が低くても実用可能である。そのため、レンズ窓26のデザインの自由度(色や形状の変更等)を広げることができる。
以上、本発明の実施形態を説明したが、本発明は、他の形態で実施することもできる。
Since the smartphone 21 includes the photodetector 1 that can satisfactorily reduce the sensitivity in the infrared wavelength range, the smartphone 21 is practically usable even when the visible light transmittance of the lens window 26 for light reception formed on the smartphone 21 is low. is there. Therefore, the degree of freedom of the design of the lens window 26 (change of color and shape, etc.) can be increased.
The embodiments of the present invention have been described above, but the present invention can be embodied in other forms.

たとえば、前述の実施形態では、光検出装置1の一部として演算部4が設けられていたが、上記した演算部4による信号分別処理は、光検出装置1外にある論理回路(電子機器のCPU等)で行ってもよい。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
For example, in the above-described embodiment, the calculation unit 4 is provided as a part of the light detection device 1. However, the signal classification processing by the calculation unit 4 is performed by a logic circuit (such as an electronic device) outside the light detection device 1. CPU or the like).
In addition, various design changes can be made within the scope of the matters described in the claims.

1 光検出装置
2R,2G,2B 受光部
3 赤外線カットフィルタ
4 演算部
5R,5G,5B フォトダイオード
6 ADC
7 外部電極
8 半導体基板
8A 表面
9 受光領域
10 クリア受光部
11 フォトダイオード
12 層間絶縁膜
13 第1n型領域
14 第1p型領域
15 第2n型領域
16R 赤色フィルタ
16G 緑色フィルタ
16B 青色フィルタ
Di1 フォトダイオード
Di2 フォトダイオード
Di3 フォトダイオード
R1,G1,B1 信号検出用受光部
R2,R3,G2,B2 赤外線受光部
DESCRIPTION OF SYMBOLS 1 Photodetector 2R, 2G, 2B Light receiving part 3 Infrared cut filter 4 Operation part 5R, 5G, 5B Photodiode 6 ADC
Reference Signs List 7 external electrode 8 semiconductor substrate 8A surface 9 light receiving area 10 clear light receiving section 11 photodiode 12 interlayer insulating film 13 first n-type area 14 first p-type area 15 second n-type area 16R red filter 16G green filter 16B blue filter Di1 photodiode Di2 Photodiode Di3 Photodiode R1, G1, B1 Signal detection light receiving unit R2, R3, G2, B2 Infrared light receiving unit

Claims (15)

半導体基板と、
前記半導体基板上に形成され、第1色の第1フィルタで覆われた第1受光部と、
前記第1フィルタで覆われ、前記第1受光部に隣接する第2受光部と、
第2色の第2フィルタで覆われ、前記第1受光部に隣接する第3受光部と、
前記第2色の第3フィルタで覆われ、前記第1受光部に隣接する第4受光部とを含む、光検出装置。
A semiconductor substrate;
A first light receiving unit formed on the semiconductor substrate and covered with a first filter of a first color;
A second light receiving unit that is covered with the first filter and is adjacent to the first light receiving unit;
A third light receiving unit that is covered with a second filter of a second color and is adjacent to the first light receiving unit;
A photodetector, comprising: a fourth light receiving unit which is covered with the third filter of the second color and is adjacent to the first light receiving unit.
第3色の第4フィルタで覆われ、前記第1受光部に隣接する第5受光部を含む、請求項1に記載の光検出装置。   The light detection device according to claim 1, further comprising a fifth light receiving unit that is covered with a fourth filter of a third color and is adjacent to the first light receiving unit. 前記第4フィルタで覆われ、前記第5受光部に隣接する第6受光部を含む、請求項2に記載の光検出装置。   The photodetector according to claim 2, further comprising a sixth light receiving unit that is covered with the fourth filter and is adjacent to the fifth light receiving unit. 前記第2フィルタで覆われ、前記第4受光部に隣接する第7受光部を含む、請求項1〜3のいずれか一項に記載の光検出装置。   The light detection device according to claim 1, further comprising a seventh light receiving unit that is covered with the second filter and is adjacent to the fourth light receiving unit. 前記半導体基板上の受光領域の中央部を対象の中心として、前記第1受光部および前記第2受光部は、それぞれ、前記第3受光部および前記第4受光部と互いに点対称となる位置に形成されている、請求項1〜4のいずれか一項に記載の光検出装置。   With the center of the light receiving region on the semiconductor substrate as the center of the object, the first light receiving unit and the second light receiving unit are located at positions that are point-symmetric with respect to the third light receiving unit and the fourth light receiving unit, respectively. The photodetector according to claim 1, wherein the photodetector is formed. 前記第1色が緑色であり、前記第2色が赤色である、請求項1〜5のいずれか一項に記載の光検出装置。   The light detection device according to claim 1, wherein the first color is green, and the second color is red. 前記第3色が、青色である、請求項2または3に記載の光検出装置。   The photodetector according to claim 2, wherein the third color is blue. 前記第3受光部は、前記第1受光部と前記第2受光部との間に形成されている、請求項1〜7のいずれか一項に記載の光検出装置。   The photodetector according to any one of claims 1 to 7, wherein the third light receiving unit is formed between the first light receiving unit and the second light receiving unit. 前記第1受光部、前記第2受光部、前記第3受光部および前記第4受光部は、赤外線カットフィルタで覆われている、請求項1〜8のいずれか一項に記載の光検出装置。   The light detection device according to any one of claims 1 to 8, wherein the first light receiving unit, the second light receiving unit, the third light receiving unit, and the fourth light receiving unit are covered with an infrared cut filter. . 前記受光領域の少なくとも一つの角部に配置され、可視光および赤外線を受光可能なクリア受光部を含む、請求項5に記載の光検出装置。   The light detection device according to claim 5, further comprising a clear light receiving unit disposed at at least one corner of the light receiving area and capable of receiving visible light and infrared light. 半導体基板と、
前記半導体基板上に形成され、第1色の第1フィルタで覆われた第1受光部と、
前記第1フィルタで覆われ、第1方向において前記第1受光部に隣接する第2受光部と、
前記第1色の第2フィルタで覆われ、第2方向において前記第1受光部に隣接する第3受光部とを含む、光検出装置。
A semiconductor substrate;
A first light receiving unit formed on the semiconductor substrate and covered with a first filter of a first color;
A second light receiving unit covered with the first filter and adjacent to the first light receiving unit in a first direction;
And a third light receiving unit that is covered with the second filter of the first color and is adjacent to the first light receiving unit in a second direction.
前記第1フィルタは、前記第1受光部上において、前記第1色とは異なる第2色の第3フィルタを覆っている、請求項11に記載の光検出装置。   The photodetector according to claim 11, wherein the first filter covers a third filter of a second color different from the first color on the first light receiving unit. 前記第1受光部、前記第2受光部および前記第3受光部に電気的に接続され、前記第1受光部および前記第2受光部によって得られた情報に基づいて、前記第3受光部の出力信号から赤外線の波長域分を選択的に排除または減弱する演算部を含む、請求項12に記載の光検出装置。   The first light receiving unit, the second light receiving unit, and the third light receiving unit are electrically connected to the third light receiving unit based on information obtained by the first light receiving unit and the second light receiving unit. The photodetector according to claim 12, further comprising a calculation unit that selectively removes or attenuates infrared wavelength components from the output signal. 前記第1受光部、前記第2受光部および前記第3受光部は、赤外線カットフィルタで覆われている、請求項11〜13のいずれか一項に記載の光検出装置。   The photodetector according to any one of claims 11 to 13, wherein the first light receiving unit, the second light receiving unit, and the third light receiving unit are covered with an infrared cut filter. 請求項1〜14のいずれか一項に記載の光検出装置と、
前記光検出装置を収容した筐体とを含む、電子機器。
The light detection device according to any one of claims 1 to 14,
An electronic device, comprising: a housing accommodating the photodetector.
JP2019203281A 2019-11-08 2019-11-08 Light detecting device and electronic apparatus Pending JP2020024228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019203281A JP2020024228A (en) 2019-11-08 2019-11-08 Light detecting device and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019203281A JP2020024228A (en) 2019-11-08 2019-11-08 Light detecting device and electronic apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014251714A Division JP6616571B2 (en) 2014-12-12 2014-12-12 Photodetector and electronic device

Publications (1)

Publication Number Publication Date
JP2020024228A true JP2020024228A (en) 2020-02-13

Family

ID=69618569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019203281A Pending JP2020024228A (en) 2019-11-08 2019-11-08 Light detecting device and electronic apparatus

Country Status (1)

Country Link
JP (1) JP2020024228A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187108A (en) * 2019-05-09 2020-11-19 ローム株式会社 Illuminance sensor, electronic apparatus, and two-dimensional image sensor
CN113552663A (en) * 2021-07-01 2021-10-26 北京极豪科技有限公司 Filter film and preparation method thereof, optical filter, fingerprint identification module and identification method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217079A (en) * 1993-01-19 1994-08-05 Canon Inc Image sensor and picture information processor
JPH07170366A (en) * 1993-10-22 1995-07-04 Canon Inc Filter for image sensor, image sensor and image information processor
JP2003303949A (en) * 2002-04-11 2003-10-24 Canon Inc Imaging device
WO2006003807A1 (en) * 2004-06-30 2006-01-12 Toppan Printing Co., Ltd. Imaging element
JP2008203544A (en) * 2007-02-20 2008-09-04 Toppan Printing Co Ltd Filter for optical sensor and optical sensor
JP2008218670A (en) * 2007-03-02 2008-09-18 Toshiba Corp Solid-state image pickup device
JP2010050369A (en) * 2008-08-25 2010-03-04 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same
JP2010087379A (en) * 2008-10-01 2010-04-15 Brookman Technology Inc Color imaging device
JP2011254266A (en) * 2010-06-01 2011-12-15 Sharp Corp Solid-state image sensor and electronic information apparatus
JP2012064824A (en) * 2010-09-17 2012-03-29 Toshiba Corp Solid state image sensor, method of manufacturing the same, and camera
JP2013016729A (en) * 2011-07-06 2013-01-24 Sony Corp Solid state image pickup device and electronic apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217079A (en) * 1993-01-19 1994-08-05 Canon Inc Image sensor and picture information processor
JPH07170366A (en) * 1993-10-22 1995-07-04 Canon Inc Filter for image sensor, image sensor and image information processor
JP2003303949A (en) * 2002-04-11 2003-10-24 Canon Inc Imaging device
WO2006003807A1 (en) * 2004-06-30 2006-01-12 Toppan Printing Co., Ltd. Imaging element
JP2008203544A (en) * 2007-02-20 2008-09-04 Toppan Printing Co Ltd Filter for optical sensor and optical sensor
JP2008218670A (en) * 2007-03-02 2008-09-18 Toshiba Corp Solid-state image pickup device
JP2010050369A (en) * 2008-08-25 2010-03-04 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same
JP2010087379A (en) * 2008-10-01 2010-04-15 Brookman Technology Inc Color imaging device
JP2011254266A (en) * 2010-06-01 2011-12-15 Sharp Corp Solid-state image sensor and electronic information apparatus
JP2012064824A (en) * 2010-09-17 2012-03-29 Toshiba Corp Solid state image sensor, method of manufacturing the same, and camera
JP2013016729A (en) * 2011-07-06 2013-01-24 Sony Corp Solid state image pickup device and electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187108A (en) * 2019-05-09 2020-11-19 ローム株式会社 Illuminance sensor, electronic apparatus, and two-dimensional image sensor
CN113552663A (en) * 2021-07-01 2021-10-26 北京极豪科技有限公司 Filter film and preparation method thereof, optical filter, fingerprint identification module and identification method

Similar Documents

Publication Publication Date Title
JP6616571B2 (en) Photodetector and electronic device
TWI465979B (en) Touch panel
US11121167B2 (en) Back side illumination image sensors and electronic device including the same
JP7326572B2 (en) Optical sensors and electronics
KR20120062284A (en) Light sensing circuit, method of fabricating the light sensing circuit, and optical touch panel including the light sensing circuit
JP6223779B2 (en) Photodetector and electronic device
JP2020024228A (en) Light detecting device and electronic apparatus
JP6892745B2 (en) Photodetectors and electronic devices
TW202040341A (en) Optical fingerprint detecting system
CN113494960B (en) Optical sensor and electronic device
TW201222364A (en) Optical touch sensing unit and touch display panel
WO2019119245A1 (en) Optical path modulator and manufacturing method, image recognition sensor and electronic device
TWI732186B (en) Under-screen sensing and display device
JP4432837B2 (en) Semiconductor optical sensor device
JP7187260B2 (en) Optical sensors and electronics
JP5625707B2 (en) SEMICONDUCTOR DEVICE, ELECTRONIC DEVICE, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
KR20160025320A (en) Staked image sensor
CN111354750A (en) Backside illuminated image sensor with infrared filter
KR102677769B1 (en) Back side illumination image sensors and electronic device including the same
JP2023074252A (en) Photosensor, and electronic apparatus
JP2023039247A (en) Optical sensors and electronics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210902