JP2020023190A - Laminated molded body excellent in bending rigidity and sound absorbency - Google Patents

Laminated molded body excellent in bending rigidity and sound absorbency Download PDF

Info

Publication number
JP2020023190A
JP2020023190A JP2019198165A JP2019198165A JP2020023190A JP 2020023190 A JP2020023190 A JP 2020023190A JP 2019198165 A JP2019198165 A JP 2019198165A JP 2019198165 A JP2019198165 A JP 2019198165A JP 2020023190 A JP2020023190 A JP 2020023190A
Authority
JP
Japan
Prior art keywords
polymer
melting point
fiber
resin plate
reinforced resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019198165A
Other languages
Japanese (ja)
Other versions
JP6915894B2 (en
Inventor
卓也 上野山
Takuya Uenoyama
卓也 上野山
長谷川 健二
Kenji Hasegawa
健二 長谷川
育男 武田
Ikuo Takeda
育男 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015237622A external-priority patent/JP6633374B2/en
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2019198165A priority Critical patent/JP6915894B2/en
Publication of JP2020023190A publication Critical patent/JP2020023190A/en
Application granted granted Critical
Publication of JP6915894B2 publication Critical patent/JP6915894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a laminated molded body that combines weight saving with bending rigidity/sound absorbency without using a material of high specific gravity such as a glass fiber.CONSTITUTION: The molded body is formed by laminating and integrating a fiber-reinforced resin plate and solid cotton. The fiber-reinforced resin plate is composed of a high melting point polymer "a" and a low melting point polymer "b", wherein the low melting point polymer "b" is a matrix resin in which continuous fibers made of the high melting point polymer "a" are arranged. The polymers "a" and "b" composing the fiber-reinforced resin plate are each one of polyethylene terephthalate, polybutylene terephthalate, a polyamide-based polymer, a polyolefin-based polymer, and a copolymer thereof. The solid cotton is formed by stacking many fibers made of a high melting point polymer "c" and a low melting point polymer "d". The fiber-reinforced resin plate and the solid cotton adhere to each other and are integrated to form the laminated compact by melting and solidifying their respective low melting point polymers on a lamination surface.SELECTED DRAWING: Figure 1

Description

本発明は、特に、自動車の内装材として好適に用いることができる積層成型体である。内装材としては、自動車内の天井材、ダッシュボード、床材あるいはトランクルーム等が挙げられる。   The present invention is particularly a laminated molded article that can be suitably used as an interior material of an automobile. Examples of the interior material include a ceiling material, a dashboard, a floor material, a trunk room, and the like in an automobile.

自動車の内装材には車両重量の軽量化の観点から、プラスチック材料が使用されている。また、軽量化の他に、吸音性、断熱性等に関する要求性能も高くなり、このような要求性能を満たすために、主体繊維とバインダー繊維を熱接着させた固綿を用いることが提案されている。   Plastic materials are used for interior materials of automobiles from the viewpoint of reducing the weight of vehicles. In addition to weight reduction, the required performance related to sound absorption, heat insulation, etc. is also increased, and in order to satisfy such required performance, it has been proposed to use solid cotton obtained by thermally bonding a main fiber and a binder fiber. I have.

例えば、特許文献1には、主体繊維と鞘部のバインダー成分が、テレフタル酸を酸成分とし、エチレングリコールと1,4−ブタンジオールをジオール成分とした共重合ポリエステルから成るバインダー繊維から構成され、繊維同士の交点がバインダー繊維のバインダー成分によって熱接着されてなる固綿が提案されている。また、特許文献2には、体積の10%〜80%が中空のポリアミド樹脂繊維またはポリエステル樹脂繊維から選ばれた中空繊維とバインダーとして熱硬化性樹脂、熱可塑性樹脂繊維から選ばれる1種以上を含むことを特徴とする自動車用軽量防音材が提案されている。   For example, in Patent Document 1, the main fiber and the binder component of the sheath portion are composed of binder fibers composed of a copolymer polyester having terephthalic acid as an acid component and ethylene glycol and 1,4-butanediol as a diol component, Solid cotton has been proposed in which intersections of fibers are thermally bonded by a binder component of a binder fiber. Further, Patent Document 2 discloses that a hollow fiber selected from hollow polyamide resin fibers or polyester resin fibers in a volume of 10% to 80% and one or more types selected from thermosetting resins and thermoplastic resin fibers as a binder. A lightweight soundproofing material for automobiles characterized by including the same has been proposed.

吸音材料としては、ウレタンフォームやグラスウール、ロックウール板、不織布など、通気性のある連続気泡や細かい繊維状の構造を持つ材料が知られている。これらの材料では、空気がこれらの中で振動・摩擦により、音のエネルギーが熱のエネルギーに変換されるために、吸音性能を発揮するものである。
一般に、固綿の吸音性は固綿の厚みと密度に影響される。固綿の密度が一定の場合は厚みが厚い方が、厚みが一定の場合は密度が大きい方が、吸音特性は高くなることが知られている。さらに軽量化するためには、厚みを薄くするか、密度を小さくする必要がある。しかしながら、密度を小さく、または、厚みを薄くすると固綿の曲げ剛性が小さく、かつ、吸音性も小さくなる。自動車内の天井材、ダッシュボード、床材あるいはトランクルーム等の内装基材に用いる場合、ある程度の曲げ剛性が求められる。固綿の場合、ガラス繊維などの曲げ剛性の大きい繊維を混合する場合があるが、ガラス繊維は比重2.5程度とポリエステルの1.38と比べて高く、固綿自体の重量が重くなるデメリットを有している。
As the sound absorbing material, materials having breathable open cells or a fine fibrous structure such as urethane foam, glass wool, rock wool plate, and nonwoven fabric are known. These materials exhibit sound absorbing performance because air converts sound energy into heat energy due to vibration and friction in the material.
In general, the sound absorption of solid cotton is affected by the thickness and density of the solid cotton. It is known that when the density of the solid cotton is constant, the thicker the thickness, and when the thickness is constant, the higher the density, the higher the sound absorption characteristics. In order to further reduce the weight, it is necessary to reduce the thickness or the density. However, when the density or the thickness is reduced, the bending rigidity of the solid cotton is reduced, and the sound absorption is also reduced. When used as an interior base material such as a ceiling material, a dashboard, a floor material or a trunk room in an automobile, a certain degree of bending rigidity is required. In the case of solid cotton, fibers with high flexural rigidity such as glass fiber may be mixed, but the glass fiber has a specific gravity of about 2.5, which is higher than 1.38 of polyester, and the weight of the solid cotton itself becomes heavy. have.

このように、軽量性と曲げ剛性・吸音性を両立させることは、相反する性能を両立させることである。   As described above, achieving both lightness and flexural rigidity / sound absorption means achieving compatible performances.

特許第4307272号公報Japanese Patent No. 4307272 特許第2893431号公報Japanese Patent No. 2893431

上記したように、軽量性と曲げ剛性・吸音性を両立させることは、相反する性能を両立させることであるが、本発明は、ガラス繊維のような比重の大きい材料を用いずとも、軽量化と曲げ剛性・吸音性とを両立させた積層成型体を提供することを課題とする。   As described above, achieving both lightness and flexural rigidity / sound absorption is to achieve conflicting performance.However, the present invention reduces the weight without using a material having a large specific gravity such as glass fiber. It is an object of the present invention to provide a laminated molded body that achieves a balance between flexural rigidity and sound absorption.

本発明は、上記課題を達成するものであって、以下の構成を要旨とする。   The present invention achieves the above object, and has the following configuration as a gist.

すなわち、本発明は、繊維強化樹脂板と、固綿とが積層一体化してなる成型体であり、
繊維強化樹脂板は、高融点重合体(a)と低融点重合体(b)とにより構成され、低融点重合体(b)がマトリックス樹脂となって、前記マトリックス樹脂中に、高融点重合体(a)からなる繊維が存在し、前記繊維が連続繊維であり、
繊維強化樹脂板を構成する高融点重合体(a)および低融点重合体(b)を構成する重合体が、ポリエチレンテレフタレートまたはポリブチレンテレフタレートであるポリエステル系重合体、ポリアミド系重合体、ポリオレフィン系重合体、およびこれらの共重合体のいずれかであり、
固綿は、多数の繊維が堆積することにより構成され、前記繊維は高融点重合体(c)と低融点重合体(d)とからなり、
繊維強化樹脂板と固綿とは、積層面における低融点重合体(b)および低融点重合体(d)とが溶融固化することにより接着して一体化していることを特徴とする曲げ剛性と吸音性に優れた積層成型体を要旨とする。
That is, the present invention is a molded body obtained by laminating and integrating a fiber-reinforced resin plate and solid cotton,
The fiber reinforced resin plate is composed of a high melting point polymer (a) and a low melting point polymer (b), and the low melting point polymer (b) serves as a matrix resin, and the high melting point polymer is contained in the matrix resin. (A) is present, wherein the fibers are continuous fibers;
The high melting point polymer (a) and the low melting point polymer (b) constituting the fiber reinforced resin plate are polyethylene terephthalate or polybutylene terephthalate, a polyester-based polymer, a polyamide-based polymer, and a polyolefin-based polymer. Coalesce, and any of these copolymers,
The solid cotton is formed by depositing a large number of fibers, and the fibers are composed of a high melting polymer (c) and a low melting polymer (d),
The fiber reinforced resin plate and the solid cotton are bonded and integrated by melting and solidifying the low-melting polymer (b) and the low-melting polymer (d) on the lamination surface, and have a flexural rigidity. The gist of the present invention is a laminated molded article having excellent sound absorbing properties.

以下、本発明について詳細に説明する。
本発明の積層成型体は、繊維強化樹脂板と固綿とが積層一体化してなるものである。本発明において、繊維強化樹脂板は、高融点重合体(a)と低融点重合体(b)とにより構成され、低融点重合体(b)がマトリックス樹脂となって、前記マトリックス樹脂中に、高融点重合体(a)からなる連続繊維が存在する。マトリックス樹脂中に存在する繊維が、いわゆる特定の繊維長を有する短繊維ではなく、特定の繊維長を有しない連続してなる連続繊維である。このような連続繊維間の隙間を埋めるように低融点重合体からなるマトリックス樹脂が存在しており、また言い換えると、母体となるマトリックス樹脂中に連続繊維が均一に存在していることから、樹脂板は、連続繊維よって強化され、曲げ剛性に優れるものとなる。マトリックス樹脂中に存在する連続繊維は、方向性がなくランダムに存在するもの、一定の方向性を有して配列して存在するもののいずれでもよいが、連続繊維が、織物または編物の形態で存在していることが好ましい。マトリックス樹脂中に、織編物の形態で存在することにより布帛の形態で存在することとなり、布帛としての強度等の機能が付加される。また、織物の形態であれば、連続繊維が経糸および緯糸として略直交した2方向に配列するため、寸法安定性が良好となり、強度も向上する。また、編物の形態であれば、連続繊維はループを構成するため、積層成型体を所定の形状に立体成型する場合に、追随性が良好となり、立体成型性に優れる。
Hereinafter, the present invention will be described in detail.
The laminated molded article of the present invention is obtained by laminating and integrating a fiber reinforced resin plate and solid cotton. In the present invention, the fiber-reinforced resin plate is composed of a high-melting polymer (a) and a low-melting polymer (b), and the low-melting polymer (b) serves as a matrix resin. There are continuous fibers made of the high melting point polymer (a). The fibers present in the matrix resin are not continuous fibers having a specific fiber length but continuous fibers having no specific fiber length. There is a matrix resin made of a low-melting polymer so as to fill the gaps between such continuous fibers, and in other words, since the continuous fibers are uniformly present in the matrix resin serving as the matrix, the resin The board is reinforced by continuous fibers and has excellent flexural rigidity. The continuous fibers present in the matrix resin may be randomly present without directionality or may be present with a certain direction, but the continuous fibers are present in the form of a woven or knitted fabric. Is preferred. By being present in the form of a woven or knitted fabric in the matrix resin, it is present in the form of a fabric, and functions such as strength of the fabric are added. In the case of a woven fabric, continuous fibers are arranged in two directions substantially orthogonal to each other as warps and wefts, so that dimensional stability is improved and strength is improved. In the case of a knitted product, the continuous fiber forms a loop, so that when the laminated molded article is three-dimensionally molded into a predetermined shape, the followability is good and the three-dimensional moldability is excellent.

繊維強化樹脂板を構成する高融点重合体(a)および低融点重合体(b)に用いる重合体は、ポリエチレンテレフタレートまたはポリブチレンテレフタレートのポリエステル系重合体、ナイロン6やナイロン6,6などのポリアミド系重合体、ポリエチレンやポリプロピレンなどのポリオレフィン系重合体、およびこれらの共重合体のいずれかである。なかでも、高融点重合体(a)および低融点重合体(b)のいずれもがポリエステル系重合体により構成されることが好ましく、さらには、高融点重合体(a)としてポリエチレンテレフタレート、低融点重合体(b)として共重合ポリエステルとする組み合わせが、製糸性、製織性・製編性の観点から、また、固綿との積層一体化の際の加工性の観点から好ましい。   The polymer used for the high melting point polymer (a) and the low melting point polymer (b) constituting the fiber reinforced resin plate is a polyester polymer such as polyethylene terephthalate or polybutylene terephthalate, or a polyamide such as nylon 6 or nylon 6,6. Or a polyolefin-based polymer such as polyethylene or polypropylene, and a copolymer thereof. Above all, it is preferable that both the high melting point polymer (a) and the low melting point polymer (b) are composed of a polyester polymer. Further, as the high melting point polymer (a), polyethylene terephthalate and low melting point polymer are used. The combination of a copolymer polyester as the polymer (b) is preferable from the viewpoints of the spinning properties, the weaving properties and the knitting properties, and from the viewpoint of the processability upon lamination and integration with the solid cotton.

高融点重合体(a)と低融点重合体(b)の比率は、質量比率で、高融点重合体/低融点重合体=30/70〜90/10の範囲がよく、好ましくは40/60〜80/20の範囲とする。高融点重合体の比率を30質量%以上とすることにより、強化繊維の役割を果たすことができ、一方、高融点重合体の比率を90質量%以下とすることにより、母体であるマトリックス樹脂の割合が少なくなり過ぎず、強化繊維間にマトリックス樹脂を均一に存在させて、樹脂板としての形態を維持させることができる。   The ratio of the high melting point polymer (a) to the low melting point polymer (b) is preferably in the range of 30/70 to 90/10 by weight, and more preferably 40/60. 8080/20. By setting the proportion of the high-melting polymer to 30% by mass or more, it can serve as a reinforcing fiber. On the other hand, by setting the proportion of the high-melting polymer to 90% by mass or less, The ratio does not become too small, and the matrix resin can be uniformly present between the reinforcing fibers to maintain the form as a resin plate.

本発明における繊維強化樹脂板は、以下の方法により得る。すなわち、高融点重合体(a)と低融点重合体(b)とによって構成される連続繊維からなる布帛を準備し、熱処理を施すことにより、高融点重合体は当初の繊維形態を維持させたまま低融点重合体を溶融させる。そうすると、溶融した低融点重合体を母体とし、かつ母体中に高融点重合体よりなる連続繊維が均一に存在し、高融点重合体からなる連続繊維が強化材として機能する繊維強化樹脂板が得られるのである。   The fiber reinforced resin plate of the present invention is obtained by the following method. That is, a fabric composed of continuous fibers composed of the high-melting polymer (a) and the low-melting polymer (b) was prepared and subjected to heat treatment, whereby the high-melting polymer maintained its original fiber form. The low melting polymer is melted as it is. Then, a fiber-reinforced resin plate is obtained in which the molten low-melting-point polymer is a matrix, and continuous fibers of the high-melting-point polymer are uniformly present in the matrix, and the continuous fibers of the high-melting-point polymer function as a reinforcing material. It is done.

高融点重合体(a)と低融点重合体(b)によって構成される連続繊維からなる布帛としては、高融点重合体(a)からなる単相の連続繊維と低融点重合体(b)からなる単相の連続繊維とからなる布帛、高融点重合体(a)と低融点重合体(b)とを複合してなる複合型の連続繊維を用いた布帛、あるいは、単相の連続繊維と複合型の連続繊維とを併用したもの等が挙げられる。得られる樹脂板において、母体である低融点重合体と高融点重合体からなる強化繊維とを、より均一に存在させるためには、複合型の連続繊維を用いることが好ましい。複合型としては、低融点重合体(b)が繊維表面の少なくとも一部を構成していることを要し、芯部に高融点重合体(a)を配し鞘部に低融点重合体(b)を配してなる芯鞘複合型を好ましく用いる。布帛の形態としては、織物、編物、不織布、連続繊維を所望の方向に配列したもの等が挙げられるが、織物または編物を用いることが好ましい。その理由は、上述したように、樹脂板において強化繊維として存在する連続繊維が製編織された布帛であることにより、形態安定性を有し、より曲げ剛性や強度が向上するからである。   As a fabric comprising continuous fibers composed of the high melting point polymer (a) and the low melting point polymer (b), a single-phase continuous fiber composed of the high melting point polymer (a) and the low melting point polymer (b) are used. A single-phase continuous fiber, a fabric using a composite type continuous fiber obtained by combining a high-melting polymer (a) and a low-melting polymer (b), or a single-phase continuous fiber. Examples thereof include those using a composite type continuous fiber in combination. In the obtained resin plate, it is preferable to use a composite type continuous fiber in order to make the low-melting polymer and the high-melting polymer, which are the bases, more uniformly exist. The composite type requires that the low-melting polymer (b) constitutes at least a part of the fiber surface, the high-melting polymer (a) is disposed on the core, and the low-melting polymer ( A core-sheath composite type obtained by disposing b) is preferably used. Examples of the form of the fabric include a woven fabric, a knitted fabric, a non-woven fabric, and a fabric in which continuous fibers are arranged in a desired direction. It is preferable to use a woven fabric or a knitted fabric. The reason for this is that, as described above, the continuous fiber present as the reinforcing fiber in the resin plate is a knitted and woven fabric, so that it has form stability and further improves bending rigidity and strength.

繊維製品を構成する連続繊維の単繊維繊度は、特に限定するものではないが、3.3デシテックス〜17デシテックスの範囲が好ましい。また、マルチフィラメント糸を用いる場合、フィラメント数は24本〜192本の範囲が好ましい。具体的には、280デシテックス/48フィラメント、500デシテックス/48フィラメント、1100デシテックス/96フィラメント、1670デシテックス/192フィラメントなどが挙げられる。   The single fiber fineness of the continuous fiber constituting the fiber product is not particularly limited, but is preferably in the range of 3.3 dtex to 17 dtex. When a multifilament yarn is used, the number of filaments is preferably in the range of 24 to 192. Specifically, 280 dtex / 48 filament, 500 dtex / 48 filament, 1100 dtex / 96 filament, 1670 dtex / 192 filament and the like can be mentioned.

布帛中における高融点重合体(a)と低融点重合体(b)との比率は、上述した樹脂板における比率と同様であって、質量比率で、高融点重合体/低融点重合体=30/70〜90/10の範囲がよく、好ましくは40/60〜80/20の範囲とする。   The ratio between the high-melting polymer (a) and the low-melting polymer (b) in the fabric is the same as the ratio in the resin plate described above, and the mass ratio of the high-melting polymer / low-melting polymer = 30 The range is preferably from / 70 to 90/10, more preferably from 40/60 to 80/20.

上記した2種の重合体からなり連続繊維によって構成される布帛を、低融点重合体(b)の結晶融点以上、かつ高融点重合体(a)の結晶融点未満の温度にて、緊張下で熱処理することにより、高融点重合体は当初の繊維形態を維持させたまま低融点重合体を溶融させて、繊維強化樹脂板を得る。熱処理の際に、加圧することにより所定の形状に成型し、熱処理後は冷却する。熱処理の際に無緊張下ではなく、緊張下で行う理由は、熱処理によって被処理物が過度に収縮することを防ぎ、所望の形状に成型された樹脂板を得るためである。緊張下の状態とする方法としては、テンションをかける方法、固定する方法、プレスする方法等が挙げられる。   A fabric composed of continuous fibers made of the above two polymers is subjected to tension at a temperature not lower than the crystal melting point of the low melting polymer (b) and lower than the crystal melting point of the high melting polymer (a). By performing the heat treatment, the low-melting polymer is melted while maintaining the original fiber form of the high-melting polymer to obtain a fiber-reinforced resin plate. At the time of heat treatment, a predetermined shape is formed by pressing, and after the heat treatment, it is cooled. The reason why the heat treatment is performed not under tension but under tension is to prevent the object to be processed from being excessively contracted by the heat treatment and to obtain a resin plate molded into a desired shape. Examples of the method of applying tension include a method of applying tension, a method of fixing, and a method of pressing.

布帛を緊張下での熱処理により樹脂板を得る工程としては、後述する固綿と積層一体化のための工程と同時に行うこと、すなわち、樹脂板にする工程と積層一体化する工程とを
一気に一工程で行ってもよい。また、一気に一工程で行うのではなく、布帛のみを緊張下で熱処理した後に、その熱処理した布帛と固綿とを積層し、再度、緊張下で熱処理を施すことにより、繊維強化樹脂板を得るとともに、繊維強化樹脂板と固綿とを積層一体化させてもよい。2工程を行うことにより、樹脂板と固綿との接着一体化が良好に行われるため好ましい。
The step of obtaining a resin plate by heat-treating the fabric under tension is performed at the same time as the step of laminating and integrating with the cotton, that is, the step of forming the resin plate and the step of laminating and unifying at a stretch. It may be performed in a process. Also, instead of performing in one step at a time, after heat-treating only the fabric under tension, the heat-treated fabric and solid cotton are laminated, and again heat-treated under tension to obtain a fiber-reinforced resin plate. At the same time, the fiber reinforced resin plate and the solid cotton may be laminated and integrated. It is preferable to perform the two steps because the adhesion and integration between the resin plate and the solid cotton are favorably performed.

このように2工程で行う場合は、先の緊張熱処理工程で低融点重合体(b)を完全に溶融させて、繊維強化樹脂板を得たうえで、次の緊張熱処理工程にて、繊維強化樹脂板と固綿とを一体化し、後の工程は接着一体化のためのみの工程としてもよい。また、2工程において、先の緊張熱処理工程では、低融点重合体(b)を完全に溶融させずに、一部溶融させた状態とし、後の緊張熱処理工程で、樹脂板を得るとともに、樹脂板と固綿とを一体化させる工程としてもよい。繊維強化樹脂板は、熱処理前は布帛は繊維製品であり、また、積層一体する固綿も繊維製品であることから、積層面ではアンカー効果が働き、熱処理によって、樹脂板を構成する低融点重合体(b)と固綿を構成する低融点重合体(d)とが溶融軟化し、良好に接着一体化する。   In the case of performing the above two steps, the low-melting polymer (b) is completely melted in the previous tension heat treatment step to obtain a fiber reinforced resin plate, and then the fiber tension reinforcement step is performed in the next tension heat treatment step. The resin plate and the solid cotton may be integrated, and the subsequent process may be a process only for bonding and integration. In the two steps, the low-melting-point polymer (b) is not completely melted but partially melted in the previous strain heat treatment step, and a resin plate is obtained in the subsequent strain heat treatment step, It may be a step of integrating the board and the solid cotton. Before the heat treatment, the fiber reinforced resin plate is a textile product, and the solid cotton laminated is also a fiber product. Therefore, the anchor effect works on the lamination surface, and the low melting point weight constituting the resin plate by the heat treatment. The coalesced (b) and the low-melting polymer (d) constituting the solid cotton melt and soften, and are satisfactorily bonded and integrated.

固綿と積層一体化する際には、緊張下で熱処理を施す際に、加圧することにより、良好に一体化させる。0.1MPa以上の圧力を加えるとよい。   When laminating and integrating with the cotton wool, when heat treatment is performed under tension, it is satisfactorily integrated by pressing. It is preferable to apply a pressure of 0.1 MPa or more.

次に、本発明における固綿について説明する。固綿は、多数の繊維が堆積することにより構成され、固綿を構成する繊維は、高融点重合体(c)と低融点重合体(d)とからなる。固綿を構成する繊維は、特定の繊維長を有する短繊維によって構成されることが好ましく、構成繊維となる短繊維群を用いて、カーディングによりウェブを得、そのウェブを所望の目付となるように積層し、交絡または熱処理等により構成繊維間を結合させて固綿を得る。短繊維の単繊維繊度や繊維長は特に限定されるものではないが、繊度が1.7〜6.6デシテックス、繊維長が44mm〜76mmのものが、固綿の加工性等を考慮すると好ましい。固綿は、クッション性を有するものであり、1mm以上の厚みを有し、厚みの上限は特に限定しないが、20mm未満程度とする。   Next, the solid cotton in the present invention will be described. The solid cotton is constituted by depositing a large number of fibers, and the fibers constituting the solid cotton are composed of a high melting polymer (c) and a low melting polymer (d). The fiber constituting the solid cotton is preferably constituted by short fibers having a specific fiber length, and a short fiber group serving as the constituent fibers is used to obtain a web by carding, and the web has a desired basis weight. In this manner, the constituent fibers are bonded by confounding or heat treatment to obtain solid cotton. The single fiber fineness and fiber length of the short fibers are not particularly limited, but those having a fineness of 1.7 to 6.6 decitex and a fiber length of 44 mm to 76 mm are preferable in consideration of the processability of solid cotton. . The solid cotton has a cushioning property and has a thickness of 1 mm or more, and the upper limit of the thickness is not particularly limited, but is set to about less than 20 mm.

固綿を構成する繊維は、高融点重合体(c)からなる単相繊維、低融点重合体(d)からなる単相繊維、高融点重合体(c)と低融点重合体(d)とを複合してなる複合型繊維が挙げられ、これらの繊維を適宜組み合わせることにより、高融点重合体(c)と低融点重合体(d)とにより固綿が構成される。具体的には、高融点重合体(c)からなる単相繊維と低融点重合体(d)からなる単相繊維とからなる固綿、高融点重合体(c)からなる単相繊維と複合型繊維からなる固綿、複合型繊維のみからなる固綿等が挙げられる。複合型繊維としては、高融点重合体(c)と低融点重合体(d)とがサイドバイサイド型に貼り合わされてなるサイドバイサイド型複合繊維、芯部に高融点重合体(c)を配し鞘部に低融点重合体(d)を配してなる芯鞘複合型繊維が挙げられる。複合型繊維の高融点重合体と低融点重合体の比率は特に限定しないが、質量比率で20/80〜90/10、より好ましくは40/60〜60/40の範囲が好ましい。また、固綿における高融点重合体(c)/低融点重合体(d)の質量比は、上述の繊維強化樹脂板との接着性や、得られる積層成型体のクッション性、吸音性等を考慮して、90/10〜50/50がよい。   The fibers constituting the solid cotton are a single-phase fiber composed of the high melting point polymer (c), a single phase fiber composed of the low melting point polymer (d), a high melting point polymer (c) and a low melting point polymer (d). And a high-melting polymer (c) and a low-melting polymer (d) to form a solid cotton by appropriately combining these fibers. Specifically, solid cotton composed of a single-phase fiber composed of the high-melting-point polymer (c) and a single-phase fiber composed of the low-melting-point polymer (d), composite with a single-phase fiber composed of the high-melting-point polymer (c) Solid cotton composed of a mold fiber, solid cotton composed only of a composite fiber, and the like are included. Examples of the conjugate fiber include a side-by-side composite fiber in which a high-melting polymer (c) and a low-melting polymer (d) are bonded to each other in a side-by-side manner. And a core-sheath composite fiber obtained by disposing the low-melting polymer (d). The ratio between the high-melting polymer and the low-melting polymer of the conjugate fiber is not particularly limited, but is preferably in the range of 20/80 to 90/10, more preferably 40/60 to 60/40 by mass. The mass ratio of the high-melting polymer (c) / low-melting polymer (d) in the solid cotton depends on the adhesiveness to the above-mentioned fiber-reinforced resin plate, the cushioning property and the sound absorbing property of the obtained laminated molded article. Considering this, 90/10 to 50/50 is preferable.

固綿を構成する高融点重合体(c)と低融点重合体(d)としては、ポリエチレンテレフタレートやポリブチレンテレフタレートなどのポリエステル系重合体、ナイロン6やナイロン6,6などのポリアミド系重合体、ポリエチレンやポリプロピレンなどのポリオレフィン系重合体、およびこれらの共重合体が挙げられる。特に、高融点重合体としてポリエチレンテレフタレート、低融点重合体として共重合ポリエステルの組み合わせが好ましい。   Examples of the high-melting polymer (c) and the low-melting polymer (d) constituting the solid cotton include polyester polymers such as polyethylene terephthalate and polybutylene terephthalate, polyamide polymers such as nylon 6 and nylon 6,6, Examples include polyolefin-based polymers such as polyethylene and polypropylene, and copolymers thereof. In particular, a combination of polyethylene terephthalate as the high melting point polymer and a copolymerized polyester as the low melting point polymer is preferred.

ポリエチレンテレフタレート/共重合ポリエステルの組合せにおいて、共重合ポリエステルは、結晶融点を示す結晶性重合体であることが好ましい。共重合ポリエステルの結晶融点は、芯部のポリエチレンテレフタレートの結晶融点を考慮すると160〜200℃の範囲が好ましい。また、共重合ポリエステルの融解熱は16J/g以上が好ましい。融解熱が16J/g以上であると、固綿を構成する繊維同士を熱接着するための熱処理において、加熱により溶融軟化して構成繊維同士を熱接着した後、冷却により降温する際に共重合ポリエステルが速やかに結晶化し、また、十分に配向、結晶化する。このため、固綿と繊維強化樹脂板とを積層一体化するための熱処理の際、加熱により再度昇温させることにより、共重合ポリエステルの結晶融点で、再度溶融接着が可能な固綿となり、繊維強化樹脂板との積層面において良好に接着し一体化する。このような結晶特性を有する共重合ポリエステルとしては、テレフタル酸を酸成分とし、エチレングリコールと1、4−ブタンジオールをジオール成分とした共重合体において、エチレングリコールと1,4−ブタンジオールのモル比を調整することで得ることができる。なお、繊維強化樹脂板を構成する低融点重合体(b)と固綿を構成する低融点重合体(d)との融点の関係は、積層の際の接着性や固綿の繊維形態の維持性、形態安定性を考慮すると、同等もしくは、低融点重合体(b)が低融点重合体(d)よりも低い融点であることが好ましい。また、繊維強化樹脂板を構成する高融点重合体(a)と固綿を構成する高融点重合体(c)は、いずれも低融点重合体(b)および低融点重合体(d)の融点よりも高く、熱処理の際に熱の影響を受けないものあればよい。   In the combination of polyethylene terephthalate / copolyester, the copolyester is preferably a crystalline polymer having a crystalline melting point. The crystal melting point of the copolymerized polyester is preferably in the range of 160 to 200 ° C. in consideration of the crystal melting point of polyethylene terephthalate in the core. The heat of fusion of the copolymerized polyester is preferably 16 J / g or more. When the heat of fusion is 16 J / g or more, in the heat treatment for thermally bonding the fibers constituting the solid cotton, after being melt-softened by heating and thermally bonding the constituent fibers, the copolymerization is performed when the temperature is lowered by cooling. The polyester crystallizes quickly, and is sufficiently oriented and crystallized. For this reason, at the time of heat treatment for laminating and integrating the solid cotton and the fiber reinforced resin plate, the temperature is raised again by heating, so that the solidified cotton can be melt-bonded again at the crystal melting point of the copolymerized polyester, and the fiber becomes Good adhesion and integration on the laminated surface with the reinforced resin plate. Examples of the copolymerized polyester having such crystal characteristics include a copolymer containing terephthalic acid as an acid component, ethylene glycol and 1,4-butanediol as a diol component, and a copolymer of ethylene glycol and 1,4-butanediol. It can be obtained by adjusting the ratio. The relationship between the melting point of the low melting point polymer (b) constituting the fiber reinforced resin plate and the melting point of the low melting point polymer (d) constituting the solid cotton depends on the adhesion during lamination and the maintenance of the fiber form of the solid cotton. In consideration of properties and form stability, it is preferable that the low-melting polymer (b) has the same or lower melting point than the low-melting polymer (d). The high melting point polymer (a) constituting the fiber reinforced resin plate and the high melting point polymer (c) constituting the solid cotton are both the melting point of the low melting point polymer (b) and the low melting point polymer (d). Higher than that, and is not affected by heat during the heat treatment.

次に、本発明の積層成型体の好ましい製造方法について説明する。   Next, a preferred method for producing the laminated molded article of the present invention will be described.

まず、高融点重合体(a)と低融点重合体(b)とによって構成される連続繊維からなる布帛を準備し、布帛を、低融点重合体(b)の融点以上かつ高融点重合体(a)の融点未満の温度にて、緊張下で熱処理する。緊張下で熱処理することにより、被熱処理物が加熱により大きく熱収縮することを防止する。また、この加熱処理により、高融点重合体(a)は繊維形態を維持し、一方、低融点重合体(b)は溶融することによりマトリックス樹脂とし、繊維強化樹脂板とする。布帛は、織編物であることが好ましく、布帛を緊張熱処理により得られる繊維強化樹脂板表面は、平坦なものではなく、織編物の組織に起因する凹凸を有することが好ましい。後述する固綿との接着処理の際に、アンカー効果を発揮するためである。   First, a cloth made of continuous fibers composed of the high melting point polymer (a) and the low melting point polymer (b) is prepared, and the cloth is melted at a temperature higher than or equal to the melting point of the low melting point polymer (b). Heat treatment under tension at a temperature below the melting point of a). By performing the heat treatment under tension, the object to be heat-treated is prevented from being largely thermally contracted by heating. Further, by this heat treatment, the high melting point polymer (a) maintains a fiber form, while the low melting point polymer (b) is melted to form a matrix resin, thereby forming a fiber reinforced resin plate. The fabric is preferably a woven or knitted fabric, and the surface of the fiber reinforced resin plate obtained by subjecting the fabric to tension heat treatment is preferably not flat but has irregularities due to the structure of the woven or knitted fabric. This is because an anchor effect is exerted during the bonding treatment with the solid cotton, which will be described later.

次いで、上記した高融点重合体(c)と低融点重合体(d)により構成される固綿を準備する。   Next, solid cotton composed of the above-mentioned high melting point polymer (c) and low melting point polymer (d) is prepared.

次に、熱処理した布帛(この時点で、すでに繊維強化樹脂板の形態であってもよい。)と、固綿とを重ね合わせ、0.1MPa以上の加圧下で、低融点重合体(b)および低融点重合体(d)のいずれの融点よりも高い温度であり、かつ高融点重合体(a)および高融点重合体(c)のいずれよりも低い温度にて、緊張下で熱処理し、繊維強化樹脂板と固綿との積層面において、低融点重合体(b)と低融点重合体(d)とを溶融させて接着一体化させて、本発明の積層成型体を得る。接着面においては、アンカー効果も伴って界面破壊を起こすことなく、良好に接着一体化する。   Next, the heat-treated cloth (which may be in the form of a fiber-reinforced resin plate at this point) and the solid cotton are overlapped, and the polymer (b) having a low melting point is applied under a pressure of 0.1 MPa or more. And heat treatment under tension at a temperature higher than the melting point of any of the low melting point polymer (d) and lower than any of the high melting point polymer (a) and the high melting point polymer (c); The low-melting polymer (b) and the low-melting polymer (d) are melted and bonded and integrated on the lamination surface of the fiber reinforced resin plate and the solid cotton to obtain the laminated molded article of the present invention. On the bonding surface, good adhesion and integration can be achieved without causing interface destruction accompanied by an anchor effect.

本発明の積層成型体は、繊維強化樹脂板と固綿とが積層一体化してなるものであり、繊維強化樹脂板が、連続繊維からなる布帛を原材料として熱処理により得られたものであることから、軽量でありながら、優れた曲げ剛性を有する。したがって、このような繊維強化樹脂板と固綿とが良好に積層一体化しているため、積層成型体として、優れた曲げ剛性を有するものとなり、またクッション性や吸音性にも優れる。本発明において、積層成型体の厚みは、成型性、吸音性、軽量性を考慮して、2〜20mm、密度は0.05〜0.6g/cmであることが好ましい。 The laminated molded article of the present invention is obtained by laminating and integrating a fiber-reinforced resin plate and solid cotton, and the fiber-reinforced resin plate is obtained by heat treatment using a fabric made of continuous fibers as a raw material. It has excellent bending stiffness while being lightweight. Therefore, since such a fiber-reinforced resin plate and solid cotton are satisfactorily laminated and integrated, the laminated molded article has excellent bending rigidity, and also has excellent cushioning properties and sound absorbing properties. In the present invention, the thickness of the laminated molded body is preferably 2 to 20 mm, and the density is preferably 0.05 to 0.6 g / cm 3 in consideration of moldability, sound absorption and lightness.

本発明の積層成型体は、上記の構成を有するため、自動車の内装材として好適に用いることができ、より具体的には、自動車内の天井材、ダッシュボード、床材あるいはトランクルーム等に適用可能である。また、適用する際には、所望の形状に成型するとよい。   Since the laminated molded article of the present invention has the above configuration, it can be suitably used as an interior material of an automobile, and more specifically, can be applied to a ceiling material, a dashboard, a floor material, a trunk room, and the like in an automobile. It is. When applying, it is good to shape into a desired shape.

本発明によれば、優れた曲げ剛性を有する繊維強化樹脂板と、優れた吸音性能を有する固綿とが、それぞれの層に存在する低融点重合体を介して熱接着させることで、積層一体化したものであり、従来、両立することの難しかった軽量性と曲げ剛性・吸音性との両方に優れる成型体を提供することができる。   According to the present invention, a fiber-reinforced resin plate having excellent bending stiffness and solid cotton having excellent sound absorbing performance are thermally bonded via a low-melting polymer present in each of the layers, so that lamination is performed integrally. It is possible to provide a molded body that is excellent in both light weight and bending rigidity and sound absorption, which were conventionally difficult to achieve both.

吸音性を評価するために用いた評価装置の概略斜視図である。It is a schematic perspective view of the evaluation apparatus used for evaluating sound absorption.

次に本発明について、実施例によって具体的に説明するが、本発明はこれらによって限定されるものではない。なお、実施例に記述した諸物性の評価方法は、次のとおりである。
(1)結晶融点
示差走査熱量測定装置を使用して昇温速度20℃/分で測定した。
(2)融解熱
示差走査熱量測定装置を使用して昇温速度20℃/分で測定した。
(3)目付
長さ:200mm、幅:200mmの大きさに切断した試験片の質量を秤量後、秤量値から1m×1m当たりの質量に換算し、目付とした。
(4)曲げ強度
試料(長さ:80mm、幅:10mm、厚み:4mm)をISO178に従って3点曲げ試験を実施し、最大曲げ強さ(MPa)と曲げ弾性率(MPa)を算出した。なお、圧子は固綿面側、支持台は繊維強化樹脂板側に接するように積層成型体をセットした。
(5)吸音性
200mm×200mmの積層成型体6枚を準備し、図1に示すごとき側面:Aの中心部に直径:50mmの観測窓:B及び上面:Cの中心部に直径:50mmの落下窓:Dが開けられた200mm×200mm×200mmの立方体を作成した。なお、積層成型体の固綿面側が立方体の内側面となるように作成した。
観測者は、右耳を観測窓Bに近づける。次に、上面:Cから高さ:100mmの位置から直径10mmの金属球:Eを落下させる。このとき、観測者に聞こえた音(落下音)を次の4段階で評価した。
4:著しく気になる。
3:気になる。
2:あまり気にならない。
1:全く気にならない。
Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. The methods for evaluating various physical properties described in the examples are as follows.
(1) Crystal melting point The crystal melting point was measured at a heating rate of 20 ° C./min using a differential scanning calorimeter.
(2) Heat of fusion It was measured at a heating rate of 20 ° C./min using a differential scanning calorimeter.
(3) Weight The weight of a test piece cut into a size of 200 mm in length and 200 mm in width was weighed, and then converted from the weighed value to the mass per 1 m x 1 m, and the weight was used as the weight.
(4) A flexural strength sample (length: 80 mm, width: 10 mm, thickness: 4 mm) was subjected to a three-point bending test according to ISO178, and the maximum flexural strength (MPa) and flexural modulus (MPa) were calculated. The laminated molded body was set so that the indenter was in contact with the solid cotton surface side and the support was in contact with the fiber reinforced resin plate side.
(5) Sound Absorption Six laminated molded articles of 200 mm × 200 mm were prepared, and as shown in FIG. Drop window: A 200 mm × 200 mm × 200 mm cube with D opened was prepared. In addition, it was prepared such that the solid cotton side of the laminated molded body was the inner surface of the cube.
The observer brings his right ear closer to observation window B. Next, a metal sphere E having a diameter of 10 mm is dropped from a position at a height of 100 mm from the upper surface C. At this time, the sound (falling sound) heard by the observer was evaluated in the following four stages.
4: Remarkably concerned.
3: I'm worried.
2: I don't care much.
1: I don't care at all.

実施例1
芯部にポリエチレンテレフタレート(結晶融点:255℃)、鞘部にテレフタル酸、ε‐カプロラクトン、エチレングリコールと1、4−ブタンジオールとを構成成分とする共重合ポリエステル(結晶融点:160℃)からなる芯鞘複合型連続繊維からなるマルチフィラメント糸(1670デシテックス/192フィラメント、繊維の芯鞘質量比率:芯/鞘=73/27)を用いて、経糸本数:24本/インチ、緯糸本数:25本/インチの平組織の織物を製織した。
Example 1
The core is composed of polyethylene terephthalate (crystal melting point: 255 ° C.), and the sheath is composed of terephthalic acid, ε-caprolactone, a copolymerized polyester containing ethylene glycol and 1,4-butanediol (crystal melting point: 160 ° C.). Using a multifilament yarn (1670 dtex / 192 filaments, core / sheath mass ratio of fiber: core / sheath = 73/27) composed of core-sheath composite type continuous fibers, the number of warps: 24 / inch, the number of wefts: 25 / Inch plain weave fabric.

該織物を熱プレス機にて、上板・下板の温度:200℃、プレス圧:0.4MPaの条件で、0.5分間熱プレスを行った。熱処理後は、被熱処理物を水平な金属板上に置き、上から温度20℃の精製水が5リットル入ったステンレス製角型バットを載せて加重をかけ、3分間静置し、繊維強化樹脂板を得た。繊維強化樹脂板の厚みは約1mmであった。   The woven fabric was hot-pressed with a hot press under the conditions of a temperature of an upper plate and a lower plate: 200 ° C. and a pressure of 0.4 MPa for 0.5 minutes. After the heat treatment, the object to be heat-treated is placed on a horizontal metal plate, and a stainless steel square vat containing 5 liters of purified water at a temperature of 20 ° C. is placed on the plate from above and subjected to a load, and is allowed to stand for 3 minutes. I got a board. The thickness of the fiber reinforced resin plate was about 1 mm.

次に、固綿を準備した。芯部にポリエチレンテレフタレート(結晶融点:255℃)、鞘部にテレフタル酸、エチレングリコールと1、4−ブタンジオールの共重合ポリエステル(結晶融点:180℃)からなる芯鞘複合短繊維(繊度4.4デシテックス、繊維長51mm、融解熱19.1J/g、芯鞘質量比率:芯/鞘=50/50)を用いて、カード機にてウェブを作成した。このウェブを4枚クロスレイヤーした後、厚み8mmになるように規制しながら、熱風温度200℃、1分間の条件でサーマルスルー処理を行い、繊維同士の交点にて構成繊維同士が熱接着された固綿を得た(目付800g/m)。 Next, solid cotton was prepared. Core-sheath composite short fibers (fineness: 4.degree. C.) composed of polyethylene terephthalate (crystal melting point: 255.degree. C.) in the core and copolymerized polyester of terephthalic acid, ethylene glycol and 1,4-butanediol (crystal melting point: 180.degree. C.) in the sheath. Using a 4 dtex, a fiber length of 51 mm, a heat of fusion of 19.1 J / g, and a core / sheath mass ratio: core / sheath = 50/50), a web was produced with a card machine. After cross-layering four webs, a thermal through treatment was performed at a hot air temperature of 200 ° C. for one minute while regulating the thickness to 8 mm, and the constituent fibers were thermally bonded at the intersections of the fibers. Solid cotton was obtained (basis weight 800 g / m 2 ).

次いで、繊維強化樹脂板と固綿とを重ね、厚み:4mmになるように規制しながら、上板・下板の温度を200℃、プレス圧0.4MPaの条件で1分間熱プレスを行い、繊維強化樹脂板と固綿との積層面において互いに熱接着させた。熱処理後は、積層成型体を水平な金属板上に置き、上から温度20℃の精製水が5リットル入ったステンレス製角型バットを載せて荷重をかけ、3分間静置し、実施例1の積層成型体を得た。   Next, the fiber reinforced resin plate and the solid cotton are stacked, and while being regulated so as to have a thickness of 4 mm, hot pressing is performed for 1 minute at a temperature of the upper plate and lower plate of 200 ° C. and a pressing pressure of 0.4 MPa. The laminated surfaces of the fiber reinforced resin plate and the solid cotton were thermally bonded to each other. After the heat treatment, the laminated molded body was placed on a horizontal metal plate, and a stainless steel square bat containing 5 liters of purified water at a temperature of 20 ° C. was placed from above and a load was applied thereto, and allowed to stand for 3 minutes. Was obtained.

実施例2
実施例1において、平組織の織物を製織する際、連続繊維として、芯部にポリエチレンテレフタレート(結晶融点:255℃)、鞘部にテレフタル酸、ε‐カプロラクトン、エチレングリコールと1、4−ブタンジオールの共重合ポリエステル重合体(結晶融点:160℃)からなる芯鞘型複合連続繊維からなるマルチフィラメント糸(280デシテックス/48フィラメント、繊維の芯鞘質量比率:芯/鞘=73/27)を用いたこと、経糸本数48本/インチ、緯糸本数48本/インチの平組織の織物としたこと以外は、実施例1と同様にして、実施例2の積層成型体を得た。
Example 2
In Example 1, when weaving a flat-textile woven fabric, polyethylene terephthalate (crystal melting point: 255 ° C.) was used as a continuous fiber as a continuous fiber, and terephthalic acid, ε-caprolactone, ethylene glycol and 1,4-butanediol were used as a sheath. Multifilament yarn (280 decitex / 48 filaments, core / sheath mass ratio of fiber: core / sheath = 73/27) composed of a core-sheath type conjugate continuous fiber made of a copolymerized polyester polymer (crystal melting point: 160 ° C.) A laminated molded product of Example 2 was obtained in the same manner as in Example 1, except that the fabric had a flat structure with 48 warps / inch and 48 wefts / inch.

比較例1
実施例1において、織物を熱処理した繊維強化樹脂板を用いず、固綿のみ用いたこと以外は、実施例1と同様にして固綿からなる成型体を得た。詳細には下記のとおりである。
Comparative Example 1
In Example 1, a molded article made of solid cotton was obtained in the same manner as in Example 1, except that only the solid cotton was used without using the fiber-reinforced resin plate obtained by heat-treating the woven fabric. The details are as follows.

ポリエチレンテレフタレート(結晶融点:255℃)、鞘部にテレフタル酸、エチレングリコールと1、4−ブタンジオールの共重合ポリエステル重合体(結晶融点:180℃)からなる芯鞘複合短繊維(繊度4.4デシテックス、繊維長51mm、融解熱19.1J/g、芯鞘質量比率:芯/鞘=50/50)を用いてカード機にてウェブを作成した。このウェブを4枚クロスレイヤーした後、厚み:8mmになるように規制しながら、熱風温度200℃、1分間の条件でサーマルスルー処理を行い、繊維同士の交点にて熱接着した固綿を得た(目付800g/m)。 Core-sheath conjugate short fibers (fineness: 4.4 ° C.) composed of polyethylene terephthalate (crystal melting point: 255 ° C.), and a sheath polyester of terephthalic acid, a copolymerized polyester of ethylene glycol and 1,4-butanediol (crystal melting point: 180 ° C.) A web was created with a card machine using a decitex, a fiber length of 51 mm, a heat of fusion of 19.1 J / g, and a core / sheath mass ratio: core / sheath = 50/50). After cross-layering four webs, a thermal through treatment is performed at a hot air temperature of 200 ° C. for 1 minute while regulating the thickness to 8 mm to obtain solid cotton thermally bonded at the intersection of the fibers. (Basis weight 800 g / m 2 ).

得られた固綿を厚み4mmになるように規制しながら、上板・下板の温度200℃、プレス圧0.4MPaで1分間熱プレスを行い、熱処理後は、水平な金属板に置き、上から温度20℃の精製水が5リットル入ったステンレス角型バットをのせ、3分間静置し、比較例1の固綿からなる成型体を得た。   While controlling the obtained solid cotton to have a thickness of 4 mm, the upper and lower plates are subjected to hot pressing at a temperature of 200 ° C. and a pressing pressure of 0.4 MPa for 1 minute, and after heat treatment, placed on a horizontal metal plate. A stainless steel square vat containing 5 liters of purified water at a temperature of 20 ° C. was placed from above, and allowed to stand for 3 minutes to obtain a molded product made of the solid cotton of Comparative Example 1.

比較例2
実施例1において、繊維強化樹脂板に替えて、厚み2mmのポリエチレンテレフタレート製の平板を用いた。それ以外は、実施例1と同様にして、平板と固綿とを積層して、比較例2の樹脂平板が積層されてなる成型体を得た。
Comparative Example 2
In Example 1, a flat plate made of polyethylene terephthalate having a thickness of 2 mm was used instead of the fiber reinforced resin plate. Otherwise, in the same manner as in Example 1, a flat plate and solid cotton were laminated to obtain a molded product in which the resin flat plates of Comparative Example 2 were laminated.

得られた実施例1、2および比較例1,2の諸物性値の測定結果を表1に示す。   Table 1 shows the measurement results of the obtained physical properties of Examples 1 and 2 and Comparative Examples 1 and 2.



表1から明らかなように、本発明の積層成型体は、固綿のみによって構成される比較例1と同様の吸音性を有しながら、樹脂平板が積層してなる比較例2と同等以上の曲げ強さおよび曲げ弾性を有していることが分かる。したがって、本発明の積層成型体は、密度が小さく、軽量化を図ったものでありながら、曲げ剛性や曲げ強度に優れ、吸音性も優れるものであり、相反する2つの性能を満足するものであった。



As is clear from Table 1, the laminated molded article of the present invention has the same sound absorbing property as Comparative Example 1 composed of only solid cotton, and is equal to or more than Comparative Example 2 in which resin flat plates are laminated. It turns out that it has bending strength and bending elasticity. Therefore, the laminated molded article of the present invention has a low density and a light weight, yet has excellent bending rigidity and bending strength, excellent sound absorption, and satisfies two opposing performances. there were.

Claims (4)

繊維強化樹脂板と、固綿とが積層一体化してなる成型体であり、
繊維強化樹脂板は、高融点重合体(a)と低融点重合体(b)とにより構成され、低融点重合体(b)がマトリックス樹脂となって、前記マトリックス樹脂中に、高融点重合体(a)からなる繊維が存在し、前記繊維が連続繊維であり、
繊維強化樹脂板を構成する高融点重合体(a)および低融点重合体(b)を構成する重合体が、ポリエチレンテレフタレートまたはポリブチレンテレフタレートであるポリエステル系重合体、ポリアミド系重合体、ポリオレフィン系重合体、およびこれらの共重合体のいずれかであり、
固綿は、多数の繊維が堆積することにより構成され、前記繊維は高融点重合体(c)と低融点重合体(d)とからなり、
繊維強化樹脂板と固綿とは、積層面における低融点重合体(b)および低融点重合体(d)とが溶融固化することにより接着して一体化していることを特徴とする曲げ剛性と吸音性に優れた積層成型体。
It is a molded body formed by laminating and integrating a fiber reinforced resin plate and solid cotton.
The fiber reinforced resin plate is composed of a high melting point polymer (a) and a low melting point polymer (b), and the low melting point polymer (b) serves as a matrix resin, and the high melting point polymer is contained in the matrix resin. (A) is present, wherein the fibers are continuous fibers;
The high melting point polymer (a) and the low melting point polymer (b) constituting the fiber reinforced resin plate are polyethylene terephthalate or polybutylene terephthalate, a polyester-based polymer, a polyamide-based polymer, and a polyolefin-based polymer. Coalesce, and any of these copolymers,
The solid cotton is formed by depositing a large number of fibers, and the fibers are composed of a high melting polymer (c) and a low melting polymer (d),
The fiber reinforced resin plate and the solid cotton are bonded and integrated by melting and solidifying the low melting point polymer (b) and the low melting point polymer (d) on the laminating surface, and have a bending rigidity. A laminated molded body with excellent sound absorption.
繊維強化樹脂板において、マトリックス樹脂中に存在する連続繊維は、織物または編物の形態で存在していることを特徴とする請求項1記載の曲げ剛性と吸音性に優れた積層成型体。 2. The laminated molded article according to claim 1, wherein the continuous fibers present in the matrix resin in the fiber reinforced resin plate are present in a woven or knitted form. 高融点重合体(a)、低融点重合体(b)、高融点重合体(c)、低融点重合体(d)のいずれもがポリエステル系重合体であることを特徴とする請求項1または2記載の曲げ剛性と吸音性に優れた積層成型体。 2. The high-melting polymer (a), the low-melting polymer (b), the high-melting polymer (c), and the low-melting polymer (d) are all polyester-based polymers. 2. A laminated molded article excellent in bending rigidity and sound absorption described in 2. 積層成型体の厚みが2〜20mm、密度が0.05〜0.6g/cmであることを特徴とする請求項1〜3のいずれか1項記載の曲げ剛性と吸音性に優れた積層成型体。
The laminate according to any one of claims 1 to 3 , wherein the laminate has a thickness of 2 to 20 mm and a density of 0.05 to 0.6 g / cm3. Molded body.
JP2019198165A 2015-12-04 2019-10-31 Laminated molded body with excellent flexural rigidity and sound absorption Active JP6915894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019198165A JP6915894B2 (en) 2015-12-04 2019-10-31 Laminated molded body with excellent flexural rigidity and sound absorption

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015237622A JP6633374B2 (en) 2015-12-04 2015-12-04 Laminated molded article excellent in bending rigidity and sound absorption and method for producing the same
JP2019198165A JP6915894B2 (en) 2015-12-04 2019-10-31 Laminated molded body with excellent flexural rigidity and sound absorption

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015237622A Division JP6633374B2 (en) 2015-12-04 2015-12-04 Laminated molded article excellent in bending rigidity and sound absorption and method for producing the same

Publications (2)

Publication Number Publication Date
JP2020023190A true JP2020023190A (en) 2020-02-13
JP6915894B2 JP6915894B2 (en) 2021-08-04

Family

ID=69618090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019198165A Active JP6915894B2 (en) 2015-12-04 2019-10-31 Laminated molded body with excellent flexural rigidity and sound absorption

Country Status (1)

Country Link
JP (1) JP6915894B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544146A (en) * 1991-08-06 1993-02-23 Kuraray Co Ltd High-tenacity sheetlike material and its production
US20040097159A1 (en) * 2001-11-07 2004-05-20 Balthes Garry E. Laminated composition for a headliner and other applications
JP2005028864A (en) * 2002-12-18 2005-02-03 Kaneka Corp Laminated surface material and laminate for interior triming material using same
JP2005200789A (en) * 2004-01-15 2005-07-28 Unitica Fibers Ltd Felted cotton for automotive internal trim base material and the internal trim base material
JP2007276476A (en) * 2006-04-05 2007-10-25 Azdel Inc Lightweight composite thermoplastic sheet containing reinforcing skin
US20080008869A1 (en) * 2006-05-19 2008-01-10 Good Brian T Enhanced sound absorption in thermoplastic composites
JP2012152982A (en) * 2011-01-25 2012-08-16 Quadrant Plastic Composites Japan Ltd Laminated sheet and molded body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544146A (en) * 1991-08-06 1993-02-23 Kuraray Co Ltd High-tenacity sheetlike material and its production
US20040097159A1 (en) * 2001-11-07 2004-05-20 Balthes Garry E. Laminated composition for a headliner and other applications
JP2005028864A (en) * 2002-12-18 2005-02-03 Kaneka Corp Laminated surface material and laminate for interior triming material using same
JP2005200789A (en) * 2004-01-15 2005-07-28 Unitica Fibers Ltd Felted cotton for automotive internal trim base material and the internal trim base material
JP2007276476A (en) * 2006-04-05 2007-10-25 Azdel Inc Lightweight composite thermoplastic sheet containing reinforcing skin
US20080008869A1 (en) * 2006-05-19 2008-01-10 Good Brian T Enhanced sound absorption in thermoplastic composites
JP2012152982A (en) * 2011-01-25 2012-08-16 Quadrant Plastic Composites Japan Ltd Laminated sheet and molded body

Also Published As

Publication number Publication date
JP6915894B2 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP7201579B2 (en) planar composite
US7928025B2 (en) Nonwoven multilayered fibrous batts and multi-density molded articles made with same and processes of making thereof
JP5926947B2 (en) Fiber-reinforced resin molded body and vehicle interior material using the same
EP1620254B1 (en) Three-dimensional deep molded structures with enhanced properties
KR102343534B1 (en) Nonwoven fabric and composite sound-absorbing material using this as a skin material
KR102421506B1 (en) Nonwoven laminate
US20070160799A1 (en) Moldable composite article
WO2018110524A1 (en) Method for manufacturing semi-processed product for automobile equipment
JP2002096413A (en) Composite reinforced fiber base material and preform
JP6633374B2 (en) Laminated molded article excellent in bending rigidity and sound absorption and method for producing the same
JP5886063B2 (en) Production method of sound absorbing material
JP2018009256A (en) Method for producing semifinished product for automotive equipment material
JP2020023190A (en) Laminated molded body excellent in bending rigidity and sound absorbency
JP7082966B2 (en) Fiber-reinforced foamed particle molded product and its manufacturing method
JP6841935B2 (en) Automotive undercover including non-woven fabric with improved rigidity and sound absorption, its manufacturing method, and non-woven fabric with improved rigidity and sound absorption.
JP5783842B2 (en) Fiber-reinforced resin molded body and vehicle interior material using the same
JP5855869B2 (en) Fiber-reinforced resin molded body and vehicle interior material using the same
JP6782543B2 (en) Vehicle cushioning material
WO2022168748A1 (en) Non-woven-fabric layered body for sound-absorbing material, and sound-absorbing material
JP7385902B2 (en) Manufacturing method of laminated molded product
KR102604135B1 (en) Nonwoven fabric, laminated nonwoven fabric of this nonwoven fabric, and composite sound-absorbing material using them as a skin material
KR102617463B1 (en) Spunbond non-woven fabrics having sheath-core structure and manufacturing method thereof
US20230286257A1 (en) Sustainable nonwoven laminate for structural part applications
US20240116269A1 (en) Nonwoven laminate
JP2022030954A (en) Thermoforming method of fiber board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210708

R150 Certificate of patent or registration of utility model

Ref document number: 6915894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250