JP2020020855A - Sound absorbing and insulating material and manufacturing method of the same - Google Patents

Sound absorbing and insulating material and manufacturing method of the same Download PDF

Info

Publication number
JP2020020855A
JP2020020855A JP2018142154A JP2018142154A JP2020020855A JP 2020020855 A JP2020020855 A JP 2020020855A JP 2018142154 A JP2018142154 A JP 2018142154A JP 2018142154 A JP2018142154 A JP 2018142154A JP 2020020855 A JP2020020855 A JP 2020020855A
Authority
JP
Japan
Prior art keywords
skin layer
sound source
polyurethane foam
sound
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018142154A
Other languages
Japanese (ja)
Inventor
佑輔 正入木
Yusuke Masairiki
佑輔 正入木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoue MTP KK
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK, Inoac Corp filed Critical Inoue MTP KK
Priority to JP2018142154A priority Critical patent/JP2020020855A/en
Publication of JP2020020855A publication Critical patent/JP2020020855A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a sound absorbing and insulating material which can reduce manufacturing facility cost, has followability even if an outer surface of a sound source has a complicated shape, in which oil hardly infiltrates the inside of polyurethane foam even if oil adheres to the outer surface of the sound source, and which has excellent sound absorbency and sound insulation performance.SOLUTION: At least a part of a skin layer on one side surface of polyurethane foam 11, which faces an outer surface S1 of a sound source S, is constituted of a skin layer 12A in a closed cell state, which has a coated film part. At least a part of a skin layer on the other side surface is constituted of a skin layer 12B in an open cell state. The outer surface S1 of the sound source S is brought into close contact with an outer peripheral edge 121A of at least an end of the skin layer 12A in the closed cell state, which has the coated film part of the one side surface. Thus, a portion between the outer surface S1 of the sound source S and the skin layer 12A in the closed cell state, which has the coated film part, is made in a sealed state.SELECTED DRAWING: Figure 1

Description

本発明は、吸音性と遮音性を有する吸遮音材とその製造方法に関する。   The present invention relates to a sound absorbing and insulating material having sound absorbing properties and sound insulating properties, and a method for producing the same.

従来、ポリウレタンフォームは、音源の外表面に配置されて吸音材や遮音材として用いられている。例えば車両のトランスミッションカバーやエンジンブロックなどの音源の外表面には吸音材や遮音材が配置される。   Conventionally, polyurethane foam has been disposed on the outer surface of a sound source and used as a sound absorbing material or a sound insulating material. For example, a sound absorbing material or a sound insulating material is disposed on an outer surface of a sound source such as a transmission cover or an engine block of a vehicle.

しかし、音源の外表面にトランスミッションやエンジン等から漏れたオイルが付着した場合、オイルが外表面と接するポリウレタンフォームの表面から内部に浸透し、オイルの浸透によってポリウレタンフォームの吸音性が低下する問題がある。   However, if oil leaked from the transmission or engine, etc. adheres to the outer surface of the sound source, the oil will penetrate into the interior from the surface of the polyurethane foam in contact with the outer surface, and the oil absorption will reduce the sound absorption of the polyurethane foam. is there.

ポリウレタンフォームの表面からオイルを浸透し難くするため、ポリウレタンフォームの表面にフィルムを一体成形し、フィルムによってオイルの浸透を防ぐようにした吸音材がある(特許文献1)。   There is a sound absorbing material in which a film is integrally formed on the surface of a polyurethane foam so as to prevent oil from permeating from the surface of the polyurethane foam to prevent oil from penetrating (Patent Document 1).

特開2002−297150号公報JP-A-2002-297150

しかし、フィルムを一体成形するには、発泡型内にフィルムを配置してポリウレタンフォームを発泡成形するため、予めフィルムを発泡型の内面に合わせて成形しておく必要があり、その成形のための設備が必要となり、製造設備費が嵩む問題がある。また、複雑な形状にはフィルムが追従できない問題もある。   However, in order to integrally mold the film, it is necessary to arrange the film in a foaming mold and foam the polyurethane foam, so it is necessary to form the film in advance according to the inner surface of the foaming mold. Equipment is required, and there is a problem that manufacturing equipment costs increase. There is also a problem that the film cannot follow a complicated shape.

本発明は前記の点に鑑みなされたものであり、製造設備費を低減でき、かつ音源の外表面にオイルが付着してもポリウレタンフォームの内部にオイルが浸透し難く、吸音性及び遮音性が良好であって、音源の外表面が複雑な形状であっても追従性がある吸遮音材とその製造方法の提供を目的とする。   The present invention has been made in view of the above points, and can reduce manufacturing equipment costs, and even if oil adheres to the outer surface of a sound source, oil does not easily penetrate inside the polyurethane foam, and sound absorption and sound insulation are reduced. It is an object of the present invention to provide a sound absorbing and insulating material which is excellent and has a followability even when the outer surface of the sound source has a complicated shape, and a method for manufacturing the same.

請求項1の発明は、音源の外表面の一部または全部に配置されるポリウレタンフォームからなる吸遮音材において、前記ポリウレタンフォームは表面にスキン層を有し、前記音源の外表面と対向する前記ポリウレタンフォームの一側表面のスキン層の少なくとも一部は、塗膜部を有するクローズドセル状態のスキン層からなり、前記ポリウレタンフォームの他側表面のスキン層の少なくとも一部は、オープンセル状態のスキン層からなり、前記音源の外表面と前記ポリウレタンフォームの一側表面の塗膜部を有するクローズドセル状態のスキン層の少なくとも端部の外周縁が密着することにより、前記音源の外表面と前記ポリウレタンフォームの一側表面のクローズドセル状態のスキン層との間が密閉状態にあることを特徴とする。   The invention according to claim 1 is a sound absorbing and insulating material made of polyurethane foam disposed on a part or the whole of the outer surface of the sound source, wherein the polyurethane foam has a skin layer on the surface and faces the outer surface of the sound source. At least a part of the skin layer on one surface of the polyurethane foam is composed of a skin layer in a closed cell state having a coating portion, and at least a part of the skin layer on the other surface of the polyurethane foam is a skin layer in an open cell state. The outer surface of the sound source and the polyurethane by at least the outer periphery of the skin layer in a closed cell state having a coating portion on one side surface of the polyurethane foam and the outer surface of the sound source being in close contact with each other. A closed state is provided between the foam layer and the skin layer in a closed cell state on one surface of the foam.

請求項2の発明は、請求項1において、前記音源の外表面と、前記ポリウレタンフォームの一側表面の塗膜部を有するクローズドセル状態のスキン層の全面が密着することにより、前記音源の外表面と前記ポリウレタンフォームの一側表面のクローズドセル状態のスキン層との間が密閉状態にあることを特徴とする。   The invention according to claim 2 is the device according to claim 1, wherein the outer surface of the sound source and the entire surface of the skin layer in a closed cell state having a coating portion on one side surface of the polyurethane foam are in close contact with each other, so that A closed state is provided between the surface and the skin layer in a closed cell state on one surface of the polyurethane foam.

請求項3の発明は、請求項1または2において、前記塗膜部を有するクローズドセル状態のスキン層は、平均厚みが12μm以上であることを特徴とする。   According to a third aspect of the present invention, in the first or second aspect, the skin layer in the closed cell state having the coating portion has an average thickness of 12 μm or more.

請求項4の発明は、請求項1から3の何れか一項において、前記塗膜部を有するクローズドセル状態のスキン層の通気性(JIS K6400−7 B法:2012/ISO 7231:2010に基づく)が0.05ml/cm/s以下であることを特徴とする。 The invention of claim 4 is based on any one of claims 1 to 3, wherein the air permeability of the skin layer in a closed cell state having the coating portion (based on JIS K6400-7 B method: 2012 / ISO 7231: 2010). ) Is 0.05 ml / cm 2 / s or less.

請求項5の発明は、請求項1から4の何れか一項において、前記オープンセル状態のスキン層の通気性(JIS K6400−7 B法:2012/ISO 7231:2010に基づく)が0.1〜40ml/cm/sであることを特徴とする。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the air permeability (based on JIS K6400-7 B method: 2012 / ISO 7231: 2010) of the skin layer in the open cell state is 0.1. 4040 ml / cm 2 / s.

請求項6の発明は、金型の型面に離型剤を塗布し、前記金型内にポリウレタンフォーム原料を注入して発泡させることにより、音源の外表面の一部または全部に配置されるポリウレタンフォームからなる吸遮音材を製造する方法において、前記音源の外表面と対向する前記ポリウレタンフォームの一側表面とは反対の他側表面を形成する型面に塗布する離型剤は、少なくとも直鎖状炭化水素ワックスを含んでおり、前記音源の外表面と対向する前記ポリウレタンフォームの一側表面を形成する型面には、前記離型剤上に塗料を塗布し、前記塗料を硬化させて塗膜部を作製した後、前記金型内にポリウレタンフォーム原料を注入し、発泡硬化させることにより、表面にスキン層を有する前記ポリウレタンフォームを形成し、前記ポリウレタンフォームの他側表面に形成したスキン層の少なくとも一部は、オープンセル状態のスキン層からなり、前記ポリウレタンフォームの一側表面に形成したスキン層の少なくとも一部は、前記塗膜部を表面に有するクローズドセル状態のスキン層からなることを特徴とする。   The invention according to claim 6 is arranged on a part or all of the outer surface of the sound source by applying a mold release agent to a mold surface of a mold, and injecting and foaming a polyurethane foam material into the mold. In the method for producing a sound absorbing and insulating material made of polyurethane foam, the mold release agent applied to a mold surface forming the other surface opposite to the one surface of the polyurethane foam facing the outer surface of the sound source is at least directly Containing a chain hydrocarbon wax, a mold surface forming one side surface of the polyurethane foam facing the outer surface of the sound source, a paint is applied on the release agent, and the paint is cured. After preparing a coating portion, a polyurethane foam raw material is injected into the mold and foamed and cured to form the polyurethane foam having a skin layer on the surface. At least a part of the skin layer formed on the other side surface of the polyurethane foam is composed of an open cell skin layer, and at least a part of the skin layer formed on one side surface of the polyurethane foam, Characterized in that it is composed of a skin layer in a closed cell state.

請求項7の発明は、請求項6において、前記音源の外表面と対向する前記ポリウレタンフォームの一側表面に塗布する離型剤は、分岐鎖状炭化水素ワックスを含むことを特徴とする。   The invention of claim 7 is characterized in that in claim 6, the release agent applied to one surface of the polyurethane foam facing the outer surface of the sound source contains a branched hydrocarbon wax.

ポリウレタンフォーム表面のスキン層は、コア部(内部)よりも密度が高くなった層状の部分である。
クローズドセル状態のスキン層は、貫通した気泡(セル)が少ない状態からなるため、音を反射、あるいは音の入射を減衰する遮音効果を有し、一方、オープンセル状態のスキン層は、貫通した気泡(セル)が多い状態からなるため、クローズドセル状態のスキン層に比べて音が入射し易く、スキン層よりも内側のコア部と共に吸音効果を有する。
The skin layer on the polyurethane foam surface is a layered portion having a higher density than the core portion (inside).
The skin layer in the closed cell state has a sound insulating effect of reflecting sound or attenuating the incidence of sound because the skin layer in the closed cell state has a small number of air bubbles (cells), while the skin layer in the open cell state has penetrated. Since it is composed of a large number of air bubbles (cells), sound is more likely to enter than the skin layer in the closed cell state, and has a sound absorbing effect together with the core inside the skin layer.

請求項1から5の発明の吸遮音材は、音源の外表面にオイルが付着しても、音源の外表面と対向する一側表面の少なくとも一部が塗膜部を有するクローズドセル状態のスキン層からなるためにオイルがポリウレタンフォームの内部に浸透するのを防ぐことができる。
請求項1から5の吸遮音材は、音源の外表面と対向する一側表面に音源から直接的に入射する音に対して、音源の外表面と対向する一側表面の塗膜部を有するクローズドセル状態のスキン層が遮音効果を有する。また、塗膜部を有するクローズドセル状態のスキン層を透過してコア部に進入した音については、該コア部で吸音することができる。
The sound absorbing and insulating material according to any one of claims 1 to 5, wherein even if oil adheres to the outer surface of the sound source, at least a part of the one side surface facing the outer surface of the sound source has a closed-cell skin having a coating portion. Due to the layers, the oil can be prevented from penetrating into the inside of the polyurethane foam.
The sound absorbing and insulating material according to any one of claims 1 to 5 has a coating portion on one side surface facing the outer surface of the sound source with respect to sound directly incident on the one side surface facing the outer surface of the sound source. The closed cell skin layer has a sound insulating effect. Further, sound that has penetrated the core portion through the skin layer in the closed cell state having the coating portion can be absorbed by the core portion.

請求項1から5の吸遮音材は、音源からの音が吸遮音材内を透過し、周囲の壁面などで反射して、吸遮音材へ戻ってくる音について、音源と対向する一側とは異なる他側表面の少なくとも一部に形成されているオープンセル状態のスキン層から、コア部内へ進入するため、再びコア部で吸音することができ、特に良好な吸音効果を得ることができる。   The sound absorbing and insulating material according to any one of claims 1 to 5, wherein the sound from the sound source passes through the sound absorbing and insulating material, is reflected by a surrounding wall surface, and returns to the sound absorbing and insulating material. Since the steel enters the core from the open cell skin layer formed on at least a part of the other surface, the sound can be absorbed again by the core, and a particularly good sound absorbing effect can be obtained.

請求項1から5の吸遮音材は、音源の外表面とポリウレタンフォームの一側表面の塗膜部を有するクローズドセル状態のスキン層の少なくとも端部の外周縁が密着することにより、音源の外表面と前記ポリウレタンフォームの一側表面のクローズドセル状態のスキン層との間が密閉状態にあるため、音源の外表面と音源の外表面と対向するポリウレタンフォーム一側表面のクローズドセル状態のスキン層の端部との間から外部へ音が漏れ難くなる。   The sound absorbing and insulating material according to any one of the first to fifth aspects is characterized in that at least the outer peripheral edge of the skin layer in a closed cell state having a coating portion on one side surface of the polyurethane foam is in close contact with the outer surface of the sound source. Since the surface and the skin layer in a closed cell state on one surface of the polyurethane foam are in a sealed state, the outer surface of the sound source and the skin layer in a closed cell state on the one side surface of the polyurethane foam facing the outer surface of the sound source The sound hardly leaks to the outside from between the ends.

請求項6及び7の発明の吸遮音材の製造方法によれば、製造設備費を低減でき、かつ音源の外表面にオイルが付着してもポリウレタンフォームの内部にオイルが浸透し難く、吸音性及び遮音性が良好であって、音源の外表面が複雑な形状であっても追従性がある吸遮音材を容易に製造することができる。   According to the method for manufacturing a sound absorbing and insulating material according to the sixth and seventh aspects of the present invention, the cost of manufacturing equipment can be reduced, and even if oil adheres to the outer surface of the sound source, the oil hardly penetrates into the inside of the polyurethane foam, and the sound absorbing property is improved. In addition, a sound absorbing and insulating material having good sound insulation properties and a following ability even when the outer surface of the sound source has a complicated shape can be easily manufactured.

吸遮音材の一実施形態の断面図である。It is sectional drawing of one Embodiment of a sound absorbing and insulating material. 吸遮音材の塗膜部を有するクローズドセル状態のスキン層の複数例を示す断面図である。It is sectional drawing which shows several examples of the skin layer of the closed cell state which has the coating part of a sound absorbing and insulating material. 吸遮音材の製造方法の一例において離型剤を塗布する工程を示す断面図である。It is sectional drawing which shows the process of applying a release agent in an example of the manufacturing method of a sound absorbing and insulating material. 吸遮音材の製造方法の一例において塗料を塗布する工程を示す断面図である。It is sectional drawing which shows the process of apply | coating a paint in an example of the manufacturing method of a sound absorbing and insulating material. 吸遮音材の製造方法の一例においてポリウレタンフォーム原料の注入工程を示す断面図である。It is sectional drawing which shows the injection | pouring process of a polyurethane foam raw material in an example of the manufacturing method of a sound absorbing and insulating material. 吸遮音材の製造方法の一例においてポリウレタンフォーム原料の発泡工程を示す断面図である。It is sectional drawing which shows the foaming process of a polyurethane foam raw material in an example of the example of the manufacturing method of a sound absorbing and insulating material. 実施例の配合及び測定結果を示す表である。It is a table | surface which shows the combination and the measurement result of an Example. 比較例の配合及び測定結果を示す表である。It is a table | surface which shows the combination and the measurement result of a comparative example. 追従性確認用の金型の形状を示す断面図及び平面図である。It is sectional drawing and a top view which show the shape of the metal mold | die for followability confirmation.

本発明の吸遮音材の実施形態について図面を用いて説明する。図1に示す吸遮音材10は、音源Sの外表面S1の一部または全部に配置されるポリウレタンフォーム11からなるものである。吸遮音材10が配置される音源Sは、特に限定されるものではなく、例えば、車両のトランスミッションカバーやエンジンブロック等が挙げられる。
なお、吸遮音材10は、音源Sの外表面S1において、特に音が大きい部分を覆うように配置されるのが好ましく、さらに全面を覆うように配置することがより好ましい。
An embodiment of the sound absorbing and insulating material of the present invention will be described with reference to the drawings. The sound absorbing and insulating material 10 shown in FIG. 1 is made of a polyurethane foam 11 disposed on a part or the whole of the outer surface S1 of the sound source S. The sound source S on which the sound absorbing and insulating material 10 is disposed is not particularly limited, and examples thereof include a transmission cover and an engine block of a vehicle.
Note that the sound absorbing and insulating material 10 is preferably arranged so as to cover a particularly loud portion on the outer surface S1 of the sound source S, and more preferably so as to cover the entire surface.

吸遮音材10を構成するポリウレタンフォーム11は、モールド成形によって形成されるものであり、モールド成形によって形成されるスキン層12を表面に有する。スキン層12は、音源Sの外表面S1と対向する一側表面(すなわち音源側表面)の少なくとも一部は、塗膜部を有するクローズドセル状態のスキン層12Aからなり、他側の表面(すなわち非音源側表面)の少なくとも一部がオープンセル状態のスキン層12Bからなる。
ここで、一側表面とは、吸遮音材10を構成するポリウレタンフォーム11の内、音源Sの外表面S1と対向する領域のことである。
The polyurethane foam 11 constituting the sound absorbing and insulating material 10 is formed by molding, and has a skin layer 12 formed by molding on the surface. The skin layer 12 has at least a part of a surface on one side facing the outer surface S1 of the sound source S (namely, a sound source side surface) made of a skin layer 12A in a closed cell state having a coating portion, and a surface on the other side (namely, a skin surface on the other side). At least a part of the non-sound source side surface) is formed of the skin layer 12B in an open cell state.
Here, the one side surface is a region of the polyurethane foam 11 constituting the sound absorbing and insulating material 10 facing the outer surface S1 of the sound source S.

塗膜部を有するクローズドセル状態のスキン層12Aの態様について、複数の例を図2に示す。
図2の(2−A)は、音源Sの外表面S1と対向する吸遮音材10の一側表面(すなわち音源側表面)のスキン層13と、該スキン層13の表面全体に設けた塗膜部14とで塗膜部を有するクローズドセル状態のスキン層12Aを構成した例である。
図2の(2−B)は、音源Sの外表面S1と対向する吸遮音材10の一側表面(すなわち音源側表面)のスキン層13と、該スキン層13に散点状に設けた塗膜部14とで塗膜部を有するクローズドセル状態のスキン層12Aを構成した例である。
図2の(2−C)は、音源Sの外表面S1と対向する吸遮音材10の一側表面(すなわち音源側表面)のスキン層13と、該スキン層13に部分的に設けた塗膜部14とで塗膜部を有するクローズドセル状態のスキン層12Aを構成した例である。
FIG. 2 shows a plurality of examples of the aspect of the skin layer 12A in a closed cell state having a coating portion.
2 (A) shows a skin layer 13 on one surface of the sound absorbing and insulating material 10 facing the outer surface S1 of the sound source S (that is, a sound source side surface), and a coating layer provided on the entire surface of the skin layer 13. This is an example in which a skin layer 12A in a closed cell state having a coating portion with a film portion 14 is configured.
2B is a skin layer 13 on one surface of the sound absorbing and insulating material 10 facing the outer surface S1 of the sound source S (that is, the sound source side surface), and the skin layer 13 is provided in a scattered manner. This is an example in which a skin layer 12A in a closed cell state having a coating portion with a coating portion 14 is configured.
2 (C) shows a skin layer 13 on one surface of the sound absorbing and insulating material 10 facing the outer surface S1 of the sound source S (that is, a sound source side surface), and a coating layer partially provided on the skin layer 13. This is an example in which a skin layer 12A in a closed cell state having a coating portion with a film portion 14 is configured.

前記塗膜部14は、ポリウレタンフォームとの接着性を良好とし、かつ柔軟性を良好にするため、水系/溶剤系のウレタン系エマルジョン、水系/溶剤系のアクリル系エマルジョン、水系/溶剤系のウレタン系エマルジョンとアクリル系エマルジョンの混合物が好ましく、ポリウレタンフォームとの接着性や柔軟性に加え、伸び性にも優れるウレタン系エマルジョンを含む塗料がより好ましい。   In order to improve the adhesion to the polyurethane foam and improve the flexibility, the coating film portion 14 is formed of an aqueous / solvent-based urethane emulsion, an aqueous / solvent-based acrylic emulsion, or an aqueous / solvent-based urethane. A mixture of a system-based emulsion and an acrylic-based emulsion is preferable, and a paint containing a urethane-based emulsion which is excellent in extensibility in addition to adhesion and flexibility to a polyurethane foam is more preferable.

ポリウレタンフォーム11の表面のスキン層12(塗膜部を有するクローズドセル状態のスキン層12Aとオープンセル状態のスキン層12Bを含む)は、コア部(内部)11aよりも密度が高く形成された層状部分であり、塗料及び/又はポリウレタンフォーム原料がモールド成形による発泡成形時に金型の型面と接触して形成される。
具体的には、図2(2−A)に示される塗膜部を有するクローズドセル状態のスキン層12Aは、モールド成形による発泡成形時に、あらかじめ金型の型面に作製された塗膜部14とポリウレタンフォーム原料が接触して、音源Sの外表面S1と対向する吸遮音材10の一側表面のスキン層13が形成され、作製される。また、図2(2−B)、(2−C)に示される塗膜部を有するクローズドセル状態のスキン層12Aは、モールド成形による発泡成形時に、あらかじめ金型の型面に作製された塗膜部14と金型の型面の両方にポリウレタンフォーム原料が接触して、音源Sの外表面S1と対向する吸遮音材10の一側表面のスキン層13が形成され、作製される。一方、塗膜部を有するクローズドセル状態のスキン層12A以外のスキン層12(オープンセル状態のスキン層12B等)は、ポリウレタンフォーム原料が金型の型面と接触して形成される。
The skin layer 12 on the surface of the polyurethane foam 11 (including the skin layer 12A in a closed cell state and the skin layer 12B in an open cell state having a coating portion) has a layered structure formed with a higher density than the core portion (inside) 11a. A coating material and / or a polyurethane foam material are formed in contact with the mold surface of the mold during foam molding by molding.
Specifically, the skin layer 12A in the closed cell state having the coating portion shown in FIG. 2 (2-A) is formed by the coating portion 14 previously formed on the mold surface at the time of foam molding by molding. And the polyurethane foam raw material come into contact with each other to form and produce a skin layer 13 on one surface of the sound absorbing and insulating material 10 facing the outer surface S1 of the sound source S. In addition, the skin layer 12A in a closed cell state having the coating portions shown in FIGS. 2 (2B) and 2 (C) is formed on the mold surface of the mold in advance during foam molding by molding. The polyurethane foam raw material comes into contact with both the film part 14 and the mold surface of the mold, and the skin layer 13 on one surface of the sound absorbing and insulating material 10 facing the outer surface S1 of the sound source S is formed and manufactured. On the other hand, the skin layers 12 (such as the skin layer 12B in the open cell state) other than the skin layer 12A in the closed cell state having the coating portion are formed by contacting the polyurethane foam raw material with the mold surface of the mold.

塗膜部を有するクローズドセル状態のスキン層12Aの平均厚みは、12μm以上が好ましく、より好ましくは15μm以上である。塗膜部を有するクローズドセル状態のスキン層12Aの平均厚みを12μm以上とすることにより、塗膜部を有するクローズドセル状態のスキン層12Aに貫通孔が生じることを防ぎ、オイル浸透防止及び遮音効果を高めることができる。
また、塗膜部を有するクローズドセル状態のスキン層12Aの厚みは、ポリウレタンフォーム11の音源側表面の塗膜部を有するクローズドセル状態のスキン層12Aに存在する気泡(セル)の最大径よりも大きいことが好ましい。それにより、オイルとポリウレタンフォーム11のコア部との間に必ずクローズドセル状態のスキン層12Aが存在することとなり、オイル浸透防止及び遮音効果を高めることができる。塗膜部を有するクローズドセル状態のスキン層12Aの厚みは、塗料の塗布量、ポリウレタンフォームの発泡成形時における金型温度や金型への充填量(パック率)で制御することができる。
The average thickness of the skin layer 12A in the closed cell state having the coating portion is preferably 12 μm or more, and more preferably 15 μm or more. By setting the average thickness of the closed-cell skin layer 12A having a coating portion to 12 μm or more, it is possible to prevent through holes from being formed in the closed-cell skin layer 12A having a coating portion, to prevent oil penetration and to have a sound insulating effect. Can be increased.
The thickness of the skin layer 12A in the closed cell state having the coating portion is larger than the maximum diameter of the bubbles (cells) existing in the closed cell skin layer 12A having the coating portion on the sound source side surface of the polyurethane foam 11. Larger is preferred. Thereby, the skin layer 12A in a closed cell state always exists between the oil and the core portion of the polyurethane foam 11, and the oil penetration preventing and sound insulating effects can be enhanced. The thickness of the skin layer 12A in the closed cell state having the coating film portion can be controlled by the amount of paint applied, the temperature of the mold at the time of foaming the polyurethane foam, and the filling amount (pack ratio) into the mold.

スキン層12(塗膜部を有するクローズドセル状態のスキン層12A及びオープンセル状態のスキン層12B)の厚みは、金型温度が低温になる程、また金型へのパック率が大きくなる程、スキン層の厚みが大になる。   The thickness of the skin layer 12 (the closed cell skin layer 12A having the coating portion and the open cell skin layer 12B) is such that the lower the mold temperature and the higher the packing ratio to the mold, the lower the mold temperature. The thickness of the skin layer increases.

塗膜部を有するクローズドセル状態のスキン層12Aは、塗膜部を有するクローズドセル状態のスキン層12A自体の厚みを厚くしたり、塗膜部を有するクローズドセル状態のスキン層12Aに存在する気泡(セル)の数や最大径を極力小さくすることにより、通気性を低くする程、オイルの浸透防止及び遮音性が良好になる。塗膜部を有するクローズドセル状態のスキン層12Aの通気性(JIS K6400−7 B法:2012/ISO 7231:2010に基づく)は、0.05ml/cm/s以下であり、好ましくは0.03ml/cm/s以下、より好ましくは0.02ml/cm/s以下である。 The closed-cell skin layer 12A having a coating portion is formed by increasing the thickness of the closed-cell skin layer 12A itself having a coating portion, or forming bubbles existing in the closed-cell skin layer 12A having a coating portion. By reducing the number and maximum diameter of (cells) as much as possible, the lower the air permeability, the better the oil penetration prevention and sound insulation. The air permeability (based on JIS K6400-7B method: 2012 / ISO 7231: 2010) of the skin layer 12A in a closed cell state having a coating portion is 0.05 ml / cm 2 / s or less, and preferably 0.1 ml / cm 2 / s or less. 03ml / cm 2 / s or less, and more preferably not more than 0.02ml / cm 2 / s.

一方、オープンセル状態のスキン層12Bの通気性(JIS K6400−7 B法:2012/ISO 7231:2010に基づく)は、0.1〜40ml/cm/sが好ましく、より好ましくは0.2〜40ml/cm/sである。この範囲の通気性とすることにより、良好な吸音性が得られる。 On the other hand, the permeability (based on JIS K6400-7B method: 2012 / ISO 7231: 2010) of the skin layer 12B in the open cell state is preferably 0.1 to 40 ml / cm 2 / s, more preferably 0.2 to 40 ml / cm 2 / s. 4040 ml / cm 2 / s. By setting the air permeability in this range, good sound absorbing properties can be obtained.

ポリウレタンフォーム11は、全体密度(JIS K7222:2005/ISO 845:1988に基づく)が70〜250kg/mが好ましく、80〜200kg/mがより好ましい。全体密度が、70kg/m以下の場合、遮音性が低下するおそれがあり、250kg/m以上の場合、軽量化の求められる車両などの用途にあっては好ましくない。 Polyurethane foam 11 is overall density (JIS K7222: 2005 / ISO 845 : Based on 1988) is preferably 70~250kg / m 3, 80~200kg / m 3 and more preferably. If the total density is 70 kg / m 3 or less, the sound insulation may be reduced. If the total density is 250 kg / m 3 or more, it is not preferable for applications such as vehicles that require light weight.

ポリウレタンフォーム11の厚みは適宜決定されるが、例として2〜100mm程度を挙げる。   Although the thickness of the polyurethane foam 11 is appropriately determined, an example is about 2 to 100 mm.

吸遮音材10は、音源Sの外表面S1と、該外表面S1に対向するポリウレタンフォーム11の一側表面の塗膜部を有するクローズドセル状態のスキン層12Aの少なくとも端部の外周縁121Aが密着し、音源Sの外表面S1と、該外表面S1と対向するポリウレタンフォーム11の一側表面の塗膜部を有するクローズドセル状態のスキン層12Aとの間が該密着部分で包囲され、密閉状態となっている。これにより、音源Sから音源Sの外表面S1と対向するポリウレタンフォーム11の一側表面の塗膜部を有するクローズドセル状態のスキン層12Aに入射する音が、音源Sの外表面S1とポリウレタンフォーム11の一側表面の塗膜部を有するクローズドセル状態のスキン層12Aの端部との間から外部へ漏れるのを低減し、遮音性を高めることができる。   The sound absorbing and insulating material 10 has an outer surface S1 of the sound source S, and at least an outer peripheral edge 121A of a skin layer 12A in a closed cell state having a coating portion on one side surface of the polyurethane foam 11 facing the outer surface S1. The outer surface S1 of the sound source S and the skin layer 12A in a closed cell state having a coating portion on one surface of the polyurethane foam 11 opposed to the outer surface S1 are surrounded by the adhered portion, and the hermetic seal is established. It is in a state. As a result, sound incident from the sound source S on the skin layer 12A in a closed cell state having the coating portion on one side surface of the polyurethane foam 11 facing the outer surface S1 of the sound source S is transmitted between the outer surface S1 of the sound source S and the polyurethane foam. It is possible to reduce the leakage to the outside from between the edge portion of the skin layer 12A in a closed cell state having the coating portion on one side surface of the skin layer 11 and to enhance the sound insulation.

吸遮音材10は、音源Sの外表面S1と、該外表面S1に対向するポリウレタンフォーム11の一側表面の塗膜部を有するクローズドセル状態のスキン層12Aの略全面を密着させて、音源Sの外表面S1と、該外表面S1と対向するポリウレタンフォーム11の一側表面の塗膜部を有するクローズドセル状態のスキン層12A間との隙間を小さくするのが好ましい。全面密着の場合、前記クローズドセル状態のスキン層12Aの端部の外周縁121Aのみが密着する場合に比べ、音源Sの音が端部の外周縁121Aから外部へ漏れるのをさらに低減でき、遮音性を高めることができる。
ここで、全面を密着させるとは、音源Sの外表面S1と、該外表面S1に対向するポリウレタンフォーム11の一側表面のクローズドセル状態のスキン層12Aの形状が完全に一致し、隙間無く密着している状態だけでなく、該外表面S1とクローズドセル状態のスキン層12Aの形状が概ね一致しており、若干の隙間を有して密着している状態も含まれる。ただし、クローズドセル状態のスキン層12Aの端部の外周縁121Aは、音源Sの外表面S1と隙間無く密着している。
The sound absorbing and insulating material 10 is brought into close contact with the outer surface S1 of the sound source S and the substantially entire surface of the skin layer 12A in a closed cell state having a coating portion on one side surface of the polyurethane foam 11 opposed to the outer surface S1. It is preferable to reduce the gap between the outer surface S1 of S and the skin layer 12A in a closed cell state having a coating portion on one side surface of the polyurethane foam 11 facing the outer surface S1. In the case of full close contact, the sound of the sound source S leaking to the outside from the outer peripheral edge 121A of the end can be further reduced as compared with the case where only the outer peripheral edge 121A of the end of the skin layer 12A in the closed cell state is in close contact. Can be enhanced.
Here, "to make the entire surface in close contact" means that the shape of the outer surface S1 of the sound source S and the shape of the skin layer 12A in a closed cell state on one surface of the polyurethane foam 11 facing the outer surface S1 completely match without any gap. In addition to the state in which the skin layer 12A is in close contact, the shape of the outer surface S1 and the skin layer 12A in the closed cell state generally match, and the state in which the skin layer 12A is in close contact with a slight gap is also included. However, the outer peripheral edge 121A at the end of the skin layer 12A in the closed cell state is in close contact with the outer surface S1 of the sound source S without any gap.

また、吸遮音材10は、塗膜部を有するクローズドセル状態のスキン層12Aを透過してコア部11aに進入した音については、コア部11aで吸音することができる。一方、クローズドセル状態のスキン層12A、コア部11a及びオープンセル状態のスキン層12Bを透過し音源Sの周囲の壁面などで反射して、吸遮音材10の表面へ戻ってくる音については、吸遮音材10の他側表面におけるオープンセル状態のスキン層12Bからコア部11a内へ進入し、再びコア部11aで吸音することができる。   In addition, the sound absorbing and insulating material 10 can absorb the sound that penetrates through the skin layer 12A in the closed cell state having the coating portion and enters the core portion 11a by the core portion 11a. On the other hand, with respect to the sound that passes through the skin layer 12A in the closed cell state, the core portion 11a, and the skin layer 12B in the open cell state, is reflected by a wall surface around the sound source S, and returns to the surface of the sound absorbing and insulating material 10, The sound absorbing and insulating material 10 can enter the core portion 11a from the open cell skin layer 12B on the other surface of the sound absorbing and insulating material 10, and can again absorb sound at the core portion 11a.

吸遮音材10を構成するポリウレタンフォーム11の縁の側面11bの部分は、塗膜部を有するクローズドセル状態のスキン層12Aあるいはオープンセル状態のスキン層12Bのいずれでもよい。   The side surface 11b of the edge of the polyurethane foam 11 constituting the sound absorbing and insulating material 10 may be either a closed cell skin layer 12A or an open cell skin layer 12B having a coating portion.

また、音源Sとは反対側のポリウレタンフォーム11の他側表面のオープンセル状態のスキン層12Bの一部やポリウレタンフォーム11の縁の側面11bの少なくとも一部について、切断や研磨等によってスキン層12を除去してコア部11aを露出させれば、音源Sの周囲の壁面などで反射し戻ってくる音がコア部11a内へ入射し易くなり、吸音性を向上させることができる。     Further, at least a part of the skin layer 12B in the open cell state on the other surface of the polyurethane foam 11 opposite to the sound source S and at least a part of the side surface 11b of the edge of the polyurethane foam 11 are cut or polished to form the skin layer 12B. Is removed, and the core portion 11a is exposed, the sound reflected and returned on the wall surface around the sound source S and the like easily enters the core portion 11a, and the sound absorbing property can be improved.

前記吸遮音材10の製造方法は、金型にポリウレタンフォーム原料を注入して発泡させる公知のモールド成形方法を利用して行われる。図3〜図6を用いて前記吸遮音材10の製造方法について説明する。   The method of manufacturing the sound absorbing and insulating material 10 is performed by using a known molding method in which a polyurethane foam material is injected into a mold and foamed. A method of manufacturing the sound absorbing and insulating material 10 will be described with reference to FIGS.

図3〜図6に示す金型60は、下型61と上型65とからなる。下型61の型面62は、本実施形態では、前記吸遮音材10を構成するポリウレタンフォーム11において音源Sの外表面S1と対向する一側表面とは反対の他側表面(非音源側表面)を形成する型面である。一方、上型65の型面66は、前記吸遮音材10を構成するポリウレタンフォーム11において音源の外表面と対向する一側表面(音源側表面)を形成する型面である。なお、この例では、下型61の型面62を、吸遮音材の非音源側表面を形成する型面とし、上型65の型面66を、吸遮音材の音源側表面を形成する片面としたが、逆であってもよい。金型60は、公知の加熱方法で40〜80℃に加熱され、成形性を考慮すると50〜80℃とすることがより好ましい。加熱方法は、金型60を加熱炉に収容して行う方法や下型61及び上型65の外面や内部に加熱媒体が循環する配管を設けて行う方法などがあり、限定されない。   The mold 60 shown in FIGS. 3 to 6 includes a lower mold 61 and an upper mold 65. In the present embodiment, the mold surface 62 of the lower mold 61 is the other surface (the non-sound source surface) opposite to the one surface facing the outer surface S1 of the sound source S in the polyurethane foam 11 constituting the sound absorbing and insulating material 10. ). On the other hand, the mold surface 66 of the upper mold 65 is a mold surface that forms one surface (sound source side surface) of the polyurethane foam 11 constituting the sound absorbing and insulating material 10 that faces the outer surface of the sound source. In this example, the mold surface 62 of the lower mold 61 is a mold surface that forms the non-sound source side surface of the sound absorbing and insulating material, and the mold surface 66 of the upper mold 65 is a single surface that forms the sound source side surface of the sound absorbing and insulating material. However, the reverse is also possible. The mold 60 is heated to 40 to 80C by a known heating method, and more preferably 50 to 80C in consideration of moldability. The heating method includes, for example, a method in which the mold 60 is housed in a heating furnace, a method in which a piping for circulating a heating medium is provided on the outer surface or inside of the lower mold 61 and the upper mold 65, and the like.

図3に示すように、ポリウレタンフォームの非音源側の表面を形成する下型61の型面62に、離型剤W1を塗布する。離型剤W1は、直鎖状炭化水素ワックスを含有する離型剤である。一方、ポリウレタンフォームの音源側の表面を形成する上型65の型面66には、離型剤W2を塗布する。離型剤W2は、直鎖状炭化水素ワックスを含有する離型剤、あるいは好ましくは分岐鎖状炭化水素ワックスを含有する離型剤である。
直鎖状炭化水素ワックスとしては、パラフィンワックス、フィッシャートロプシュワックス、サゾールワックス等が挙げられ、有機溶剤に分散させた溶剤系離型剤、乳化剤を用いて水に分散させた水系離型剤等が使用できる。
分岐鎖状炭化水素ワックスとしては、マイクロクリスタリンワックス、変性ポリエチレンワックス等が挙げられ、溶剤系離型剤や水系離型剤等が使用できる。
As shown in FIG. 3, a mold release agent W1 is applied to a mold surface 62 of a lower mold 61 that forms a surface on the non-sound source side of the polyurethane foam. The release agent W1 is a release agent containing a linear hydrocarbon wax. On the other hand, a mold release agent W2 is applied to the mold surface 66 of the upper mold 65 that forms the surface on the sound source side of the polyurethane foam. The release agent W2 is a release agent containing a linear hydrocarbon wax, or preferably a release agent containing a branched hydrocarbon wax.
Examples of the linear hydrocarbon wax include paraffin wax, Fischer-Tropsch wax, and Sasol wax, and a solvent-based release agent dispersed in an organic solvent, an aqueous release agent dispersed in water using an emulsifier, and the like. Can be used.
Examples of the branched hydrocarbon wax include microcrystalline wax and modified polyethylene wax, and a solvent-based release agent, an aqueous-based release agent, and the like can be used.

直鎖状炭化水素ワックスは、主に直鎖状の炭化水素からなる主鎖から構成されるため、分岐鎖状炭化水素ワックスに比べ、末端メチル基の比率が低く、極性が強くなる傾向となる。一方、分岐鎖状炭化水素ワックスは、主に分岐鎖状の炭化水素から構成されるため、末端メチル基の比率が高く、極性が弱くなる傾向となる。
このため、ポリウレタンフォーム原料と直鎖状炭化水素ワックスとの極性の差(溶解性)は、ポリウレタンフォーム原料と分岐鎖状炭化水素ワックスとの極性の差(溶解性)よりも相対的に小さく、直鎖状炭化水素ワックスを含有する離型剤W1を用いた場合、分岐鎖状炭化水素ワックスを含有する離型剤W2を用いる場合と比べてポリウレタンフォーム表面にスキン層が形成され難く、形成されるスキン層は薄くオープンセル状態となり易い。一方、分岐鎖状炭化水素ワックスを含有する離型剤W2を用いた場合、ポリウレタンフォーム表面にスキン層が形成され易く、形成されるスキン層は厚くクローズドセル状態となり易い。
なお、離型剤が直鎖状炭化水素ワックスであっても、離型剤上に塗料を全面に塗布して全面に塗膜部14を形成(図2(2−A)参照)することによりクローズドセル状態のスキン層12Aが形成される。
離型剤の塗布は、スプレー又は刷毛等、公知の方法で行い、液状の離型剤の塗布量は、10〜300g/mである。
Since the linear hydrocarbon wax is mainly composed of a main chain composed of a linear hydrocarbon, the ratio of the terminal methyl group is lower and the polarity tends to be stronger as compared with the branched hydrocarbon wax. . On the other hand, since the branched hydrocarbon wax is mainly composed of a branched hydrocarbon, the ratio of terminal methyl groups is high and the polarity tends to be weak.
Therefore, the difference in polarity (solubility) between the polyurethane foam material and the linear hydrocarbon wax is relatively smaller than the difference in polarity (solubility) between the polyurethane foam material and the branched hydrocarbon wax. When the release agent W1 containing a linear hydrocarbon wax is used, a skin layer is hardly formed on the polyurethane foam surface as compared with the case where a release agent W2 containing a branched hydrocarbon wax is used. The skin layer is thin and tends to be in an open cell state. On the other hand, when the release agent W2 containing the branched chain hydrocarbon wax is used, a skin layer is easily formed on the surface of the polyurethane foam, and the formed skin layer is likely to be thick and closed.
Even when the release agent is a straight-chain hydrocarbon wax, a coating is applied to the entire surface of the release agent to form the coating portion 14 on the entire surface (see FIG. 2 (2-A)). The skin layer 12A in a closed cell state is formed.
The release agent is applied by a known method such as spraying or brushing, and the amount of the liquid release agent applied is 10 to 300 g / m 2 .

下型61の型面62と上型65の型面66に前記離型剤を塗布した後、図4に示すように、音源側表面を形成する上型65の型面66の離型剤上に、塗料Tを塗布する。塗料Tとしては、水系/溶剤系のウレタン系エマルジョン、水系/溶剤系のアクリル系エマルジョン、水系/溶剤系のウレタン系エマルジョンとアクリル系エマルジョンの混合物などが挙げられる。塗料の塗布は、スプレー又は刷毛等、公知の方法で行えるが、塗布の均一性や塗布量の調整を行い易いスプレーが好ましい。塗料Tの塗布後、塗料Tを硬化させて塗膜部14を形成する。塗料Tの硬化は、金型60があらかじめ温調されているため、塗料Tを塗布後、所定時間放置させ、溶媒(水/溶剤)を揮発させることによって行う。液状の塗料の塗布量は、1〜500g/mが好ましく、1.5〜300g/mがより好ましく、3〜100g/mが更に好ましい。塗膜部14を散点状に形成する場合、塗料のスプレー塗布は1回行えば十分である。塗膜部14を被膜状に形成する場合、塗料のスプレー塗布は1回でも、複数回でもよい。塗料のスプレー塗布を複数回行う場合、スプレー塗布後に塗料を硬化させた後、再びスプレー塗布を行うことが好ましい。何れの場合であっても、スプレーの塗布量を適切に調整し、目的とする塗膜部14を形成すればよい。 After applying the release agent on the mold surface 62 of the lower mold 61 and the mold surface 66 of the upper mold 65, as shown in FIG. 4, the mold release agent on the mold surface 66 of the upper mold 65 forming the sound source side surface is formed. Is applied with a paint T. Examples of the paint T include a water-based / solvent-based urethane emulsion, a water-based / solvent-based acrylic emulsion, and a mixture of a water-based / solvent-based urethane emulsion and an acrylic emulsion. The application of the paint can be performed by a known method such as spraying or brushing, but a spray that can easily adjust the uniformity of application and the amount of application is preferable. After the application of the paint T, the paint T is cured to form the coating film portion 14. Since the temperature of the mold 60 is adjusted in advance, the coating material T is cured by allowing the coating material T to stand for a predetermined period of time after application of the coating material T to evaporate the solvent (water / solvent). The coating amount of the coating liquid is preferably from 1 to 500 g / m 2, more preferably 1.5~300g / m 2, more preferably 3~100g / m 2. In the case where the coating portion 14 is formed in the form of scattered spots, it is sufficient to spray the paint once. When the coating portion 14 is formed in a film shape, the paint may be sprayed once or plural times. In the case of performing the spray application of the paint a plurality of times, it is preferable that the paint is cured after the spray application, and then the spray application is performed again. In any case, it is only necessary to appropriately adjust the amount of the spray applied to form the target coating portion 14.

次に図5に示すように金型60内にポリウレタンフォーム原料Fを注入する。
ポリウレタンフォーム原料Fはポリオール、イソシアネート、発泡剤、触媒、適宜の添加剤を含む。
Next, as shown in FIG. 5, a polyurethane foam raw material F is injected into a mold 60.
The polyurethane foam raw material F contains a polyol, an isocyanate, a blowing agent, a catalyst, and appropriate additives.

ポリオールは、ポリウレタンフォームの製造に用いられる公知のエーテル系ポリオール、エステル系ポリオール、エーテルエステル系ポリオール、ポリマーポリオール等を単独であるいは複数組み合わせて使用することができる。   As the polyol, known ether-based polyols, ester-based polyols, ether-ester-based polyols, polymer polyols and the like used in the production of polyurethane foams can be used alone or in combination.

エーテル系ポリオールとしては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、トリメチロールプロパン、ソルビトール、シュークロース等の多価アルコール、またはその多価アルコールにエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドを付加したポリエーテルポリオールを挙げることができる。また、エステル系ポリオールとしては、マロン酸、コハク酸、アジピン酸等の脂肪族カルボン酸やフタル酸等の芳香族カルボン酸と、エチレングリコール、ジエチレングリコール、プロピレングリコール等の脂肪族グリコール等とから重縮合して得られたポリエステルポリオールを挙げることできる。さらにポリオール中にエーテル基とエステル基の両方を含むエーテルエステル系ポリオールやエーテル系ポリオール中でエチレン性不飽和化合物等を重合させて得られるポリマーポリオールを使用することもできる。   Examples of ether polyols include polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, neopentyl glycol, glycerin, pentaerythritol, trimethylolpropane, sorbitol, and sucrose, or polyhydric alcohols thereof. Examples thereof include polyether polyols to which alkylene oxides such as ethylene oxide and propylene oxide have been added. Examples of the ester polyol include polycondensation from aliphatic carboxylic acids such as malonic acid, succinic acid, and adipic acid, and aromatic carboxylic acids such as phthalic acid, and aliphatic glycols such as ethylene glycol, diethylene glycol, and propylene glycol. Can be mentioned. Further, an ether ester-based polyol containing both an ether group and an ester group in the polyol, or a polymer polyol obtained by polymerizing an ethylenically unsaturated compound or the like in an ether-based polyol can also be used.

イソシアネートとしては、芳香族系、脂環式、脂肪族系の何れでもよく、また、1分子中に2個のイソシアネート基を有する2官能のイソシアネートであっても、あるいは1分子中に3個以上のイソシアネート基を有する3官能以上のイソシアネートであってもよく、それらを単独であるいは複数組み合わせて使用してもよい。   The isocyanate may be any of aromatic, alicyclic, and aliphatic, and may be a bifunctional isocyanate having two isocyanate groups in one molecule, or three or more isocyanates in one molecule. Or a trifunctional or more isocyanate having an isocyanate group of the formula (I). These may be used alone or in combination.

例えば、2官能のイソシアネートとしては、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、m−フェニレンジイソシアネート、p−フェニレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、2,4’−ジフェニルメタンジイソシアネート、2,2’−ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、3,3’−ジメチル−4,4’−ビフェニレンジイソシアネート、3,3’−ジメトキシ−4,4’−ビフェニレンジイソシアネートなどの芳香族系のもの、シクロヘキサン−1,4−ジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、メチルシクロヘキサンジイソシアネートなどの脂環式のもの、ブタン−1,4−ジイソシアネート、ヘキサメチレンジイソシアネート、イソプロピレンジイソシアネート、メチレンジイソシアネート、リジンイソシアネートなどの脂肪族系のものを挙げることができる。   For example, bifunctional isocyanates include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4'-diphenylmethane diisocyanate, and 2,4'-diphenylmethane diisocyanate Aromatic compounds such as 2,2'-diphenylmethane diisocyanate, xylylene diisocyanate, 3,3'-dimethyl-4,4'-biphenylene diisocyanate, and 3,3'-dimethoxy-4,4'-biphenylene diisocyanate; Cycloaliphatic ones such as cyclohexane-1,4-diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate and methylcyclohexane diisocyanate, butane-1,4 Diisocyanate, hexamethylene diisocyanate, isopropylene diisocyanate, methylene diisocyanate, there may be mentioned aliphatic, such as lysine isocyanate.

また、3官能以上のイソシアネートとしては、1−メチルベンゾール−2,4,6−トリイソシアネート、1,3,5−トリメチルベンゾール−2,4,6−トリイソシアネート、ビフェニル−2,4,4’−トリイソシアネート、ジフェニルメタン−2,4,4’−トリイソシアネート、メチルジフェニルメタン−4,6,4’−トリイソシアネート、4,4’−ジメチルジフェニルメタン−2,2’,5,5’テトライソシアネート、トリフェニルメタン−4,4’,4”−トリイソシアネート、ポリメリックMDI等を挙げることができる。なお、その他ウレタンプレポリマーも使用することができる。また、イソシアネートは、それぞれ一種類に限られず一種類以上であってもよい。例えば、脂肪族系イソシアネートの一種類と芳香族系イソシアネートの二種類を併用してもよい。イソシアネートインデックスは、90〜115が好ましく、95〜110がより好ましい。イソシアネートインデックスは、ポリウレタンの分野で使用される指数であって、原料中の活性水素基(例えばポリオール類の水酸基及び発泡剤としての水等の活性水素基等に含まれる活性水素基)に対するイソシアネートのイソシアネート基の当量比を百分率で表した数値である。   Examples of trifunctional or higher functional isocyanates include 1-methylbenzol-2,4,6-triisocyanate, 1,3,5-trimethylbenzol-2,4,6-triisocyanate, and biphenyl-2,4,4 ′. -Triisocyanate, diphenylmethane-2,4,4'-triisocyanate, methyldiphenylmethane-4,6,4'-triisocyanate, 4,4'-dimethyldiphenylmethane-2,2 ', 5,5'tetraisocyanate, triisocyanate Examples thereof include phenylmethane-4,4 ', 4 "-triisocyanate and polymeric MDI. In addition, other urethane prepolymers can also be used. Further, the isocyanate is not limited to one kind and may be one or more kinds. For example, one kind of aliphatic isocyanate and aromatic The isocyanate index is preferably 90 to 115, more preferably 95 to 110. The isocyanate index is an index used in the field of polyurethane, and is an active hydrogen in the raw material. It is a numerical value expressing the equivalent ratio of the isocyanate group of the isocyanate to the group (for example, a hydroxyl group of a polyol and an active hydrogen group contained in an active hydrogen group such as water as a blowing agent) in percentage.

発泡剤は、特に限定されないが、水が好適である。また、二酸化炭素ガスやペンタン、ハイドロフルオロオレフィン(HFO)等を発泡助剤として、発泡剤である水と併用してもよい。なお、HFOは、オゾン層破壊係数(ODP)が0であり、地球温暖化係数(GWP)が小さい、化合物である。発泡剤としての水の量は、ポリオール100重量部に対して0.3〜3重量部が好適である。   The blowing agent is not particularly limited, but water is preferred. Further, carbon dioxide gas, pentane, hydrofluoroolefin (HFO), or the like may be used in combination with water as a foaming agent as a foaming aid. HFO is a compound having an ozone depletion potential (ODP) of 0 and a small global warming potential (GWP). The amount of water as the blowing agent is preferably 0.3 to 3 parts by weight based on 100 parts by weight of the polyol.

触媒は、ポリウレタンフォーム用として公知のものを用いることができる。例えば、トリエチルアミン、トリエチレンジアミン、ジエタノールアミン、ビス(2−ジメチルアミノ−エチル)エーテル、テトラメチルグアニジン、イミダゾール系化合物等のアミン触媒や、スタナスオクトエート等の錫触媒やフェニル水銀プロピオン酸塩あるいはオクテン酸鉛等の金属触媒(有機金属触媒とも称される。)を挙げることができる。触媒の一般的な量は、ポリオール100重量部に対して0.2〜6重量部が好適である。   As the catalyst, those known for polyurethane foam can be used. For example, amine catalysts such as triethylamine, triethylenediamine, diethanolamine, bis (2-dimethylamino-ethyl) ether, tetramethylguanidine, imidazole compounds, tin catalysts such as stannas octoate, phenylmercuric propionate, and octenoic acid A metal catalyst such as lead (also referred to as an organic metal catalyst) can be used. The general amount of the catalyst is preferably 0.2 to 6 parts by weight based on 100 parts by weight of the polyol.

適宜配合される添加剤としては、整泡剤、着色剤、架橋剤、充填材(フィラー)、難燃剤、酸化防止剤等の合成樹脂安定剤などを挙げることができる。整泡剤は、ポリウレタンフォームに用いられるものであればよく、シリコーン系整泡剤、含フッ素化合物系整泡剤及び公知の界面活性剤を挙げることができる。着色剤は、顔料や染料等、求められる色に応じたものが用いられる。   Examples of additives appropriately compounded include synthetic resin stabilizers such as a foam stabilizer, a colorant, a crosslinking agent, a filler, a flame retardant, and an antioxidant. The foam stabilizer may be any one used for polyurethane foam, and examples thereof include a silicone-based foam stabilizer, a fluorine-containing compound-based foam stabilizer, and a known surfactant. As the colorant, a colorant or the like corresponding to a required color such as a dye is used.

ポリウレタンフォーム原料Fを金型60に注入後、図6に示すように閉型し、ポリウレタンフォーム原料Fの発泡反応が行われる。なお、図示の例では、金型60を開いた状態で注入する例を示したが、上型65に注入口(図示せず)を設け、金型60を閉じた状態で注入口からポリウレタンフォーム原料Fを金型60内に注入してもよい。   After injecting the polyurethane foam material F into the mold 60, the mold is closed as shown in FIG. 6, and the foaming reaction of the polyurethane foam material F is performed. In the illustrated example, the injection is performed with the mold 60 opened. However, an injection port (not shown) is provided in the upper mold 65, and the polyurethane foam is injected from the injection port with the mold 60 closed. The raw material F may be injected into the mold 60.

ポリウレタンフォーム原料Fの発泡反応によって、金型60内には、図1に示した前記ポリウレタンフォーム11からなる吸遮音材10が形成される。ポリウレタンフォーム11は、下型61の型面62及び上型65の型面66によって表面にスキン層12が形成される。また、前記スキン層12のうち、発泡成形時に上型65の型面66で形成される表面のスキン層12A、すなわち音源Sの外表面S1と対向する一側表面に形成されるスキン層12Aは、塗布部を有するクローズドセル状態のスキン層となる。一方、発泡成形時に下型61の型面62で形成される表面のスキン層12B、すなわち音源とは反対側の他側表面に形成されるスキン層12Bは、オープンセル状態のスキン層となる。   By the foaming reaction of the polyurethane foam raw material F, the sound absorbing and insulating material 10 made of the polyurethane foam 11 shown in FIG. The skin layer 12 is formed on the surface of the polyurethane foam 11 by the mold surface 62 of the lower mold 61 and the mold surface 66 of the upper mold 65. Also, of the skin layer 12, the skin layer 12A formed on the mold surface 66 of the upper mold 65 during foam molding, that is, the skin layer 12A formed on one surface facing the outer surface S1 of the sound source S, And a skin layer in a closed cell state having an application portion. On the other hand, the skin layer 12B on the surface formed by the mold surface 62 of the lower mold 61 during foam molding, that is, the skin layer 12B formed on the other surface on the side opposite to the sound source is a skin layer in an open cell state.

その後、金型60を開け、前記ポリウレタンフォーム11からなる吸遮音材10が取り出される。前記金型60から取り出された吸遮音材10は、音源Sの外表面S1と対向する面とされるポリウレタンフォーム11の一側表面に、塗膜部を有するクローズドセル状態のスキン層12Aを有し、反対側の他側表面にはオープンセル状態のスキン層12Bを有する。   Thereafter, the mold 60 is opened, and the sound absorbing and insulating material 10 made of the polyurethane foam 11 is taken out. The sound absorbing and insulating material 10 removed from the mold 60 has a closed cell skin layer 12A having a coating portion on one surface of the polyurethane foam 11 which is a surface facing the outer surface S1 of the sound source S. Then, the other side surface on the opposite side has a skin layer 12B in an open cell state.

また、金型60から吸遮音材10を取り出した後、音源Sとは反対側となるポリウレタンフォーム11の他側表面のオープンセル状態のスキン層12Bの一部やポリウレタンフォーム11の縁の側面11bの少なくとも一部について、切断や研磨等によってスキン層12を除去して前記コア部11aを露出させてもよい。   After removing the sound absorbing and insulating material 10 from the mold 60, a part of the skin layer 12B in the open cell state on the other surface of the polyurethane foam 11 opposite to the sound source S and the side surface 11b of the edge of the polyurethane foam 11 At least a part of the core portion 11a may be exposed by removing the skin layer 12 by cutting, polishing, or the like.

以下、本発明の各実施例および各比較例について説明する。図7及び図8の配合からなるポリウレタンフォーム原料を用いて、モールド成形により500mm角×厚み30mmと、500mm角×厚み10mm、400mm×190mm×高さ100mm(内部に30mm角×高さ60mmの凹部を3箇所に有する)のポリウレタンフォームからなる吸遮音材のテストピースを作製した。なお、各実施例及び各比較例の配合は、同一とした。また、図7及び図8の配合における各成分の数値は重量部を示す。使用した金型は、金型を開けて注入するタイプであり、金型の温度調節は温水により行った。また、下型の型面で音源側表面を形成し、上側の型面で非音源側表面を形成した。   Hereinafter, Examples and Comparative Examples of the present invention will be described. Using a polyurethane foam raw material having the composition shown in FIGS. 7 and 8, 500 mm square × 30 mm thick, 500 mm square × 10 mm thick, 400 mm × 190 mm × 100 mm high by molding, and a concave portion of 30 mm square × 60 mm high inside. At three locations) of a sound absorbing and insulating material made of polyurethane foam. In addition, the composition of each Example and each Comparative Example was the same. The numerical values of each component in the formulations of FIGS. 7 and 8 indicate parts by weight. The mold used was of a type in which the mold was opened and poured, and the temperature of the mold was adjusted with hot water. The lower mold surface formed the sound source side surface, and the upper mold surface formed the non-sound source side surface.

・ポリオール:ポリエーテルポリオール、官能基数3、重量平均分子量5000、水酸基価35mgKOH/g
・発泡剤:水
・アミン触媒1:エアープロダクツジャパン社製、「DABCO33LSI」 ・アミン触媒2:エアープロダクツジャパン社製、「DABCOBL−19」
・整泡剤:東レ・ダウコーニング社製、「SZ−1346E」、シリコーン整泡剤
・イソシアネート:ポリメリックMDI、イソシアネート基含有率(NCO%)31.5%
・離型剤W1:コニシ社製、「URM−520」、直鎖状炭化水素ワックス
・離型剤W2:中京油脂社製、「N−915」、分岐鎖状炭化水素ワックス
・塗料:大日本塗料社製、「DNTビューウレタン」、水系ウレタン樹脂系塗料
-Polyol: polyether polyol, number of functional groups 3, weight average molecular weight 5000, hydroxyl value 35 mg KOH / g
-Blowing agent: water-Amine catalyst 1: "DABCO33LSI" manufactured by Air Products Japan, Inc.-Amine catalyst 2: "DABCOBL-19" manufactured by Air Products Japan, Inc.
-Foam stabilizer: "SZ-1346E", manufactured by Dow Corning Toray Co., Ltd., silicone foam stabilizer-Isocyanate: Polymeric MDI, isocyanate group content (NCO%) 31.5%
-Release agent W1: manufactured by Konishi Co., Ltd., "URM-520", linear hydrocarbon wax-Release agent W2: manufactured by Chukyo Yushi Co., Ltd., "N-915", branched chain hydrocarbon wax-Paint: Dainippon "DNT View Urethane", a paint made by Paint Co., Ltd., an aqueous urethane resin paint

得られた各実施例および各比較例について、密度、スキン層の表面状態、通気性、耐油性、吸音性、追従性、成形性について測定あるいは判断した。   For each of the obtained examples and comparative examples, the density, the surface state of the skin layer, the air permeability, the oil resistance, the sound absorption, the followability, and the moldability were measured or determined.

全体密度は、500mm角×厚み30mmのテストピースを400mm角×厚み30mmに端部をカットしたサンプルを作製し、JIS K7222:2005/ISO 845:1988に基づいて測定した。
スキン層の表面状態は、音源側表面(音源側の表面形成用型面で形成された表面)と、非音源側表面(非音源側の表面形成用型面で形成された表面)について、スキン層の構成、スキン層の状態、塗膜部の状態を判断すると共に、各構成の平均厚みを測定した。スキン層の構成、スキン層の状態、塗膜部の状態、各構成の平均厚み、気泡の最大径、貫通孔の有無は、走査電子顕微鏡(日本電子社製:JSM−IT100)を用いて写真撮影し、確認した。
具体的には、所定形状にカットしたスキン層を有するポリウレタンフォームに、プラチナ蒸着装置(日本電子社製:JEC−3000FC)によりプラチナを蒸着させて走査電子顕微鏡による観察をし易くした後、スキン層付近(断面及び表面)を300倍に拡大して写真を撮影した。
スキン層の構成は、撮影した写真から塗膜(塗膜部)、PU(ポリウレタン)、フィルム(樹脂フィルム)の何れから構成されているか確認した。
スキン層の状態は、撮影した写真からクローズドセル状態かオープンセル状態かを確認した。
塗膜部の状態は、撮影した写真から塗膜部が、膜状か散点状か確認した。
各構成の平均厚みは、所定形状にカットした吸遮音材に、プラチナ蒸着装置(日本電子社製:JEC−3000FC)によりプラチナを蒸着させて走査電子顕微鏡による観察をし易くした後、スキン層付近(断面及び表面)を300倍に拡大して写真を撮影し、スキン層の表面(最外面)とセルの最上部との距離を測定した。各構成の平均厚みは、撮影した写真における1〜3番目に厚い箇所と、1〜3番目に薄い箇所との6点を測定し、その平均値を各構成の平均厚みとした。
気泡の最大径は、撮影した写真からスキン層の厚み方向における気泡の内、最大のものを探し、その径を最大径とした。
貫通孔の有無の判断は、撮影した写真からスキン層の厚み方向に貫通孔があるかどうか確認した。
The overall density was measured based on JIS K7222: 2005 / ISO 845: 1988 by preparing a sample in which a test piece of 500 mm square x 30 mm thickness was cut into an end portion of 400 mm square x 30 mm thickness.
The surface state of the skin layer is determined by the skin on the sound source side surface (the surface formed by the surface forming mold surface on the sound source side) and the non-sound source side surface (the surface formed by the surface forming mold surface on the non-sound source side). The structure of the layer, the state of the skin layer, and the state of the coating film portion were determined, and the average thickness of each structure was measured. The structure of the skin layer, the state of the skin layer, the state of the coating film portion, the average thickness of each structure, the maximum diameter of bubbles, and the presence or absence of through holes were photographed using a scanning electron microscope (JSM-IT100 manufactured by JEOL Ltd.). Photographed and confirmed.
Specifically, platinum is vapor-deposited on a polyurethane foam having a skin layer cut into a predetermined shape by a platinum vapor deposition apparatus (manufactured by JEOL Ltd .: JEC-3000FC) to facilitate observation by a scanning electron microscope, and then the skin layer is formed. The vicinity (cross section and surface) was magnified 300 times and a photograph was taken.
The configuration of the skin layer was confirmed from a photographed photograph to be composed of a coating film (coated film portion), PU (polyurethane), or film (resin film).
The state of the skin layer was confirmed from the photographed image to be a closed cell state or an open cell state.
The state of the coating film portion was confirmed from the photographed image as to whether the coating film portion was film-like or dot-like.
The average thickness of each component was determined by evaporating platinum on a sound absorbing and insulating material cut into a predetermined shape using a platinum vapor deposition device (manufactured by JEOL Ltd .: JEC-3000FC) to facilitate observation with a scanning electron microscope, and then measuring the vicinity of the skin layer (Cross section and surface) was magnified 300 times and a photograph was taken, and the distance between the surface (outermost surface) of the skin layer and the uppermost part of the cell was measured. The average thickness of each component was measured at the first to third thickest spots and the first to third thinnest spots in a photographed image, and the average value was taken as the average thickness of each component.
The maximum diameter of the bubbles was determined by searching for the largest one of the bubbles in the thickness direction of the skin layer from the photographed image, and the diameter was taken as the maximum diameter.
The determination of the presence or absence of a through hole was made by checking whether or not there was a through hole in the thickness direction of the skin layer from the photographed image.

通気性は、500mm角×厚み30mmのテストピースを、厚みが3分割となるように、200mm角×厚み10mmにスライスし、音源側、非音源側、コア部の各サンプルを作製し、音源側と非音源側のサンプルについて、JIS K6400−7 B法:2012/ISO 7231:2010に基づいて測定した。   As for the air permeability, a test piece of 500 mm square x 30 mm thickness is sliced into 200 mm square x 10 mm thickness so that the thickness is divided into three parts, and each sample of the sound source side, non-sound source side, and core part is prepared. And samples on the non-sound source side were measured based on JIS K6400-7 B method: 2012 / ISO 7231: 2010.

耐油性は、500mm角×厚み10mmのテストピースを、200mm角×厚み10mmに端部をカットしたものを測定サンプルとし、音源側表面に対して測定した。測定方法は、4隅(サンプルの頂点から縦・横方向に各10mm内側)と中央部の5点に、エンジンオイル(GTX 5W−30 SM:カストロール社製)をスポイトで0.5cc滴下し、滴下したオイルがポリウレタンフォームの内部に染み込むかどうか確認した。吸遮音材の内部に染み込んだ場合、その時間を測定した。測定時間は、最長で4時間とした。   The oil resistance was measured on a sound source side surface by using a test piece having a size of 500 mm square x 10 mm in thickness and a cut end of 200 mm square x 10 mm in thickness as a measurement sample. The measuring method is as follows: 0.5 cc of engine oil (GTX 5W-30 SM: manufactured by Castrol Co., Ltd.) is dripped into four corners (each 10 mm in the vertical and horizontal directions from the top of the sample) and the central part with a dropper. It was checked whether the dropped oil permeated into the polyurethane foam. When the material penetrated into the sound absorbing and insulating material, the time was measured. The measurement time was up to 4 hours.

吸音性は、500mm角×厚み10mmのテストピースから29φ×厚み10mmに打ち抜いてサンプル(上下面にスキン層付き)を作製し、非音源側表面に対して測定した。測定方法は、JIS A1405−2:2007/ISO 10534−2:1998に準拠して非音源側から音を入射し、非音源側で測定した。各周波数(500、630、800、1000、1250、1600、2000、2500、3150、4000、5000、6300Hz)の吸音率の測定値を平均し、平均吸音率として評価を行った。
吸音性保持率は、500mm角×厚み10mmのテストピースを100mm角×厚み10mmに端部をカットしたものを測定サンプルとし、サンプルの側面とオイルが接触しないように粘着テープ等を貼ってシールした。容器にオイル(油)を満たし、音源側表面とオイルが接触するようにサンプルを置き、4時間放置した。4時間経過後、サンプル表面のオイルを拭き取り、吸音性と同様に測定を行い、下記の式より、吸音性保持率を算出した。
吸音性保持率=吸音率(油処理後)/吸音率(油処理前)×100[%]
The sound absorbing properties were measured on a non-sound source side surface by punching out a test piece of 500 mm square x 10 mm thickness into a sample having a diameter of 29 mm x thickness 10 mm (with skin layers on the upper and lower surfaces). The measuring method was such that sound was incident from the non-sound source side and measured on the non-sound source side in accordance with JIS A1405-2: 2007 / ISO 10534-2: 1998. The measured value of the sound absorption coefficient at each frequency (500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150, 4000, 5000, 6300 Hz) was averaged and evaluated as the average sound absorption coefficient.
The sound-absorbing retention was measured by cutting a test piece of 500 mm square x 10 mm in thickness into 100 mm square x 10 mm in thickness as a measurement sample, and sealing it with an adhesive tape or the like so that the oil did not come into contact with the side surface of the sample. . The container was filled with oil (oil), the sample was placed such that the oil was in contact with the sound source side surface, and the sample was left for 4 hours. After a lapse of 4 hours, the oil on the sample surface was wiped off, the measurement was performed in the same manner as the sound absorption, and the sound absorption retention was calculated from the following equation.
Sound absorption retention = Sound absorption (after oil treatment) / Sound absorption (before oil treatment) x 100 [%]

追従性は、図9に示す金型(400mm×190mm×高さ100mm(型内に30mm角×高さ60mmの突部を3箇所に有する))にて、テストピースを作製し、スキン層(最外面層)が金型の形状に追従するかどうか確認した。   The followability was determined by using a mold shown in FIG. 9 (400 mm × 190 mm × 100 mm in height (having three 30 mm square × 60 mm height protrusions in the mold) at three locations) to form a skin layer ( It was confirmed whether the outermost layer) conformed to the shape of the mold.

成形性は、追加で設備が必要かどうかで判断した。   Moldability was determined by whether additional equipment was required.

貫通孔、耐油性、吸音性、追従性、成形性の結果に対して以下のように判定し、それらの判定を総合評価して総合判定を行った。
貫通孔の判定は、貫通孔が存在する場合に耐油性や遮音性が低下するため、貫通孔が無い場合「◎」、有る場合「×」とした。
耐油性の判定は、オイルが吸遮音材の内部に染み込むまでの時間が4時間以上の場合「◎」、3時間以上〜4時間未満の場合「〇」、3時間未満の場合「×」とした。
The results of the through-holes, oil resistance, sound absorbing properties, followability, and moldability were determined as follows, and the determinations were comprehensively evaluated to make a comprehensive determination.
The judgment of the through-hole was made as “◎” when there was no through-hole and “×” when there was no through-hole because oil resistance and sound insulation deteriorated when there was a through-hole.
The oil resistance was judged as "◎" when the time for the oil to permeate into the sound absorbing and insulating material was 4 hours or more, "場合" for 3 hours or more to less than 4 hours, "X" for less than 3 hours. did.

吸音性の判定は、吸音性(油処理前後)と吸音性保持率についてそれぞれ判定し、両方の判定を総合評価して吸音性の判定を行った。
吸音性(油処理前後)の判定は、平均吸音率が50%以上の場合「◎」、40%以上〜50%未満の場合「〇」、40%未満の場合「×」とした。
吸音性保持率の判定は、90%以上の場合「◎」、80%以上〜90%未満の場合「〇」、80%未満の場合「×」とした。
吸音性の判定は、吸音性(油処理前後)及び吸音性保持率の何れも「◎」の場合に吸音性の判定「◎」、吸音性(油処理前後)と吸音性保持率の何れか一方が「◎」、他方が「〇」の場合に吸音性の判定「〇」、吸音性(油処理前後)と吸音性保持率の少なくとも一方に「×」が有る場合に吸音性の判定「×」とした。
The sound absorbing property was determined for the sound absorbing property (before and after the oil treatment) and the sound absorbing property retention rate, and both of the determinations were comprehensively evaluated to determine the sound absorbing property.
The sound absorbing properties (before and after the oil treatment) were evaluated as “◎” when the average sound absorbing rate was 50% or more, “〇” when the average sound absorbing rate was 40% or more and less than 50%, and “×” when the average sound absorbing rate was less than 40%.
Judgment of the sound-absorbing retention rate was “◎” for 90% or more, “〇” for 80% or more to less than 90%, and “X” for less than 80%.
The sound absorbing property is judged as “◎” when both the sound absorbing property (before and after oil treatment) and the sound absorbing property retention rate are “◎”, and either the sound absorbing property (before and after oil treatment) or the sound absorbing property retention rate is determined. Judgment of sound absorbency when one is “◎” and the other is “〇”, judgment of sound absorbency when at least one of sound absorbency (before and after oil treatment) and sound retention is “X” X ".

追従性の判定は、成形品表面が金型形状に追従する場合「◎」、追従しない場合あるいは破れる場合「×」とした。
成形性は、追加設備が不要な場合「◎」、追加設備が必要な場合「×」とした。
総合判定は、各項目の判定が全て「◎」の場合に総合判定「◎」、各項目の判定が「◎」または「〇」のみの場合に総合判定「〇」、各項目の一つでも「×」がある場合に総合判定「×」とした。
Judgment of the followability was evaluated as “◎” when the surface of the molded article follows the mold shape, and “×” when the surface did not follow or was broken.
The moldability was evaluated as “◎” when additional equipment was not required, and “×” when additional equipment was required.
The comprehensive judgment is a comprehensive judgment “◎” when the judgment of each item is all “◎”, and a comprehensive judgment “〇” when the judgment of each item is only “◎” or “〇”. When there was "x", the overall judgment was "x".

実施例1は、下型61の型面62(音源側)及び上型65の型面66(非音源側)の何れも離型剤W1(直鎖状)を塗布し、塗料については下型61の型面62(音源側)にのみ塗布し、下型61(音源側)及び上型65(非音源側)の温度を55℃にし、金型への充填率を100%とした例である。
実施例1の結果について示す。なお、各実施例及び各比較例のスキン層の各構成の厚みは、平均厚みである。密度は150kg/m、音源側のスキン層は、スキン層の構成が塗膜+PU、スキン層の状態がクローズドセル状態、塗膜部の状態が膜状、塗膜部の厚みが7.6μm、PUスキン層の厚みが24.8μm、全体厚みが32.4μmである。非音源側のスキン層は、スキン層の構成がPU、スキン層の状態がオープンセル状態であった。音源側の貫通孔は、気泡の最大径が1.6μm、貫通孔無で判定「◎」であった。通気性は、音源側が0ml/cm/s、非音源側が6.90ml/cm/sであった。音源側の耐油性は、測定値が4時間で判定「◎」であった。非音源側の吸音性は、油処理前の測定値が51%、判定「◎」であり、油処理後の測定値が51%であり、吸音性の保持率が計算値100%、判定「◎」、吸音性の判定「◎」であった。追従性は「◎」、成形性は「◎」であった。全ての判定項目で「◎」のため、総合判定は「◎」であった。
In the first embodiment, the mold release agent W1 (linear) is applied to both the mold surface 62 (the sound source side) of the lower mold 61 and the mold surface 66 (the non-sound source side) of the upper mold 65. In this example, the mold 61 is applied only to the mold surface 62 (sound source side), the temperature of the lower mold 61 (sound source side) and the upper mold 65 (non-sound source side) is 55 ° C., and the filling rate in the mold is 100%. is there.
The results of Example 1 will be described. The thickness of each component of the skin layer in each of the examples and comparative examples is an average thickness. The density was 150 kg / m 3 , and the skin layer on the sound source side was composed of a coating film + PU, the skin layer was in a closed cell state, the coating was in a film state, and the thickness of the coating was 7.6 μm. And the PU skin layer has a thickness of 24.8 μm and an overall thickness of 32.4 μm. The skin layer on the non-sound source side had a PU configuration of the skin layer and an open cell state of the skin layer. In the through hole on the sound source side, the maximum diameter of the bubble was 1.6 μm, and the judgment was “◎” with no through hole. Breathability, the sound source side 0ml / cm 2 / s, a non-sound module was 6.90ml / cm 2 / s. The oil resistance of the sound source was determined to be “◎” when the measured value was 4 hours. Regarding the sound absorption on the non-sound source side, the measured value before the oil treatment was 51% and the judgment was “」 ”, the measured value after the oil treatment was 51%, the retention rate of the sound absorption was 100%, and the judgment was“ ◎ ”, and the sound absorbing property was“ ◎ ”. The followability was “◎”, and the moldability was “◎”. Since all the judgment items were “◎”, the overall judgment was “◎”.

実施例2は、下型61の型面62(音源側)及び上型65の型面66(非音源側)の温度を60℃にした以外、実施例1と同様にした例である。
実施例2の結果について示す。密度は150kg/m、音源側のスキン層は、スキン層の構成が塗膜+PU、スキン層の状態がクローズドセル状態、塗膜部の状態が膜状、塗膜部の厚みが7.2μm、PUスキン層の厚みが21.9μm、全体厚みが29.1μmである。非音源側のスキン層は、スキン層の構成がPU、スキン層の状態がオープンセル状態であった。音源側の貫通孔は、気泡の最大径が2.0μm、貫通孔無で判定「◎」であった。通気性は、音源側が0ml/cm/s、非音源側が8.62ml/cm/sであった。音源側の耐油性は、測定値が4時間で判定「◎」であった。非音源側の吸音性は、油処理前の測定値が52%、判定「◎」であり、油処理後の測定値が52%であり、吸音性の保持率が計算値100%、判定「◎」、吸音性の判定「◎」であった。追従性は「◎」、成形性は「◎」であった。全ての判定項目で「◎」のため、総合判定は「◎」であった。
The second embodiment is an example similar to the first embodiment except that the temperature of the mold surface 62 (the sound source side) of the lower mold 61 and the mold surface 66 (the non-sound source side) of the upper mold 65 is set to 60 ° C.
The results of Example 2 will be described. The density was 150 kg / m 3 , and the skin layer on the sound source side was composed of a coating film + PU, the skin layer was in a closed cell state, the coating was in a film state, and the thickness of the coating was 7.2 μm. , The PU skin layer has a thickness of 21.9 μm and an overall thickness of 29.1 μm. The skin layer on the non-sound source side had a PU configuration of the skin layer and an open cell state of the skin layer. In the through hole on the sound source side, the maximum diameter of the bubble was 2.0 μm, and the judgment was “◎” with no through hole. Breathability, the sound source side 0ml / cm 2 / s, a non-sound module was 8.62ml / cm 2 / s. The oil resistance of the sound source was determined to be “◎” when the measured value was 4 hours. Regarding the sound absorption on the non-sound source side, the measured value before the oil treatment was 52% and the judgment was “◎”, the measured value after the oil treatment was 52%, the retention of the sound absorption was a calculated value of 100%, and the judgment “ ◎ ”, and the sound absorbing property was“ ◎ ”. The followability was “◎”, and the moldability was “◎”. Since all the judgment items were “◎”, the overall judgment was “◎”.

実施例3は、下型61の型面62(音源側)及び上型65の型面66(非音源側)の温度を65℃にした以外、実施例1と同様にした例である。
実施例3の結果について示す。密度は150kg/m、音源側のスキン層は、スキン層の構成が塗膜+PU、スキン層の状態がクローズドセル状態、塗膜部の状態が膜状、塗膜部の厚みが6.7μm、PUスキン層の厚みが20.4μm、全体厚みが27.1μmである。非音源側のスキン層は、スキン層の構成がPU、スキン層の状態がオープンセル状態であった。音源側の貫通孔は、気泡の最大径が3.4μm、貫通孔無で判定「◎」であった。通気性は、音源側が0ml/cm/s、非音源側が11.20ml/cm/sであった。音源側の耐油性は、測定値が4時間で判定「◎」であった。非音源側の吸音性は、油処理前の測定値が53%、判定「◎」であり、油処理後の測定値が53%であり、吸音性の保持率が計算値100%、判定「◎」、吸音性の判定「◎」であった。追従性は「◎」、成形性は「◎」であった。全ての判定項目で「◎」のため、総合判定は「◎」であった。
実施例3は、実施例1〜2に比べ、金型の温度が高く、音源側のスキン層における塗膜部の厚み及びPUスキン層の厚みが薄く、気泡の最大径が大きくなる傾向にあった。
The third embodiment is an example similar to the first embodiment except that the temperature of the mold surface 62 (the sound source side) of the lower mold 61 and the mold surface 66 (the non-sound source side) of the upper mold 65 is set to 65 ° C.
The results of Example 3 are shown. The density was 150 kg / m 3 , and the skin layer on the sound source side was composed of a coating film + PU, the skin layer was in a closed cell state, the coating layer was in a film state, and the thickness of the coating layer was 6.7 μm. , The PU skin layer has a thickness of 20.4 μm and an overall thickness of 27.1 μm. The skin layer on the non-sound source side had a PU configuration of the skin layer and an open cell state of the skin layer. In the through-hole on the sound source side, the maximum diameter of the bubble was 3.4 μm, and the judgment was “」 ”with no through-hole. Breathability, the sound source side 0ml / cm 2 / s, a non-sound module was 11.20ml / cm 2 / s. The oil resistance of the sound source was determined to be “◎” when the measured value was 4 hours. Regarding the sound absorption on the non-sound source side, the measured value before oil treatment was 53% and the judgment was “◎”, the measured value after oil treatment was 53%, the retention of sound absorption was a calculated value of 100%, and the judgment was “ ◎ ”, and the sound absorbing property was“ ◎ ”. The followability was “◎”, and the moldability was “◎”. Since all the judgment items were “◎”, the overall judgment was “◎”.
In Example 3, the temperature of the mold was higher than in Examples 1 and 2, the thickness of the coating film portion on the skin layer on the sound source side and the thickness of the PU skin layer were thinner, and the maximum diameter of air bubbles tended to be larger. Was.

実施例4は、金型への充填率を53%にした以外、実施例3と同様である。
実施例4の結果について示す。密度は80kg/m、音源側のスキン層は、スキン層の構成が塗膜+PU、スキン層の状態がクローズドセル状態、塗膜部の状態が膜状、塗膜部の厚みが5.9μm、PUスキン層の厚みが11.2μm、全体厚みが17.1μmである。非音源側のスキン層は、スキン層の構成がPU、スキン層の状態がオープンセル状態であった。音源側の貫通孔は、気泡の最大径が5.0μm、貫通孔無で判定「◎」であった。通気性は、音源側が0ml/cm/s、非音源側が39.15ml/cm/sであった。音源側の耐油性は、測定値が4時間で判定「◎」であった。非音源側の吸音性は、油処理前の測定値が56%、判定「◎」であり、油処理後の測定値が56%であり、吸音性の保持率が計算値100%、判定「◎」、吸音性の判定「◎」であった。追従性は「◎」、成形性は「◎」であった。全ての判定項目で「◎」のため、総合判定は「◎」であった。
Example 4 is the same as Example 3 except that the filling rate in the mold was 53%.
The results of Example 4 are shown. The density is 80 kg / m 3 , and the skin layer on the sound source side is composed of a coating film + PU, the skin layer is in a closed cell state, the coating is in a film state, and the coating is 5.9 μm in thickness. , The PU skin layer has a thickness of 11.2 μm and an overall thickness of 17.1 μm. The skin layer on the non-sound source side had a PU configuration of the skin layer and an open cell state of the skin layer. In the through hole on the sound source side, the maximum diameter of the bubble was 5.0 μm, and the judgment was “◎” with no through hole. Breathability, the sound source side 0ml / cm 2 / s, a non-sound module was 39.15ml / cm 2 / s. The oil resistance of the sound source was determined to be “◎” when the measured value was 4 hours. Regarding the sound absorption on the non-sound source side, the measured value before the oil treatment was 56% and the judgment was “」 ”, the measured value after the oil treatment was 56%, the retention of the sound absorption was a calculated value 100%, and the judgment“ ◎ ”, and the sound absorbing property was“ ◎ ”. The followability was “◎”, and the moldability was “◎”. Since all the judgment items were “◎”, the overall judgment was “◎”.

実施例5は、金型への充填率を133%にした以外、実施例3と同様である。
実施例5の結果について示す。密度は200kg/m、音源側のスキン層は、スキン層の構成が塗膜+PU、スキン層の状態がクローズドセル状態、塗膜部の状態が膜状、塗膜部の厚みが6.9μm、PUスキン層の厚みが27.4μm、全体厚みが34.3μmである。非音源側のスキン層は、スキン層の構成がPU、スキン層の状態がオープンセル状態であった。音源側の貫通孔は、気泡の最大径が1.8μm、貫通孔無で判定「◎」であった。通気性は、音源側が0ml/cm/s、非音源側が0.10ml/cm/sであった。音源側の耐油性は、測定値が4時間で判定「◎」であった。非音源側の吸音性は、油処理前の測定値が48%、判定「〇」であり、油処理後の測定値が48%であり、吸音性の保持率が計算値100%、判定「◎」、吸音性の判定「〇」であった。追従性は「◎」、成形性は「◎」であった。吸音性の判定に「〇」が存在するため、総合判定は「〇」であった。
実施例5は、実施例3〜4に比べ、密度(金型への充填率)が大きく、音源側のスキン層におけるPUスキン層の厚みが厚く、気泡の最大径が小さくなる傾向にあった。
Example 5 is the same as Example 3 except that the filling rate in the mold was set to 133%.
The results of Example 5 are shown. The density was 200 kg / m 3 , and the skin layer on the sound source side was composed of a coating film + PU, the skin layer was in a closed cell state, the coating layer was in a film state, and the thickness of the coating layer was 6.9 μm. , The PU skin layer has a thickness of 27.4 μm and an overall thickness of 34.3 μm. The skin layer on the non-sound source side had a PU configuration of the skin layer and an open cell state of the skin layer. In the through hole on the sound source side, the maximum diameter of the bubble was 1.8 μm, and the judgment was “◎” with no through hole. Breathability, the sound source side 0ml / cm 2 / s, a non-sound module was 0.10ml / cm 2 / s. The oil resistance of the sound source was determined to be “◎” when the measured value was 4 hours. Regarding the sound absorption on the non-sound source side, the measured value before the oil treatment was 48% and the judgment was “〇”, the measured value after the oil treatment was 48%, the retention of the sound absorption was 100%, and the judgment “ ◎ ”, and the sound absorption was evaluated as“ 〇 ”. The followability was “◎”, and the moldability was “◎”. Since “判定” was present in the determination of sound absorption, the overall determination was “〇”.
In Example 5, compared to Examples 3 and 4, the density (filling ratio in the mold) was large, the thickness of the PU skin layer in the skin layer on the sound source side was large, and the maximum diameter of bubbles tended to be small. .

実施例6は、塗膜部の厚みを薄くした以外、実施例3と同様である。
実施例6の結果について示す。密度は150kg/m、音源側のスキン層は、スキン層の構成が塗膜+PU、スキン層の状態がクローズドセル状態、塗膜部の状態が膜状、塗膜部の厚みが3.7μm、PUスキン層の厚みが18.7μm、全体厚みが22.4μmである。非音源側のスキン層は、スキン層の構成がPU、スキン層の状態がオープンセル状態であった。音源側の貫通孔は、気泡の最大径が5.2μm、貫通孔無で判定「◎」であった。通気性は、音源側が0ml/cm/s、非音源側が5.55ml/cm/sであった。音源側の耐油性は、測定値が4時間で判定「◎」であった。非音源側の吸音性は、油処理前の測定値が53%、判定「◎」であり、油処理後の測定値が53%であり、吸音性の保持率が計算値100%、判定「◎」、吸音性の判定「◎」であった。追従性は「◎」、成形性は「◎」であった。全ての判定項目で「◎」のため、総合判定は「◎」であった。
実施例6は、実施例3に比べ、塗料の塗布量を減らしたため、音源側のスキン層におけるPUスキン層の厚みが薄く、気泡の最大径が大きくなる傾向にあった。塗膜部の状態を膜状とするには、塗膜部の厚みを3μm以上とすることが好ましく、3.5μm以上とすることがより好ましい。
Example 6 is the same as Example 3 except that the thickness of the coating portion was reduced.
The results of Example 6 are shown. The density is 150 kg / m 3 , and the skin layer on the sound source side is composed of a coating film + PU, the skin layer is in a closed cell state, the coating is in a film state, and the thickness of the coating is 3.7 μm. , The PU skin layer has a thickness of 18.7 μm and an overall thickness of 22.4 μm. The skin layer on the non-sound source side had a PU configuration of the skin layer and an open cell state of the skin layer. In the through hole on the sound source side, the maximum diameter of the bubble was 5.2 μm, and the judgment was “「 ”without the through hole. Breathability, the sound source side 0ml / cm 2 / s, a non-sound module was 5.55ml / cm 2 / s. The oil resistance of the sound source was determined to be “◎” when the measured value was 4 hours. Regarding the sound absorption on the non-sound source side, the measured value before oil treatment was 53% and the judgment was “◎”, the measured value after oil treatment was 53%, the retention of sound absorption was a calculated value of 100%, and the judgment was “ ◎ ”, and the sound absorbing property was“ ◎ ”. The followability was “◎”, and the moldability was “◎”. Since all the judgment items were “◎”, the overall judgment was “◎”.
In Example 6, the PU coating layer in the skin layer on the sound source side was thinner and the maximum diameter of bubbles tended to be larger because the amount of the applied paint was reduced as compared with Example 3. In order to make the state of the coating film part into a film, the thickness of the coating film part is preferably 3 μm or more, more preferably 3.5 μm or more.

実施例7は、下型61の型面62(音源側)に離型剤W2(分岐鎖状)、上型65の型面66(非音源側)に離型剤W1(直鎖状)を塗布し、下型61の型面62(音源側)への塗料の塗布を調整し散点状に塗布した以外、実施例3と同様である。
実施例7の結果について示す。密度は150kg/m、音源側のスキン層は、スキン層の構成が塗膜+PU、スキン層の状態がクローズドセル状態、塗膜部の状態が散点状、塗膜部の厚みが1.6μm、PUスキン層の厚みが15.7μm、全体厚みが15.7μmである。非音源側のスキン層は、スキン層の構成がPU、スキン層の状態がオープンセル状態であった。音源側の貫通孔は、気泡の最大径が9.1μm、貫通孔無で判定「◎」であった。通気性は、音源側が0.0.3ml/cm/s、非音源側が8.34ml/cm/sであった。音源側の耐油性は、測定値が4時間で判定「◎」であった。非音源側の吸音性は、油処理前の測定値が53%、判定「◎」であり、油処理後の測定値が53%であり、吸音性の保持率が計算値100%、判定「◎」、吸音性の判定「◎」であった。追従性は「◎」、成形性は「◎」であった。全ての判定項目で「◎」のため、総合判定は「◎」であった。
実施例7は、実施例6に比べ、塗料の塗布量を減らしたため、塗膜部の状態が散点状となっており、音源側のスキン層におけるPUスキン層の厚みが薄く、気泡の最大径が大きくなる傾向にあった。
In the seventh embodiment, the release agent W2 (branched chain) is provided on the mold surface 62 (sound source side) of the lower mold 61, and the release agent W1 (linear) is provided on the mold surface 66 (non-sound source side) of the upper mold 65. The third embodiment is the same as the third embodiment except that the application is performed, and the application of the paint to the mold surface 62 (the sound source side) of the lower mold 61 is adjusted and applied in a scattered manner.
The results of Example 7 are shown. The density of the skin layer on the sound source side was 150 kg / m 3 , the skin layer was composed of a coating film + PU, the skin layer was in a closed cell state, the coating was in a scattered state, and the thickness of the coating was 1. 6 μm, the thickness of the PU skin layer is 15.7 μm, and the overall thickness is 15.7 μm. The skin layer on the non-sound source side had a PU configuration of the skin layer and an open cell state of the skin layer. In the through hole on the sound source side, the maximum diameter of the bubble was 9.1 μm, and the judgment was “「 ”with no through hole. Breathability, the sound source side 0.0.3ml / cm 2 / s, a non-sound module was 8.34ml / cm 2 / s. The oil resistance of the sound source was determined to be “◎” when the measured value was 4 hours. Regarding the sound absorption on the non-sound source side, the measured value before oil treatment was 53% and the judgment was “◎”, the measured value after oil treatment was 53%, the retention of sound absorption was a calculated value of 100%, and the judgment was “ ◎ ”, and the sound absorbing property was“ ◎ ”. The followability was “◎”, and the moldability was “◎”. Since all the judgment items were “◎”, the overall judgment was “◎”.
In Example 7, since the amount of paint applied was reduced as compared with Example 6, the state of the coating film portion was scattered, the thickness of the PU skin layer in the skin layer on the sound source side was small, and the maximum air bubbles were observed. The diameter tended to increase.

比較例1は、下型61の型面62(音源側)に塗料を塗布しなかった以外、実施例7と同様にした例である。
比較例1の結果について示す。密度は150kg/m、音源側のスキン層は、スキン層の構成がPU、スキン層の状態がクローズドセル状態、PUスキン層の厚みが11.5μm、全体厚みが11.5μmである。非音源側のスキン層は、スキン層の構成がPU、スキン層の状態がオープンセル状態であった。音源側の貫通孔は、気泡の最大径が12.1μm、貫通孔有で判定「×」であった。通気性は、音源側が0.36ml/cm/s、非音源側が7.78ml/cm/sであった。音源側の耐油性は、測定値が1.5時間で判定「×」であった。非音源側の吸音性は、油処理前の測定値が53%、判定「◎」であり、油処理後の測定値が36%であり、吸音性の保持率が計算値68%、判定「×」、吸音性の判定「×」であった。追従性は「◎」、成形性は「◎」であった。追従性及び成形性を除いて判定に「×」が存在するため、総合判定は「×」であった。
比較例1は、塗料を散点状に塗布した実施例7に比べ、形成されるPUスキン層の厚みが薄く(実施例7の15.7μmに対し、比較例1は11.5μm)、音源側の貫通孔の気泡の最大径が大きく(実施例7の9.1μmに対し、比較例1は12.1μm)なっている。塗料を少量であっても塗布することにより、形成されるPUスキン層をより厚く、気泡径をより小さくすることができた。
Comparative Example 1 is an example similar to Example 7 except that no paint was applied to the mold surface 62 (the sound source side) of the lower mold 61.
The results of Comparative Example 1 are shown. The density is 150 kg / m 3 , the skin layer on the sound source side is PU, the skin layer configuration is a closed cell state, the PU skin layer has a thickness of 11.5 μm, and the overall thickness is 11.5 μm. The skin layer on the non-sound source side had a PU configuration of the skin layer and an open cell state of the skin layer. In the through hole on the sound source side, the maximum diameter of the bubble was 12.1 μm, and the presence of the through hole was judged as “x”. Breathability, the sound source side 0.36ml / cm 2 / s, a non-sound module was 7.78ml / cm 2 / s. The oil resistance on the sound source side was determined as “x” when the measured value was 1.5 hours. Regarding the sound absorption on the non-sound source side, the measured value before the oil treatment was 53% and the judgment was “◎”, the measured value after the oil treatment was 36%, the retention of the sound absorption was 68%, and the judgment was “ X ", and the sound absorbing property was evaluated as" X ". The followability was “◎”, and the moldability was “◎”. The overall judgment was "x" because "x" exists in the judgment except for the followability and the formability.
In Comparative Example 1, the thickness of the PU skin layer formed was smaller than that in Example 7 in which the paint was applied in a scattered manner (15.7 μm in Example 7 and 11.5 μm in Comparative Example 1). The maximum diameter of the bubble in the through hole on the side is large (9.1 μm in Example 7 and 12.1 μm in Comparative Example 1). By applying the coating even in a small amount, the PU skin layer formed could be made thicker and the bubble diameter could be made smaller.

比較例2は、下型61の型面62(音源側)に離型剤W1(直鎖状)、上型65の型面66(非音源側)に離型剤W2(分岐鎖状)を塗布し、上型65の型面66(非音源側)のみに塗料を塗布した以外、実施例7と同様にした例である。
比較例2の結果について示す。密度は150kg/m、音源側のスキン層は、スキン層の構成がPU、スキン層の状態がオープンセル状態である。非音源側のスキン層は、スキン層の構成が塗膜+PU、スキン層の状態がクローズドセル状態、塗膜部は膜状、塗膜部の厚みが6.5μm、PUスキン層の厚みが20.1μm、全体厚みが26.6μmである。通気性は、音源側が9.44ml/cm/s、非音源側が0ml/cm/sであった。音源側の耐油性は、測定値が0.5時間で判定「×」であった。非音源側の吸音性は、油処理前の測定値が30%、判定「×」であり、油処理後の測定値が21%であり、吸音性の保持率が計算値70%、判定「×」、吸音性の判定「×」であった。追従性は「◎」、成形性は「◎」であった。追従性及び成形性を除いて判定に「×」が存在するため、総合判定は「×」であった。
In Comparative Example 2, a release agent W1 (linear) was provided on the mold surface 62 (sound source side) of the lower mold 61, and a release agent W2 (branched chain) was provided on the mold surface 66 (non-sound source side) of the upper mold 65. This example is the same as Example 7, except that the coating is applied and the coating is applied only to the mold surface 66 (non-sound source side) of the upper mold 65.
The results of Comparative Example 2 are shown. The density is 150 kg / m 3 , and the skin layer on the sound source side has a PU configuration of the skin layer and an open cell state of the skin layer. The skin layer on the non-sound source side has a coating composition of a coating film + PU, a skin layer state of a closed cell state, a coating film part, a film part thickness of 6.5 μm, and a PU skin layer thickness of 20. .1 μm and the total thickness is 26.6 μm. Breathability, the sound source side 9.44ml / cm 2 / s, a non-sound module was 0ml / cm 2 / s. The oil resistance on the sound source side was determined as “x” when the measured value was 0.5 hour. Regarding the sound absorption on the non-sound source side, the measured value before oil treatment was 30% and the judgment was "x", the measured value after oil treatment was 21%, the retention of sound absorption was 70%, and the judgment was " X ", and the sound absorbing property was evaluated as" X ". The followability was “◎”, and the moldability was “◎”. The overall judgment was "x" because "x" exists in the judgment except for the followability and the formability.

比較例3は、下型61の型面62(音源側)に塗料を塗布しなかった以外、実施例3と同様にした例である。
比較例3の結果について示す。密度は150kg/m、音源側のスキン層は、スキン層の構成がPU、スキン層の状態がオープンセル状態である。非音源側のスキン層は、スキン層の構成がPU、スキン層の状態がオープンセル状態であった。通気性は、音源側が10.21ml/cm/s、非音源側が9.86ml/cm/sであった。音源側の耐油性は、測定値が0.5時間で判定「×」であった。非音源側の吸音性は、油処理前の測定値が53%、判定「◎」であり、油処理後の測定値が39%であり、吸音性の保持率が計算値74%、判定「×」、吸音性の判定「×」であった。追従性は「◎」、成形性は「◎」であった。追従性及び成形性を除いて判定に「×」が存在するため、総合判定は「×」であった。
比較例2〜3は、各実施例に比べ、音源側のスキン層の状態がオープンセル状態のため、オイルがポリウレタンフォームの内部へ侵入し易く、耐油性、油処理後の吸音性、吸音性の保持率に劣っている。
Comparative Example 3 is an example similar to Example 3 except that no paint was applied to the mold surface 62 (the sound source side) of the lower mold 61.
The results of Comparative Example 3 are shown. The density is 150 kg / m 3 , and the skin layer on the sound source side has a PU configuration of the skin layer and an open cell state of the skin layer. The skin layer on the non-sound source side had a PU configuration of the skin layer and an open cell state of the skin layer. Breathability, the sound source side 10.21ml / cm 2 / s, a non-sound module was 9.86ml / cm 2 / s. The oil resistance on the sound source side was determined as “x” when the measured value was 0.5 hour. Regarding the sound absorption on the non-sound source side, the measured value before the oil treatment was 53% and the judgment was “◎”, the measured value after the oil treatment was 39%, the retention of the sound absorption was 74%, and the judgment was “ X ", and the sound absorbing property was evaluated as" X ". The followability was “◎”, and the moldability was “◎”. The overall judgment was "x" because "x" exists in the judgment except for the followability and the formability.
In Comparative Examples 2 and 3, the skin layer on the sound source side is in an open cell state, so that oil easily penetrates into the polyurethane foam, oil resistance, sound absorption after oil treatment, and sound absorption compared to the examples. Is inferior in the retention rate.

比較例4は、下型61の型面62(音源側)及び上型65の型面66(非音源側)の何れにも離型剤W2(分岐鎖状)を塗布し、下型61の型面62(音源側)及び上型65の型面66(非音源側)の何れにも塗料を塗布した以外、実施例3と同様にした例である。
比較例4の結果について示す。密度は150kg/m、音源側のスキン層は、スキン層の構成が塗膜+PU、スキン層の状態がクローズドセル状態、塗膜部の状態が膜状、塗膜部の厚みが7.1μm、PUスキン層の厚みが19.1μm、全体厚みが26.2μmである。非音源側のスキン層は、スキン層の構成が塗膜+PU、スキン層の状態がクローズドセル状態、塗膜部の状態が膜状、塗膜部の厚みが7.1μm、PUスキン層の厚みが18.9μm、全体厚みが26.0μmである。音源側の貫通孔は、気泡の最大径が3.8μm、貫通孔無で判定「◎」であった。通気性は、音源側が0.01ml/cm/s、非音源側が0ml/cm/sであった。音源側の耐油性は、測定値が4時間で判定「◎」であった。非音源側の吸音性は、油処理前の測定値が29%、判定「×」であり、油処理後の測定値が29%であり、吸音性の保持率が計算値100%、判定「◎」、吸音性の判定「×」であった。追従性は「◎」、成形性は「◎」であった。判定項目に「×」が存在するため、総合判定は「×」であった。
比較例4は、各実施例に比べ、音源側及び非音源側のスキン層の状態がクローズドセル状態のため、油処理前の吸音性に劣っている。
In Comparative Example 4, the release agent W2 (branched chain) was applied to both the mold surface 62 (sound source side) of the lower mold 61 and the mold surface 66 (non-sound source side) of the upper mold 65, and This example is the same as Example 3 except that paint is applied to both the mold surface 62 (on the sound source side) and the mold surface 66 (on the non-sound source side) of the upper mold 65.
The results of Comparative Example 4 are shown. The density was 150 kg / m 3 , and the skin layer on the sound source side was composed of a coating film + PU, the skin layer was in a closed cell state, the coating was in a film state, and the thickness of the coating was 7.1 μm. , The PU skin layer has a thickness of 19.1 μm and an overall thickness of 26.2 μm. The skin layer on the non-sound source side is composed of a coating film + PU, a closed cell state of the skin layer state, a film state of the coating part, a thickness of the coating part of 7.1 μm, and a thickness of the PU skin layer. Is 18.9 μm and the overall thickness is 26.0 μm. In the through hole on the sound source side, the maximum diameter of the bubble was 3.8 μm, and the judgment was “◎” without the through hole. Breathability, the sound source side 0.01ml / cm 2 / s, a non-sound module was 0ml / cm 2 / s. The oil resistance of the sound source was determined to be “◎” when the measured value was 4 hours. Regarding the sound absorption on the non-sound source side, the measured value before oil treatment was 29% and the judgment was "x", the measured value after oil treatment was 29%, the retention of sound absorption was 100%, and the judgment was " ◎ ”, and the sound absorption was evaluated as“ x ”. The followability was “◎”, and the moldability was “◎”. Since "x" exists in the judgment item, the overall judgment was "x".
Comparative Example 4 is inferior in sound absorption before oil treatment because the skin layers on the sound source side and the non-sound source side are in a closed cell state as compared with each of the examples.

比較例5は、下型61の型面62(音源側)に厚み10μmのフィルム(PET樹脂)を配置し、上型65の型面66(非音源側)に離型剤W1(直鎖状)を塗布した以外、実施例3と同様にした例である。
比較例5の結果について示す。密度は150kg/m、音源側のスキン層は、スキン層の構成がフィルム+PU、スキン層の状態がフィルム、フィルムの厚み10μm、PUスキン層の厚みが17.1μm、全体厚みが27.1μmである。非音源側のスキン層は、スキン層の構成がPU、スキン層の状態がオープンセル状態である。音源側の貫通孔は、気泡の最大径が0μmであった。通気性は、音源側が0ml/cm/s、非音源側が8.69ml/cm/sであった。音源側の耐油性は、測定値が4時間で判定「◎」であった。非音源側の吸音性は、油処理前の測定値が52%、判定「◎」であり、油処理後の測定値が52%であり、吸音性の保持率が計算値100%、判定「◎」、吸音性の判定「◎」であった。追従性は「×」、成形性は「×」であった。判定項目に「×」が存在するため、総合判定は「×」であった。
比較例5は、追従性の評価用テストピースを作製するために、ポリウレタンフォーム原料を注入する前に、フィルムをあらかじめヒーターにて加温して軟化させ、図9の金型に配置し、真空吸引により下金型の全面に付着させる必要があり、フィルムを加温するヒーターと真空吸引可能な金型と真空吸引を行う設備一式が必要で、成形性に劣っていた。また、比較例5の追従性は、フィルムと金型との間に空間があり、フィルムが金型の形状に追従しておらず、各実施例に比べ、追従性に劣っていた。
In Comparative Example 5, a film (PET resin) having a thickness of 10 μm was disposed on the mold surface 62 (sound source side) of the lower mold 61, and the release agent W1 (linear) was formed on the mold surface 66 (non-sound source side) of the upper mold 65. ) Was applied in the same manner as in Example 3 except that) was applied.
The results of Comparative Example 5 are shown. The density was 150 kg / m 3 , and the skin layer on the sound source side was composed of a film + PU having a skin layer configuration, a film having a skin layer state of 10 μm, a PU skin layer having a thickness of 17.1 μm, and an overall thickness of 27.1 μm. It is. The skin layer on the non-sound source side has a PU configuration of the skin layer and an open cell state of the skin layer. In the through hole on the sound source side, the maximum diameter of the bubble was 0 μm. Breathability, the sound source side 0ml / cm 2 / s, a non-sound module was 8.69ml / cm 2 / s. The oil resistance of the sound source was determined to be “◎” when the measured value was 4 hours. Regarding the sound absorption on the non-sound source side, the measured value before the oil treatment was 52% and the judgment was “◎”, the measured value after the oil treatment was 52%, the retention of the sound absorption was a calculated value of 100%, and the judgment “ ◎ ”, and the sound absorbing property was“ ◎ ”. The followability was "x" and the moldability was "x". Since "x" exists in the judgment item, the overall judgment was "x".
In Comparative Example 5, in order to prepare a test piece for evaluation of conformability, before injecting the polyurethane foam raw material, the film was previously heated and softened by a heater, and placed in the mold of FIG. It was necessary to adhere the entire surface of the lower mold by suction, and a heater for heating the film, a mold capable of vacuum suction, and a set of equipment for performing vacuum suction were required, and the moldability was poor. Further, the followability of Comparative Example 5 was inferior to those of the examples, since there was a space between the film and the mold, and the film did not follow the shape of the mold.

このように、本発明の吸遮音材は、製造設備費を低減でき、かつ音源の外表面に付着したオイルが外表面と接するポリウレタンフォームの表面から内部に浸透し難く、吸音性及び遮音性が良好であり、音源の外表面が複雑な形状であっても追従性があり、車両のトランスミッションカバーやエンジンブロックなどの音源の外表面に配置するのに好適である。   As described above, the sound absorbing and insulating material of the present invention can reduce manufacturing equipment costs, and it is difficult for oil adhering to the outer surface of the sound source to penetrate into the inside from the surface of the polyurethane foam in contact with the outer surface, and the sound absorbing and sound insulating properties are improved. It is good, has a followability even when the outer surface of the sound source has a complicated shape, and is suitable for being arranged on the outer surface of a sound source such as a transmission cover or an engine block of a vehicle.

10:吸遮音材
11:ポリウレタンフォーム
11a:コア部
12:スキン層
12A:塗膜部を有するクローズドセル状態のスキン層
12B:オープンセル状態のスキン層
13:音源の外表面と対向する吸遮音材の一側表面のスキン層
14:塗膜部
60:金型
61:下型
62:下型の型面
65:上型
66:上型の型面
S:音源
W1:離型剤
W2:離型剤
T:塗料
10: Sound absorbing and insulating material 11: Polyurethane foam 11a: Core part 12: Skin layer 12A: Skin layer in a closed cell state having a coating part 12B: Skin layer in an open cell state 13: Sound absorbing and insulating material facing the outer surface of the sound source Skin layer 14 on one side surface 14: Coating part 60: Die 61: Lower die 62: Lower die surface 65: Upper die 66: Upper die surface S: Sound source W1: Release agent W2: Release Agent T: Paint

Claims (7)

音源の外表面の一部または全部に配置されるポリウレタンフォームからなる吸遮音材において、
前記ポリウレタンフォームは表面にスキン層を有し、
前記音源の外表面と対向する前記ポリウレタンフォームの一側表面のスキン層の少なくとも一部は、塗膜部を有するクローズドセル状態のスキン層からなり、
前記ポリウレタンフォームの他側表面のスキン層の少なくとも一部は、オープンセル状態のスキン層からなり、
前記音源の外表面と前記ポリウレタンフォームの一側表面の塗膜部を有するクローズドセル状態のスキン層の少なくとも端部の外周縁が密着することにより、前記音源の外表面と前記ポリウレタンフォームの一側表面のクローズドセル状態のスキン層との間が密閉状態にあることを特徴とする吸遮音材。
In a sound absorbing and insulating material made of polyurethane foam arranged on part or all of the outer surface of the sound source,
The polyurethane foam has a skin layer on the surface,
At least a part of the skin layer on one side surface of the polyurethane foam facing the outer surface of the sound source includes a skin layer in a closed cell state having a coating portion,
At least a part of the skin layer on the other surface of the polyurethane foam is composed of a skin layer in an open cell state,
The outer surface of the sound source and one side of the polyurethane foam are brought into close contact with at least the outer peripheral edge of the skin layer in a closed cell state having a coating portion on the outer surface of the sound source and one side surface of the polyurethane foam. A sound absorbing and insulating material, wherein a space between the skin layer in a closed cell state on the surface is in a sealed state.
前記音源の外表面と、前記ポリウレタンフォームの一側表面の塗膜部を有するクローズドセル状態のスキン層の全面が密着することにより、前記音源の外表面と前記ポリウレタンフォームの一側表面のクローズドセル状態のスキン層との間が密閉状態にあることを特徴とする請求項1に記載の吸遮音材。   The outer surface of the sound source and the entire surface of the skin layer in a closed cell state having a coating portion on one surface of the polyurethane foam are brought into close contact with each other, so that the outer surface of the sound source and the closed cell on one surface of the polyurethane foam are closed. The sound absorbing and insulating material according to claim 1, wherein a space between the skin layer and the skin layer in the state is in a sealed state. 前記塗膜部を有するクローズドセル状態のスキン層は、平均厚みが12μm以上であることを特徴とする請求項1または2に記載の吸遮音材。   The sound absorbing and insulating material according to claim 1, wherein the closed cell skin layer having the coating portion has an average thickness of 12 μm or more. 前記塗膜部を有するクローズドセル状態のスキン層の通気性(JIS K6400−7 B法:2012/ISO 7231:2010に基づく)が0.05ml/cm/s以下であることを特徴とする請求項1から3の何れか一項に記載の吸遮音材。 The air permeability (based on JIS K6400-7 B method: 2012 / ISO 7231: 2010) of the skin layer in the closed cell state having the coating portion is 0.05 ml / cm 2 / s or less. Item 4. The sound absorbing and insulating material according to any one of Items 1 to 3. 前記オープンセル状態のスキン層の通気性(JIS K6400−7 B法:2012/ISO 7231:2010に基づく)が0.1〜40ml/cm/sであることを特徴とする請求項1から4の何れか一項に記載の吸遮音材。 The open cell state of the skin layer of breathable (JIS K6400-7 B Method: 2012 / ISO 7231: Based on 2010) from claim 1, characterized in that the 0.1~40ml / cm 2 / s 4 The sound absorbing and insulating material according to any one of the above. 金型の型面に離型剤を塗布し、前記金型内にポリウレタンフォーム原料を注入して発泡させることにより、音源の外表面の一部または全部に配置されるポリウレタンフォームからなる吸遮音材を製造する方法において、
前記音源の外表面と対向する前記ポリウレタンフォームの一側表面とは反対の他側表面を形成する型面に塗布する離型剤は、少なくとも直鎖状炭化水素ワックスを含んでおり、
前記音源の外表面と対向する前記ポリウレタンフォームの一側表面を形成する型面には、前記離型剤上に塗料を塗布し、
前記塗料を硬化させて塗膜部を作製した後、
前記金型内にポリウレタンフォーム原料を注入し、発泡硬化させることにより、表面にスキン層を有する前記ポリウレタンフォームを形成し、
前記ポリウレタンフォームの他側表面に形成したスキン層の少なくとも一部は、オープンセル状態のスキン層からなり、
前記ポリウレタンフォームの一側表面に形成したスキン層の少なくとも一部は、前記塗膜部を表面に有するクローズドセル状態のスキン層からなることを特徴とする吸遮音材の製造方法。
A sound absorbing and insulating material comprising a polyurethane foam disposed on a part or all of an outer surface of a sound source by applying a release agent to a mold surface of a mold, and injecting and foaming a polyurethane foam raw material into the mold. In the method for producing
The release agent applied to the mold surface forming the other surface opposite to the one surface of the polyurethane foam facing the outer surface of the sound source contains at least a linear hydrocarbon wax,
On the mold surface forming one side surface of the polyurethane foam facing the outer surface of the sound source, a paint is applied on the release agent,
After curing the paint to produce a coating part,
By injecting the polyurethane foam raw material into the mold and foaming and curing, to form the polyurethane foam having a skin layer on the surface,
At least a part of the skin layer formed on the other surface of the polyurethane foam is composed of a skin layer in an open cell state,
A method for producing a sound absorbing and insulating material, characterized in that at least a part of a skin layer formed on one surface of the polyurethane foam comprises a closed cell skin layer having the coating portion on the surface.
前記音源の外表面と対向する前記ポリウレタンフォームの一側表面に塗布する離型剤は、分岐鎖状炭化水素ワックスを含むことを特徴とする請求項6に記載の吸遮音材の製造方法。
The method according to claim 6, wherein the release agent applied to one surface of the polyurethane foam facing the outer surface of the sound source includes a branched hydrocarbon wax.
JP2018142154A 2018-07-30 2018-07-30 Sound absorbing and insulating material and manufacturing method of the same Pending JP2020020855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018142154A JP2020020855A (en) 2018-07-30 2018-07-30 Sound absorbing and insulating material and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018142154A JP2020020855A (en) 2018-07-30 2018-07-30 Sound absorbing and insulating material and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2020020855A true JP2020020855A (en) 2020-02-06

Family

ID=69588542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018142154A Pending JP2020020855A (en) 2018-07-30 2018-07-30 Sound absorbing and insulating material and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2020020855A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001138771A (en) * 1999-11-11 2001-05-22 Tokai Chem Ind Ltd Soundproof member for dash panel
JP2004294619A (en) * 2003-03-26 2004-10-21 Takehiro:Kk Extra-lightweight sound-proofing material
JP2004359043A (en) * 2003-06-03 2004-12-24 Kasai Kogyo Co Ltd Insulator for vehicle
JP2009527382A (en) * 2006-02-24 2009-07-30 バイエル マテリアルサイエンス アクチェンゲゼルシャフト Improved method for manufacturing a lightweight sound insulation cover for automobiles and its cover
JP2013246182A (en) * 2012-05-23 2013-12-09 Inoac Corp Sound insulation material and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001138771A (en) * 1999-11-11 2001-05-22 Tokai Chem Ind Ltd Soundproof member for dash panel
JP2004294619A (en) * 2003-03-26 2004-10-21 Takehiro:Kk Extra-lightweight sound-proofing material
JP2004359043A (en) * 2003-06-03 2004-12-24 Kasai Kogyo Co Ltd Insulator for vehicle
JP2009527382A (en) * 2006-02-24 2009-07-30 バイエル マテリアルサイエンス アクチェンゲゼルシャフト Improved method for manufacturing a lightweight sound insulation cover for automobiles and its cover
JP2013246182A (en) * 2012-05-23 2013-12-09 Inoac Corp Sound insulation material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP7169797B2 (en) Sound absorbing and insulating material and its manufacturing method
US20150260331A1 (en) Heat-insulating material and manufacturing process therefor, and insulating method
US9156227B2 (en) Foam sealing gasket
RU2714081C2 (en) Method of producing article from foamed polyurethane
KR20180020010A (en) Graphene composite urethane foam and manufacturing mathod thereof
KR20180088407A (en) Preparation of microcellular foams using cell-aging inhibitors
RU2640040C2 (en) Vacuum method of producing polyurethane foam
KR20150008058A (en) Porous body
TW201321426A (en) Method for producing rigid foam synthetic resin
US20200013384A1 (en) Soundproof member and production method thereof
US20100028650A1 (en) Closed-cell urethane sheet, manufacturing method thereof and waterproof sealing materials
JP6137783B2 (en) Sound insulation material and manufacturing method thereof
JP2020020855A (en) Sound absorbing and insulating material and manufacturing method of the same
JP2010174146A (en) Method for producing base material for gasket, gasket produced by using the base material for gasket, and use of gasket
US20200362088A1 (en) Polyurethane foam composite panel
KR20150057300A (en) Method for manufacturing double insulation pipe and polyurethane foam composition for double insulation pipe
JP2019025774A (en) Colored heat insulation board
JP2014141595A (en) Method of manufacturing rigid foam synthetic resin
CN105713378B (en) Composite element filled with high polymer material and preparation method thereof
US8173719B2 (en) Polyurethane foam, method for the production and use thereof
EP3521331A1 (en) Polyurethane foam composite panel
JP2007186551A (en) Polyol composition for rigid polyurethane foam and method for producing rigid polyurethane foam
JP6352491B2 (en) Sound insulation material and manufacturing method thereof
JP2010005241A (en) Patch
JPH11310619A (en) Polyurethane foam, its production, insulating material and insulating box

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221101