JP2020022524A - Plasma separation device - Google Patents

Plasma separation device Download PDF

Info

Publication number
JP2020022524A
JP2020022524A JP2016240892A JP2016240892A JP2020022524A JP 2020022524 A JP2020022524 A JP 2020022524A JP 2016240892 A JP2016240892 A JP 2016240892A JP 2016240892 A JP2016240892 A JP 2016240892A JP 2020022524 A JP2020022524 A JP 2020022524A
Authority
JP
Japan
Prior art keywords
flow path
blood
plasma separation
separation device
medical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016240892A
Other languages
Japanese (ja)
Inventor
則尚 三木
Norinao Miki
則尚 三木
直也 藤
Naoya Fuji
直也 藤
能士 大田
Takashi Ota
能士 大田
斐南子 大月
Hinako OTSUKI
斐南子 大月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2016240892A priority Critical patent/JP2020022524A/en
Priority to PCT/JP2017/044635 priority patent/WO2018110578A1/en
Publication of JP2020022524A publication Critical patent/JP2020022524A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits

Abstract

To provide a plasma separation device that reduces blood cell components contained in blood.SOLUTION: A plasma separation device 1 comprises: an inflow port 3 into which blood flows; a connection channel connected to the inflow port; a first channel 9 connected to the connection channel; and a second channel 11 connected to the connection channel. The first channel is a channel connected to an inflow port 23 of a medical device body 21, the second channel is a channel connected to an outflow port 25 of the medical device body, and blood in the first channel has a lower ratio of blood cell components than blood in the second channel.SELECTED DRAWING: Figure 1

Description

本発明は,血漿分離装置や,その血漿分離装置を含む医療機器に関する。より具体的に説明すると,本発明は,血液に含まれる血球成分を軽減する血漿分離装置や,その血漿分離装置を含む医療機器に関する。   The present invention relates to a plasma separation device and a medical device including the plasma separation device. More specifically, the present invention relates to a plasma separation device for reducing blood cell components contained in blood and a medical device including the plasma separation device.

人工心臓,人工弁,ステント,血液濾過装置など長期使用の医療機器においては,血液と装置の相互作用により生成される血栓をいかに抑制するかが,信頼性向上のために肝要となる。血栓生成は血球成分の表面付着により開始することが主なため,従来は,医療機器の表面処理により,この問題を解決していた。   In long-term use medical devices such as artificial hearts, artificial valves, stents, and blood filtration devices, it is important to suppress thrombus generated by the interaction between blood and the device in order to improve reliability. Since thrombus formation is mainly initiated by the adhesion of blood cell components to the surface, conventionally, this problem has been solved by surface treatment of medical equipment.

一方,インプラント人工腎臓は,血漿成分から尿素などの老廃物を除去する医療機器である。このため,インプラント人工腎臓内に血漿成分だけ導入できればよい。インプラント人工腎臓内に血漿成分のみを導入した場合,血球成分がないので,血栓が生成されない。血漿を分離する方法として,血漿分離膜を用いた機械的な方法がある。この方法を用いると,フィルタ部分で血栓生成がされるおそれがあり,長期間の使用には適さない。   On the other hand, an implant artificial kidney is a medical device that removes waste products such as urea from plasma components. For this reason, it is sufficient that only the plasma component can be introduced into the implant artificial kidney. When only the plasma component is introduced into the implant artificial kidney, no thrombus is formed because there is no blood cell component. As a method for separating plasma, there is a mechanical method using a plasma separation membrane. If this method is used, thrombus may be formed in the filter part, and is not suitable for long-term use.

一方,下記非特許文献1(T.Kobayashi, S. Konishi,: “ Microfluidic chip with serially connected filters for improvement of collection efficiency in blood plasma separation”, Sensors & Actuators: B. Chemical, pp.1176-1183, (2012.10))において,マイクロ流路による血漿分離技術が提案されている。この技術は,微量の血液を用いたワンチップでの血液検査を行うためのものであり,生体内における血漿分離には,適さない。   On the other hand, the following non-patent document 1 (T. Kobayashi, S. Konishi ,: “Microfluidic chip with serially connected filters for improvement of collection efficiency in blood plasma separation”, Sensors & Actuators: B. Chemical, pp. 1176-1183, ( 2012.10)), a plasma separation technology using a microchannel is proposed. This technique is for performing a one-chip blood test using a small amount of blood, and is not suitable for in vivo plasma separation.

T.Kobayashi, S. Konishi,: “ Microfluidic chip with serially connected filters for improvement of collection efficiency in blood plasma separation”, Sensors & Actuators: B. Chemical, pp.1176-1183, (2012.10)T. Kobayashi, S. Konishi ,: “Microfluidic chip with serially connected filters for improvement of collection efficiency in blood plasma separation”, Sensors & Actuators: B. Chemical, pp.1176-1183, (2012.10)

本発明は,生体内において血液から血球成分を軽減できる血漿分離装置を提供することを目的とする。   An object of the present invention is to provide a plasma separation device capable of reducing blood cell components from blood in a living body.

本発明は,医療機器本体に流入する血球成分を軽減することで,医療機器本体を長期間利用できるようにした医療機器を提供することを目的とする。   An object of the present invention is to provide a medical device that can use the medical device main body for a long period of time by reducing blood cell components flowing into the medical device main body.

本発明は,基本的には,医療機器本体に血液が流入される前に,比較的簡易な装置により血球成分を軽減することで,医療機器本体内に血栓が生ずる事態を防止でき,医療機器の寿命を延ばすことができるという知見に基づくものである。   The present invention basically prevents blood clots from forming in a medical device main body by reducing blood cell components by a relatively simple device before blood flows into the medical device main body. Is based on the finding that the life of the steel can be extended.

本発明の血漿分離装置1は,血液に含まれる血球成分を軽減するための装置である。この血漿分離装置1は,
血液が流入する流入口3と,
流入口3と接続された接続流路5と,
接続流路5に接続された第1の流路9と,
接続流路5に接続された第2の流路11と,を有する。
第1の流路9は,医療機器本体21の流入口23と接続される流路である。
第2の流路11は,医療機器本体21の流出口25と接続される流路である。
そして,第1の流路9中の血液は,第2の流路11中の血液より血球成分の割合が少ない。
The plasma separation device 1 of the present invention is a device for reducing blood cell components contained in blood. This plasma separation device 1
An inlet 3 into which blood flows,
A connection flow path 5 connected to the inflow port 3,
A first flow path 9 connected to the connection flow path 5,
A second flow path 11 connected to the connection flow path 5.
The first flow path 9 is a flow path connected to the inflow port 23 of the medical device main body 21.
The second flow path 11 is a flow path connected to the outlet 25 of the medical device main body 21.
The blood in the first flow path 9 has a smaller proportion of blood cell components than the blood in the second flow path 11.

この血漿分離装置1は,医療機器本体21に流入する血液の血球成分が少なくなっていることが好ましい。具体的な例は,第1の流路9から医療機器本体21の流入口23へ流入血液のヘマトクリット値が,医療機器本体21の流出口25と接続される際の第2の流路11の血液のヘマトクリット値より(5%以上)低減するものである。   In the plasma separation device 1, it is preferable that the blood cell component of the blood flowing into the medical device main body 21 is reduced. As a specific example, the hematocrit value of the blood flowing from the first flow path 9 to the inflow port 23 of the medical device main body 21 is the same as that of the second flow path 11 when the hematocrit value is connected to the outflow port 25 of the medical device main body 21. It is lower than the hematocrit value of blood (5% or more).

接続流路5は,円周部7を有するものであってもよい。この場合,第1の流路9は,接続流路5の内周側に接続される。そして,円周部7により接続流路5の外側方向に血球成分が移動することで,第1の流路9から流出する血液に含まれる血球成分が減少する。円周部7の例は,直径又は長径が10mm以上80mm以下となる弧状部分,円状部分又はらせん状部分を有するものである。   The connection flow path 5 may have a circumferential portion 7. In this case, the first flow path 9 is connected to the inner peripheral side of the connection flow path 5. Then, the blood cell component moves to the outside of the connection flow path 5 by the circumferential portion 7, so that the blood cell component contained in the blood flowing out of the first flow path 9 decreases. Examples of the circumferential portion 7 include an arc-shaped portion, a circular portion, or a spiral portion having a diameter or a major axis of 10 mm or more and 80 mm or less.

流入口3,接続流路5,第1の流路9,及び第2の流路11は,例えば,直径又は長軸が2mm以上8mm以下の円状,楕円状,又は矩形状の断面を有する流路を有する。   The inflow port 3, the connection flow path 5, the first flow path 9, and the second flow path 11 have, for example, a circular, elliptical, or rectangular cross section having a diameter or a long axis of 2 mm or more and 8 mm or less. It has a channel.

この血漿分離装置1は,生体外で用いるものであってもよいし,生体内に埋め込まれるインプラント型の血漿分離装置であってもよい。   The plasma separation device 1 may be used outside a living body, or may be an implant-type plasma separation device embedded in a living body.

本発明の医療機器は,先に説明した血漿分離装置1と医療機器本体21とを含む医療機器である。
そして,医療機器本体21は,
第1の流路9と接続された流入口23と,
流入口23から流入した血液が医療機器本体21を経て流出される流出口25であって,第2の流路11と接続されたものを含む。
The medical device of the present invention is a medical device including the plasma separation device 1 described above and the medical device main body 21.
And the medical device main body 21
An inlet 23 connected to the first flow path 9,
Outflow port 25 through which blood that has flowed in through inflow port 23 flows out through medical device main body 21, and includes an outflow port 25 that is connected to second flow path 11.

医療機器本体21の例は,生体内に埋め込まれるインプラント型人工腎臓である。   An example of the medical device main body 21 is an implant-type artificial kidney implanted in a living body.

本発明は,生体内において血液から血球成分を減らすことができる血漿分離装置や,そのような血漿分離装置を含む医療機器を提供できる。   The present invention can provide a plasma separation device capable of reducing blood cell components from blood in a living body, and a medical device including such a plasma separation device.

本発明は,医療機器本体に導入される血球成分を減らすことができるので,医療機器本体の血栓を抑制でき,これにより医療機器の連続使用期間を延長させることができる。   ADVANTAGE OF THE INVENTION Since the blood cell component introduce | transduced into a medical device main body can be reduced according to this invention, the thrombus of the medical device main body can be suppressed and the continuous use period of a medical device can be extended.

図1は,本発明の血漿分離装置及び医療機器を示すブロック図である。FIG. 1 is a block diagram showing a plasma separation device and medical equipment of the present invention. 図2は,本発明の血漿分離装置の例を示す概念図である。この例では,比重の重い血球成分が接続流路の外周側を移動し,第2の流路へ多く移動する。この血漿分離装置は,基板に流路が設けられている。FIG. 2 is a conceptual diagram showing an example of the plasma separation device of the present invention. In this example, the blood cell component having a high specific gravity moves on the outer peripheral side of the connection flow path, and moves to the second flow path in a large amount. In this plasma separation device, a flow path is provided on a substrate. 図3は,本発明の血漿分離装置の例を示す概念図である。この例では,血球成分が慣性の法則に従い分岐路を直進し第2の流路へ多く移動する。FIG. 3 is a conceptual diagram showing an example of the plasma separation device of the present invention. In this example, the blood cell component travels straight along the branch path in accordance with the law of inertia and moves to the second flow path a lot. 図4は,本発明の血漿分離装置の例を示す概念図である。この例では,第1の流路が複数存在する。また,この例では,血漿分離装置がチューブによって形成されている。FIG. 4 is a conceptual diagram showing an example of the plasma separation device of the present invention. In this example, there are a plurality of first flow paths. In this example, the plasma separation device is formed by a tube. 図5は,本発明の血漿分離装置の例を示す概念図である。この例では,接続流路がらせん状に形成されている。FIG. 5 is a conceptual diagram showing an example of the plasma separation device of the present invention. In this example, the connection flow path is formed in a spiral shape. 図6は,本発明の血漿分離装置の例を示す概念図である。この例では,接続流路の外周に磁石が設置され,第1の流路及び第2の流路にセンサが取り付けられている。FIG. 6 is a conceptual diagram showing an example of the plasma separation device of the present invention. In this example, a magnet is installed on the outer periphery of the connection flow path, and sensors are mounted on the first flow path and the second flow path. 図7は,本発明の接続流路の断面の例を示す概念図である。図7(a)は,接続流路の断面が,角がとられた矩形状のものを示し,図7(b)は,接続流路の断面が,楕円形(又は円形)のものを示し,図7(c)は,接続流路の断面が,外周側に湾曲部が存在する矩形状のものを示し,図7(d)は,接続流路の断面が,外周側に湾曲部が存在し,内周側が内周に近づくにつれ狭くなる形状のものを示す。FIG. 7 is a conceptual diagram showing an example of a cross section of the connection flow channel of the present invention. FIG. 7 (a) shows a cross section of the connection flow path having a rectangular shape with a corner, and FIG. 7 (b) shows a cross section of the connection flow path having an elliptical (or circular) shape. 7 (c) shows a cross section of the connection flow path having a rectangular shape having a curved portion on the outer peripheral side, and FIG. 7 (d) shows a cross section of the connection flow path having a curved portion on the outer peripheral side. It shows a shape that exists and becomes narrower as the inner circumference approaches the inner circumference. 図8は,本発明の血漿分離装置が血液から血漿成分を分離する際の原理の例を示す概念図である。FIG. 8 is a conceptual diagram showing an example of the principle when the plasma separation device of the present invention separates a plasma component from blood. 図9は,インプラント型人工腎臓の例を示す概念図である。FIG. 9 is a conceptual diagram showing an example of an implant type artificial kidney. 図10は,人工腎臓41の構成例を示す。FIG. 10 shows a configuration example of the artificial kidney 41. 図11は,実施例1における設計図である。FIG. 11 is a design diagram in the first embodiment. 図12は,実施例1において測定したヘマトクリット値を示す図面に替るグラフである。FIG. 12 is a graph instead of a drawing showing the hematocrit value measured in Example 1. 図13は,実施例3において製造された血漿分離装置を示す図面に替る写真である。FIG. 13 is a photograph replacing a drawing showing the plasma separation device manufactured in Example 3.

以下,図面を用いて本発明を実施するための形態について説明する。本発明は,以下に説明する形態に限定されるものではなく,以下の形態から当業者が自明な範囲で適宜修正したものも含む。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below, but also includes those appropriately modified by those skilled in the art from the following embodiments.

図1は,本発明の血漿分離装置及び医療機器を示すブロック図である。図2は,本発明の血漿分離装置の例を示す概念図である。図1及び図2に示されるように,この血漿分離装置1は,血液が流入する流入口3と,流入口3と接続された接続流路5と,接続流路5に接続された第1の流路9と,接続流路5に接続された第2の流路11と,を有する。   FIG. 1 is a block diagram showing a plasma separation device and medical equipment of the present invention. FIG. 2 is a conceptual diagram showing an example of the plasma separation device of the present invention. As shown in FIGS. 1 and 2, the plasma separation device 1 includes an inlet 3 into which blood flows, a connection channel 5 connected to the inlet 3, and a first channel 5 connected to the connection channel 5. And the second flow path 11 connected to the connection flow path 5.

そして,本発明の医療機器27は,血漿分離装置1と医療機器本体21を含む。医療機器本体21は,第1の流路9と接続された流入口23と,流入口23から流入した血液が医療機器本体21を経て流出される流出口25であって,第2の流路11と接続されたものを含む。   The medical device 27 of the present invention includes the plasma separation device 1 and the medical device main body 21. The medical device main body 21 includes an inflow port 23 connected to the first flow path 9, and an outflow port 25 through which blood flowing from the inflow port 23 flows out through the medical device main body 21. 11 and those connected to it.

本発明の血漿分離装置1は,血液に含まれる血球成分を軽減するための装置である。すなわち,血漿分離装置1は,医療機器本体に流入する血液に含まれる血球成分(赤血球や白血球)を少なくするための医療機器である。   The plasma separation device 1 of the present invention is a device for reducing blood cell components contained in blood. That is, the plasma separation device 1 is a medical device for reducing blood cell components (red blood cells and white blood cells) contained in blood flowing into the medical device body.

この血漿分離装置1は,医療機器本体21に流入する血液の血球成分が少なくなっていることが好ましい。具体的な例は,第1の流路9から医療機器本体21の流入口23へ流入血液のヘマトクリット値が,医療機器本体21の流出口25と接続される際の第2の流路11の血液のヘマトクリット値より(5%以上,10%以上又は15%以上)低減するものである。ヘマトクリット値の値は,血漿分離装置にセンサが取り付けられている場合は,センサによって測定してもよい。また,ヘマトクリット値の値は,生体に埋め込む前に標準的な血液又は人工血液を用いて,測定してもよい。   In the plasma separation device 1, it is preferable that the blood cell component of the blood flowing into the medical device main body 21 is reduced. As a specific example, the hematocrit value of the blood flowing from the first flow path 9 to the inflow port 23 of the medical device main body 21 is the same as that of the second flow path 11 when the hematocrit value is connected to the outflow port 25 of the medical device main body 21. It is lower than the hematocrit of blood (5% or more, 10% or more, or 15% or more). The value of the hematocrit value may be measured by a sensor if the sensor is attached to the plasma separation device. In addition, the value of the hematocrit value may be measured using standard blood or artificial blood before implantation into a living body.

流入口3は,血漿分離装置1へ生体由来の血液が流入する部位である。血管と流入口を接続する方法は,公知である。血管と流入口を接続する方法の例は,生体内の血管に人工血管を接続し,人工血管の血管と接続しない側に,アタッチメントを取り付けるものである。そして,アタッチメントと流入口とを接続(例えば熱融着)することで,血管と流入口が接続される。このようにして,生体内においても,血管と流入口とを接続し,生体内を循環する血液を血漿分離装置1へ流入させることができる。   The inflow port 3 is a portion into which blood derived from a living body flows into the plasma separation device 1. Methods for connecting a blood vessel and an inlet are known. As an example of a method of connecting a blood vessel and an inflow port, an artificial blood vessel is connected to a blood vessel in a living body, and an attachment is attached to a side of the artificial blood vessel that is not connected to the blood vessel. Then, the blood vessel and the inflow port are connected by connecting the attachment and the inflow port (for example, by heat fusion). Thus, even in the living body, the blood vessel and the inflow port can be connected, and the blood circulating in the living body can flow into the plasma separation device 1.

接続流路5は,流入口3から流入した血液が以下に説明する各部位へ移動する部位である。第1の流路9は,医療機器本体21の流入口23と接続される流路である。第2の流路11は,医療機器本体21の流出口25と接続される流路である。そして,この血漿分離装置1は,第1の流路9中の血液は,第2の流路11中の血液より血球成分の割合が少ない。   The connection flow path 5 is a part where the blood flowing from the inflow port 3 moves to each part described below. The first flow path 9 is a flow path connected to the inflow port 23 of the medical device main body 21. The second flow path 11 is a flow path connected to the outlet 25 of the medical device main body 21. In the plasma separation device 1, the blood in the first flow path 9 has a smaller proportion of blood cell components than the blood in the second flow path 11.

図2の例では,比重の重い血球成分が接続流路の外周側を移動し,第2の流路へ多く移動する。この血漿分離装置は,基板に流路が設けられている。図2に示されるように,接続流路5は,円周部7を有するものであってもよい。この場合,第1の流路9は,接続流路5の内周側に接続される。そして,円周部7により接続流路5の外側方向に血球成分が移動することで,第1の流路9から流出する血液に含まれる血球成分が減少する。円周部7の例は,直径又は長径が10mm以上80mm以下(10mm以上70mm以下,10mm以上50mm以下,15mm以上70mm以下,20mm以上50mm以下でもよい)となる弧状部分,円状部分又はらせん状部分を有するものである。この大きさは,この血漿分離装置が生体内に埋め込まれる場合,対象の大きさに応じてふさわしいものとすればよい。図2に示される例では,基板12に設けられた窪み又は孔が流入口3,接続流路5,第1の流路9,及び第2の流路11を形成する。基板12は,プラスチック(例えば,アクリル,メタクリル樹脂)又は金属(例えば,銅,チタン,ステンレス,アルミニウム,金,白金及びこれらの合金)で製造される。基板12には,医療機器本体21と血漿分離装置1とを接続するための穴14が設けられていてもよい。この基板12は四角形(四角柱)状である。図示しないが,角部分は面取りされている(滑らかなカーブを形成するように加工される)ことが好ましい。この点は,以下同様である。図2に示す例では,円周部7が徐々に半径を小さくしつつ,約1周と半周している。円周部7は,これより多く周回してもよい。   In the example of FIG. 2, the blood cell component having a high specific gravity moves on the outer peripheral side of the connection flow path, and moves much to the second flow path. In this plasma separation device, a flow path is provided on a substrate. As shown in FIG. 2, the connection flow path 5 may have a circumferential portion 7. In this case, the first flow path 9 is connected to the inner peripheral side of the connection flow path 5. Then, the blood cell component moves to the outside of the connection flow path 5 by the circumferential portion 7, so that the blood cell component contained in the blood flowing out of the first flow path 9 decreases. Examples of the circumferential portion 7 include an arc portion, a circular portion, and a spiral shape having a diameter or a major axis of 10 mm or more and 80 mm or less (10 mm or more and 70 mm or less, 10 mm or more and 50 mm or less, 15 mm or more and 70 mm or less, or 20 mm or more and 50 mm or less). It has a portion. This size may be appropriate in accordance with the size of the target when the plasma separation device is implanted in a living body. In the example shown in FIG. 2, the depressions or holes provided in the substrate 12 form the inflow port 3, the connection flow path 5, the first flow path 9, and the second flow path 11. The substrate 12 is made of plastic (for example, acrylic or methacrylic resin) or metal (for example, copper, titanium, stainless steel, aluminum, gold, platinum, or an alloy thereof). The substrate 12 may be provided with a hole 14 for connecting the medical device main body 21 and the plasma separation device 1. The substrate 12 has a quadrangular (quadrangular prism) shape. Although not shown, it is preferable that the corners are chamfered (processed to form a smooth curve). This is the same in the following. In the example shown in FIG. 2, the circumferential portion 7 makes about one and a half turns while gradually reducing the radius. Circumferential portion 7 may go around more than this.

図3は,本発明の血漿分離装置の例を示す概念図である。この例では,血球成分が慣性の法則に従い分岐路を直進し,第2の流路11へ多く移動する。この例では,基板12が六角形状であり,円周部7が弧状である。この例は,円周部7の半径は一定である。   FIG. 3 is a conceptual diagram showing an example of the plasma separation device of the present invention. In this example, the blood cell component travels straight along the branch path according to the law of inertia and moves to the second flow path 11 in a large amount. In this example, the substrate 12 has a hexagonal shape, and the circumferential portion 7 has an arc shape. In this example, the radius of the circumferential portion 7 is constant.

図4は,本発明の血漿分離装置の例を示す概念図である。この例では,第1の流路が複数(2本)存在する。図4に示されるように,第1の流路及び第2の流路は,それぞれ医療機器本体21の流入口23,医療機器本体21の流出口25と接続される流路であれば複数(2本以上)存在しても構わない。また,この例では,血漿分離装置がチューブによって形成されている。このように,血漿分離装置は,基板に形成されたものに限定されない。医療用のチューブは公知であり,公知のチューブを加工して,このような血漿分離装置を製造できる。もちろん,図4に示される血漿分離装置を,基板を用いて実現してもよい。血漿分離装置がチューブによって形成される場合,円周部7の形状が変化しないように,硬質のチューブを用いてもよい。   FIG. 4 is a conceptual diagram showing an example of the plasma separation device of the present invention. In this example, a plurality of (two) first flow paths exist. As shown in FIG. 4, the first flow path and the second flow path are a plurality of flow paths connected to the inflow port 23 of the medical device main body 21 and the outflow port 25 of the medical device main body 21, respectively. (Two or more) may be present. In this example, the plasma separation device is formed by a tube. As described above, the plasma separation device is not limited to the device formed on the substrate. Medical tubes are known, and such a plasma separation device can be manufactured by processing known tubes. Of course, the plasma separation device shown in FIG. 4 may be realized using a substrate. When the plasma separation device is formed by a tube, a hard tube may be used so that the shape of the circumferential portion 7 does not change.

チューブの素材の例は,ポリ塩化ビニル,ポリエチレン,ポリプロピレン,環状ポリオレフィン,ポリスチレン,ポリカーボネート,アクリル樹脂,メタクリル樹脂,アクリルニトリル−ブタジエン−スチレン共重合体,ポリエチレンテレフタレート,ブタジエン−スチレン共重合体,ポリアミド(例えば,ナイロン6,ナイロン6・6,ナイロン6・10,ナイロン12),天然ゴム,ブチルゴム,イソプレンゴム,ブタジエンゴム,スチレン−ブタジエンゴム,シリコーンゴム,種熱可塑性エラストマー,チタン,ステンレス鋼,アルミニウム,銅,及び銅系合金である。   Examples of tube materials include polyvinyl chloride, polyethylene, polypropylene, cyclic polyolefin, polystyrene, polycarbonate, acrylic resin, methacrylic resin, acrylonitrile-butadiene-styrene copolymer, polyethylene terephthalate, butadiene-styrene copolymer, polyamide ( For example, nylon 6, nylon 6,6, nylon 6,10, nylon 12), natural rubber, butyl rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, silicone rubber, seed thermoplastic elastomer, titanium, stainless steel, aluminum, Copper and copper-based alloys.

図5は,本発明の血漿分離装置の例を示す概念図である。この例では,接続流路がらせん状に形成されている。   FIG. 5 is a conceptual diagram showing an example of the plasma separation device of the present invention. In this example, the connection flow path is formed in a spiral shape.

図6は,本発明の血漿分離装置の例を示す概念図である。この例では,接続流路の外周に磁石31が設置され,磁力により赤血球成分が接続流路の外側に引き付けられる。第1の流路9は,接続流路5の内周側(接続流路に対して,磁石が設けられる方と反対側)に接続される。そして,円周部7において接続流路5の外側方向に血球成分が移動することで,第1の流路9から流出する血液に含まれる血球成分が減少する。磁石31の磁力は適宜調整すればよい。磁石は,円周部7を取り囲むように設けられてもよいし,接続流路の全体又は部分に沿って設けられてもよい。また磁石は,第1の流路9及び第2の流路11が分岐する分岐部の直前部分に設けられてもよい。なお,磁石は,円周部7に向いた面のみが解放された磁石を取り囲む収容体に収容されてもよい。そのようにすることで,磁束が,生体内に漏れ出す事態を軽減できる。   FIG. 6 is a conceptual diagram showing an example of the plasma separation device of the present invention. In this example, a magnet 31 is provided on the outer periphery of the connection channel, and the red blood cell component is attracted to the outside of the connection channel by the magnetic force. The first flow path 9 is connected to the inner peripheral side of the connection flow path 5 (on the side opposite to the side where the magnet is provided with respect to the connection flow path). Then, the blood cell component moves in the outer side of the connection flow channel 5 in the circumferential portion 7, so that the blood cell component included in the blood flowing out of the first flow channel 9 decreases. The magnetic force of the magnet 31 may be appropriately adjusted. The magnet may be provided so as to surround the circumferential portion 7 or may be provided along the whole or a part of the connection flow path. In addition, the magnet may be provided immediately before the branch portion where the first flow path 9 and the second flow path 11 branch. The magnet may be housed in a housing surrounding the magnet whose only surface facing the circumferential portion 7 is open. By doing so, the situation where the magnetic flux leaks into the living body can be reduced.

図6に示されるように,第1の流路9及び第2の流路11のいずれか又は両方にセンサ33,35が取り付けられ,血球成分の量や血液の流量がセンシングされてもよい。   As shown in FIG. 6, sensors 33 and 35 may be attached to one or both of the first flow path 9 and the second flow path 11 to sense the amount of a blood cell component or the flow rate of blood.

図7は,本発明の接続流路の断面の例を示す概念図である。図7(a)は,接続流路の断面が,角がとられた矩形状のものを示し,図7(b)は,接続流路の断面が,楕円形(又は円形)のものを示し,図7(c)は,接続流路の断面が,外周側に湾曲部が存在する矩形状のものを示し,図7(d)は,接続流路の断面が,外周側に湾曲部が存在し,内周側が内周に近づくにつれ狭くなる形状のものを示す。接続流路の断面形状が非対称のものは,接続流路内の血液の流れが非対称となり,血球成分と血漿成分が分離しやすくなる。流入口3,接続流路5,第1の流路9,及び第2の流路11は,例えば,直径又は長軸が2mm以上8mm以下(又は3mm以上7mm以下,3mm以上5mm以下,2mm以上4mm以下)の円状,楕円状,又は矩形状の断面を有する流路を有する。   FIG. 7 is a conceptual diagram showing an example of a cross section of the connection flow channel of the present invention. FIG. 7 (a) shows a cross section of the connection flow path having a rectangular shape with a corner, and FIG. 7 (b) shows a cross section of the connection flow path having an elliptical (or circular) shape. 7 (c) shows a cross section of the connection flow path having a rectangular shape having a curved portion on the outer peripheral side, and FIG. 7 (d) shows a cross section of the connection flow path having a curved portion on the outer peripheral side. It shows a shape that exists and becomes narrower as the inner circumference approaches the inner circumference. When the cross-sectional shape of the connection flow path is asymmetric, the blood flow in the connection flow path becomes asymmetric, and the blood cell component and the plasma component are easily separated. The inflow port 3, the connection flow path 5, the first flow path 9, and the second flow path 11 have, for example, a diameter or a long axis of 2 mm or more and 8 mm or less (or 3 mm or more and 7 mm or less, 3 mm or more and 5 mm or less, 2 mm or more). (4 mm or less) having a circular, elliptical, or rectangular cross section.

図8は,本発明の血漿分離装置が血液から血漿成分を分離する際の原理の例を示す概念図である。図8に示される例では,比重が重い血球成分が,接続流路の外側(外周側)に偏在しやすい状態となる。この状態で,接続流路の内側(内周側)に第1の流路9を設けることで,第1の流路9に流入する血液に含まれる血漿成分を軽減できる。   FIG. 8 is a conceptual diagram showing an example of the principle when the plasma separation device of the present invention separates a plasma component from blood. In the example shown in FIG. 8, a blood cell component having a high specific gravity is likely to be unevenly distributed outside (outer peripheral side) of the connection flow path. In this state, by providing the first flow path 9 inside the connection flow path (inner side), the plasma component contained in the blood flowing into the first flow path 9 can be reduced.

この血漿分離装置1は,生体外で用いるものであってもよいし,生体内に埋め込まれるインプラント型の血漿分離装置であってもよい。   The plasma separation device 1 may be used outside a living body, or may be an implant-type plasma separation device embedded in a living body.

本発明の医療機器は,先に説明した血漿分離装置1と医療機器本体21とを含む医療機器である。医療機器本体21の例は,生体内に埋め込まれるインプラント型人工腎臓(血液濾過装置),人工血液循環器及び人工心臓,人工弁,及びステントである。これらの中では,インプラント型人工腎臓(血液濾過装置)が好ましい。図9は,インプラント型人工腎臓(血液濾過装置)の例を示す概念図である。この人工腎臓41は,例えば腎臓機能の低下したヒト,イヌあるいはネコ等の哺乳動物の体内に埋め込んで使用されるインプラント型のものである。この人工腎臓は,血液を濾過し,血中から取り出した濾液を膀胱から又は直接体外に排出させる構造を有する。   The medical device of the present invention is a medical device including the plasma separation device 1 described above and the medical device main body 21. Examples of the medical device main body 21 are an implantable artificial kidney (blood filtration device), an artificial blood circulator and an artificial heart, an artificial valve, and a stent that are implanted in a living body. Among these, an implant-type artificial kidney (blood filtration device) is preferable. FIG. 9 is a conceptual diagram showing an example of an implant-type artificial kidney (blood filtration device). The artificial kidney 41 is of an implant type used by being implanted in the body of a mammal such as a human, a dog or a cat having a reduced renal function. This artificial kidney has a structure in which blood is filtered and a filtrate taken out of the blood is discharged from the bladder or directly out of the body.

図9に例示される人工腎臓41は,六角形の外形形状を有する本体部42を備えている。本体部42は,複数の板状部材を積層して形成された積層構造を有している。そして,本体部42の積層方向一方側の面に,血液入口43と血液出口44と濾液出口45が設けられている。血液入口43は,本体部42内に血液を流入させ,血液出口44は,本体部42内の血液を流出させる。そして,濾液出口45は,本体部42内で濾過されて血液から取り出された濾液を排出する。血液入口43と血液出口44と濾液出口45は,それぞれチューブを接続できるコネクタ形状となっている。   The artificial kidney 41 illustrated in FIG. 9 includes a main body 42 having a hexagonal outer shape. The main body 42 has a laminated structure formed by laminating a plurality of plate members. A blood inlet 43, a blood outlet 44, and a filtrate outlet 45 are provided on one surface of the main body 42 in the stacking direction. The blood inlet 43 allows blood to flow into the main body 42, and the blood outlet 44 allows blood from the main body 42 to flow out. Then, the filtrate outlet 45 discharges the filtrate that has been filtered in the main body 42 and extracted from the blood. The blood inlet 43, the blood outlet 44, and the filtrate outlet 45 each have a connector shape to which a tube can be connected.

図10は,人工腎臓41の構成例を示す。図10に示されるように,人工腎臓41の本体部42は,血液流路層51と濾液流路層52の間に濾過膜53を介在させて交互に重ね合わせて積層した構造を有している。図10では,人工腎臓41の構造をわかりやすく説明するために,血液流路層51と濾液流路層52をそれぞれ1枚ずつ用意して積層した構成例を示している。しかし,人工腎臓41は,血液流路層51と濾液流路層52(及び濾過膜53)を複数枚交互に重ねて数十層あるいは数百層に積層した構成としてもよい。積層数は,人工腎臓41が装着される哺乳動物に応じて適宜変更可能である。人工腎臓41の本体部42は,第1のエンドプレート54と第2のエンドプレート54によって積層方向両側から挟み込まれ,締結手段(例えばボルトとナット)を用いて一体化され,積層方向に圧縮された状態に保持されている。   FIG. 10 shows a configuration example of the artificial kidney 41. As shown in FIG. 10, the main body 42 of the artificial kidney 41 has a structure in which a blood membrane layer 51 and a filtrate channel layer 52 are alternately stacked with a filtration membrane 53 interposed therebetween. I have. FIG. 10 shows a configuration example in which one blood flow channel layer 51 and one filtrate flow channel layer 52 are prepared and laminated in order to easily explain the structure of the artificial kidney 41. However, the artificial kidney 41 may have a configuration in which a plurality of blood flow channel layers 51 and a filtrate flow channel layer 52 (and a filtration membrane 53) are alternately stacked to be stacked in tens or hundreds of layers. The number of layers can be appropriately changed according to the mammal to which the artificial kidney 41 is attached. The main body 42 of the artificial kidney 41 is sandwiched between the first end plate 54 and the second end plate 54 from both sides in the stacking direction, integrated using fastening means (for example, bolts and nuts), and compressed in the stacking direction. It is kept in the state.

血液流路層51は,血液が流れる血液流路を備え,濾液流路層52は,濾液が流れる濾液流路を備えている。本体部42では,血液流路層51と濾液流路層52とが,濾過膜53を介して血液流路と濾液流路とが対向する位置に配置されており,血液が血液流路を流れる過程において濾過膜53によって濾過されて,血中の有害物質と余分な水分が濾液流路に流れこみ,濾液として濾液出口45から排出される。血液流路と濾液流路は,その流路途中に少なくとも一つ以上の折り返し部を有していることが好ましい。   The blood channel layer 51 includes a blood channel through which blood flows, and the filtrate channel layer 52 includes a filtrate channel through which a filtrate flows. In the main body 42, the blood flow path layer 51 and the filtrate flow path layer 52 are arranged at positions where the blood flow path and the filtrate flow path face each other via the filtration membrane 53, and blood flows through the blood flow path. In the process, the blood is filtered by the filtration membrane 53, and the harmful substances and excess water in the blood flow into the filtrate channel, and are discharged from the filtrate outlet 45 as the filtrate. It is preferable that the blood channel and the filtrate channel have at least one or more folded portions in the middle of the channels.

本発明の医療機器は,血漿分離装置1と医療機器本体21が一体的に成形されたものでもよいし,穴などの連結部を通して締結されてもよい。この場合,血漿分離装置1を構成する層と,医療機器本体21を構成する層とが,3Dプリンタなどの技術を用いて,一体的に製造されてもよい。もちろん,血漿分離装置1を構成する層と,医療機器本体21を構成する層とが別々に設けられて,別の部分に存在し,第1の流路9と接続された流入口23が接続され,第2の流路と医療機器本体21の流出口25と接続されるものであってもよい。なお,人工腎臓において,医療機器本体21の流出口25は,血液出口44又は血液出口44とつながる経路を意味する。   In the medical device of the present invention, the plasma separation device 1 and the medical device main body 21 may be integrally formed, or may be fastened through a connecting portion such as a hole. In this case, the layer forming the plasma separation device 1 and the layer forming the medical device main body 21 may be integrally manufactured using a technique such as a 3D printer. Needless to say, a layer constituting the plasma separation device 1 and a layer constituting the medical device main body 21 are separately provided, and are present in different portions, and the inlet 23 connected to the first flow path 9 is connected. The second flow path may be connected to the outlet 25 of the medical device main body 21. In the artificial kidney, the outlet 25 of the medical device body 21 means a blood outlet 44 or a path connected to the blood outlet 44.

例えば,血漿分離装置1と医療機器本体21が一体的である場合であって,上部に血漿分離装置1を構成する層が存在し,下部に医療機器本体21を構成する層が存在するようにしてもよい。この場合,血漿分離装置1の上面に,図9に示されるような血液入口43,血液出口44及び濾液出口45が設けられてもよい。この場合,下層に存在する人工腎臓などの医療機器本体21を構成する層の血液出口が,経路を通じて,上部の血漿分離装置1を構成する層と接続される。そして,人工腎臓から流出される血液は,血漿分離装置1を構成する層を通じて,血漿分離装置1の上部に至り,これにより,血漿分離装置1の上部(上部に設けられた血液出口)から流出するようにしてもよい。医療機器本体21が人工腎臓である場合,濾液出口45についても同様である。人工腎臓の濾液出口とつながる経路が上部の血漿分離装置1を構成する層と接続され,これにより,人工腎臓のから流出する濾液が,血漿分離装置1の上部(上部に設けられた濾液出口)から流出するようにしてもよい。そのようにすることで,液体の出入り口を一面(血漿分離装置の上面)に集約することができ,効果的に医療機器を生体内に埋め込むことができる。   For example, in the case where the plasma separation device 1 and the medical device main body 21 are integral with each other, a layer constituting the plasma separation device 1 exists at an upper portion, and a layer constituting the medical device main body 21 exists at a lower portion. You may. In this case, a blood inlet 43, a blood outlet 44, and a filtrate outlet 45 as shown in FIG. 9 may be provided on the upper surface of the plasma separation device 1. In this case, the blood outlet of the layer constituting the medical device main body 21 such as the artificial kidney existing in the lower layer is connected to the layer constituting the upper plasma separation device 1 through a path. Then, the blood flowing out from the artificial kidney reaches the upper part of the plasma separator 1 through the layers constituting the plasma separator 1, thereby flowing out from the upper part of the plasma separator 1 (the blood outlet provided at the upper part). You may make it. When the medical device main body 21 is an artificial kidney, the same applies to the filtrate outlet 45. The path connected to the filtrate outlet of the artificial kidney is connected to the upper layer constituting the plasma separation device 1, whereby the filtrate flowing out of the artificial kidney flows to the upper portion of the plasma separation device 1 (the filtrate outlet provided at the upper portion). May flow out of the system. By doing so, the liquid inlet / outlet can be concentrated on one surface (the upper surface of the plasma separation device), and the medical device can be effectively embedded in the living body.

この血漿分離装置は,血液を流入口に通すことで,血液を血球が多い成分と,血球が少ない部分(血漿部分)とに分離できる。この血漿分離装置を,生体内に埋入することで,医療機器に流入する血液から血球成分を軽減できる。また,血球が多くなった成分と,医療機器から流出した血液とを混合することで,血球成分が損なわれる事態を防止できる。本発明の医療機器は,通常の医療機器と同様,生体内に埋入してもよいし,生体外で用いてもよい。   This plasma separation device can separate blood into a component having a large number of blood cells and a portion having a small number of blood cells (plasma portion) by passing the blood through an inlet. By embedding this plasma separation device in a living body, blood cell components can be reduced from blood flowing into a medical device. In addition, by mixing the component having increased blood cells with the blood flowing out of the medical device, it is possible to prevent a situation in which the blood cell components are damaged. The medical device of the present invention may be implanted in a living body or used outside a living body, similarly to a normal medical device.

血漿分離装置の作成
図11は,実施例1における設計図である。図11に示される設計図に従って,血漿分離装置を作成した。図11中,「inlet」は流入口を意味し,「outlet」は流出口を意味し第1の流路及び第2の流路に相当する。2枚のアクリル板に図11に示される設計図に従って溝を形成した。2枚のアクリル板を合わせ,端部を加圧することで,2枚のアクリル板を一体化させた。流入口及び流出口には,チューブを接続した。
FIG. 11 is a design diagram in the first embodiment. A plasma separation device was prepared according to the design diagram shown in FIG. In FIG. 11, “inlet” means an inflow port, and “outlet” means an outflow port, which corresponds to a first flow path and a second flow path. Grooves were formed in two acrylic plates according to the design diagram shown in FIG. The two acrylic plates were combined, and the ends were pressed to integrate the two acrylic plates. Tubes were connected to the inlet and outlet.

流入部,内側出口(第1の流路),及び外側出口(第2の流路)におけるHt(ヘマトクリット)値を測定した。その結果を図12に示す。図12は,実施例1において測定したヘマトクリット値を示す図面に替るグラフである。図12に示されるように,内側出口では,流入部よりも10−20%Ht値が小さい。すなわち,この血漿分離装置を用いることで,医療機器本体に流入する血液から10〜20%程度の血球成分を軽減できることがわかる。このことは,医療機器本体において血栓ができる割合を相当程度軽減できることを意味しており,本発明の血漿分離装置を用いれば医療機器の寿命を飛躍的に延長できることが示された。   Ht (hematocrit) values at the inflow section, the inner outlet (first flow path), and the outer outlet (second flow path) were measured. FIG. 12 shows the result. FIG. 12 is a graph instead of a drawing showing the hematocrit value measured in Example 1. As shown in FIG. 12, the inner outlet has a smaller 10-20% Ht value than the inflow portion. That is, it can be seen that the use of this plasma separation device can reduce the blood cell component of about 10 to 20% from the blood flowing into the medical device body. This means that the rate of thrombus formation in the medical device main body can be considerably reduced, and it has been shown that the life of the medical device can be drastically extended by using the plasma separation device of the present invention.

円周径を40mmとした以外は,実施例1と同様にして血漿分離装置を作成した。この血漿分離装置でも血球成分を軽減できたが,血球成分量の軽減効果は実施例1のものが優れていた。   A plasma separator was prepared in the same manner as in Example 1 except that the circumference was set to 40 mm. Although the blood cell component could be reduced by this plasma separation device, the effect of reducing the blood cell component in Example 1 was excellent.

円周径を70mmとした以外は,実施例1と同様にして血漿分離装置を作成した。得られた血漿分離装置を図13に示す。図13は,実施例3において製造された血漿分離装置を示す図面に替る写真である。この例ではアクリル板に各流路を形成した。この血漿分離装置でも血球成分を軽減できたが,血球成分量の軽減効果は実施例1のものが優れていた。   A plasma separator was prepared in the same manner as in Example 1 except that the circumference was changed to 70 mm. The obtained plasma separation device is shown in FIG. FIG. 13 is a photograph replacing a drawing showing the plasma separation device manufactured in Example 3. In this example, each channel was formed in an acrylic plate. Although the blood cell component could be reduced by this plasma separation device, the effect of reducing the blood cell component in Example 1 was excellent.

本発明は,医療機器の分野で利用されうる。   The present invention can be used in the field of medical devices.

1 血漿分離装置
3 流入口
5 接続流路
7 円周部
9 第1の流路
11 第2の流路
21 医療機器本体
23 流入口
25 流出口
27 医療機器
DESCRIPTION OF SYMBOLS 1 Plasma separation apparatus 3 Inflow port 5 Connection flow path 7 Circumferential part 9 1st flow path 11 2nd flow path 21 Medical device main body 23 Inflow port 25 Outflow port 27 Medical device

Claims (8)

血液に含まれる血球成分を軽減する血漿分離装置(1)であって,
前記血漿分離装置(1)は,
血液が流入する流入口(3)と,
前記流入口(3)と接続された接続流路(5)と,
前記接続流路(5)に接続された第1の流路(9)と,
前記接続流路(5)に接続された第2の流路(11)と,を有し,
第1の流路(9)は,医療機器本体(21)の流入口(23)と接続される流路であり,
第2の流路(11)は,前記医療機器本体(21)の流出口(25)と接続される流路であり,
第1の流路(9)中の血液は,第2の流路(11)中の血液より血球成分の割合が少ない,
血漿分離装置(1)。
A plasma separation device (1) for reducing blood cell components contained in blood,
The plasma separation device (1)
An inlet (3) through which blood flows in,
A connection channel (5) connected to the inflow port (3),
A first flow path (9) connected to the connection flow path (5),
A second flow path (11) connected to the connection flow path (5),
The first flow path (9) is a flow path connected to the inflow port (23) of the medical device main body (21),
The second flow path (11) is a flow path connected to the outlet (25) of the medical device main body (21),
The blood in the first flow path (9) has a smaller percentage of blood cell components than the blood in the second flow path (11),
Plasma separation device (1).
請求項1に記載の血漿分離装置(1)であって,
第1の流路(9)から前記医療機器本体(21)の流入口(23)へ流入血液のヘマトクリット値は,前記医療機器本体(21)の流出口(25)と接続される際の第2の流路(11)の血液のヘマトクリット値より,5%以上低減する,血漿分離装置(1)。
The plasma separation device (1) according to claim 1, wherein:
The hematocrit value of the blood flowing from the first flow path (9) to the inflow port (23) of the medical device main body (21) is equal to the hematocrit value at the time of connection with the outflow port (25) of the medical device main body (21). A plasma separation device (1) that reduces the hematocrit value of blood in the second flow path (11) by 5% or more.
請求項1に記載の血漿分離装置(1)であって,
前記接続流路(5)は,円周部(7)を有し,
第1の流路(9)は,前記接続流路(5)の内周側に接続され,前記円周部(7)により接続流路(5)の外側方向に血球成分が移動することで,第1の流路(9)から流出する血液に含まれる血球成分が減少する,血漿分離装置(1)。
The plasma separation device (1) according to claim 1, wherein:
The connection channel (5) has a circumferential portion (7),
The first flow path (9) is connected to the inner peripheral side of the connection flow path (5), and the blood cell component moves to the outside of the connection flow path (5) by the circumferential portion (7). A blood plasma separation device (1) in which a blood cell component contained in blood flowing out of a first flow path (9) is reduced.
請求項3に記載の血漿分離装置(1)であって,
前記円周部(7)は,直径又は長径が10mm以上80mm以下となる弧状部分,円状部分又はらせん状部分を有する,血漿分離装置(1)。
The plasma separation device (1) according to claim 3, wherein
The plasma separation device (1), wherein the circumferential portion (7) has an arc-shaped portion, a circular portion, or a spiral portion having a diameter or a major axis of 10 mm or more and 80 mm or less.
請求項1に記載の血漿分離装置(1)であって,
前記流入口(3),前記接続流路(5),第1の流路(9),及び第2の流路(11)は,直径又は長軸が2mm以上8mm以下の円状,楕円状,又は矩形状の断面を有する流路を有する,血漿分離装置(1)。
The plasma separation device (1) according to claim 1, wherein:
The inflow port (3), the connection flow path (5), the first flow path (9), and the second flow path (11) have a circular shape or an elliptical shape whose diameter or major axis is 2 mm or more and 8 mm or less. Or a plasma separation device (1) having a flow path having a rectangular cross section.
請求項1に記載の血漿分離装置(1)であって,生体内に埋め込まれるインプラント型の血漿分離装置(1)。   The implant-type plasma separation apparatus (1) according to claim 1, wherein the apparatus is an implant-type plasma separation apparatus that is implanted in a living body. 請求項1に記載の血漿分離装置(1)と医療機器本体(21)とを含む医療機器(27)であって,
前記医療機器本体(21)は,
第1の流路(9)と接続された流入口(23)と,
前記流入口(23)から流入した血液が前記医療機器本体(21)を経て流出される流出口(25)であって,第2の流路(11)と接続されたものを含む,
医療機器。
A medical device (27) comprising the plasma separation device (1) according to claim 1 and a medical device main body (21),
The medical device body (21)
An inlet (23) connected to the first channel (9),
An outlet (25) through which blood flowing from the inlet (23) flows out through the medical device body (21), including an outlet connected to a second flow path (11);
Medical equipment.
請求項7に記載の医療機器であって,前記医療機器本体(21)は,生体内に埋め込まれるインプラント型人工腎臓である,医療機器。   The medical device according to claim 7, wherein the medical device main body (21) is an implantable artificial kidney implanted in a living body.
JP2016240892A 2016-12-13 2016-12-13 Plasma separation device Pending JP2020022524A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016240892A JP2020022524A (en) 2016-12-13 2016-12-13 Plasma separation device
PCT/JP2017/044635 WO2018110578A1 (en) 2016-12-13 2017-12-12 Plasma separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016240892A JP2020022524A (en) 2016-12-13 2016-12-13 Plasma separation device

Publications (1)

Publication Number Publication Date
JP2020022524A true JP2020022524A (en) 2020-02-13

Family

ID=62559443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016240892A Pending JP2020022524A (en) 2016-12-13 2016-12-13 Plasma separation device

Country Status (2)

Country Link
JP (1) JP2020022524A (en)
WO (1) WO2018110578A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5675167A (en) * 1979-11-22 1981-06-22 Kawasumi Lab Inc Body buried type artificial kidney
JPH05115544A (en) * 1991-10-28 1993-05-14 Toru Niisato Blood corpuscle-blood plasma separating circuit and blood purifying device using the same
JP2007209962A (en) * 2006-02-13 2007-08-23 Tokyo Metropolitan Univ Non-contact type continuous magnetic separation apparatus and separation method
FR2931080B1 (en) * 2008-05-13 2010-07-30 Commissariat Energie Atomique METHOD AND DEVICE FOR EXTRACTING A LIQUID PHASE FROM A SUSPENSION

Also Published As

Publication number Publication date
WO2018110578A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
KR101227453B1 (en) Artificial nephron device
AU725080B2 (en) Multiple element filter
KR101813880B1 (en) Device for separating cell in fluid
US20130102948A1 (en) Portable blood filtration devices, systems, and methods
JP6715038B2 (en) Blood filter
EP2497506B1 (en) Plasma filter with laminated prefilter
CN103484357A (en) Cell harvesting device and system
JP2011172797A (en) Ascites treatment system and cleaning method thereof
CA2434951A1 (en) A selective deleukocytation unit for a platelet product
IL228046A (en) Implantable systems and methods for removing specific impurities from fluids such as blood
EP3744364A1 (en) Pressure detector
CN111315861A (en) System for cell enrichment by cross-flow filtration
JP2018518355A (en) Bead removal
AU763879B2 (en) Biological fluid filter and system
WO2011119962A2 (en) Microfluidic enrichment of selected cell populations
JP2020022524A (en) Plasma separation device
JP2011072814A (en) Blood processing filter
EP3652296A1 (en) Apparatus for efficient genetic modification of cells
WO2019155895A1 (en) Implantable hemodialysis device
US9585996B2 (en) Blood purifying filter and blood purifying apparatus
JP2018528845A (en) Magnetic filtration apparatus and method
WO2022036738A1 (en) Fluid treatment method and fluid treatment device
CN104694381A (en) Filter and integration device for separating tumor cells from blood fluid
RU2687921C1 (en) Filtering element for separation and concentration of liquid media
JP2007319542A (en) Apparatus and circuit for treatment of hemocyte preparation