JP2020020251A - Ground injection method - Google Patents

Ground injection method Download PDF

Info

Publication number
JP2020020251A
JP2020020251A JP2018233239A JP2018233239A JP2020020251A JP 2020020251 A JP2020020251 A JP 2020020251A JP 2018233239 A JP2018233239 A JP 2018233239A JP 2018233239 A JP2018233239 A JP 2018233239A JP 2020020251 A JP2020020251 A JP 2020020251A
Authority
JP
Japan
Prior art keywords
injection
ground
grout
soil
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018233239A
Other languages
Japanese (ja)
Other versions
JP6531929B1 (en
Inventor
島田 俊介
Shunsuke Shimada
俊介 島田
智大 田井
Tomohiro Tai
智大 田井
隆光 佐々木
Takamitsu Sasaki
隆光 佐々木
百合花 角田
Yurika Tsunoda
百合花 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Application granted granted Critical
Publication of JP6531929B1 publication Critical patent/JP6531929B1/en
Publication of JP2020020251A publication Critical patent/JP2020020251A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a ground injection method which enables sure infiltration and solidification in heterogeneous ground.SOLUTION: A ground injection method that injects a solution type grout includes 1) setting silica concentration obtaining a strength required with a predetermined density using soil to be an object, 2) adjusting a silica grout blended liquid having a gelation time (GT) corresponding to pH or an additive using the predetermined silica concentration, 3) mixing the blended liquid with field soil, and measuring underground gelation time (GT), 4) setting a solidification object soil amount in unit stage by an assumed injection hole interval, an injection method and a one-injection stage length, 5) setting the injection amount from the solidification object soil amount in the unit stage, and setting injection time (H) per unit stage from the injection speed in the infiltration possible limit, and 6) setting blending prescription of the gel time (GT) and the silica concentration of the injection liquid satisfying GT>H≥GTsor GT>GT≥H according to a ground situation, an injection hole interval, and an injection amount per unit stage.SELECTED DRAWING: Figure 18

Description

本発明は地盤に形成された削孔内に注入管を埋設して孔壁周囲の地盤中に注入材を注入することにより、地盤の止水性の向上、強度増大、液状化防止等の地盤改良を実施するための地盤注入工法に関するものである。   The present invention embeds an injection pipe in a drilled hole formed in the ground and injects an injection material into the ground around the hole wall, thereby improving the water stopping performance of the ground, increasing the strength, preventing liquefaction, etc. And a ground injection method for implementing the method.

近年の地盤注入工法は、大深度掘削工事や耐震補強、大規模工事に伴う長期工事等、地盤条件の悪い施工現場での注入された地盤の強度、止水性、あるいは固結性の持続性等、確実な地盤改良効果と経済性を要求されるようになってきた。従って注入技術は、注入材そのものの化学的安定性のみならず、土粒子間浸透注入が可能で、かつ経済的施工が可能な注入技術の開発が必要になっている。特に地震の多発に伴い、確実な浸透固結性ともに広範囲の浸透固結性と所定の品質を持ち、かつ注入された注入液が所定の注入範囲外や地表面に逸脱することなく広範囲に経済的に改良できる注入工法並びに注入材が要求されている。しかるに、地盤注入は通常異なる土層の互層からなる不均質地盤の改良であり、広範囲な地盤改良ほど注入液が逸脱しやすく、所定領域を確実に浸透固結することが困難になっている。   In recent years, ground injection methods include deep excavation work, seismic reinforcement, and long-term work associated with large-scale construction, etc. However, reliable ground improvement effects and economic efficiency have been required. Therefore, as for the injection technique, it is necessary to develop not only the chemical stability of the injection material itself, but also an injection technique that allows infiltration and injection between soil particles and enables economical construction. In particular, due to the frequent occurrence of earthquakes, it has a wide range of infiltration and solidification properties and a certain quality, as well as reliable infiltration and solidification, and it is economical over a wide area without the injected liquid deviating outside the specified injection area or the ground surface There is a demand for an injection method and an injection material which can be improved. However, ground injection is usually an improvement of a heterogeneous ground consisting of alternate layers of different soil layers, and the more extensive the ground improvement, the more easily the injected liquid deviates, making it difficult to reliably infiltrate and solidify a predetermined area.

本発明はそれらの要望に答えるべく完成したもので、特に大吐出量で低圧注入が可能となる柱状浸透注入に着目した本発明者による先行発明(特許文献1、2、3)をさらに発展させて、広範囲の均質浸透固結を可能にすることによって、柱状浸透注入工法の課題を解決したものであって、複雑な土層からなる地盤条件下で所定計画注入範囲外への逸脱を低減しながら注入量に相当する大きな固結径の固結体を確実に形成させる経済的柱状浸透注入工法を完成したものである。   The present invention has been completed in order to meet those demands, and further develops the prior inventions (Patent Documents 1, 2, and 3) by the present inventor who pay attention to columnar permeation injection that enables low-pressure injection with a large discharge amount. It solves the problem of the columnar infiltration method by enabling a wide range of homogeneous infiltration and consolidation, and reduces deviations outside the predetermined planned injection range under ground conditions consisting of complex soil layers. Thus, an economical columnar infiltration injection method has been completed which ensures formation of a consolidated body having a large consolidated diameter corresponding to the injection amount.

本発明者は柱状浸透注入は球状浸透注入に比べて大きな浸透源から注入できるため大きな吐出量で低圧で土粒子間浸透できること(図21(イ)、(ロ))に着目して以下の特許文献1、2、3の発明を既に行っている。   The inventor of the present invention pays attention to the fact that column infiltration can be injected from a large infiltration source as compared with spherical infiltration and that it can infiltrate between soil particles with a large discharge rate and low pressure (Figs. The inventions of Documents 1, 2, and 3 have already been made.

特許第4827109号公報Japanese Patent No. 4827109 特許第5942161号公報Japanese Patent No. 5942161 特許第3509744号公報Japanese Patent No. 3509744

以下に先願発明の課題を説明する。
例えば、特許文献1に記載された注入管は、注入管本体の外周に織布や不織布やマットなどのある厚さを有する透水性材料で覆い、更にその上から透水性シートで被覆した柱状空間をからなる柱状浸透源を形成し、注入に当って注入管吐出口から吐出された注入液がその柱状浸透源から容易に全面に拡がり、地盤中に浸透して柱状注入を可能にするものである。
The problems of the prior invention will be described below.
For example, the injection pipe described in Patent Literature 1 has a columnar space in which the outer circumference of an injection pipe main body is covered with a water-permeable material having a certain thickness such as a woven fabric, a nonwoven fabric, or a mat, and further covered with a water-permeable sheet. The injection liquid discharged from the injection pipe discharge port upon injection is easily spread from the columnar infiltration source to the entire surface, and penetrates into the ground to enable columnar injection. is there.

この工法は地盤が比較的均質な地盤条件下では大径の低圧浸透注入が可能な極めてすぐれた効果を得るが不均質地盤の場合、一次注入によって、注入管周囲に硬軟がある場合、柱状空間を大きく取ると注入管をとりまくシールグラウトの割裂が部分的になりやすいという問題があった。   This method has an excellent effect that large-diameter low-pressure infiltration can be performed under relatively homogeneous ground conditions.However, in the case of non-homogeneous ground, primary injection causes hard and soft surroundings of the injection pipe, If the size is too large, there is a problem that the splitting of the seal grout surrounding the injection tube tends to be partial.

さらに注入液がマット等の空隙に目詰まりしてその後の注入液が注入されにくいという問題があった。これらは特に懸濁液の注入を困難にする。また柱状浸透長を長くとると削孔壁の弱い部分、或いはシールグラウトの弱い部分のシールグラウトが破壊されて、その部分に注入液が集中しやすいため柱状浸透源の全長から地盤に均質に注入されにくいという傾向があった。   Further, there is a problem that the injection liquid is clogged in the space such as the mat and the subsequent injection liquid is difficult to be injected. These make it particularly difficult to inject the suspension. In addition, if the columnar penetration length is increased, the seal grout in the weak part of the drilled wall or the seal grout is broken, and the injection liquid tends to concentrate on that part. Tended to be difficult.

また、特許文献2の発明は、特許文献1の上記問題を解決した発明である。即ち注入管は管軸方向に複数の注入材吐出口を有する注入管本体と当該注入管本体の外周に密着され、管軸方向の両端部が注入管本体の外周に密閉した状態で固着され、かつ前記複数の注入材吐出口と重ならない位置に注入管の管軸方向に沿って複数の注入材噴射スリットを有する円形断面の筒状弾性被覆体(長尺ゴムスリットチューブ)とから構成され、前記筒状弾性被覆体(ゴムスリットチューブ)は弾性力によって断面円型の接線方向にゴムの引張力が全長にわたって生ずるように注入管本体の外周面に所定の長さの筒状体全面が密着して前記注入材吐出口を密閉してなり、前記注入管本体に送液された注入材は噴射圧によって、前記注入管本体と孔壁間のシールグラウトに管軸に沿ったキレツを形成せしめ、当該キレツから孔壁周囲の地盤中に柱状浸透する。   Further, the invention of Patent Document 2 is an invention that solves the above problem of Patent Document 1. That is, the injection pipe is in close contact with the outer circumference of the injection pipe main body and the injection pipe main body having a plurality of injection material discharge ports in the pipe axis direction, and both ends in the pipe axis direction are fixed in a sealed state on the outer circumference of the injection pipe main body, And a cylindrical elastic covering (elongated rubber slit tube) having a circular cross-section having a plurality of injection material injection slits along a pipe axis direction of the injection pipe at a position not overlapping with the plurality of injection material discharge ports, The entire surface of the cylindrical elastic covering body (rubber slit tube) is brought into close contact with the outer peripheral surface of the injection pipe main body so that a rubber tensile force is generated over the entire length in a tangential direction of a circular cross section by elastic force. Then, the injection material discharge port is sealed, and the injection material sent to the injection tube main body is formed by a spray pressure into a seal grout between the injection tube main body and the hole wall along a pipe axis. Around the hole wall from the drill Columnar penetrate into the ground.

また、注入管本体への送液の停止と共に前記筒状弾性被覆体(ゴムスリットチューブ)の全面がその弾性力で注入管本体の外周面に密着して注入材吐出口を閉塞することにより筒状弾性被覆体の外に噴射した注入材が注入管本体内に逆流しないように構成されてなることを特徴とするものである。   Further, when the liquid supply to the injection pipe main body is stopped, the entire surface of the cylindrical elastic covering body (rubber slit tube) is brought into close contact with the outer peripheral surface of the injection pipe main body by its elastic force, thereby closing the injection material discharge port. The injection material sprayed out of the elastic elastic body is configured not to flow back into the injection pipe main body.

しかし、本発明者によるさらなる研究によれば、上記発明は地盤が均質な場合はすぐれているが、噴射圧によるシールグラウトの管軸方向の亀裂の形成はシールグラウトの周辺の地盤に硬弱がある場合、また、一次注入材によって弾性被覆体を取り巻くシールグラウトの周辺が固化されている場合、或いは筒状弾性被覆体の長さが長くて地盤条件の異なる層に位置している場合、筒状弾性被覆材の弾性圧に打ち克った液圧をもって噴射スリットからの噴射によるのではシールグラウトの割裂が部分的で弾性被覆材の外側のシールグラウトの全長にわたって所定の亀裂が生じにくいことが判った。   However, according to a further study by the present inventors, the above-mentioned invention is excellent when the ground is homogeneous, but the formation of cracks in the pipe axial direction of the seal grout due to the injection pressure is weak in the ground around the seal grout. In some cases, when the periphery of the seal grout surrounding the elastic coating is solidified by the primary injection material, or when the cylindrical elastic coating is long and located in a layer with different ground conditions, Injection from the injection slit with the liquid pressure that overcomes the elastic pressure of the elastic coating material causes partial breakage of the seal grout, and it is difficult for predetermined cracks to occur over the entire length of the seal grout outside the elastic coating material understood.

また、特許文献3に記載された本出願人による発明は地盤中の削孔内に複数個の袋パッカを間隔をあけて備えた注入管を挿入し、袋パッカ間の削孔壁と注入管との間の空間を通して注入材を地盤中に注入する地盤注入工法および注入管装置に係り、特に、前記袋パッカ周りの地盤領域に注入材の浸透しにくい、密な地盤内パッカを形成して注入材が水平方向の注入対象土層により広く浸透するようにし、削孔間隔(注入孔間隔)を広くとって削孔数を少なくする地盤注入工法および注入管装置に関する。しかしこの工法は均質地盤では孔径の大きな柱状固結体を形成し、極めて優れた改良効果を得るが地盤が不均質な場合、注入液が粗い層や地表面に逸脱しやすい可能性がある。   Also, the invention by the present applicant described in Patent Document 3 is to insert an injection pipe provided with a plurality of bag packers at intervals in a drilled hole in the ground, and to form a drilled wall between the bag packers and the injection pipe. The present invention relates to a soil injection method and an injection pipe device for injecting an injection material into the ground through a space between the injection material and the injection pipe device, and in particular, forming a dense soil packer in which the injection material hardly penetrates into the ground area around the bag packer. The present invention relates to a ground injection method and an injection pipe device that allow an injection material to penetrate more widely into a soil layer to be injected in a horizontal direction, and reduce the number of drilling holes by increasing a drilling interval (injection hole interval). However, this method forms a columnar compact having a large pore diameter on homogeneous ground, and achieves an extremely excellent improvement effect. However, when the ground is heterogeneous, the injected liquid may easily deviate to a rough layer or the ground surface.

本発明は地盤に形成された削孔内に注入管を埋設して孔壁周囲の地盤中に注入材を注入することにより、地盤の止水性の向上、強度増大、液状化防止等の地盤改良を実施するための地盤注入工法に関する発明であって、柱状浸透区間を長くとり、大きな固結径を得ようとすると粗い土層から所定注入領域外へ逸脱しやすいという問題を解決して、特に複雑な土層からなる地盤条件下で粗い土層や地表面に逸脱することなく土粒子間浸透により大きな固結体を経済的に、かつ注入量に相当する固結体を確実に形成することを可能にしたものである。   The present invention embeds an injection pipe in a drilled hole formed in the ground and injects an injection material into the ground around the hole wall, thereby improving the water stopping performance of the ground, increasing the strength, preventing liquefaction, etc. It is an invention related to the ground injection method for carrying out, to solve the problem that it is easy to deviate from the coarse soil layer to the outside of the predetermined injection area when trying to obtain a large consolidation diameter by taking a long columnar infiltration section, It is possible to form large consolidated bodies economically and surely form a compacted body corresponding to the injection amount by infiltration between soil particles without deviating to a coarse soil layer or the ground surface under the ground conditions consisting of a complex soil layer. Is made possible.

本発明者は、外管をシールグラウト中に位置せしめ、かつ外管を覆う被覆膜が長くても、またシールグラウト外側の地盤に硬軟な層があっても、またセメント系グラウト等、強度の高いグラウトを一次注入した後の地盤でも弾性被覆膜を面圧で膨出して、弾性被覆膜の区間に対応する長さのシールグラウトに確実に亀裂を生じせしめて、地盤に注入液を所定の被覆膜の区間に浸透しめて、また繰り返し注入や一次注入、二次注入による複合注入を可能にして前記先願発明の問題を解決し、背景技術の項に記載した要求に応えた、以下の技術を提供するものである。   The present inventors have positioned the outer tube in the seal grout, and even if the coating film covering the outer tube is long, and even if there is a hard or soft layer on the ground outside the seal grout, and the cement grout, etc. The elastic coating film swells with surface pressure even on the ground after the primary injection of high grout, and the seal grout of the length corresponding to the section of the elastic coating film is surely cracked. To infiltrate the section of the predetermined coating film, and also to enable the compound injection by repeated injection, primary injection, and secondary injection to solve the problem of the prior invention and meet the requirements described in the section of the background art. The following technology is provided.

以下に本発明を請求項と図と対応させて説明する。
(地盤注入装置01)図1・図2・図3・図4・図5・図6・図7・図8・図9
地盤に形成された削孔(2…削孔)内に設置して該削孔周囲の地盤中に注入材を注入するための注入管を備えた地盤注入装置(A…注入管装置)において、
前記注入管は削孔内に充填したシールグラウト(3…シールグラウト)内に固定される注入外管(4…注入外管)と該注入外管に挿入して上下に摺動する一本又は複数本の注入液送液管路(11…注入液送液管路)を有する注入内管(5…注入内管)からなり、
該注入外管は注入液外管吐出口(6…外管吐出口)と該外管の外周に管軸方向に該注入液外管吐出口を覆い、管軸方向に多数分布する表面吐出部(7…表面吐出部)を有する断面円形状に所定長被覆する、一つ又は複数の長尺弾性被覆膜(8…長尺弾性被腹膜)から構成され、該長尺弾性被覆膜は所定長の両端を注入外管に固着材(9…固着材)によって閉束されてなり、
該表面吐出部は該長尺弾性被覆膜の弾性によって加圧時には開口し、非加圧時には閉束してなり、該注入内管は上下を流体圧によって膨縮する複数の内管パッカ(10…内管パッカ)によってはさまれた内管吐出口(12…内管吐出口)からなる内管注入部(13…内管注入部)を一つ又は複数有してなり、
注入液の注入に際しては内管注入部が注入外管の外管吐出口に位置して、該内管パッカを膨張して該長尺弾性被覆膜内(14…長尺弾性被覆膜内)に注入材を吐出して、該長尺弾性被覆膜を面圧で膨出することによりシールグラウトを所定長にわたって割裂すると共に該表面吐出部から注入液を地盤中に注入することを特徴とする地盤注入装置。
Hereinafter, the present invention will be described with reference to the claims and the drawings.
(Soil injection device 01) Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9
A ground injection device (A: injection pipe device) provided with an injection pipe for injecting an injection material into the ground around the drill hole by being installed in a drill hole (2 ... drill hole) formed in the ground,
The injection pipe is an outer injection pipe (4 ... outer injection pipe) fixed in a seal grout (3 ... seal grout) filled in a drilled hole, and a single pipe inserted into the outer injection pipe and slid up and down or An injection inner pipe (5 ... injection inner pipe) having a plurality of injection liquid feeding pipes (11 ... injection liquid feeding pipe);
The infusion outer tube has an infusion solution outer tube discharge port (6... Outer tube discharge port) and the outer circumference of the outer tube covers the infusion solution outer tube discharge port in the tube axis direction, and has a large number of surface discharge portions distributed in the tube axis direction. One or a plurality of long elastic covering films (8 long elastic covering films) that cover a predetermined length in a circular cross section having (7 ... surface discharging portion), and the long elastic covering film is The both ends of the predetermined length are closed to the injection outer tube with a fixing material (9 ... fixing material),
The surface discharge unit is opened when pressurized by the elasticity of the long elastic coating film, and is closed when not pressurized. The injection inner tube includes a plurality of inner tube packers (up and down) that expand and contract by fluid pressure. 10 ... Inner pipe injecting part (13 ... Inner pipe injecting part) consisting of inner pipe outlet (12 ... Inner pipe outlet) sandwiched by inner pipe packer)
When injecting the infusion solution, the inner tube injection portion is located at the outer tube discharge port of the outer injection tube, and the inner tube packer is expanded to expand the inside of the long elastic coating film (14 ... in the long elastic coating film). ), The seal grout is split over a predetermined length by swelling the long elastic coating film with surface pressure, and the injection liquid is injected into the ground from the surface discharge portion. And ground injection equipment.

逆止弁のスリーブの長さは通常8〜10cmであるが、上記長尺弾性被覆膜は地盤条件と注入孔間隔に応じて通常のスリーブよりも長く、好ましくは20cm〜3000cm、さらに好ましくは30〜200cmが用いられる。   The length of the sleeve of the check valve is usually 8 to 10 cm, but the long elastic coating film is longer than the usual sleeve, preferably 20 cm to 3000 cm, more preferably, depending on the ground conditions and the distance between the injection holes. 30-200 cm is used.

(地盤注入装置02)図7・図8・図9・図11(ロ)・図12(ロ)・図14(ロ)・図15(ハ)
地盤に形成された削孔(2…削孔)内に設置して該削孔周囲の地盤に注入材を注入するための注入管を備えた地盤注入装置(A…注入管装置)において、
前記注入管は削孔内に充填したシールグラウト(3…シールグラウト)内に固定される注入外管(4…注入外管)と該注入外管に挿入して上下に摺動する一本又は複数本の注入液送液管路(11…注入液送液管路)を有する注入内管(5…注入内管)からなり、
該注入外管は管軸方向に複数の外管吐出口(6…外管吐出口2)と該外管の外周に管軸方向に断面円形状に所定長被覆し、該注入液外管吐出口を覆い、円周方向のスリットが分布する加圧時には開口し、非加圧時には閉束してなる表面吐出部(7…表面吐出部)を有する一つ又は複数の長尺弾性被覆膜(8…長尺弾性被覆膜)と該長尺弾性被覆膜とは異なる位置に設けた逆止弁(20…袋パッカ内逆止弁)を有する外管吐出口(19…袋パッカ内外管吐出口)を覆う袋パッカ(18…袋パッカ)から構成され、該長尺弾性被覆膜は所定長の両端を固着材(9…固着材)によって閉束された長尺弾性被覆膜内を形成し、
該注入内管は上下を流体圧によって膨縮する複数の内管パッカ(10…内管パッカ)によってはさまれた内管吐出口(12…内管吐出口)からなる内管注入部(13…内管注入部)を一つ又は複数有してなり、
注入液の注入に際しては袋パッカに袋パッカ外管吐出口から固結材を注入して注入管周りに膨出して後、内管注入部を注入外管の外管吐出口に位置して、該内管パッカを膨張して該長尺弾性被覆膜内(14…長尺弾性被覆膜内)に注入材を吐出して、該長尺弾性被覆膜を面圧で膨出することによりシールグラウトを所定長にわたって割裂すると共に該表面吐出部から注入液を地盤中に注入することを特徴とする地盤注入装置。
(Soil injection device 02) Fig. 7, Fig. 8, Fig. 9, Fig. 11 (B), Fig. 12 (B), Fig. 14 (B), Fig. 15 (C)
In a ground injection device (A: injection pipe device) provided with an injection pipe for installing in a drill hole (2 ... drill hole) formed in the ground and injecting an injection material into the ground around the drill hole,
The injection pipe is an outer injection pipe (4 ... outer injection pipe) fixed in a seal grout (3 ... seal grout) filled in a drilled hole, and a single pipe inserted into the outer injection pipe and slid up and down or An injection inner pipe (5 ... injection inner pipe) having a plurality of injection liquid feeding pipes (11 ... injection liquid feeding pipe);
The outer tube for injection is provided with a plurality of outer tube outlets (6... Outer tube outlet 2) in the tube axis direction and a predetermined length covering the outer periphery of the outer tube in a circular cross section in the tube axis direction. One or a plurality of long elastic coating films having a surface discharge portion (7... Surface discharge portion) which covers the outlet and is open when pressurized in which circumferential slits are distributed and closed when not pressurized. (8: a long elastic coating film) and an outer tube discharge port (19: inside and outside of a bag packer) having a check valve (20: a check valve inside a bag packer) provided at a position different from the long elastic coating film The long elastic coating film is composed of a bag packer (18: bag packer) covering the discharge port of the pipe, and the long elastic coating film is closed at both ends of a predetermined length by a fixing material (9: fixing material). Forming inside
The injection inner pipe (13) has an inner pipe discharge port (12 ... inner pipe discharge port) sandwiched between a plurality of inner pipe packers (10 ... inner pipe packers) that expand and contract by fluid pressure. … Inner tube injection section)
When injecting the infusion liquid, after injecting the consolidated material into the bag packer from the outlet of the bag outer tube and swelling around the injection tube, the inner tube injection part is located at the outer tube outlet of the injection outer tube, Inflating the inner tube packer to discharge an injection material into the long elastic coating film (14... Inside the long elastic coating film) to swell the long elastic coating film with surface pressure. Wherein the seal grout is cleaved over a predetermined length, and an injection liquid is injected into the ground from the surface discharge portion.

上記にて袋パッカの材質は広げれば筒状になる布パッカでもゴムパッカでも良い。或いはそれを重ねて用いても良い。このうち布パッカは固結材を加圧した場合、その径の大きさは布が破けない強度を持つ限り、筒の径の大きさに限定される。従って、削孔径よりも大きい径にして、地盤中に設置すれば布パッカは削孔壁を閉束するだけでなく、それ以上に大きくなり、削孔壁周辺を圧縮して土中パッカを形成する。
また布パッカは固結材の圧入と共にその糸の縫い目から固結材の一部を浸出して周辺の土を固化し、袋体の筒の大きさより実質的に大きな土中パッカを形成して注入液の上方への逸出を防ぎ水平方向へ浸透させて大きな固結体を形成する。
袋パッカの布材はジオテキスタイルとしてジオウォーブン(織物、織布)、ジオノンウォーブン(不織物)、ジオニット(編物)等がある。袋パッカに用いる布材の縫い目の大きさと強度は袋体の中に懸濁液を圧入して(通常1MPa程度)懸濁液の浸出状況で確認する事ができる。本発明者の実際の注入における試験において、カルシウムシリケートシールグラウトを用いた直径10cmの削孔中で直径20cmの膨出パッカが形成され、その周辺の懸濁液の浸出成分によって直径ほぼ30cmの強固な土中パッカが形成された。
In the above, the material of the bag packer may be a cloth packer or a rubber packer which becomes cylindrical when expanded. Alternatively, they may be used in layers. Of these, when the cloth packer presses the consolidated material, the size of the diameter is limited to the size of the cylinder as long as the cloth has strength not to break. Therefore, if it is set to a diameter larger than the drill hole diameter and installed in the ground, the cloth packer not only closes the drill hole wall but also becomes larger and compresses the periphery of the drill hole wall to form an underground packer. I do.
In addition, the cloth packer presses the solidification material and leaches a part of the solidification material from the seam of the thread to solidify the surrounding soil, forming an underground packer substantially larger than the size of the bag cylinder. Prevents the infusate from escaping upward and allows it to penetrate horizontally to form a large compact.
The cloth material of the bag packer includes geotextiles such as geowoven (woven fabric and woven fabric), geononwoven (nonwoven fabric), and geonit (knitted fabric). The size and strength of the seam of the cloth material used for the bag packer can be confirmed by injecting the suspension into the bag (usually about 1 MPa) and seeping out the suspension. In a test of the present inventor in actual injection, a bulging packer having a diameter of 20 cm was formed in a hole drilled with a calcium silicate seal grout having a diameter of 10 cm, and a solid component having a diameter of approximately 30 cm was formed due to a leaching component of a suspension around the packer. A good underground packer was formed.

それに対してゴムパッカは固結材を圧入すると不均等に膨出して、部分破損しやすい。そのため、外側を布パッカで重ねることにより、パッカの径の大きさを管理できる。袋パッカの位置は、地盤条件、注入目的に応じて、被覆膜の区間の上下でも、或いは上部又は下部でもよく、1個でも複数でも良いし、最上部に1箇所でも良い。   On the other hand, the rubber packer unequally swells when the consolidated material is press-fitted, and is liable to be partially damaged. Therefore, by overlapping the outside with a cloth packer, the size of the diameter of the packer can be controlled. The position of the bag packer may be above or below the section of the coating film, or above or below the section of the coating film, depending on the ground conditions and the purpose of the injection, and may be one or more, or one at the top.

いずれにせよ袋パッカはシールグラウトと共に注入外管の上下方向への注入液の流出を防ぐのみならず、削孔径よりも大きな固結径を形成して、その周辺土も高密度化するため、一次注入も二次注入も上下方向への流出を防ぎ、二次注入液が所定の注入ステージにほぼ水平方向に広範囲に土粒子間浸透することができる。また袋パッカを装着した注入外管に袋パッカ並びに弾性被覆膜以外の位置に1個又は任意の数、注入外管吐出口1を設けて、袋パッカの縦方向のパッカ効果と一次注入材による粗い土層からの注入計画範囲からの逸脱防止効果を併用することにより、浸透性の二次注入材を所定注入領域に確実に土粒子間浸透できる。   In any case, the bag packer not only prevents the infusion liquid from flowing out in the vertical direction of the outer tube together with the seal grout, but also forms a consolidation diameter larger than the drilling diameter and densifies the surrounding soil, Both the primary injection and the secondary injection prevent the outflow in the vertical direction, and the secondary injection liquid can permeate the soil particles over a wide range substantially horizontally in a predetermined injection stage. In addition, one or an arbitrary number of outlets 1 for the outer tube of the bag are provided at the position other than the bag and the elastic coating film on the outer tube to which the bag is attached, so that the packing effect in the vertical direction of the bag and the primary injection material can be obtained. By using together the effect of preventing the deviation from the planned injection range from the coarse soil layer by the above, the permeable secondary injection material can surely permeate between the soil particles into the predetermined injection region.

また、袋パッカは分割して、上下の袋パッカの間に外管吐出口1を設けて一次注入を行うこともできる。外管吐出口1はこの位置に限定しても良い(図13(ハ))。特に後述する非アルカリ領域のシリカグラウト(図18、図19)を図24の限界速度内で二次注入した場合、表7(a)で設定した注入量を表7(b)または請求項1〜4で設定した配合処方で注入ずれば、図20〜22、図25の浸透ゲル化の挙動で所定領域を低圧(図23(ロ))で所定注入量に相当する固結体を地表面や粗い層に逸脱することなく確実に土粒子間浸透固化できる。この一次注入の効果は請求項1においても同様である。   Further, the bag packer may be divided, and the outer pipe discharge port 1 may be provided between the upper and lower bag packers to perform the primary injection. The outer tube discharge port 1 may be limited to this position (FIG. 13 (c)). In particular, when silica grout (FIGS. 18 and 19) in a non-alkali region to be described later is secondarily injected within the limit speed shown in FIG. 24, the injection amount set in Table 7 (a) is set in Table 7 (b) or claim 1. If the injection is performed with the formulation set in ~ 4, the solidified body corresponding to the predetermined injection amount at a low pressure (Fig. 23 (b)) will be applied to the ground surface in the permeation gelation behavior shown in Figs. The solidification between soil particles can be reliably performed without deviating to a coarse layer. The effect of this primary injection is the same in claim 1.

(地盤注入装置03)図1〜図21
地盤注入装置01、02で地盤に形成された削孔(2…削孔)内に設置して該削孔周囲の地盤中に注入材を注入するための注入管を備えた地盤注入装置(A…注入管装置)において、
前記注入管は削孔内に充填したシールグラウト(3…シールグラウト)内に固定される注入外管(4…注入外管)と該注入外管に挿入して上下に摺動する一本又は複数本の注入液送液管路(11…注入液送液管路)を有する注入内管(5…注入内管)からなり、
該注入外管は伸縮性スリーブからなる逆止弁(15…外管吐出口1逆止弁)で覆われた外管吐出口1(16…外管吐出口1)と弾性被覆膜(8…弾性被覆膜)で覆われた外管吐出口2(6…外管吐出口2)を有し、該弾性被覆膜は外管吐出口2(6…外管吐出口2)と該外管の外周に管軸方向に該注入液外管吐出口を覆い、円周方向スリットが分布する加圧時には開口し、非加圧時には閉束してなる表面吐出部(7…表面吐出部)を有する断面円形状に管軸方向に所定長被覆する、一つ又は複数の弾性被覆膜(8…弾性被腹膜)から構成され、該弾性被覆膜は所定長の両端を注入外管に固着材(9…固着材)によって閉束された弾性被覆膜内を形成し、
該注入内管は上下を流体圧によって膨縮する複数の内管パッカ(10…内管パッカ)によってはさまれた内管吐出口(12…内管吐出口)からなる内管注入部(13…内管注入部)を一つ又は複数有してなり、
該外管吐出口2からの注入液の注入に際しては内管注入部が注入外管の外管吐出口に位置して、該内管パッカを膨張して該長尺弾性被覆膜内(14…長尺弾性被覆膜内)に注入材を圧入して、該長尺弾性被覆膜が面圧で膨出することによりシールグラウトを所定長にわたって割裂すると共に該表面吐出部から注入液を該シールグラウトの割裂を通して地盤中に注入することを特徴とする地盤注入装置。
(Soil injection device 03) Figures 1 to 21
A ground injection device (A) provided with an injection pipe for injecting an injection material into the ground around the drilled hole by being installed in a drilled hole (2 ... drilled hole) formed in the ground by the ground injection devices 01 and 02. ... injection tube device)
The injection pipe is an outer injection pipe (4 ... outer injection pipe) fixed in a seal grout (3 ... seal grout) filled in a drilled hole, and a single pipe inserted into the outer injection pipe and slid up and down or An injection inner pipe (5 ... injection inner pipe) having a plurality of injection liquid feeding pipes (11 ... injection liquid feeding pipe);
The outer tube of the injection tube has an outer tube outlet 1 (16 ... outer tube outlet 1) covered with a check valve (15 ... outer tube outlet 1 check valve) made of an elastic sleeve and an elastic coating film (8 ... an outer tube discharge port 2 (6 ... outer tube discharge port 2) covered with an outer tube discharge port 2 (6 ... outer tube discharge port 2). A surface discharge unit (7: surface discharge unit) which covers the injectate outer tube discharge port in the axial direction of the outer tube on the outer circumference of the outer tube, and which is open when pressurized in which circumferential slits are distributed and closed when not pressurized. ) Comprising one or a plurality of elastic coating films (8 ... elastic peritoneal membranes) covering a predetermined length in the tube axis direction in a circular cross-section having a predetermined length at both ends. The inside of the elastic coating film closed by the fixing material (9 ... fixing material)
The injection inner pipe (13) has an inner pipe discharge port (12 ... inner pipe discharge port) sandwiched between a plurality of inner pipe packers (10 ... inner pipe packers) that expand and contract by fluid pressure. … Inner tube injection section)
When injecting the injection liquid from the outer tube outlet 2, the inner tube inlet is located at the outer tube outlet of the outer tube to inflate the inner tube packer to expand the inside of the long elastic coating film (14). ... the injection material is pressed into the long elastic coating film), and the long elastic coating film swells due to surface pressure, thereby splitting the seal grout over a predetermined length and simultaneously injecting the injection liquid from the surface discharge portion. A ground injection device for injecting into the ground through splitting of the seal grout.

外管吐出口1からは、被覆膜内の外管吐出口からの二次注入に先立って、一次注入を行って、異なる土層の粗い土層や逸脱しやすい土層を予め注入して注入対象地盤の均質化を行う。
例えば、地盤が透水係数で100〜10-4cm/secの土層から成り立っている場合、一次注入によって、一次注入が浸透し得る、100、10-2cm/secのオーダーの土層を10-3cm/sec〜10-4cm/secのオーダーにして地盤を均質化する。その上で、ゲル化時間の長い浸透性の良い非アルカリ性シリカグラウトを注入すれば、表7(a)の注入間隔で設定した注入量を図18の限界速度内で表7(b)又は請求項19〜22で設定した配合処方で注入すれば図14〜16、図17、図19の浸透挙動で大きな浸透範囲に所定注入量が浸透され、注入液は、所定注入領域からそのまま殆ど移動することなくゲル化時間の経過と共に所定範囲に固結する。また、図1、図2、図3にて外管吐出口1は長尺弾性被覆膜から外管吐出口2から一次注入する場合はなくてもよい。
From the outer tube outlet 1, prior to the secondary injection from the outer tube outlet in the coating film, perform a primary injection, and inject a coarse soil layer of a different soil layer or a soil layer that easily deviates in advance. Homogenize the ground to be injected.
For example, if the ground is made up soil layer of 10 0 ~10 -4 cm / sec in hydraulic conductivity, the primary infusion, the primary injection can penetrate, 10 0, 10 -2 cm / sec soil layer of the order of To the order of 10 −3 cm / sec to 10 −4 cm / sec to homogenize the ground. Then, if a non-alkali silica grout having a long gelation time and good permeability is injected, the injection amount set at the injection interval in Table 7 (a) can be adjusted within the limit speed in FIG. If the injection is performed with the formulation set in the items 19 to 22, the predetermined injection amount permeates a large permeation range by the permeation behavior of FIGS. 14 to 16, 17, and 19, and the injection liquid almost moves from the predetermined injection region as it is. It solidifies in a predetermined range with the lapse of gelation time. Also, in FIGS. 1, 2 and 3, the outer tube discharge port 1 does not have to be a case where primary injection is performed from the outer tube discharge port 2 from the long elastic coating film.

また、外管吐出口1は注入外管の地表面に近い部分のみに設置して、あらかじめ懸濁液、或いは瞬結グラウトの一次注入液を注入して外管吐出口2からの二次注入材の地表面の逸脱を防ぐこともできる。注入外管に設けた長尺弾性被覆膜の数は地盤条件や注入目的に応じて1個だけでも良いし、間隔をあけて複数個でも良い。例えば、注入外管の最上部に設けて、その下部には外管吐出口1を任意の数、間隔をあけて設けても良い。又注入外管1を任意の数設けて、下方に被覆膜を1箇所に設けても良い。例えば粘性土層が存在する場合、注入外管吐出口1からの懸濁注入又は瞬結注入の脈状注入とし、砂層や複数の土層からなる土層では被覆膜からの柱状浸透が好ましい。   In addition, the outer pipe discharge port 1 is installed only in the portion near the ground surface of the injection outer pipe, and the secondary injection from the outer pipe discharge port 2 is performed by previously injecting the suspension or the primary injection liquid of instantaneous grout. It is also possible to prevent the material from deviating from the ground surface. The number of the long elastic coating films provided on the outer tube for injection may be only one or plural at intervals depending on the ground conditions and the purpose of injection. For example, an outer pipe discharge port 1 may be provided at an uppermost part of the outer injection pipe, and an outer pipe discharge port 1 may be provided at an arbitrary interval below the outer pipe. Also, an arbitrary number of outer injection tubes 1 may be provided, and a coating film may be provided at one location below. For example, when a viscous soil layer is present, pulsation injection of suspension injection or instantaneous injection from the outer pipe discharge port 1 is performed, and in a soil layer composed of a sand layer and a plurality of soil layers, columnar penetration from the coating film is preferable. .

(地盤注入装置04)図2、図3
地盤注入装置01、02、03において、該内管注入部から吐出された注入液は弾性被覆内を加圧して弾性被覆膜を面圧で膨出してシールグラウトを所定長にわたって割裂して表面吐出部から該シールグラウトの割裂を通して地盤注入されることを特徴とする地盤注入装置。
(Soil injection device 04) Figures 2 and 3
In the ground injection apparatus 01, 02, 03, the injection liquid discharged from the inner pipe injection section pressurizes the inside of the elastic coating, swells the elastic coating film at the surface pressure, splits the seal grout over a predetermined length, and breaks the surface. A ground injection device wherein the ground is injected from a discharge part through a split of the seal grout.

上記において、弾性被覆膜はその上下を固着材で加締めている。その位置は長尺被覆膜の上下端で加締めることにより注入液の加圧によって、長尺被覆膜内を形成して長尺被覆膜を膨出してシールグラウトを長尺被覆膜の長さにわたって割裂することができる。また長尺被覆膜をいくつかに分割して加締めすることにより、被覆膜の単位長を任意の数設置することができる。また加締めはその端部を袋パッカ或いは外管吐出口1によって閉束されている場合は、その部分を加締めとみなして設けなくてもよいのは当然である。   In the above, the upper and lower sides of the elastic coating film are caulked with a fixing material. The position is formed by crimping the upper and lower ends of the long coating film to form the inside of the long coating film by pressurizing the infusate and swelling the long coating film to form a long coating film with seal grout. Can be split over the length of Further, by dividing the long coating film into several pieces and caulking, an arbitrary number of unit lengths of the coating film can be set. In the case where the end portion is closed by the bag packer or the outer tube discharge port 1, it is needless to say that the crimping portion is not required to be provided as the crimping portion.

(地盤注入装置05)図2(ハ)〜(ホ)・(ハ')〜(ホ')・図4・図7・図12・図13
地盤注入装置01〜04において、該外管吐出口は該弾性被覆膜の区間内において内管注入部の上下のパッカ間に位置してなり、表面吐出部のスリットはスリット1個が円周方向長さMcm、幅1mmで、N個分布していると換算して、その総面積が該弾性被覆膜の区間内の内管吐出口の総面積よりも小さいことを特徴とする地盤注入装置。
(Soil injection device 05) Figs. 2 (c) to (e), (c ') to (e'), Figs. 4, 7, 12, and 13
In the ground injection apparatus 01 to 04, the outer pipe discharge port is located between the upper and lower packers of the inner pipe injection section in the section of the elastic coating film, and the slit of the surface discharge section has one slit. Ground injection characterized by having a length in the direction of Mcm, a width of 1 mm, and a total area smaller than the total area of the inner pipe discharge ports in the section of the elastic coating film, assuming that N pieces are distributed. apparatus.

上記において、弾性被覆の区間とは接着材や金属リング等の固着剤で上下を加締めた区間をいう。また図1、図2にて、長尺弾性被覆膜8の長尺弾性被覆膜内14は説明上、空間を空けて表現しているが、実際は被覆膜の弾性によって外管表面に密着している。或いは長尺弾性被覆膜内に透水性空間保持材25を設けても良い(図2(ハ')〜(ホ'))。また外管吐出口は表面を帯状弾性逆止弁17'を設けて良い。この場合の逆止弁は上下両端を開放していても良いし、また上下を加締めて中央に円周上に切れ目をつけて注入液が噴出するようにしても良い。この場合、噴出した注入液は透水性空間保持材を通って被覆膜全長に浸入して急速に弾性被覆内が加圧されて長尺弾性被覆膜全長を面圧によって膨出してシールグラウトを割裂する。   In the above, the section of the elastic coating refers to a section which is crimped up and down with a bonding agent such as an adhesive or a metal ring. Also, in FIGS. 1 and 2, the inside of the long elastic coating film 14 of the long elastic coating film 8 is expressed with a space for explanation, but actually, the elastic film of the long elastic coating film 8 Closely adhered. Alternatively, a water permeable space holding material 25 may be provided in the long elastic coating film (FIGS. 2 (c) to 2 (e)). The outer tube discharge port may be provided with a band-shaped elastic check valve 17 'on the surface. In this case, the check valve may be open at both upper and lower ends, or may be swaged up and down so as to make a cut on the circumference at the center so that the injection liquid is jetted. In this case, the injected injection liquid penetrates into the entire length of the coating film through the water-permeable space holding material, rapidly pressurizes the inside of the elastic coating, swells out the entire length of the long elastic coating film by surface pressure, and seal grout. Split.

表面吐出部7のスリット7は外管の円周の接線方向に線状に閉束している。被覆区間に分布しているN個のスリットの表面積の合計がその区間の内管の吐出口12の合計面積よりも小さければ被覆内に流入した注入液の圧力によって初期には被腹膜がシールグラウトの方に膨出してシールグラウトを面圧で区間全長にわたって割裂を生じさせる。膨出の過程でスリットの開きが大きくなり、注入液が割裂を通して区間全体にわたって地盤中に柱状浸透する。   The slit 7 of the surface discharge part 7 is linearly closed in a tangential direction of the circumference of the outer tube. If the total surface area of the N slits distributed in the covering section is smaller than the total area of the discharge ports 12 of the inner pipe in that section, the pressure of the infusate flowing into the covering initially causes the peritoneum to seal grout. To cause the seal grout to split over the entire length of the section at the surface pressure. In the process of bulging, the slits become larger, and the injection liquid penetrates into the ground throughout the section through the split.

スリットは管軸の円周接線方向に長さMcm通常1〜3cmで表面吐出部N本分布しているものとし開口した場合の幅を1mmとして換算すると、スリットの開口時の表面積の総計は0.1MN/cm2となる。内管吐出口12の1個の断面積がacm2でb個あるとすると0.1MN(cm3/cm2)≦abとすれば良い。なお、以後の図面で透水性空間保持材は省略されているが、空間保持材がない場合は外管径が小さくなり、従って削孔径が小さくなり、また既存の建物の地盤下に曲線上に削孔することが容易になるという利点が生ずる。 The slit has a length Mcm in the circumferential tangential direction of the tube axis, usually 1 to 3 cm, and N surface discharge portions are distributed.If the width when opened is converted to 1 mm, the total surface area of the slit at the time of opening is 0.1. MN / cm 2 . Assuming that the cross-sectional area of one of the inner tube discharge ports 12 is acm 2 and b, the relation may be 0.1 MN (cm 3 / cm 2 ) ≦ ab. In the following drawings, the water permeable space holding material is omitted, but if there is no space holding material, the outer pipe diameter will be small, so the drilling diameter will be small, and the existing building will be curved below the ground. This has the advantage that drilling is easier.

(地盤注入装置06)図3(ヘ)〜(チ)・図5・図6・図8・図9・図11
地盤注入装置02、03において、該外管吐出口逆止弁から吐出した注入液が外管表面に沿って該長尺弾性被覆膜内全長にわたって圧入されて該被覆膜を面圧によって加圧して膨出せしめることにより長尺弾性被覆膜の外周部をとりまくシールグラウトが該被覆区間の所定長の割裂をひきおこして注入液が該割裂から周辺の地盤に注入することを特徴とする地盤注入装置。
(Soil injection device 06) Figs. 3 (f) to (h), Fig. 5, Fig. 6, Fig. 8, Fig. 9, Fig. 11
In the ground injection devices 02 and 03, the injection liquid discharged from the outer pipe discharge port check valve is press-fitted along the outer pipe surface over the entire length of the long elastic coating film, and the coating film is applied by surface pressure. A seal grout surrounding the outer periphery of the long elastic coating film by swelling by pressing, causing a predetermined length of splitting of the coating section, and injecting liquid being injected from the split into the surrounding ground. Infusion device.

(地盤注入装置07)図3(ヘ)〜(チ)・図5・図6・図8・図9・図11
地盤注入装置03、06において、外管吐出口2は上下端を開放した帯状の伸縮性スリーブからなる逆止弁(17…外管吐出口逆止弁)を設けてなり、該内管注入部から吐出された注入液は該外管吐出口から帯状の伸縮スリーブの上下から該長尺弾性被覆膜内に該外管軸方向に沿って圧入されて該長尺弾性被覆膜の面圧によって、シールグラウトを所定長にわたって割裂すると共に該表面吐出部から該シールグラウトの割裂を通して地盤注入されることを特徴とする地盤注入装置。
(Soil injection device 07) Figs. 3 (f) to (h), Fig. 5, Fig. 6, Fig. 8, Fig. 9, Fig. 11
In the ground injection devices 03 and 06, the outer pipe discharge port 2 is provided with a check valve (17... Outer pipe discharge port check valve) composed of a band-shaped elastic sleeve whose upper and lower ends are opened. Is injected into the elongated elastic coating film from above and below the strip-shaped elastic sleeve from the outer tube discharge port along the axial direction of the outer tube, and the surface pressure of the elongated elastic coating film is increased. Wherein the seal grout is split over a predetermined length, and the ground is injected from the surface discharge portion through the split of the seal grout.

上記において、図2(ハ')、(ニ')、(ホ’)と同じく弾性被覆膜内に透水性空間保持材25を設けても良い。これによって急速に弾性被覆膜内が加圧されて面圧でシールグラウトの割裂が生ずる。   In the above description, the water permeable space holding material 25 may be provided in the elastic coating film as in FIGS. 2 (c ′), (d ′), and (e ′). As a result, the inside of the elastic coating film is rapidly pressed, and the seal grout is split by the surface pressure.

(地盤注入装置08)(図11・図12・図13・図14・図15)
地盤注入装置03、07において、外管吐出口1、又は外管吐出口2のいずれかを一次注入材の吐出口に設定してなることを特徴とする地盤注入装置。
(Soil injection device 08) (Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. 15)
A ground injection device characterized in that, in the ground injection devices 03 and 07, either the outer pipe discharge port 1 or the outer pipe discharge port 2 is set as a discharge port of a primary injection material.

一次注入材は外管吐出口1から注入されても外管吐出口1がなくて外管吐出口2のいずれかの箇所から注入されても良い。図11、図12、図13において、外管吐出口1がなくて、L1-1…L4-1から一次注入材を注入してL1〜2…L4-2から二次注入材を注入しても良いし、また図14(イ)においてシールグラウト内に位置する注入外管吐出口1から一次注入材を一次注入してから二次注入材を一次注入した領域に合わせて注入しても良い。また図14(ロ)において、シールグラウト内に位置する注入管外管の袋パッカ内に固結材を注入して後、一次注入材を注入外管吐出口1から注入して後、二次注入材を注入管吐出口2から注入して、一次注入した領域に二次注入を行うことができる。 The primary injectable material may be injected from the outer tube outlet 1 or may be injected from any portion of the outer tube outlet 2 without the outer tube outlet 1. 11, 12, 13, without the outer tube ejection port 1, from L 1-1 ... L 4-1 by injecting the primary infusion material L 1 to 2 ... L 4-2 from the secondary grout May be injected, or in FIG. 14 (a), the primary injection material may be primarily injected from the outer injection tube discharge port 1 located in the seal grout, and then the secondary injection material may be injected in accordance with the primary injection region. You may. Further, in FIG. 14 (b), after injecting the consolidated material into the bag packer of the outer pipe of the injection pipe located in the seal grout, the primary injection material is injected from the outlet 1 of the outer pipe of the injection pipe, and then the secondary injection material is injected. The injection material can be injected from the injection pipe discharge port 2, and the secondary injection can be performed in the region where the primary injection has been performed.

(地盤注入装置09)図4(ロ)・図6・図7(ロ)・図9・図11・図14・図15
地盤注入装置01〜08の地盤注入装置において、該注入内管は複数の注入液送液管路(11A,11B…注入液送液管路)をもち、上下を流体圧によって膨縮する複数の内管パッカで挟まれた複数の内管注入部をもち、該複数の内管注入部はそれぞれ複数の長尺弾性被覆膜内(14…長尺弾性被覆膜内)に注入材を吐出するように位置せしめて、該複数の長尺弾性被覆膜から同時に或いは選択的にシールグラウトを所定長にわたって割裂して地盤中に注入することを特徴とする地盤注入装置。(後述(0046)参照)
(Soil injection device 09) Fig. 4 (b), Fig. 6, Fig. 7 (b), Fig. 9, Fig. 11, Fig. 14, Fig. 15
In the ground injection device of the ground injection devices 01 to 08, the injection inner pipe has a plurality of injection liquid feed pipes (11A, 11B... A plurality of inner tube injection portions sandwiched by inner tube packers, each of which discharges an injection material into a plurality of long elastic coating films (14 ... in the long elastic coating films). Wherein the seal grout is split from the plurality of long elastic coating films simultaneously or selectively over a predetermined length and injected into the ground. (See (0046) below)

(地盤注入装置10)図1〜図5・図11・図12・図13・図14・図15
地盤注入装置03において、該注入外管は該長尺弾性被覆膜とは異なる位置に設けた外管吐出口とそれを覆う伸縮性スリーブからなる逆止弁(15…外管吐出口1逆止弁)を設けた外管一次注入材吐出口(16…外管吐出口1)を一つ又は複数有することを特徴とする地盤注入装置。
(Soil injection device 10) FIGS. 1 to 5, FIG. 11, FIG. 12, FIG. 13, FIG. 14, and FIG.
In the ground injection device 03, the injection outer pipe is provided with a check valve (15... Opposite to the outer pipe discharge port 1) composed of an outer pipe discharge port provided at a position different from the long elastic coating film and a stretchable sleeve covering the discharge pipe. A ground injection device having one or more outer pipe primary injection material discharge ports (16... Outer pipe discharge port 1) provided with a stop valve).

(地盤注入工法11)図11・図12・図13・図14・図15
地盤注入装置01〜10を用いて、シールグラウト内に固定した注入外管に挿入した注入内管を摺動して長尺弾性被覆膜内に注入液を吐出して、該表面吐出部から該長尺弾性被覆膜を面圧で膨出することにより、所定長にわたってシールグラウトを割裂して注入液を地盤に注入することを特徴とする地盤注入工法。
(Soil injection method 11) Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. 15
Using the ground injection devices 01 to 10, the injection inner tube inserted into the injection outer tube fixed in the seal grout is slid to discharge the injection liquid into the long elastic coating film, and from the surface discharge portion. A ground injection method, comprising swelling the long elastic coating film at a surface pressure to split the seal grout over a predetermined length and injecting an injection liquid into the ground.

(地盤注入工法12)(図11・図12・図13・図14・図15)
地盤注入工法11において、一次注入材を注入した領域に二次注入材を注入することを特徴とする地盤注入工法。
(Soil injection method 12) (Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. 15)
In the ground injection method 11, a secondary injection material is injected into a region into which the primary injection material has been injected.

(地盤注入工法13)(図11・図12・図13・図14・図15)
地盤注入工法11、12の地盤注入工法であって、
削孔内に該注入外管をシールグラウト内に設置して後、注入内管を通して一次注入材を注入して、粗い層や逸脱しやすい層を充填して後、注入液送液管路を一本又は複数本有する注入内管を注入外管内に摺動して一つ又は複数の長尺弾性被覆膜の区間内に内管注入部を位置せしめて注入内管から二次注入材を一区間或いは複数の区間の長尺弾性被腹膜内に同時に或いは選択的に吐出して該表面吐出部から被覆膜をとりまくシールグラウトを所定長にわたって割裂して地盤中に注入することを特徴とする地盤注入工法。
(Soil injection method 13) (Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. 15)
Ground injection method 11, 12 ground injection method,
After placing the outer injection pipe in the seal grout in the drilled hole, inject the primary injection material through the inner injection pipe, fill the coarse layer or the easily deviating layer, and then set the injection liquid delivery pipe line. Slide the inner injection tube having one or more inner injection tubes into the outer injection tube to position the inner tube injection portion in the section of the one or more long elastic coating films, and supply the secondary injection material from the injection inner tube. It is characterized in that the seal grout surrounding the coating film from the surface discharge portion is split into a predetermined length and injected into the ground by discharging simultaneously or selectively into the long elastic peritoneum of one section or a plurality of sections. Ground injection method.

(地盤注入工法14)(図11・図12・図13・図14・図15)
地盤注入工法11〜13の地盤注入工法であって、一次注入した領域に二次注入を重ねて注入することを特徴とする地盤注入工法。
(Soil injection method 14) (Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. 15)
A ground injection method according to any one of the ground injection methods 11 to 13, wherein a secondary injection is superimposed and injected into a region where the primary injection has been performed.

(地盤注入工法15)(図11・図12・図13・図14・図15)
地盤注入工法11〜14の地盤注入工法において、該複数の内管注入部をそれぞれ異なる長尺弾性被覆膜内に異なる注入材を吐出するように位置せしめて同時に或いは選択的に地盤中に注入することを特徴とする地盤注入工法。
(Soil injection method 15) (Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. 15)
In the ground injection method of the ground injection method 11 to 14, the plurality of inner pipe injection portions are positioned so as to discharge different injection materials into different long elastic coating films, respectively, and are simultaneously or selectively injected into the ground. Ground injection method.

(地盤注入工法16)
地盤注入工法11〜15の地盤注入工法において、該シールグラウトと一次注入材のいずれか或いはいずれも以下の固結材であって、固結体の強度は一軸強度で10kg/cm2以下である以下のいずれかのグラウトであることを地盤注入工法。後述(0082)〜(0105)参照。
(1)カルシウムアルミネートを有効成分とする懸濁型グラウト。
(2)高分子増粘剤を有効成分とするグラウト。
(3)粘土を有効成分とする懸濁型グラウト。
(4)セメント・ベントナイトを有効成分とする懸濁型グラウト。
(Soil injection method 16)
In the ground injection method of the ground injection method 11 to 15, any one or both of the seal grout and the primary injection material is the following consolidated material, and the strength of the consolidated body is 10 kg / cm2 or less in uniaxial strength. Ground grouting method to be either grout. See (0082) to (0105) below.
(1) A suspension grout containing calcium aluminate as an active ingredient.
(2) Grout containing a polymer thickener as an active ingredient.
(3) Suspended grout containing clay as an active ingredient.
(4) Suspended grout containing cement / bentonite as an active ingredient.

(地盤注入工法17)
地盤注入工法11〜16の地盤注入工法において、一次注入材グラウトは懸濁型グラウト又はゲル化時間の短い溶液型グラウトである地盤注入工法。後述(0108)〜(0121)参照。
(Soil injection method 17)
In the ground injection method of ground injection methods 11 to 16, the primary injection material grout is a suspension type grout or a solution type grout having a short gelation time. See (0108) to (0121) below.

(地盤注入工法18)
地盤注入工法11〜17において、長尺弾性被腹膜から注入される注入材は溶液型グラウト或いは懸濁型グラウト或いは一次注入材よりも浸透性の良い注入材である地盤注入工法。後述(0108)〜(0121)参照。
(Soil injection method 18)
In the soil injection method 11 to 17, the injection material injected from the long elastic peritoneum is a solution-type grout, a suspension-type grout, or an injection material having better permeability than the primary injection material. See (0108) to (0121) below.

(請求項1)
溶液型グラウトを地盤に注入して地盤改良する地盤注入工法において、以下の条件を満たす地盤注入工法。後述(0108)〜(0121)参照。
1)対象となる土を用いて所定の密度で要求される強度が得られるシリカ濃度を設定する。
2)所定のシリカ濃度を用いてpH或いは添加剤に対応したゲル化時間(GT0)を有するシリカグラウト配合液を調整する。
3)その配合液を現場土と混合して土中ゲル化時間(GTS0)を測定する。
4)想定する注入孔間隔、注入方式、1注入ステージ長より単位ステージの固結対象土量を設定する。
5)単位ステージの固結対象土量から注入量を設定し、浸透可能限界内の注入速度から単位ステージ当たりの注入時間(H)を設定する。
6)地盤状況、注入孔間隔、並びに単位ステージ当りの注入量に応じて、
GT0>H≧GTS0又はGT0>GTS0≧H となる注入液のゲルタイム(GT0)とシリカ濃度からなる配合処方を設定する。
(Claim 1)
A ground pouring method that satisfies the following conditions in a ground pouring method for improving a ground by pouring a solution grout into the ground. See (0108) to (0121) below.
1) Set the silica concentration to obtain the required strength at a predetermined density using the target soil.
2) Using a predetermined silica concentration, prepare a silica grout mixture having a gelation time (GT 0 ) corresponding to the pH or additive.
3) Mix the mixture with the soil at the site and measure the gelation time (GT S0 ) in the soil.
4) Set the amount of soil to be consolidated at the unit stage based on the assumed injection hole interval, injection method, and one injection stage length.
5) Set the injection amount based on the amount of soil to be consolidated at the unit stage, and set the injection time (H) per unit stage from the injection speed within the permeation limit.
6) Depending on the ground condition, injection hole interval, and injection amount per unit stage,
Formulation is set up based on the gel time (GT 0 ) and silica concentration of the infusate satisfying GT 0 > H ≧ GT S0 or GT 0 > GT S0 ≧ H.

(請求項2)
溶液型グラウトを地盤に注入して地盤改良する地盤注入工法において、注入液のゲルタイムをGT0、注入液と注入液を混合したゲルタイムを地中ゲルタイムとしてGTS0、1ステージ当りの注入時間をHとすると、これらの値を以下の範囲で設定して、注入範囲外への注入材の逸脱を低減する地盤注入工法。後述(0108)〜(0121)参照。
(1)注入速度は限界浸透注入速度内とする。
(2)注入孔間隔又は固結径L=1.0〜3.0m
(3)毎分注入速度q=1〜30L/minただし、限界浸透注入速度内とする。
(4)1ステージ長:0.33m〜3.0m
(5)1ステージ当たりの注入時間H:4.4〜10000分
ただし、注入時間(H)は現場の作業性や後期の短縮を考慮して短縮することができる。
(6)気中ゲル化時間 GT0:10分〜10000分
(7)気中pH(pH0):1〜10
(8)シリカ濃度:0.4〜40%(重量%)
(9)土中ゲルタイム GTS0:10分〜3000分
ここで限界浸透注入速度内とは、割裂・浸透注入速度よりも小さい浸透注入速度をいう。
(Claim 2)
In the ground injection method for improving the ground by injecting the solution type grout into the ground, the gel time of the injected liquid is GT 0 , the gel time of the mixed liquid and the injected liquid is the underground gel time, GT S0 , and the injection time per stage is H Then, these values are set in the following ranges, and the ground injection method reduces the deviation of the injected material outside the injection range. See (0108) to (0121) below.
(1) The injection speed should be within the limit permeation injection speed.
(2) Injection hole spacing or consolidation diameter L = 1.0-3.0m
(3) Injection rate per minute q = 1 to 30 L / min.
(4) 1 stage length: 0.33m ~ 3.0m
(5) Injection time per stage H: 4.4 to 10,000 minutes However, the injection time (H) can be shortened in consideration of workability at the site and shortening of the latter period.
(6) Air gelation time GT 0 : 10 minutes to 10,000 minutes (7) Air pH (pH 0 ): 1 to 10
(8) Silica concentration: 0.4 to 40% (% by weight)
(9) Soil gel time GT S0 : 10 minutes to 3000 minutes Here, within the critical penetration rate refers to a penetration rate lower than the splitting / penetration rate.

(請求項3)
請求項1、2において、溶液型グラウトを地盤に注入して地盤改良する地盤注入工法において、以下の条件を満たす地盤注入工法。後述(0108)〜(0121)参照。
注入孔間隔:1m〜3m
土中ゲル化時間(GTS0)=10〜3000分
注入速度(毎分吐出量)=1〜30l/min
但し、注入速度は限界浸透注入速度内とする。
1ステージ当たりの注入量=132l〜10,800l
1ステージ当たりの注入時間(H)=4.4分〜10,800分
β=H/GTS0=10800/10〜4.4/3000=1080〜0.001、好ましくは1080〜1
(Claim 3)
3. The soil injection method according to claim 1, wherein the solution type grout is injected into the ground to improve the ground. See (0108) to (0121) below.
Injection hole interval: 1m-3m
Soil gel time (GT S0 ) = 10-3000 minutes Injection rate (discharge rate per minute) = 1-30 l / min
However, the injection speed is within the limit penetration injection speed.
Injection volume per stage = 132l to 10,800l
Injection time per stage (H) = 4.4 minutes to 10,800 minutes β = H / GT S0 = 10800/10 to 4.4 / 3000 = 1080 to 0.001, preferably 1080 to 1

(請求項4)
請求項1〜3において、柱状浸透注入であって、以下の条件を満たす地盤注入工法。後述(0108)〜(0121)参照。
1ステージ当たりの注入量132l〜10,800l
注入速度10l〜30l/min
1ステージ当たりの注入時間4.4分〜1080分
土中ゲル化時間(GTS0)=10〜3000分
β=H/GT0=1080/10〜4.4/3000=108〜0.001、好ましくはβ=108〜1
(Claim 4)
The method for injecting ground into the ground according to any one of claims 1 to 3, wherein the injection is columnar infiltration and the following conditions are satisfied. See (0108) to (0121) below.
132l to 10,800l injection volume per stage
Injection speed 10l-30l / min
Injection time per stage 4.4 minutes to 1080 minutes Soil gelation time (GT S0 ) = 10 to 3000 minutes β = H / GT 0 = 1080/10 to 4.4 / 3000 = 108 to 0.001, preferably β = 108 to 1

(請求項5)
請求項1〜4の地盤注入工法において、一次注入材を注入後、二次注入材を注入するに先立って水又は注入材を圧入してシールグラウトを割裂した上で、地盤の土粒子間の限界注入圧内の注入速度で注入することを特徴とする地盤注入工法。
(Claim 5)
In the ground injection method according to any one of claims 1 to 4, after injecting the primary injection material, prior to injecting the secondary injection material, press-fitting water or the injection material to split the seal grout, and between the soil particles of the ground. A ground injection method characterized by injection at an injection speed within a limit injection pressure.

(請求項6)
請求項5の地盤注入工法において、水又は一次注入材を注入してのち、引き続いて二次注入材を限界注入圧内の注入速度で注入することを特徴とする地盤注入工法。
(Claim 6)
6. The ground injection method according to claim 5, wherein after the water or the primary injection material is injected, the secondary injection material is subsequently injected at an injection speed within a limit injection pressure.

本発明において浸透注入はシールグラウトを割裂した後、図18における浸透、割裂の注入領域、好ましくは限界注入速度の範囲内の注入速度で注入するが(曲線D)、シールグラウトの割裂にあたっては注入圧を高くする必要がある(曲線(イ))。シールグラウトの割裂を水を圧送して行うか、その注入液が希釈されるのを防ぐときはゲル化時間が長い粘性の低いシリカグラウトで割裂しても良い。また曲線(イ)で割裂した後、引き続いて曲線(D)に切り替えて浸透性注入材を注入することができる。   In the present invention, the permeation injection is performed by splitting the seal grout and then injecting at an injection speed in the permeation and splitting injection region in FIG. 18, preferably within the range of the limit injection speed (curve D). It is necessary to increase the pressure (curve (a)). The seal grout may be split by pumping water, or may be split with a low-viscosity silica grout having a long gelation time to prevent dilution of the injection liquid. After splitting at the curve (a), it is possible to subsequently switch to the curve (D) and to inject the permeable injection material.

(請求項7)
請求項1〜6において、該シリカ注入液はpHが1〜10であって、シリカコロイド又は水ガラスのいずれか1種又は複数種と、反応剤として酸或いは塩のいずれか1種或いは複数種を有効成分とし、該シリカ注入液がコロイドと水ガラスと酸からなる場合は該シリカコロイドに起因するシリカ濃度と水ガラスに起因するシリカ濃度の比率は100:0〜0:100、かつシリカ濃度は0.4〜40wt%、シリカのモル比2.0〜100、ゲル化時間は瞬結から10000分の配合から選定したシリカグラウトであることを特徴とする地盤注入工法。(図12・図13)
(Claim 7)
In Claims 1 to 6, the pH of the silica injection solution is 1 to 10, and one or more of colloidal silica or water glass and one or more of an acid or a salt as a reactant. When the silica injection liquid is composed of colloid, water glass and acid, the ratio of the silica concentration caused by the silica colloid to the silica concentration caused by the water glass is 100: 0 to 0: 100, and the silica concentration Is a silica grout selected from a composition of 0.4 to 40 wt%, a molar ratio of silica of 2.0 to 100, and a gelling time of 10,000 minutes from instantaneous setting. (Figures 12 and 13)

(請求項8)
請求項7において、該シリカ注入液は点注入、多点注入、柱状注入、多点同時注入、又は多ステージ同時注入又は選択注入によって、地盤に注入されることを特徴とする地盤注入工法。(図14・図15、表7)
(Claim 8)
8. The ground injection method according to claim 7, wherein the silica injection liquid is injected into the ground by point injection, multipoint injection, columnar injection, simultaneous injection of multiple points, simultaneous injection of multiple stages, or selective injection. (Fig. 14, Fig. 15, Table 7)

図15(ハ)において、外管吐出口1は点注入に、長尺被覆膜8からの注入は柱状注入に複数の内管から、複数の注入ステージへの同時注入、又は選択注入は多ステージ同時注入又は選択注入に相当する。また外管吐出口1又は外管吐出口2からの同時注入や選択注入は複数の注入ポンプを一括制御システムで行うことができる。   In FIG. 15 (c), the outer tube discharge port 1 is used for point injection, the injection from the long coating film 8 is used for columnar injection, and the simultaneous injection or the selective injection from a plurality of inner tubes to a plurality of injection stages is performed. This corresponds to stage simultaneous injection or selective injection. Simultaneous injection or selective injection from the outer tube outlet 1 or the outer tube outlet 2 can be performed by a collective control system using a plurality of injection pumps.

地盤注入工法11において、袋パッカ中への固結材の充填は削孔内におけるシールグラウトの充填後、或いはシールグラウトの充填工程の途中で行うことを特徴とする地盤注入工法。   11. The ground injection method according to the ground injection method 11, wherein the filling of the filler into the bag packer is performed after filling the seal grout in the drilled hole or during the seal grout filling step.

(イ)は注入外管の正面図、(ロ)は注入管の断面図である。(A) is a front view of the outer injection tube, and (B) is a cross-sectional view of the injection tube. (ハ)、(ニ)、(ホ)、(ハ')、(ニ')、(ホ')は外管吐出口から吐出した注入液が長尺被覆面を膨出してシールグラウトを割裂し、その割裂を通して地盤中に注入されることを示す側面図である。(C), (d), (e), (c '), (d') and (e ') show that the injection liquid discharged from the outer tube discharge port swells the long coated surface and splits the seal grout. FIG. 4 is a side view showing that the rubber is injected into the ground through the split. (ヘ)、(ト)、(チ)は別のタイプの外管吐出口から吐出した注入液が注入液が長尺被覆面を膨出してシールグラウトを割裂し、その割裂を通して地盤中に注入されることを示す側面図である。(F), (g), and (h) are injection liquids discharged from the outer pipe discharge port of another type, the injection liquid swells the long coated surface, splits the seal grout, and is injected into the ground through the split. It is a side view which shows that it is performed. (イ)は図2(ハ)〜(ホ)の注入方式によって一本の注入液流路をもつ内管5からL1に注入して後、内管を引き上げてL2に注入することを示す断面図、(ロ)は同じく二本の注入液流路をもつ注入内管から流路11AからL1に注入し、流路11BからL2に同時注入または選択的に注入することを示す断面図である。(B) after injected from the inner tube 5 in L 1 having a single infusate flow path of the injection method of Figure 2 (c) to (e), to be injected pulling the inner tube to L 2 sectional view showing, indicating the (b) be likewise injected from the flow path 11A to L 1 from the injection inner tube with two infusate flow path, is co-injected or selectively injected from the channel 11B to the L 2 It is sectional drawing. 図3(ヘ)〜(チ)の注入方式によって一本の注入流路をもつ注入内管からLに注入することを示す断面図である。FIG. 4 is a cross-sectional view showing that L is injected into L from an injection inner tube having one injection flow channel by the injection method of FIGS. 同じく2本の注入流路をもつ注入内管から流路11AからL2に注入し、流路11BからL1に同時注入、または選択的に注入することを示す断面図である。Injected similarly from the flow path 11A from the injection inner tube with two injection channels of the L 2, it is a sectional view showing that the co-injection, or selectively injected from the channel 11B to L 1. (イ)、(ロ)は図4の注入方式の外管に袋パッカ18を設けた注入管の断面図である。5 (a) and 5 (b) are cross-sectional views of an injection tube in which a bag packer 18 is provided on the outer tube of the injection method of FIG. 図5の注入方式の外管に袋パッカ18を設けた注入管の断面図である。FIG. 6 is a cross-sectional view of an injection tube in which a bag packer 18 is provided on the outer tube of the injection method of FIG. 図6の注入方式の外管に袋パッカ18を設けた注入管の断面図である。FIG. 7 is a cross-sectional view of an injection tube in which a bag packer 18 is provided on the outer tube of the injection method of FIG. 袋パッカを用いた(特許文献3)の注入管の断面図である。FIG. 7 is a cross-sectional view of an injection tube using a bag packer (Patent Document 3). (イ)は図4(ロ)の注入管構造であって、外管に一次注入材の吐出口と弾性被覆膜を有する注入管の側面図、(ロ)は(イ)に袋パッカ18を設けた注入管の側面である。(A) is a side view of the injection tube structure shown in FIG. 4 (B), which has a discharge port for the primary injection material and an elastic coating film on the outer tube, and (B) shows a bag packer 18 in (A). FIG. (イ)は図6の注入管構造であって、外管に一次注入材の吐出口と弾性被覆膜を有する注入管の側面図、(ロ)は(イ)に袋パッカ18を設けた注入管の側面図である。(A) is a side view of the injection pipe structure of FIG. 6 having a discharge port of the primary injection material and an elastic coating film on the outer pipe, and (B) is provided with a bag packer 18 in (A). It is a side view of an injection pipe. 上下の袋パッカの間に外管吐出口1を設けて一次注入を行うようにした場合の側面図である。FIG. 6 is a side view in a case where an outer tube discharge port 1 is provided between upper and lower bag packers to perform primary injection. (イ)は図11(イ)、図12(イ)の注入管を用いる場合の施工手順を示す断面図、(ロ)は図11(ロ)、図12(ロ)の注入管を用いる場合の施工手順を示す断面図である。(A) is a cross-sectional view showing a construction procedure when using the injection pipes of FIGS. 11 (A) and 12 (A), and (B) is a case where the injection pipes of FIGS. 11 (B) and 12 (B) are used. It is sectional drawing which shows the construction procedure. 長尺弾性被覆膜を有する注入管装置を用いて複数の注入管から同時注入、或いは選択注入をする注入システムの断面図である。FIG. 4 is a cross-sectional view of an injection system for performing simultaneous injection or selective injection from a plurality of injection tubes using an injection tube device having a long elastic coating film. カルシウムアルミネートからなるシールグラウトのゲルタイムのグラフである。It is a graph of the gel time of the seal grout which consists of calcium aluminate. カルシウムアルミネートからなるグラウトの一軸圧縮強度のグラフである。It is a graph of the uniaxial compressive strength of grout which consists of calcium aluminate. 非アルカリ性シリカグラウトのシリカ溶液のpHとゲル化時間のグラフである。It is a graph of pH and gel time of the silica solution of non-alkaline silica grout. 非アルカリ性シリカグラウトのpHとゲル化時間とシリカ濃度(図中)の関係を示すグラフである。It is a graph which shows the relationship of pH of non-alkaline silica grout, gel time, and silica concentration (in a figure). 非アルカリ性シリカグラウトのホモゲルとサンドゲルのゲルタイムの例を示すグラフである。It is a graph which shows the example of the gel time of a non-alkaline silica grout homogel and a sand gel. 非アルカリ性シリカグラウトのpH(PH0)と気中ゲルタイム(GT0)と土中ゲルタイム(GTS0)の例を示すグラフである。5 is a graph showing examples of pH (PH 0 ), aerial gel time (GT 0 ), and soil gel time (GT S0 ) of non-alkali silica grout. シリカ溶液中のCB塊の混入率とpH2のシリカ溶液中にCB塊を混入したときのゲルタイム(分)の関係を示すグラフである。4 is a graph showing the relationship between the mixing ratio of CB lumps in a silica solution and the gel time (minutes) when CB lumps are mixed in a silica solution having a pH of 2. 球状浸透半径の推定計算(Maagの平衡式)と柱状浸透半径の推定計算(Theimの平衡式)のグラフである。It is a graph of the estimation calculation of the spherical penetration radius (Maag's equation) and the estimation calculation of the columnar penetration radius (Theim's equation). 限界浸透注入速度の例を示すグラフである。It is a graph which shows the example of a critical osmosis injection speed. 溶液型非アルカリ性シリカグラウトの土中における浸透固結土の挙動の説明図である。It is explanatory drawing of the behavior of the infiltration consolidated soil in the soil of a solution type non-alkali silica grout.

課題を解決するための手段の項の記載に加えて、以下に本発明の特徴を図面に基づいて説明する。   In addition to the description of the means for solving the problems, the features of the present invention will be described below with reference to the drawings.

(1)シールグラウトを長尺弾性被覆膜の膨出による面圧で所定長割裂して注入液を注入する。
図1〜図6に示すように、該注入外管は外管吐出口(6…外管吐出口)と該外管の外周に管軸方向に該外管吐出口を覆い、管軸方向に多数分布する表面吐出部(7…表面吐出部)を有する断面円形状に所定長被覆する、一つ又は複数の長尺弾性被覆膜(8…長尺弾性被腹膜)から構成され、該長尺弾性被覆膜は所定長の両端を注入外管に固着材(9…固着材)によって固定されて長尺弾性被覆内を形成し、該表面吐出部は該長尺弾性被覆膜の弾性によって加圧時には開口し、非加圧時には閉束する。
(1) The sealing grout is split into predetermined lengths by the surface pressure caused by the swelling of the long elastic coating film, and the injection liquid is injected.
As shown in FIGS. 1 to 6, the injection outer tube covers an outer tube outlet (6... Outer tube outlet) and an outer tube outlet on the outer periphery of the outer tube in the tube axis direction. One or a plurality of long elastic coating films (8: long elastic peritoneal membrane) that cover a predetermined length in a circular cross section having a large number of surface discharge portions (7: surface discharge portions). The long elastic coating film is fixed at both ends of a predetermined length to the injection outer tube with a fixing material (9... Fixing material) to form the inside of the long elastic coating, and the surface discharge portion is formed of the elastic material of the long elastic coating film. Opens when pressurized and closes when not pressurized.

本発明における上記表面吐出部は注入外管の円形断面の接線方向の横方向のスリットである。横方向のスリットは弾性被覆膜の円周接線方向への張力を失わないため外管吐出口からの注入液は以下の手法によって被覆膜全長の面圧によるシールグラウトへの膨出を可能にする。それに対し、縦方向のスリットでは接線方向への引張力が低減してしまい面圧による膨出が困難になる。   In the present invention, the surface discharge portion is a tangential lateral slit having a circular cross section of the outer injection tube. Since the lateral slit does not lose the tension in the circumferential tangential direction of the elastic coating film, the liquid injected from the outer tube discharge port can swell into the seal grout due to the surface pressure of the entire coating film by the following method To On the other hand, in the case of the longitudinal slit, the tensile force in the tangential direction is reduced, and it becomes difficult to swell by the surface pressure.

図2(ハ)、(ニ)、(ホ)、図4(イ)、(ロ)は地盤注入装置04、05に関する説明図である。
上記長尺弾性被覆膜の表面吐出部は円形外管の円周の接線方向のスリットが複数箇所分布しており、その張力で外管に密着している。そのためスリットが内部から注入液で加圧して開口しても接線方向への張力はほとんど低下することはない。かつ該被覆膜の軸方向の両端は外管に固着しているので、注入内管から外管吐出口を通して、被覆膜内に吐出された注入液は表面吐出部のスリット長さMcm、幅1mm、N個であると想定して、その面積の総計が外管吐出口の面積の総計よりも小さければ、まず被腹膜がシールグラウト側に面圧となって、外側のシールグラウトに膨出する。その結果、シールグラウトの全長Lが被覆膜の面圧によって多数亀裂を生じ、横方向のみならず、縦方向にも亀裂が連続して被覆区間(L)の割裂を生ずる。
FIGS. 2 (c), (d), (e), FIGS. 4 (a) and 4 (b) are explanatory diagrams relating to the ground injection devices 04 and 05.
A plurality of slits in the tangential direction of the circumference of the circular outer tube are distributed at a plurality of locations on the surface discharge portion of the long elastic coating film, and the slit is in close contact with the outer tube by the tension. Therefore, even if the slit is opened by pressurizing with the injection liquid from inside, the tension in the tangential direction hardly decreases. And since both ends in the axial direction of the coating film are fixed to the outer tube, the injection liquid discharged into the coating film from the injection inner tube through the outer tube discharge port, the slit length Mcm of the surface discharge portion, Assuming a width of 1 mm and N pieces, if the total area is smaller than the total area of the outer tube discharge port, the peritoneum first comes into contact pressure on the seal grout side and expands on the outer seal grout. Put out. As a result, many cracks occur in the entire length L of the seal grout due to the surface pressure of the coating film, and cracks continuously occur not only in the horizontal direction but also in the vertical direction to cause splitting of the coating section (L).

なぜならばスリットは最初は殆ど幅がないので、まず外管からの吐出された注入液は弾性被覆膜内を加圧することになり、その後、加圧が増加してするスリットが開口しはじめるからである。その開口幅が最初ゼロから1mm以上になって、注入液が面圧によって生じた割裂内に浸入して周辺地盤に浸透する。表面吐出部におけるスリットの総面積が外管吐出口と同じか、それ以上ならば、シールグラウトは被覆膜の面圧で破壊されるよりも外管吐出部からの噴出圧によって破壊されるから、その割裂は面圧による割裂に比べて局所的になる。   Because the slit has almost no width at first, the injection liquid discharged from the outer tube first pressurizes the inside of the elastic coating film, and then the slit that increases in pressure starts to open. It is. At first, the opening width is increased from zero to 1 mm or more, and the injected liquid penetrates into the split caused by the surface pressure and penetrates the surrounding ground. If the total area of the slits in the surface discharge part is equal to or larger than the outer tube discharge port, the seal grout is more broken by the jet pressure from the outer tube discharge part than by the surface pressure of the coating film. The splitting is more localized than splitting due to surface pressure.

また、以下は図3(ヘ)、(ト)、(チ)、図5、図6の説明である。
図3(ヘ)、(ト)、(チ)においては、上記、外管吐出口6は上下端が開口した帯状伸縮性スリーブからなる逆止弁(17…外管吐出口逆止弁)を設けており、該外管吐出口逆止弁から吐出した注入液が伸縮スリーブ(17)から矢印のように外管表面に沿って噴射されるため注入液は該長尺弾性被覆膜内(14)全長(L)にわたって圧入されて該被覆膜内(14)を加圧して面としてシールグラウト層(3)に膨出するためシールグラウトの全区間(L)が被覆膜の面圧によって多数の割裂を生じ、それが横方向のみならず、縦方向にも割裂が連続し、該被覆区間(L)の所定長の割裂をひきおこして、その割裂から注入液が周辺の地盤に注入することになる。
The following is a description of FIGS. 3 (f), (g), (h), FIGS. 5 and 6.
In FIGS. 3 (f), (g) and (h), the outer tube discharge port 6 is a check valve (17: outer tube discharge port check valve) formed of a band-shaped elastic sleeve having upper and lower ends opened. The injection liquid discharged from the outer pipe discharge port check valve is ejected from the telescopic sleeve (17) along the outer pipe surface as shown by the arrow, so that the injection liquid is injected into the elongated elastic coating film ( 14) The entire section (L) of the seal grout is press-fitted over the entire length (L) and pressurizes the inside of the coating film (14) to swell as a surface into the seal grout layer (3). A large number of splits occur in the vertical direction as well as in the horizontal direction, which causes a predetermined length of splitting of the covered section (L), from which the injection liquid is injected into the surrounding ground Will do.

この結果シールグラウトの外側の土の硬軟や一次注入材の影響があっても、また被覆区間が長い場合でも、本工法では所定区間全長にわたる被腹膜の面圧によってシールグラウトを割裂できるため確実な所定の長さの柱状浸透が可能になった。   As a result, even if the outside of the seal grout is affected by the hardness and softness of the soil and the primary injection material, and even if the covering section is long, the seal grout can be split by the surface pressure of the peritoneal membrane over the entire length of the predetermined section. Column penetration of a given length became possible.

また、被覆膜を図7、図9、図11、図12、図13のように土層に応じて固着材によって加締めることによって土層に応じた注入液を被覆膜内からそれぞれ注入することができる。   Also, as shown in FIG. 7, FIG. 9, FIG. 11, FIG. 12, and FIG. 13, the injection liquid according to the soil layer is injected from the inside of the coating film by caulking with a fixing material according to the soil layer. can do.

(2)上記注入管はシールグラウト内に設置されているため、また上記長尺弾性被覆膜内の外管吐出口は伸縮性スリーブで覆われているため、表面吐出部からシールグラウトの外へ注入された注入液や或いは近くの注入管から注入された注入液が外管吐出口内に逆流することを防ぐことができる。また、何回も繰り返して注入液を表面吐出口から注入することが可能である。また懸濁液であっても外管吐出口を閉束することはない。このため複雑な土層において、二次注入に先立って、一次注入して粗い土層や地表面への逸脱を防いで、二次注入による所定範囲の土粒子間浸透が可能になる。 (2) Since the injection pipe is installed in the seal grout, and since the outer pipe discharge port in the long elastic coating film is covered with a stretchable sleeve, the outside of the seal grout is removed from the surface discharge part. The liquid injected into the outer tube or the liquid injected from a nearby injection tube can be prevented from flowing back into the outer tube discharge port. Further, it is possible to repeatedly inject the injection liquid from the surface discharge port. Also, even in the case of a suspension, the outer tube outlet is not closed. Therefore, in a complicated soil layer, prior to the secondary injection, the primary injection is performed to prevent the soil layer from deviating to the coarse soil layer and the ground surface, and the secondary injection allows a predetermined range of interpenetration between soil particles.

(3)図4(ロ)、図6は複数の送液管路(11A、11B)を持つ注入内管を用いることにより複数の弾性被覆膜から同時に或いは選択的にシールグラウトを所定長にわたって割裂して地盤中に注入することができる(地盤注入工法11)。
このために複数の柱状注入を同時にできるため単位ステージ毎には低吐出量でかつ低圧で全体としては大きな吐出量でかつ低圧で急速な浸透注入ができ、一度に長い区間の注入が可能になり、経済的に大きな利点を得ることができるようになった。図4、図7にはパッカ流体流路21を図示しているが、他図では省略している。注入内管は複数の流路の並列管でも二重管でもパッカ流路も含めた3重管でも良い。
(3) Fig. 4 (b) and Fig. 6 show that the seal grout can be simultaneously or selectively spread over a predetermined length from a plurality of elastic coating membranes by using an injection inner pipe having a plurality of liquid feed pipes (11A, 11B). It can be split and injected into the ground (ground injection method 11).
For this reason, a plurality of columnar injections can be performed at the same time, so that a low discharge rate and a low pressure per unit stage can be used as a whole, and a large discharge rate can be achieved at a low pressure and a rapid penetration injection can be performed at a low pressure. Now you can get great economic benefits. 4 and 7 show the packer fluid flow path 21, but are omitted in other figures. The injection inner pipe may be a parallel pipe having a plurality of flow paths, a double pipe, or a triple pipe including a packer flow path.

(4)地盤は通常異なる土質が層状に形成されている、一方確実な地盤改良するためにはゲル化時間の長い浸透性に優れた溶液型注入材を土粒子間に浸透注入しなくてはならない。浸透性のよい注入材は不均質地盤では粗い層や地表面に逸脱しやすく、その結果、細かい層への土粒子間浸透が阻害されるし、広範囲な土粒子間浸透が困難になる。本発明は浸透性の良い注入液の注入に先立って、懸濁型グラウトや瞬結性グラウト等の浸透性の悪い注入材を一次注入して地盤を均質化して浸透性の良い注入材を二次注入して複合注入を確実に行って注入範囲からの逸脱をおさえて対象地盤全体を広範囲に地盤改良することが可能になった。 (4) The ground is usually formed with different soils in layers. On the other hand, in order to surely improve the ground, a solution-type injection material with a long gelation time and excellent permeability must be infiltrated and injected between the soil particles. No. Injectable material having good permeability tends to deviate to a rough layer or the ground surface in a heterogeneous ground, and as a result, penetration between soil particles into a fine layer is hindered, and it becomes difficult to infiltrate a wide range of soil particles. In the present invention, prior to injecting the injection liquid having good permeability, the injection material having low permeability such as suspension grout or flash-setting grout is primarily injected to homogenize the ground to obtain the injection material having good permeability. It is possible to improve the ground extensively over the entire target ground by suppressing the deviation from the injection range by reliably performing the compound injection by the next injection.

1)注入外管は外管吐出口を長尺弾性被覆膜で密着されているため、一次注入材を外管吐出口2から弾性被覆膜の表面吐出部を通して注入できるし、或いは弾性被覆膜以外に位置する外管一次注入材吐出口1から地盤に注入することができる。シールグラウト並びに弾性被覆膜によって地盤中に注入した一次注入材が二次注入材吐出口を閉束することなく何回でも二次注入材を繰り返し注入することができる。(図11(イ)、図12(イ)) 1) Since the outer tube of the injection outer tube is closely attached to the outer tube discharge port with a long elastic coating film, the primary injection material can be injected from the outer tube discharge port 2 through the surface discharge portion of the elastic coating film, or the elastic coating can be performed. It can be injected into the ground from the outer pipe primary injection material discharge port 1 located other than the covering film. The primary grout injected into the ground by the seal grout and the elastic coating film can repeatedly inject the secondary grout any number of times without closing the secondary grout discharge port. (Fig. 11 (a), Fig. 12 (a))

2)一次注入は注入外管から、注入内管を上下に摺動して粗い土層、或いは全注入土層にわたって注入して後、注入内管を通して浸透性の良い注入材を二次注入することができる。一次注入は弾性被覆膜から外管吐出口2を通して注入できる。 2) For the primary injection, slide up and down the injection inner pipe from the outer injection pipe to inject over the coarse soil layer or the entire injected soil layer, and then inject the injection material with good permeability through the injection inner pipe. be able to. The primary injection can be performed from the elastic coating film through the outer tube outlet 2.

3)また該長尺弾性被覆膜8とは異なる位置に設けた外管一次注入材吐出口16から注入内管を通して、一次注入材を注入してから長尺弾性被腹膜8から二次注入材を注入することができる。(図1(イ)・図4〜図15) 3) Also, the primary injection material is injected from the outer tube primary injection material discharge port 16 provided at a position different from the long elastic coating film 8 through the injection inner tube, and then the secondary injection is performed from the long elastic peritoneum 8. Material can be injected. (Fig. 1 (a) and Figs. 4 to 15)

4)また複数の内管注入部を有する注入管を用いて、該複数の内管注入部をそれぞれ異なる長尺弾性被覆膜内にそれぞれ一次注入材と二次注入材を吐出するように位置せしめて同時に或いは選択的に或いは重ね合うように注入内管を注入外管内に摺動して地盤中に注入することができる(図4(ロ)・図6・図7(ロ)・図9・図11・図14・図15)。 4) Also, using an injection pipe having a plurality of inner pipe injection parts, the plurality of inner pipe injection parts are positioned so as to discharge the primary injection material and the secondary injection material respectively into different long elastic coating films. At least at the same time, the injection inner pipe can be slid into the injection outer pipe so as to be overlapped simultaneously or selectively or overlapped, and injected into the ground (Fig. 4 (b), Fig. 6, Fig. 7 (b), Fig. 9, Figures 11, 14, and 15).

なお、一次注入材は長尺弾性被覆膜から注入する場合は、外管一次注入材吐出口はなくても良い。また外管一次注入材は地盤条件によって逸脱しやすい最上部のみであっても粗い土層のみに位置しても良い。また長尺弾性被覆膜8は地盤条件によっては最上部、或いは長尺浸透を必要とする位置のみで、それ以外は外管吐出口1のみでも良い。   When the primary injection material is injected from the long elastic coating film, the outer tube primary injection material discharge port may not be provided. Further, the outer pipe primary injection material may be located only in the uppermost portion or in the coarse soil layer which is likely to deviate depending on the ground conditions. Further, the long elastic coating film 8 may be provided only at the uppermost portion or at a position that requires long permeation depending on the ground conditions.

次に上述した注入管に袋パッカを設けた地盤注入装置と地盤注入工法について説明する。特許文献3の発明は地盤中の削孔内に複数個の袋パッカを間隔をあけて備えた注入管を挿入し、袋パッカ間の削孔壁と注入管との間の空間を通して注入材を地盤中に注入する地盤注入工法および注入管装置に係り、特に、前記袋パッカ周りの地盤領域に注入材の浸透しにくい、密な土中パッカを形成して注入材が水平方向の注入対象土層により広く浸透するようにし、削孔間隔(注入孔間隔)を広くとって削孔数を少なくする地盤注入工法および注入管装置に関する。この工法は均質地盤では孔径の大きな柱状固結体を形成し、極めて優れた改良効果を得るが地盤が不均質な場合、注入液が粗い層や地表面に逸脱することが起こりうる。   Next, a ground injection apparatus and a ground injection method in which a bag packer is provided in the above-described injection pipe will be described. The invention of Patent Document 3 inserts an injection pipe provided with a plurality of bag packers at intervals in a hole in the ground, and injects an injection material through a space between a hole wall and an injection pipe between the bag packers. The present invention relates to a soil injection method and an injection pipe device for injecting into a ground, and in particular, to form a dense underground packer in which an injection material is hardly penetrated into a ground region around the bag packer, so that the injection material can be horizontally injected. The present invention relates to a ground injection method and an injection pipe device that allow a hole to penetrate more widely into a layer and make a drilling interval (injection hole interval) wider to reduce the number of drilling holes. This method forms a columnar compact having a large pore diameter in homogeneous ground, and achieves an extremely excellent improvement effect. However, when the ground is uneven, the injected liquid may deviate to a rough layer or the ground surface.

注入対象となる地盤が冲積層の場合には、通常、透水係数は垂直方向よりも水平方向の方が大きい。このような地盤に注入材を注入して該地盤を固結するに当たり、従来、注入管管壁に袋パッカを形成する袋体を間隔をあけて複数個取りつけ、かつ袋体の内部ならびに上下に隣接する袋体間に開口する吐出口を備えた注入管装置を用い、この注入管装置を地盤中に設けられた削孔中に挿入し、次いで、前記袋体の内部に開口する吐出口から袋体中に硬化性懸濁液を填充し、膨らませて袋パッカを形成するとともに、上下に隣接する袋体間に開口する吐出口から注入材を注入して前記地盤を固結する技術である。   When the ground to be injected is laminating, the hydraulic conductivity is usually larger in the horizontal direction than in the vertical direction. Conventionally, when injecting an injectable material into such ground and consolidating the ground, a plurality of bags forming a bag packer are attached at intervals to an injection pipe tube wall, and the inside and the top and bottom of the bag are attached. Using an injection pipe device provided with a discharge port opening between adjacent bags, insert this injection pipe device into a drilled hole provided in the ground, and then from the discharge port opening inside the bag. This is a technique in which a bag is filled with a curable suspension and inflated to form a bag packer, and an injection material is injected from a discharge port opened between vertically adjacent bags to consolidate the ground. .

この場合、上述の公知技術では、注入管と、削孔壁との間に形成される隙間を上下に隣接する袋パッカで遮断して、これら袋パッカ間に独立した空間を形成し、この空間を通して注入材を地盤中に注入するものである。この工法は地盤が比較的均質な場合、確実に柱状浸透し、大きな固結径を形成する。しかし地盤が浸透性の異なる土層から構成されている場合は、また注入ステージ長を長くとる場合、浸透性の良い土層に注入液が集中しやすいため、注入ステージ長を短くしなくてはならない。   In this case, according to the above-described known technique, a gap formed between the injection pipe and the drilled wall is blocked by vertically adjacent bag packers to form an independent space between these bag packers. The injection material is injected into the ground through the through hole. This method ensures that when the ground is relatively homogeneous, it penetrates in a columnar manner and forms a large consolidated diameter. However, when the ground is composed of soil layers with different permeability, and when the injection stage length is long, the injection liquid tends to concentrate on the soil layer with good permeability, so the injection stage length must be shortened. No.

本発明は削孔にシールグラウトを充填し、上記注入管を埋設し上記注入管方式に袋体を設け、一次注入、二次注入を可能にすることにより、地盤条件の悪い異なる土層からなる条件下でも注入孔間隔を広くとり、1ステージあたりの注入長を広く取り、注入対象外へ逸脱することなく均質に所定の改良効果を有する地盤改良を可能にしたものである。   In the present invention, a hole is filled with seal grout, the injection pipe is buried, a bag body is provided in the injection pipe method, and a primary injection and a secondary injection are made possible. Even under the condition, the interval between the injection holes is widened, the injection length per stage is widened, and the ground improvement having a predetermined improvement effect uniformly without deviating from the injection target is enabled.

本発明はシールグラウト中に設置した上記注入管に袋パッカを装着することにより上記課題を解決した。図7、図8、図9、図11(ロ)、図12(ロ)、図14(ロ)   The present invention has solved the above-mentioned problem by attaching a bag packer to the above-mentioned injection pipe installed in a seal grout. FIGS. 7, 8, 9, 11 (b), 12 (b), 14 (b)

(イ)外管の袋パッカが長尺弾性被覆膜の軸方向を削孔径よりも大きな径で拘束すると同時にその周辺土も高密度化する。そのため弾性被覆膜が横方向に膨出してシールグラウトを面圧で割裂し、注入液は地表面に行かず横方向に浸透する。従って注入孔間隔を広く取り大径の固結体が形成される。 (A) The bag packer of the outer tube restrains the axial direction of the long elastic coating film with a diameter larger than the hole diameter, and at the same time, the density of the surrounding soil is increased. Therefore, the elastic coating film swells in the lateral direction and splits the seal grout by surface pressure, and the injected liquid permeates laterally without going to the ground surface. Accordingly, a large-diameter solid body is formed with a large interval between the injection holes.

(ロ)弾性被覆膜を長くしたり、単位被覆膜の区間の数を増やして大径の浸透注入が可能。図11(ロ)、図12(ロ)
(ハ)一次注入による地盤へ逸脱することなく外管一次注入材吐出孔又は弾性被覆膜からの一次注入による地盤の均質化可能のため被覆膜の区間を長くとっても注入領域外への逸脱を防ぐことができる。このため二次注入による土粒子間浸透が可能。図11(ロ)、図12(ロ)
(B) Large diameter permeation injection is possible by lengthening the elastic coating film or increasing the number of sections of the unit coating film. Fig. 11 (b), Fig. 12 (b)
(C) Departure from the injection area even if the section of the coating film is long because the ground can be homogenized by the primary injection from the outer pipe primary injection material discharge hole or the elastic coating film without deviating to the ground by primary injection. Can be prevented. For this reason, permeation between soil particles by secondary injection is possible. Fig. 11 (b), Fig. 12 (b)

(ニ)上部が硬い袋パッカと高密度化された地中パッカが形成されているため長尺弾性被覆膜の長さを長くとり、強度の低いシールグラウトを用いて弾性被覆膜の面圧により、シールグラウトを容易に割裂できる。図7、図8、図9、図11(ロ)、図12(ロ)、図14(ロ) (D) Since the bag packer with a hard upper part and the underground packer with high density are formed, the length of the long elastic coating film is increased, and the surface of the elastic coating film is formed using a low-strength seal grout. The pressure can easily split the seal grout. FIGS. 7, 8, 9, 11 (b), 12 (b), 14 (b)

(5)本発明におけるシールグラウトは削孔を保護し、かつ他の注入管から或いは他の注入ステージからの注入液の弾性被覆膜への侵入を防ぐ役をする。また注入材を長尺弾性被腹膜から注入されるにあたって被覆膜の膨出によって、シールグラウトが所定長全長にわたって割裂を生じやすいようにするためには、シールグラウトは以下のいずれかの材料を用いて一軸強度で1MN/m2以下、さらに好ましくは0.5MN/m2以下の低強度であることが好ましい。(地盤注入工法12)。 (5) The seal grout according to the present invention protects the hole and prevents the infused liquid from entering the elastic coating film from another injection pipe or another injection stage. In order to make the seal grout easily split over the entire length by a swelling of the covering film when the injection material is injected from the long elastic peritoneum, the seal grout is made of one of the following materials. using 1 MN / m 2 or less in a uniaxial strength, further preferably a low intensity of 0.5 mN / m 2 or less. (Soil injection method 12).

1)カルシウムアルミネートを有効成分とする懸濁型グラウト。
2)高分子ポリマーを有効成分とするグラウト。
3)粘土を有効成分とする懸濁型グラウト。
4)セメント・ベントナイトを有効成分とする懸濁型グラウト。
1) Suspended grout containing calcium aluminate as an active ingredient.
2) Grout containing a high-molecular polymer as an active ingredient.
3) Suspended grout containing clay as an active ingredient.
4) Suspended grout containing cement and bentonite as active ingredients.

セメントグラウトはpHが13以上の高アルカリで高強度であって弾性被覆膜の面圧をもってもシールグラウトを所定長割裂を生じさせるのは困難である。また、高アルカリは二次注入材の溶液型シリカグラウトを劣化しやすい。このため本発明に用いるシールグラウトはpHが12以下の低アルカリで一軸圧縮強度で10kg/cm2以下、好ましくは5kg/cm2以下が望ましい。これらの特性をもつ注入材はシールグラウトのみならず、一次注入材としても優れている。なぜならば低アルカリであるため、溶液型シリカグラウトと併用してシリカグラウトの劣化を防ぐのみならず弾性被覆膜が面圧をもってシールグラウトを全長に割裂を生じやすいからである。   Cement grout has high alkali and high strength with a pH of 13 or more, and it is difficult to cause a predetermined length of splitting of the seal grout even with the surface pressure of the elastic coating film. Further, a high alkali easily deteriorates the solution-type silica grout of the secondary injection material. For this reason, the seal grout used in the present invention has a low alkali of pH 12 or less and a uniaxial compressive strength of 10 kg / cm 2 or less, preferably 5 kg / cm 2 or less. An injection material having these characteristics is excellent not only as a seal grout but also as a primary injection material. The reason for this is that, since it is low in alkali, not only the silica grout is prevented from deteriorating in combination with the solution-type silica grout, but also the elastic coating film easily splits the seal grout over its entire length with a surface pressure.

以上のグラウトのうちカルシウムアルミネートを主成分とするシールグラウトの例を以下に示す。
カルシウムアルミネートを主成分とする懸濁型地盤固結材とは、水和反応によって固結する能力を有するもので、セメントの急結材として通常使用されるカルシウムアルミネート(12CaO・7Al、CaO・2Al、3CaO・Al等、あるいはさらにこれらとハロゲン元素が固溶したカルシウムハロアルミネート、例えば、11CaO・7Al・CaF等)を主成分とする懸濁型地盤固結材を意味し、さらに、このようなカルシウムアルミネートに石膏、硫酸ナトリウムなどの無機硫酸塩を混合あるいは溶融して得られたものも含むものとする。またカルシウムアルミネートとスラグを主成分としても良い。固結剤はpHがほぼ10.8以下で強度も比較的低強度で割裂を生じやすい。
Among the above grouts, examples of seal grout containing calcium aluminate as a main component are shown below.
The suspension-type ground consolidating material containing calcium aluminate as a main component has a capability of consolidating by a hydration reaction, and is a calcium aluminate (12CaO · 7Al 2 O) usually used as a quick setting material for cement. 3, CaO · 2Al 2 O 3 , calcium halo aluminate 3CaO · Al 2 O 3, etc., or further these and a halogen element and a solid solution, for example, suspension composed mainly of 11CaO · 7Al 2 O 3 · CaF, etc.) It means a turbid ground consolidation material, and further includes a material obtained by mixing or melting such a calcium aluminate with an inorganic sulfate such as gypsum or sodium sulfate. Calcium aluminate and slag may be the main components. The binder has a pH of about 10.8 or less, has relatively low strength, and tends to split.

以下に本工法のシールグラウトに適したカルシウムアルミネートを主成分とするシールグラウトの試験例を示す。なお、ゲルタイムは表-2の水の配合量を減らせば短縮することができる。
(1)組成 表-1
(2)配合例 表-2
(3)ゲルタイム 図-16
(4)圧縮強度 図-17
A test example of a seal grout containing calcium aluminate as a main component suitable for the seal grout according to the present method will be described below. The gel time can be reduced by reducing the amount of water in Table 2.
(1) Composition Table-1
(2) Formulation example Table-2
(3) Gel time Figure 16
(4) Compressive strength Fig.-17

次に高分子ポリマーを有効成分とするグラウトの例を示す。
本発明に用いるシールグラウトとしての高分子ポリマーは削孔壁を安定にする材料でなくてはならない。
Next, examples of grout containing a high-molecular polymer as an active ingredient will be described.
The high-molecular polymer as the seal grout used in the present invention must be a material for stabilizing the drilled wall.

また、高分子ポリマーは得られる注入材の固結性や固結強度に悪影響を与えないものであって、例えば、有機高分子系ポリマーであり、具体的には例えば、多糖類またはその誘導体、天然ガム類、水溶性の合成高分子物質等が挙げられる。   The high-molecular polymer does not adversely affect the consolidation property and consolidation strength of the obtained injection material, and is, for example, an organic high-molecular-weight polymer, specifically, for example, a polysaccharide or a derivative thereof, Natural gums, water-soluble synthetic high molecular substances and the like can be mentioned.

多糖類またはその誘導体としては、カルボキメチルセルロースナトリウム(cmc)、ヒドロキシエチルセルロース、澱粉グリコール酸ナトリウム、澱粉リン酸エステルナトリウム、アルギン酸ナトリウム、アルギン酸プロピレングリコールエステル、カゼインナトリウム等のアルカリ金属塩が挙げられ、天然ガム類としてはアラビアゴム、アルギン酸、カゼイン、グアガム、グルテン、ローストビーンガム等が挙げられ、また、水溶性の合成高分子物質としてはポリビニルアルコール、ポリアクリル酸ナトリウム等が挙げられる。   Examples of the polysaccharide or a derivative thereof include alkali metal salts such as sodium carboxylmethylcellulose (cmc), hydroxyethylcellulose, sodium starch glycolate, sodium starch phosphate, sodium alginate, propylene glycol alginate, and sodium caseinate. Examples of the class include gum arabic, alginic acid, casein, guar gum, gluten, roasted bean gum, and the like, and examples of the water-soluble synthetic polymer include polyvinyl alcohol and sodium polyacrylate.

このようなポリマーは濃度を調整して高い粘性をもつので、それ自体でシールグラウトとして用いることもできるが、シリカ化合物やベントナイトやセメント等と混合して可塑性を付与して任意の固結時間や強度やpH値を得ることができる。表-3に高分子ポリマーの例を示す。   Since such a polymer has a high viscosity by adjusting its concentration, it can be used as a seal grout by itself, but it can be mixed with a silica compound, bentonite, cement, or the like to impart plasticity and provide an arbitrary consolidation time or Strength and pH value can be obtained. Table 3 shows examples of high-molecular polymers.

これらは高粘度の溶液にして削孔壁の安定液としてシールグラウトとして用いることができるがベントナイトと混合することにより、低濃度の高分子を用いて大きな粘性をもつ削孔壁の安定液となるシールグラウトとして用いることができる。
もちろんベントナイト、セメント液やシリカ溶液と混合して用いてもよい。
These can be used as seal grout as a stabilizing solution for drilling walls as a high-viscosity solution, but by mixing with bentonite, it becomes a stable solution for drilling walls with high viscosity using low-concentration polymer. It can be used as seal grout.
Of course, it may be used by mixing with bentonite, a cement solution or a silica solution.

高分子ポリマーはシリカ化合物と混合することにより所定の粘性とゲル化時間と強度をもつシールグラウトをつくることができる。溶液型シリカ化合物の例を表4に示す。また高分子ポリマーとシリカ化合物を混合した場合の例を表5に示す。ポリマーやシリカ化合物の濃度は、得られる注入材が2〜40cps 、好ましくは2〜20cps の粘度を呈するような量でもって定める。高分子ポリマーの量は具体的には注入材配合液中、0.1〜5重量%の範囲内であることが好ましい。   By mixing a polymer with a silica compound, a seal grout having a predetermined viscosity, gelation time and strength can be produced. Table 4 shows examples of the solution-type silica compound. Table 5 shows an example in which a high-molecular polymer and a silica compound are mixed. The concentration of the polymer or silica compound is determined in such an amount that the resulting injection material exhibits a viscosity of 2 to 40 cps, preferably 2 to 20 cps. Specifically, the amount of the high-molecular polymer is preferably in the range of 0.1 to 5% by weight in the injection compounding liquid.

高分子ポリマーを加えたシリカ化合物の粘度の例を表5に示す。   Table 5 shows examples of the viscosity of the silica compound to which the high-molecular polymer is added.

これらに酸や塩等の添加剤を含有させることにより任意のゲル化時間を得ることができる。   An arbitrary gel time can be obtained by adding an additive such as an acid or a salt thereto.

添加剤を以下に示すが本発明ではこれに制限されない。
塩酸 HCl 35% 試薬1級
塩化アルミニウム AlCl3 ・6H2 O 試薬1級
塩化マグネシウム MgCl2 ・6H2 O 試薬1級
塩化カリウム KCl 試薬1級
3号水ガラス 旭電化工業(株)製
The additives are shown below, but the invention is not limited thereto.
Hydrochloric acid HCl 35% Reagent 1st grade Aluminum chloride AlCl3.6H2O Reagent 1st grade Magnesium chloride MgCl2 6H2O Reagent 1st grade Potassium chloride KCl Reagent 1st grade No.3 Water glass manufactured by Asahi Denka Kogyo Co., Ltd.

添加剤を加えた場合の粘度のゲルタイムの例を表6に示す。   Table 6 shows examples of the gel time of the viscosity when the additive is added.

表6はゲルタイムの長い例であって、高分子ポリマーの濃度や塩を増やすことにより、またシリカ濃度を大きくすることにより、ゲルタイムは数分にまで短縮することができる。またこれにカルシウムシリケートやベントナイトを加えることによりゲル化時間や粘度や可塑性を地盤条件、削孔条件、施工条件に応じて任意に調整することができる。   Table 6 is an example of a long gel time. The gel time can be reduced to several minutes by increasing the concentration of the high molecular polymer or the salt, or by increasing the silica concentration. Further, by adding calcium silicate or bentonite thereto, the gel time, viscosity and plasticity can be arbitrarily adjusted according to the ground conditions, drilling conditions and construction conditions.

粘土を有効成分とする注入材は可塑性グラウトとして削孔内に流動して充填されるが充填後はゲル化状態になり流動性が起こらず地下水による流動性や希釈をおさえて孔壁を安定化する。その後、内管から注入液が長尺被覆内に圧入され被覆膜面がシールグラウトを加圧してその加圧力が可塑性ゲルのせん断力を超えればゲルは流動性を起こし、或いはシリカ化合物と混合した固結物の強度を超えれば、長尺弾性被覆膜の膨出を容易にして、注入液の注入に伴って、所定区間全長に割裂を生じて注入液を地盤内に浸透注入せしめることができる。なお、粘土としてベントナイトよりもカオリン系粘土を用いた方がpHが低い中性に近いシールグラウトを得ることができる。
その他の上記シールグラウトについてセメント・ベントナイトはそれぞれの濃度並びにセメントに対するベントナイトの比率を大きくすれば強度を低くpHを低くすることができるし、また粘土の場合は粘土濃度を増減や粘土の種類によって粘土ゲルの強度やpHや可塑性を調整できるが、ここでは詳細は省略する。
The injection material containing clay as an active ingredient flows into the drilled hole as a plastic grout and is filled.However, after filling, it becomes a gelled state and no fluidity occurs, suppressing the fluidity and dilution by groundwater and stabilizing the pore wall. I do. Thereafter, the injection liquid is injected into the long coating from the inner tube, and the coating film surface presses the seal grout. If the applied pressure exceeds the shearing force of the plastic gel, the gel becomes fluid or mixed with the silica compound. If the strength of the solidified product exceeds the strength, the swelling of the long elastic coating film is facilitated, and along with the injection of the injection liquid, the entire length of the predetermined section is split so that the injection liquid penetrates into the ground. Can be. It should be noted that a kaolin-based clay having a lower pH and a nearly neutral seal grout can be obtained as compared with bentonite as the clay.
For other seal grouts, cement and bentonite can be reduced in strength and pH by increasing their concentration and the ratio of bentonite to cement, and in the case of clay, the clay concentration can be increased or decreased and the clay can be changed depending on the type of clay. The strength, pH and plasticity of the gel can be adjusted, but details are omitted here.

なお、上記において袋パッカ中への固結材の充填は削孔内におけるシールグラウトの充填後、或いはシールグラウトの固結強度が大きい場合、完全に固結してから袋パッカを大きく膨出するのは難しいので、シールグラウトの充填工程の途中で行うこともできる。
同様にシールグラウトの削孔の充填を以下のいずれかの手順で行うことができる。
1)該注入管は削孔内に充填されたシールグラウト内に設けられてなり、該シールグラウトは該注入管が削孔内に設置されて後、或いはさらに袋パッカを固結材を注入して膨出して後、該注入管から削孔内に充填される。
2)削孔中に注入管管壁に袋パッカを形成する少なくとも1個の袋体と該袋体の下方の管壁に地盤に注入液を注入する吐出口を有する注入管装置を用いて(1)袋体中に硬化性懸濁液を充填して膨らませて袋パッカを形成する工程と(2)削孔内にシールグラウトを充填する工程と(3)袋体の下方に設けられた吐出口からシールグラウトを破って注入液を地盤中に注入する工程において、該シールグラウトは該袋体に硬化性懸濁液を充填してから該注入管より削孔中に充填されるか又は削孔内へのシールグラウトの充填と袋パッカ内への固結材の充填を該注入管から連続して行う。
3)シールグラウトは懸濁性固結材を用いるものとし、地盤への懸濁性一次注入材の注入を削孔内へのシールグラウトの充填をかねて行う。
In the above, the filling of the packing material into the bag packer is performed after the filling of the seal grout in the drilled hole or when the compaction strength of the seal grout is large, the bag packer is completely expanded and then the bag packer is greatly expanded. Since it is difficult to perform the sealing grouting, the sealing grouting can be performed during the filling process.
Similarly, the filling of the holes in the seal grout can be performed by any of the following procedures.
1) The injection pipe is provided in a seal grout filled in a drill hole, and the seal grout is used after the injection pipe is installed in the drill hole, or further injects a bag packer with a solidifying material. After swelling, the hole is filled from the injection tube into the hole.
2) Using an injection pipe device having at least one bag body forming a bag packer on the injection pipe pipe wall during drilling and a discharge port for injecting the injection liquid into the ground on the pipe wall below the bag body ( 1) a step of forming a bag packer by filling a bag with a curable suspension and inflating the bag; (2) a step of filling a seal grout in a bore; and (3) a discharge port provided below the bag. In the step of breaking the seal grout from the outlet and injecting the injection liquid into the ground, the seal grout is filled with the curable suspension in the bag body and then filled or cut into the hole from the injection pipe. The filling of the seal grout into the hole and the filling material into the bag packer are continuously performed from the injection pipe.
3) Suspended grout shall be used for the seal grout, and the primary suspended grout will be injected into the ground while filling the grout with the seal grout.

本発明の注入装置を用いた注入工法は耐久性がすぐれ、かつ長いゲル化時間で広範囲に土粒子間浸透して、かつ広範囲に浸透して、しかも所定注入領域外や地表面に逸脱しにくい特性をもつことが要求される。かつそのゲル化に到る挙動が上記本注入装置による注入に適合することが必要である。   The injection method using the injection device of the present invention is excellent in durability, and penetrates widely between soil particles with a long gelation time, and penetrates a wide range, and hardly deviates outside a predetermined injection region or the ground surface. It is required to have characteristics. In addition, it is necessary that the behavior leading to gelation is compatible with the injection by the injection device.

そのような注入材として、溶液型注入材としては有機系水ガラスや中〜酸性領域のシリカグラウト(非アルカリ性シリカグラウト)が望ましい。また懸濁型グラウトとしてはセメント系、セメント・ベントナイト系、スラグ系グラウトが望ましい。   As such an injection material, an organic water glass or silica grout in a middle to acidic region (non-alkali silica grout) is desirable as a solution type injection material. As the suspension grout, a cement grout, a cement bentonite grout, and a slag grout are preferable.

非アルカリ性シリカグラウトとしては、水ガラスのアルカリを酸で除去した酸性〜中性を呈する水ガラスグラウト(シリカゾルグラウト)と水ガラスをイオン交換処理して脱アルカリした活性シリカをさらに増粒したコロイダルシリカ、コロイダルシリカと水ガラスと酸を混合した複合シリカからなる非アルカリ性シリカや金属シリカをあげることができる。また非アルカリ性シリカ溶液とセメントやスラグと炭酸塩(重曹、炭酸ソーダ)を加えることによって、可塑性を呈するグラウトを得るので、それをシールグラウトに用いることもできる   Examples of the non-alkali silica grout include an acid-neutral water glass grout (silica sol grout) obtained by removing the alkali of water glass with an acid, and a colloidal silica obtained by further increasing the particle size of active silica deionized by subjecting the water glass to ion exchange treatment. And non-alkali silica and metal silica made of a composite silica obtained by mixing colloidal silica, water glass and an acid. In addition, since grout exhibiting plasticity is obtained by adding a non-alkali silica solution, cement or slag, and a carbonate (baking soda, sodium carbonate), it can be used as a seal grout.

非アルカリ性シリカグラウトのpHとゲル化時間とシリカ濃度の関係を図18、19に示す。
図19より非アルカリ性シリカはゲル化時間が10,000分までの長いゲル化時間が可能で、かつ図19より注入液が地下水で希釈されてもゲル化し、固結性を保つことがわかる。また図19よりpHが中性に近い地盤に注入されると、非アルカリ性シリカはゲル化時間の長い酸性シリカグラウトでも中性方向にpHが移行してゲル化時間が短縮してゲル化することが判る(図20、図21)。
The relationship between the pH of non-alkali silica grout, the gelation time, and the silica concentration is shown in FIGS.
From FIG. 19, it can be seen that the non-alkali silica can have a long gelation time up to 10,000 minutes, and FIG. 19 shows that even if the injection solution is diluted with groundwater, it gels and maintains its consolidation. In addition, as shown in Fig. 19, when the non-alkali silica is injected into the ground near neutral pH, the pH shifts to the neutral direction even in acidic silica grout with a long gelation time, and the gelation time is shortened and gelation occurs. (Figs. 20 and 21).

図20、21は実際の地盤において、注入目的を達した非アルカリ性シリカグラウトの気中ゲルタイム(GT0)と注入液の気中pH(PH0)と土中ゲルタイムGTS0の関係を示す。
土中ゲルタイム(GTS0)とは注入対象地盤からの採取土と注入液の混合物又は採取土に注入液を浸透させた試料のpHをいう。地盤のpHをPHSとすると、PHS=5〜8付近にある。
FIGS. 20 and 21 show the relationship between the aerial gel time (GT 0 ) of the non-alkali silica grout that has reached the purpose of injection, the aerial pH (PH 0 ) of the infusate, and the gel time GT S0 in the soil on the actual ground.
The soil gel time (GT S0 ) refers to a mixture of the soil and the injection fluid from the ground to be injected or the pH of a sample in which the injection fluid has penetrated the soil. When the pH of the ground and PH S, in the vicinity PH S = 5 to 8.

本発明者の研究によれば、広範囲の浸透に必要な注入時間(H)よりも土中ゲルタイム(GT0)が短くても図25に示すように地盤中で注入液がゲル化しかかったサンドゲルの表皮を超えながら浸透固結領域が拡大して所定の注入量に相当する注入土量の固結体を形成することが判った。また一次注入としてセメント・ベントナイトを用い、二次注入として非アルカリ性シリカグラウトを重ねて注入した場合のゲル化時間の短縮例を図22に示す。一次注入の量が地盤中における注入率が多いと二次注入のゲル化時間は短縮するため二次注入材の注入領域外への逸脱は低減する。しかし図25の挙動によって所定の注入量に相当する固結体を形成する。この例ではゲルタイムが205分の注入液がセメントベントナイトの影響でほぼ10分に短縮している。 According to the study of the present inventor, even if the soil gel time (GT 0 ) is shorter than the injection time (H 0 ) required for wide-area infiltration, as shown in FIG. It was found that the infiltration and consolidation region expanded while exceeding the skin of No. 3 to form a consolidated body having an injected soil amount corresponding to a predetermined injected amount. FIG. 22 shows an example of shortening the gelation time when cement / bentonite is used as the primary injection and non-alkali silica grout is injected as a secondary injection. When the amount of the primary injection is large in the ground, the gelation time of the secondary injection is shortened, so that the deviation of the secondary injection material out of the injection region is reduced. However, a compact corresponding to a predetermined injection amount is formed by the behavior shown in FIG. In this example, the injection liquid with a gel time of 205 minutes is reduced to almost 10 minutes by the influence of cement bentonite.

次に本発明装置を用いた注入液の配合をどうすれば、所定範囲から逸脱することなく広い注入間隔を用いて大きな固結径を形成するという本発明工法について説明する。長い気中ゲル化時間(GT0)の非アルカリ性シリカグラウトを用いて低注入速度(q( L/min))で注入時間(H)をかけて広範囲に所定注入量を注入範囲外への逸脱を低減しながら浸透固結することが判った。   Next, the method of the present invention for forming a large consolidation diameter using a wide injection interval without departing from a predetermined range will be described how to mix an injection solution using the apparatus of the present invention. Using a non-alkaline silica grout with a long air gelation time (GT0) and a low injection rate (q (L / min)), injecting time (H) over a wide range of injection amount to prevent deviation from the injection range It was found that the solidification occurred while reducing the amount.

この場合、GT0≧H≧GS0とすると、これは図25に示すようにpHが中性側の地盤にゲル化しかかった注入液を乗り越えて浸透することが判った。この場合、非アルカリ性の注入液のpHが上昇するにつれ、注入液がゲル化しかかり、さらにその上をpHが低い注入液が乗り越えてpHが上昇してゲル化が進行することを繰り返しながら固結領域を拡大するという挙動を利用して注入孔を広くとって、注入範囲を広くしても、所定の領域を固化することを可能にした。 In this case, assuming that GT 0 ≧ H ≧ G S0 , it was found that as shown in FIG. 25, the pH permeated over the infused solution that was about to gel to the ground on the neutral side. In this case, as the pH of the non-alkaline injection solution increases, the injection solution begins to gel, and then the injection solution with a low pH climbs over it, consolidating while repeating the increase in pH and gelation. By making use of the behavior of expanding the region, the injection hole is widened, and even if the injection range is widened, it is possible to solidify a predetermined region.

土粒子間浸透せしめるためには図24に示すように割裂注入領域の限界よりも低い注入速度q(L/min)で注入しなくてはならない。もし点注入ならば図23(イ)にしめすように浸透半径を大きくするには高い注入圧力を必要とし、割裂注入領域に入ってしまう。しかし本発明のように柱状浸透にすれば図23(ロ)に示すように同一条件下で柱状浸透源の高さを大きくして注入速度を大きくしても低圧で浸透注入できることが判る。
なお、表7の受持土量は実際は円柱であるが、便宜上角柱として計算した。
In order to infiltrate between soil particles, injection must be performed at an injection speed q (L / min) lower than the limit of the split injection region as shown in FIG. If a point injection is used, a high injection pressure is required to increase the penetration radius as shown in FIG. However, if columnar permeation is used as in the present invention, as shown in FIG. 23 (b), it can be seen that permeation can be performed at a low pressure even if the height of the columnar permeation source is increased and the injection speed is increased under the same conditions.
In addition, although the amount of soil received in Table 7 is actually a cylinder, it was calculated as a prism for convenience.

以上の手法によって地盤の均質化をはかって注入地盤を拘束したうえで、大きな注入孔間隔でも所定の範囲外へ逸脱することなく所定の注入量に相当する固結体を形成するための注入液の処方を適用しなくてはならない。そのための手順を以下に述べる(表7)。   An injection liquid for forming a solidified body corresponding to a predetermined injection amount without deviating outside a predetermined range even at a large injection hole interval after consolidating the injection ground by homogenizing the ground by the above method. Must apply the prescription. The procedure for that is described below (Table 7).

1)対象となる土を用いて所定の密度で要求される強度が得られるシリカ濃度を設定する。
なぜならば、非アルカリ領域のシリカグラウトによるサンドゲルの強度はシリカ濃度でほとんど決まるからである。
2)所定のシリカ濃度を用いてpH或いは添加剤に対応したゲル化時間(GT0)を有するシリカグラウト配合液を調整する。
3)その配合液を用いて現場土と混合して土中ゲル化時間(GTS0)を測定する。
4)想定する注入孔間隔、注入方式、1注入ステージ長より単位ステージの固結土量を設定する。(表7(a))
5)単位ステージの固結土量から所定注入量を算出し、浸透可能限界内の注入速度から単位ステージ当たりの注入時間(H)を設定する。(表7(a))
6)地盤状況に応じて、
GT0>H≧GTS0又はGT0>GTS0≧H
となる注入液のゲルタイム(GT0)とシリカ濃度からなる配合処方を設定する(表7(b))。
以上の条件を満たすように、注入孔間隔、注入方式(点注入、柱状注入、多ステージ同時注入又は選択注入)、単位ステージ長、毎分吐出量を設定する。
1) Set the silica concentration to obtain the required strength at a predetermined density using the target soil.
This is because the strength of the sand gel formed by silica grout in the non-alkali region is almost determined by the silica concentration.
2) Using a predetermined silica concentration, prepare a silica grout mixture having a gelation time (GT 0 ) corresponding to the pH or additive.
3) Mix the solution with the soil in situ and measure the gelation time in soil (GT S0 ).
4) Set the amount of consolidated soil per unit stage based on the assumed injection hole interval, injection method, and one injection stage length. (Table 7 (a))
5) Calculate the predetermined injection amount from the amount of consolidated soil in the unit stage, and set the injection time (H) per unit stage from the injection speed within the permeation limit. (Table 7 (a))
6) Depending on the ground conditions,
GT 0 > H ≧ GT S0 or GT 0 > GT S0 ≧ H
A formulation is set that consists of the gel time (GT 0 ) of the injection solution and the silica concentration (Table 7 (b)).
The injection hole interval, injection method (point injection, columnar injection, simultaneous injection of multiple stages or selective injection), unit stage length, and discharge amount per minute are set so as to satisfy the above conditions.

表7(a)に注入孔間隔と1ステージ長と毎分吐出量q(L/min)と注入時間Hの関係を示す。また図18、図19、表7(a)より本発明において広い注入孔間隔で低吐出量で長いゲル化時間で長時間注入して所定領域からの逸脱を低減して土粒子間浸透させるためには一次注入する場合も含めてβ=H/GTS0とすると、β=1080〜0.001(0085)、さらに好ましくはβ=108〜1の範囲で注入液の配合処方を設定すれば良いことが判った。
ただしGT0=10000分〜10分(0085)、GT0≧H≧GTs0
以上より本発明は複雑な土層からなる地盤条件下で地表面や粗い土層に逸脱しにくい地盤改良を可能にするが、さらに注入孔間隔を広くとっても所定注入領域外に注入液が逸脱することなく所定の注入量に相当する固結体を形成することが可能になる。
Table 7 (a) shows the relationship between the injection hole interval, one stage length, the discharge amount per minute q (L / min), and the injection time H. 18 and FIG. 19 and Table 7 (a) show that in the present invention, a long injection time with a long discharge time and a long gelling time with a wide injection hole interval is used to reduce the deviation from a predetermined region and to infiltrate into soil particles. Assuming that β = H / GT S0 including the case of primary injection, the formulation of the injection solution should be set within the range of β = 1080 to 0.001 (0085), more preferably β = 108 to 1. understood.
However, GT 0 = 10000 minutes to 10 minutes (0085), GT 0 ≧ H ≧ GTs 0
As described above, the present invention makes it possible to improve the ground in which it is difficult to deviate to the ground surface or a coarse soil layer under the ground conditions of a complicated soil layer, but the injection liquid deviates outside the predetermined injection region even if the injection hole interval is further increased. Thus, it is possible to form a consolidated body corresponding to a predetermined injection amount without the need.

以下に具体例を示す。
注入孔間隔:1m〜3m(表7(a))
土中ゲル化時間(GTS0)=10〜3000分(図21)
注入速度(毎分吐出量)=1〜30l/min(表7(a))
但し、注入速度は限界浸透注入速度内とする。(図12・図13)
1ステージ当たりの注入量=132l〜10,800l(表7(a))
1ステージ当たりの注入時間(H)=4.4分〜10,800分(表7(a))
β=H/GTS0=10800/10〜4.4/3000=1080〜0.001、好ましくは1080〜1
以上は点注入を含む場合であり、多点同時注入、或いは多ステージ同時注入の場合は表7の1ステージ注入量を同時ステージの数だけ分割されるから、分割した単位ステージの注入時間Hは小さくなる。従って、βも小さくなる。
Specific examples are shown below.
Injection hole interval: 1m to 3m (Table 7 (a))
Soil gelation time (GT S0 ) = 10-3000 minutes (Figure 21)
Injection speed (discharge rate per minute) = 1 to 30 l / min (Table 7 (a))
However, the injection speed is within the limit penetration injection speed. (Figures 12 and 13)
Injection volume per stage = 132 l to 10,800 l (Table 7 (a))
Injection time per stage (H) = 4.4 minutes to 10,800 minutes (Table 7 (a))
β = H / GT S0 = 10800 / 10-4.4 / 3000 = 1080-0.001, preferably 1080-1
The above is a case including the point injection.In the case of the multi-point simultaneous injection or the multi-stage simultaneous injection, the injection amount of one stage in Table 7 is divided by the number of the simultaneous stages. Become smaller. Therefore, β also decreases.

また表7(a)より、点注入に限定して毎分吐出速度を1〜25L/minとすれば、H=5.28分〜10,800分となり、同様に計算できる。
なお、柱状浸透に限定すると、
1ステージ当たりの注入量132l〜10,800l(表7(a))
注入速度10l〜30l/min(表7(a))
1ステージ当たりの注入時間4.4分〜1080分(表7(a))
土中ゲル化時間(GTS0)=10〜3000分(図21)
β=H/GT0=1080/10 〜 4.4/3000=108〜0.001、好ましくは、β=108〜1。
以上において、H≧GS0(図25)の場合が注入液が注入対象外へ逸脱しにくいと考えればH=GTS0 とし、H=H/GTS0 の最小値は1となることから、好ましくは点注入を含めた場合はβ=1080〜1、柱状注入に限定した場合は、β=108〜1となる。
Further, from Table 7 (a), if the discharge speed per minute is 1 to 25 L / min limited to the point injection, H = 5.28 to 10,800 minutes, which can be similarly calculated.
If limited to columnar penetration,
Injection volume per stage 132l to 10,800l (Table 7 (a))
Injection speed 10l-30l / min (Table 7 (a))
4.4 minutes to 1080 minutes of injection time per stage (Table 7 (a))
Soil gelation time (GT S0 ) = 10-3000 minutes (Figure 21)
β = H / GT 0 = 1080/10 to 4.4 / 3000 = 108 to 0.001, preferably β = 108 to 1.
In the above, it is preferable to set H = GT S0 when H ≧ G S0 (FIG. 25) when it is considered that the infusate does not easily deviate from the injection target, and the minimum value of H = H / GT S0 is 1. Β = 1080-1 when the point injection is included, and β = 108-1 when the column injection is limited.

以上の条件を満たす注入液の配合処方と注入孔間隔、単位ステージ、毎分注入量、1ステージ当りの注入時間Hからなる注入設計を行えばよい。また図21より一次注入と二次注入の複合注入の場合、土中ゲルタイムは通常はほぼ10分程度になるとみて良い。
具体例を、表7(b)に示す。
An injection design consisting of the formulation of the injection solution satisfying the above conditions, the injection hole interval, the unit stage, the injection amount per minute, and the injection time H per stage may be performed. Also, from FIG. 21, in the case of the combined injection of the primary injection and the secondary injection, the gel time in the soil may be generally expected to be about 10 minutes.
A specific example is shown in Table 7 (b).

本発明は、主に地盤の止水性向上、強度増大、液状化防止に適し、大きな吐出量の注入材を孔壁周囲の地盤中に低圧力で広範囲かつ均一に浸透注入させることができる。本発明は、不均質地盤でも大きな固結径でかつ所定範囲以外への逸脱を低減し、経済的で確実に地盤改良を実施することができる。   INDUSTRIAL APPLICABILITY The present invention is mainly suitable for improving the water stoppage of the ground, increasing the strength, and preventing liquefaction, and can inject a large amount of the injected material into the ground around the hole wall in a wide range and uniformly at a low pressure. INDUSTRIAL APPLICABILITY The present invention has a large consolidation diameter even in an inhomogeneous ground, reduces deviation to a range other than a predetermined range, and can reliably and economically improve the ground.

A…注入管装置
1…地盤
2…削孔
3…シールグラウト
4…注入外管
5…注入内管
6…外管吐出口2
7…表面吐出部 7’…スリット
8…長尺弾性被腹膜
9…固着材、加締金具
10…内管パッカ
11,11A,11B…注入液送液管路
11'…注入液送液管路逆止弁
12…内管吐出口
13…内管注入部
14…長尺弾性被覆膜内
15…外管吐出口1逆止弁
16…外管吐出口1
17…外管吐出口逆止弁(伸縮性スリーブ)
18…袋パッカ
19…袋パッカ内外管吐出口
20…袋パッカ内逆止弁
21…パッカ流体流路
22…パッカ流体吐出口
23…シールグラウト割裂
24…空間
A… Injection tube device
1… ground
2 ... Drilling
3 ... Seal grout
4 ... Injection outer tube
5… Injection tube
6… Outer tube outlet 2
7 ... Surface discharge section 7 '... Slit
8… Long elastic peritoneum
9… Fixing material, crimping fitting
10… Inner pipe packer
11,11A, 11B… Injection liquid feed line
11 '… Injected liquid feed line check valve
12… Inner pipe outlet
13 ... Injection part of inner tube
14 ... Long elastic coating film
15… Outer pipe discharge port 1 check valve
16… Outer tube outlet 1
17… Outer pipe outlet check valve (elastic sleeve)
18… Packer
19… Discharge port of inner and outer pipe of bag packer
20… Check valve inside bag packer
21… Packer fluid flow path
22 ... Packer fluid discharge port
23… Seal grout splitting
24… space

(請求項1)
溶液型シリカ注入液を地盤に注入管を通して注入して地盤改良する地盤注入工法において、以下の条件を満たす地盤注入工法。後述(0108)〜(0121)参照。
1)対象となる土を用いて所定の密度で要求される強度が得られる該シリカ注入液のシリカ濃度を設定する。
2)所定のシリカ濃度を用いてpH或いは添加剤に対応したゲル化時間(GT0)を有するシリカ注入液を調整する。
3)そのシリカ注入液配合液を現場土と混合して土中ゲル化時間(GTS0)を測定する。
4)想定する注入孔間隔、注入方式、1注入ステージ長より単位ステージの固結対象土量を設定する。
5)単位ステージの固結対象土量から注入量を設定し、浸透可能限界内の注入速度から単位ステージ当たりの注入時間(H)を設定する。
6)地盤状況、注入孔間隔、並びに単位ステージ当りの注入量に応じて、
GT0>H≧GTS0又はGT0>GTS0≧H となるシリカ注入液のゲル化時間(GT0)とシリカ濃度からなる配合処方を設定する。
(Claim 1)
A ground injection method in which a solution-type silica injection liquid is injected into the ground through an injection pipe to improve the ground. See (0108) to (0121) below.
1) Set the silica concentration of the silica injection liquid to obtain the required strength at a predetermined density using the target soil.
2) Using a predetermined silica concentration, prepare a silica injection solution having a gelation time (GT 0 ) corresponding to the pH or the additive.
3) Mix the silica injection solution with the soil in situ and measure the gelation time (GT S0 ) in the soil.
4) Set the amount of soil to be consolidated at the unit stage based on the assumed injection hole interval, injection method, and one injection stage length.
5) Set the injection amount based on the amount of soil to be consolidated at the unit stage, and set the injection time (H) per unit stage from the injection speed within the permeation limit.
6) Depending on the ground condition, injection hole interval, and injection amount per unit stage,
Formulation is set up based on the gelation time (GT 0 ) and silica concentration of the silica injection liquid that satisfies GT 0 > H ≧ GT S0 or GT 0 > GT S0 ≧ H.

(請求項2)
溶液型シリカ注入液を注入管を通して地盤に注入して地盤改良する地盤注入工法において、該シリカ注入液のゲル化時間をGT0、注入液と現場土を混合したゲル化時間を地中ゲル化時間GTS0、1ステージ当りの注入時間をHとすると、これらの値を以下の範囲で設定して、注入範囲外へのシリカ注入液の逸脱を低減する地盤注入工法。後述(0108)〜(0121)参照。
(1)注入速度は限界浸透注入速度内とする。
(2)注入孔間隔又は固結径L=1.0〜3.0m
(3)毎分注入速度q=1〜30/minただし、限界浸透注入速度内とする。
(4)1ステージ長:0.33m〜3.0m
(5)1ステージ当たりの注入時間H:4.4〜10000分
ただし、注入時間(H)は現場の作業性や後期の短縮を考慮して短縮することができる。
(6)注入液のゲル化時間 GT0:10分〜10000分
(7)注入液のpH(pH0):1〜10
(8)シリカ濃度:0.4〜40%(重量%)
(9)土中ゲル化時間 GTS0:10分〜3000分
ここで限界浸透注入速度内とは、割裂・浸透注入速度よりも小さい浸透注入速度をいう。
(Claim 2)
In the ground injection method in which the solution-type silica injection liquid is injected into the ground through an injection pipe to improve the ground, the gelation time of the silica injection liquid is GT 0 , and the gelation time obtained by mixing the injection liquid and the in- situ soil is underground gelation . When the time GT S0 and the injection time per stage are H, these values are set in the following ranges to reduce the deviation of the silica injection liquid out of the injection range. See (0108) to (0121) below.
(1) The injection speed should be within the limit permeation injection speed.
(2) Injection hole spacing or consolidation diameter L = 1.0-3.0m
(3) Injection rate per minute q = 1 l to 30 l / min, provided that it is within the limit permeation injection rate.
(4) 1 stage length: 0.33m ~ 3.0m
(5) Injection time per stage H: 4.4 minutes to 10,000 minutes However, the injection time (H) can be reduced in consideration of workability at the site and shortening of the latter period.
(6) Gel time of injection solution GT 0 : 10 minutes to 10,000 minutes (7) pH of injection solution (pH 0 ): 1 to 10
(8) Silica concentration: 0.4 % to 40% (% by weight)
(9) Soil gelation time GT S0 : 10 minutes to 3000 minutes Here, within the critical penetration rate refers to a penetration rate lower than the splitting / penetration rate.

(請求項3、4
請求項1、2において、溶液型シリカ注入液を地盤に注入して地盤改良する地盤注入工法において、以下の条件を満たす地盤注入工法。後述(0108)〜(0121)参照。
注入孔間隔:1m〜3m
土中ゲル化時間(GTS0)=10〜3000分
注入速度(毎分吐出量)=1〜30l/min
但し、注入速度は限界浸透注入速度内とする。
1ステージ当たりの注入量=132l〜10,800l
1ステージ当たりの注入時間(H)=4.4分〜10,800分
β=H/GTS0=10800/10〜4.4/3000=1080〜0.001、好ましくは1080〜1
(Claims 3 and 4 )
3. The soil injection method according to claim 1 or 2, wherein the solution-type silica injection liquid is injected into the ground to improve the ground. See (0108) to (0121) below.
Injection hole interval: 1m-3m
Soil gel time (GT S0 ) = 10 minutes to 3000 minutes Injection rate (discharge rate per minute) = 1 l to 30 l / min
However, the injection speed is within the limit penetration injection speed.
Injection volume per stage = 132l to 10,800l
Injection time per stage (H) = 4.4 minutes to 10,800 minutes β = H / GT S0 = 10800/10 to 4.4 / 3000 = 1080 to 0.001, preferably 1080 to 1

(請求項5、6
請求項1〜4において、柱状浸透注入であって、以下の条件を満たす地盤注入工法。後述(0108)〜(0121)参照。
1ステージ当たりの注入量132l〜10,800l
注入速度10l〜30l/min
1ステージ当たりの注入時間4.4分〜1080分
土中ゲル化時間(GTS0)=10〜3000分
β=H/GT0=1080/10〜4.4/3000=108〜0.001、好ましくはβ=108〜1
(Claims 5 and 6 )
The ground injection method according to any one of claims 1 to 4 , which is a columnar infiltration injection and satisfies the following conditions. See (0108) to (0121) below.
132l to 10,800l injection volume per stage
Injection speed 10l-30l / min
Injection time 4.4 min ~1080 minutes soil gelation time per stage (GT S0) = 10 min 3000 min β = H / GT 0 = 1080 / 10~4.4 / 3000 = 108~0.001, preferably beta = 108 ~ 1

(請求項7)
請求項1〜6において、該シリカ注入液はpHが1〜10であって、シリカコロイド又は水ガラスのいずれか1種又は複数種と、反応剤として酸或いは塩のいずれか1種或いは複数種を有効成分とし、該シリカ注入液がコロイドと水ガラスと酸からなる場合は該シリカコロイドに起因するシリカ濃度と水ガラスに起因するシリカ濃度の比率は100:0〜0:100、かつシリカ濃度は0.4〜40wt%、シリカのモル比2.0〜100、注入液のゲル化時間は瞬結から10000分の配合から選定したシリカグラウトであることを特徴とする地盤注入工法。(図12・図13)
(Claim 7)
In Claims 1 to 6, the pH of the silica injection solution is 1 to 10, and one or more of colloidal silica or water glass and one or more of an acid or a salt as a reactant. When the silica injection liquid is composed of colloid, water glass and acid, the ratio of the silica concentration caused by the silica colloid to the silica concentration caused by the water glass is 100: 0 to 0: 100, and the silica concentration Is a silica grout selected from a composition of 0.4 % to 40% by weight, a molar ratio of silica of 2.0 to 100, and a gelling time of the injection liquid of 10,000 minutes from instantaneous setting. (Figures 12 and 13)

(請求項8)
請求項1〜7において、該シリカ注入液は点注入、多点注入、柱状注入、多点同時注入、又は多ステージ同時注入又は選択注入によって、地盤に注入されることを特徴とする地盤注入工法。(図14・図15、表7)
(Claim 8)
The ground injection method according to claim 1 , wherein the silica injection liquid is injected into the ground by point injection, multi-point injection, columnar injection, multi-point simultaneous injection, or multi-stage simultaneous injection or selective injection. . (Fig. 14, Fig. 15, Table 7)

表7(a)に注入孔間隔と1ステージ長と毎分吐出量q(L/min)と注入時間Hの関係を示す。また図18、図19、表7(a)より本発明において広い注入孔間隔で低吐出量で長いゲル化時間で長時間注入して所定領域からの逸脱を低減して土粒子間浸透させるためには一次注入する場合も含めてβ=H/GTS0とすると、β=1080〜0.001、さらに好ましくはβ=108〜1の範囲で注入液の配合処方を設定すれば良いことが判った。
ただしGT0=10000分〜10分(0085)、GT0≧H≧GTs0
以上より本発明は複雑な土層からなる地盤条件下で地表面や粗い土層に逸脱しにくい地盤改良を可能にするが、さらに注入孔間隔を広くとっても所定注入領域外に注入液が逸脱することなく所定の注入量に相当する固結体を形成することが可能になる。
Table 7 (a) shows the relationship between the injection hole interval, one stage length, the discharge amount per minute q (L / min), and the injection time H. 18 and FIG. 19 and Table 7 (a) show that in the present invention, a long injection time with a long discharge time and a long gelling time with a wide injection hole interval is used to reduce the deviation from a predetermined region and to infiltrate into soil particles. If also the β = H / GT S0 including the case of primary infusion in, β = 1080~ 0.001, preferably in the al found that may be set formulation of the infusate in the range of beta = 108 to 1 Was.
However, GT 0 = 10000 minutes to 10 minutes (0085), GT 0 ≧ H ≧ GTs 0
As described above, the present invention makes it possible to improve the ground in which it is difficult to deviate to the ground surface or a coarse soil layer under the ground conditions of a complicated soil layer, but the injection liquid deviates outside the predetermined injection region even if the injection hole interval is further increased. Thus, it is possible to form a consolidated body corresponding to a predetermined injection amount without the need.

また表7(a)より、点注入に限定して毎分吐出速度を1〜25L/minとすれば、H=5.28分〜10,800分となり、同様に計算できる。
なお、柱状浸透に限定すると、
1ステージ当たりの注入量132l〜10,800l(表7(a))
注入速度10l〜30l/min(表7(a))
1ステージ当たりの注入時間4.4分〜1080分(表7(a))
土中ゲル化時間(GTS0)=10〜3000分(図21)
β=H/GT0=1080/10 〜 4.4/3000=108〜0.001、好ましくは、β=108〜1。
以上において、H≧GS0(図25)の場合が注入液が注入対象外へ逸脱しにくいと考えればH=GTS0 とし、β=H/GTS0 の最小値は1となることから、好ましくは点注入を含めた場合はβ=1080〜1、柱状注入に限定した場合は、β=108〜1となる。
Further, from Table 7 (a), if the discharge speed per minute is 1 to 25 L / min limited to the point injection, H = 5.28 to 10,800 minutes, which can be similarly calculated.
If limited to columnar penetration,
Injection volume per stage 132l to 10,800l (Table 7 (a))
Injection speed 10l-30l / min (Table 7 (a))
4.4 minutes to 1080 minutes of injection time per stage (Table 7 (a))
Soil gelation time (GT S0 ) = 10-3000 minutes (Figure 21)
β = H / GT 0 = 1080/10 to 4.4 / 3000 = 108 to 0.001, preferably β = 108 to 1.
In the above, it is preferable to set H = GT S0 in the case of H ≧ G S0 (FIG. 25) if it is considered that the infusate is unlikely to deviate from the injection target, and the minimum value of β = H / GT S0 is 1. Β = 1080-1 when the point injection is included, and β = 108-1 when the column injection is limited.


Claims (13)

溶液型グラウトを地盤に注入して地盤改良する地盤注入工法において、注入液のゲルタイムをGT0、注入液と注入液を混合したゲルタイムを地中ゲルタイムGTS0として、1ステージ当りの注入時間をHとし、以下の条件を満たす地盤注入工法。
1)対象となる土を用いて所定の密度で要求される強度が得られるシリカ濃度を設定する。
2)所定のシリカ濃度を用いてpHまたは添加剤に対応したゲル化時間(GT0)を有するシリカグラウト配合液を調整する。
3)その配合液を現場土と混合して土中ゲル化時間(GTS0)を測定する。
4)想定する注入孔間隔、注入方式、1注入ステージ長より単位ステージの固結対象土量を設定する。
5)単位ステージの固結対象土量から注入量を設定し、浸透可能限界内の注入速度から単位ステージ当たりの注入時間(H)を設定する。
6)地盤状況、注入孔間隔、並びに単位ステージ当りの注入量に応じて、
GT0>H≧GTs0またはGT0>GTS0≧H
となる注入液のゲルタイム(GT0)とシリカ濃度からなる配合処方を設定する。
In the ground injection method for injecting a solution grout into the ground to improve the ground, the gel time of the injection liquid is GT 0 , the gel time of the mixture of the injection liquid and the underground gel time GT S0 , and the injection time per stage is H And the ground injection method that satisfies the following conditions.
1) Set the silica concentration to obtain the required strength at a predetermined density using the target soil.
2) Using a predetermined silica concentration, prepare a silica grout formulation having a gelation time (GT 0 ) corresponding to the pH or additive.
3) Mix the mixture with the soil at the site and measure the gelation time (GT S0 ) in the soil.
4) Set the amount of soil to be consolidated at the unit stage based on the assumed injection hole interval, injection method, and one injection stage length.
5) Set the injection amount based on the amount of soil to be consolidated at the unit stage, and set the injection time (H) per unit stage from the injection speed within the permeation limit.
6) Depending on the ground condition, injection hole interval, and injection amount per unit stage,
GT 0 > H ≧ GTs 0 or GT 0 > GT S0 ≧ H
A formulation is set up that consists of the gel time (GT 0 ) of the injection solution and the silica concentration.
溶液型グラウトを地盤に注入して地盤改良する地盤注入工法において、注入液のゲルタイムをGT0、注入液と注入液を混合したゲルタイムを地中ゲルタイムGTS0として、1ステージ当りの注入時間をHとし、これらの値を以下の範囲で設定して、注入範囲外への注入材の逸脱を低減する地盤注入工法。
(1)注入速度は限界浸透注入速度内とする。
(2)注入孔間隔または固結径L=1.0〜3.0m
(3)毎分注入速度q=1〜30l/min ただし、限界浸透注入速度内とする。
(4)1ステージ長:0.33m〜3.0m
(5)1ステージ当たりの注入時間H 4.4〜10000分
ただし、注入時間(H)は現場の作業性や後期の短縮を考慮して短縮することができる。
(6)気中ゲル化時間 GT0:10分〜10000分
(7)気中pH(pH0):1〜10
(8)シリカ濃度:0.4〜40%(重量%)
(9)土中ゲルタイム GTS0:10分〜3000分
ここで限界浸透注入速度内とは、割裂・浸透注入速度よりも小さい浸透注入速度をいう。
In the ground injection method for injecting a solution grout into the ground to improve the ground, the gel time of the injection liquid is GT 0 , the gel time of the mixture of the injection liquid and the underground gel time GT S0 , and the injection time per stage is H And setting these values in the following range to reduce the deviation of the injected material outside the injection range.
(1) The injection speed should be within the limit permeation injection speed.
(2) Injection hole spacing or consolidation diameter L = 1.0 to 3.0 m
(3) Injection rate per minute q = 1 to 30 l / min.
(4) 1 stage length: 0.33m ~ 3.0m
(5) Injection time per stage H 4.4 to 10,000 minutes However, the injection time (H) can be shortened in consideration of workability at the site and shortening of the latter period.
(6) Air gelation time GT 0 : 10 minutes to 10,000 minutes (7) Air pH (pH 0 ): 1 to 10
(8) Silica concentration: 0.4 to 40% (% by weight)
(9) Soil gel time GT S0 : 10 minutes to 3000 minutes Here, within the critical penetration rate refers to a penetration rate lower than the splitting / penetration rate.
請求項1または2記載の地盤注入工法において、溶液型グラウトを地盤に注入して地盤改良する地盤注入工法において、以下の条件を満たす地盤注入工法。
注入孔間隔 1m〜3m
土中ゲル化時間(GTS0)=10〜3000分
注入速度(毎分吐出量)=1〜30l/min
ただし、注入速度は限界浸透注入速度内とする。
1ステージ当たりの注入量=132l〜10,800l
1ステージ当たりの注入時間(H)=4.4分〜10,800分
β=H/GTS0=10800/10〜4.4/3000=1080〜0.001、好ましくは1080〜1
3. The ground injection method according to claim 1, wherein the solution-type grout is injected into the ground to improve the ground. 3.
Injection hole spacing 1m-3m
Soil gel time (GT S0 ) = 10-3000 minutes Injection rate (discharge rate per minute) = 1-30 l / min
However, the injection speed shall be within the limit permeation injection speed.
Injection volume per stage = 132l to 10,800l
Injection time per stage (H) = 4.4 minutes to 10,800 minutes β = H / GT S0 = 10800/10 to 4.4 / 3000 = 1080 to 0.001, preferably 1080 to 1
請求項1〜3のいずれか一項に記載の柱状浸透注入であって、以下の条件を満たす地盤注入工法。
1ステージ当たりの注入量132l〜10,800l
注入速度10l〜30l/min
1ステージ当たりの注入時間4.4分〜1080分
土中ゲル化時間(GTS0)=10〜3000分
β=H/GT0=1080/10〜4.4/3000=108〜0.001、好ましくはβ=108〜1
The columnar infiltration method according to any one of claims 1 to 3, wherein the ground injection method satisfies the following conditions.
132l to 10,800l injection volume per stage
Injection speed 10l-30l / min
Injection time per stage 4.4 minutes to 1080 minutes Soil gelation time (GT S0 ) = 10 to 3000 minutes β = H / GT 0 = 1080/10 to 4.4 / 3000 = 108 to 0.001, preferably β = 108 to 1
請求項1〜4のいずれか一項に記載の地盤注入工法において、一次注入材を注入後、二次注入材を注入するのに先立って、水または注入材を圧入してシールグラウトを割裂した上で、地盤の限界浸透注入速度の注入速度で注入することを特徴とする地盤注入工法。   In the ground injection method according to any one of claims 1 to 4, after injecting the primary injecting material, prior to injecting the secondary injecting material, water or the injecting material was press-fitted to split the seal grout. In the above, the ground injection method is characterized by injecting at a critical permeation injection speed of the ground. 請求項5記載の地盤注入工法において、水または一次注入材を注入してのち、引き続いて二次注入材を限界浸透注入速度内の注入速度で注入することを特徴とする地盤注入工法。   6. The ground injection method according to claim 5, wherein after the water or the primary injection material is injected, the secondary injection material is subsequently injected at an injection speed within the limit penetration injection speed. 請求項1〜6のいずれか一項に記載の地盤注入工法において、該注入液はpHが1〜10であって、シリカコロイドまたは水ガラスのいずれか1種または複数種と、反応剤として酸または塩のいずれか1種または複数種を有効成分とし、該注入液がコロイドと水ガラスと酸からなる場合は該シリカコロイドに起因するシリカ濃度と水ガラスに起因するシリカ濃度の比率は100:0〜0:100、かつシリカ濃度は0.4〜40wt%、シリカのモル比2.0〜100、ゲル化時間は瞬結から10000分の配合から選定したシリカグラウトであることを特徴とする地盤注入工法。   The method according to any one of claims 1 to 6, wherein the injection liquid has a pH of 1 to 10, and contains one or more of silica colloid or water glass and an acid as a reactant. Alternatively, when one or more kinds of salts are used as an active ingredient, and the injection solution is composed of colloid, water glass and acid, the ratio of the silica concentration caused by the silica colloid to the silica concentration caused by water glass is 100: A ground injection method characterized by being a silica grout selected from a composition of 0 to 0: 100, a silica concentration of 0.4 to 40 wt%, a molar ratio of silica of 2.0 to 100, and a gelation time of 10,000 minutes from instantaneous setting. 請求項7記載の地盤注入工法において、該注入液は点注入、多点注入、柱状注入、多点同時注入、多ステージ同時注入、または選択注入によって、地盤に注入されることを特徴とする地盤注入工法。   8. The ground injection method according to claim 7, wherein the injection liquid is injected into the ground by point injection, multipoint injection, columnar injection, multipoint simultaneous injection, multistage simultaneous injection, or selective injection. Injection method. 請求項1〜8のいずれか一項に記載の地盤注入工法において、該注入管は削孔内に充填されたシールグラウト内に設けられてなり、該シールグラウトは該注入管が削孔内に設置されて後、或いはさらに袋パッカを固結材を注入して膨出して後、該注入管から削孔内に充填されることを特徴とする地盤注入工法。   The ground injection method according to any one of claims 1 to 8, wherein the injection pipe is provided in a seal grout filled in a drill hole, and the seal grout is disposed in the seal grout in the drill hole. A ground injection method characterized by being filled after filling or further swelling a bag packer by injecting a consolidating material into the borehole from the injection pipe. 請求項1〜9のいずれか一項に記載の地盤注入工法において、削孔中に注入管管壁に袋パッカを形成する少なくとも1個の袋体と該袋体の下方の管壁に地盤に注入液を注入する吐出口を有する注入管装置を用いて(1)袋体中に硬化性懸濁液を充填して膨らませて袋パッカを形成する工程と(2)削孔内にシールグラウトを充填する工程と(3)袋体の下方に設けられた吐出口からシールグラウトを破って注入液を地盤中に注入する工程において、該シールグラウトは該袋体に硬化性懸濁液を充填してから該注入管より削孔中に充填されるか又は削孔内へのシールグラウトの充填と袋パッカ内への固結材の充填を該注入管から連続して行うことを特徴とする地盤注入工法。   The soil injection method according to any one of claims 1 to 9, wherein at least one bag body forming a bag packer on an injection pipe tube wall during drilling and a ground on a pipe wall below the bag body. (1) Filling the bag with the curable suspension and inflating it to form a bag packer using an injection pipe device having a discharge port for injecting the injection liquid, and (2) forming a seal grout in the bore hole. In the filling step and (3) the step of breaking the seal grout from the discharge port provided below the bag and injecting the injection liquid into the ground, the seal grout fills the bag with the curable suspension. Or filling the inside of the borehole with the injection pipe or filling the borehole with the seal grout and the filling material in the bag packer continuously from the injection pipe. Injection method. 請求項1〜10のいずれか一項に記載の地盤注入工法において、シールグラウトは懸濁性固結材を用いるものとし、地盤への懸濁性一次注入材の注入を削孔壁のシールグラウトの充填をかねて行うことを特徴とする地盤注入工法。   The ground grouting method according to any one of claims 1 to 10, wherein the seal grout uses a suspendable consolidated material, and the grouting of the drilled wall is performed by injecting the suspended primary grout into the ground. A ground injection method characterized by performing filling without filling. 請求項1〜11のいずれか一項に記載の地盤注入工法において、該注入管に設けられた袋パッカは布目から固結性懸濁液の成分の一部が浸出する布で構成されてなることを特徴とする地盤注入工法。   The ground injection method according to any one of claims 1 to 11, wherein the bag packer provided in the injection pipe is made of a cloth in which a part of the component of the caking suspension is leached from the cloth. Ground injection method characterized by the following. 請求項12記載の地盤注入工法であって、袋パッカの布目から浸出した固結性懸濁液の成分の一部が浸出して固結し、膨出した袋パッカよりさらに大きな土中パッカを形成することを特徴とする地盤注入工法。   13. The soil injection method according to claim 12, wherein a part of the component of the solidifying suspension leached from the cloth of the bag packer is leached and solidified, and an underground packer larger than the expanded bag packer is formed. A ground injection method characterized by forming.
JP2018233239A 2018-07-24 2018-12-13 Ground injection method Active JP6531929B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018138698 2018-07-24
JP2018138698 2018-07-24

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018150782A Division JP6465329B1 (en) 2018-07-24 2018-08-09 Ground injection device and ground injection method

Publications (2)

Publication Number Publication Date
JP6531929B1 JP6531929B1 (en) 2019-06-19
JP2020020251A true JP2020020251A (en) 2020-02-06

Family

ID=65270501

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018150782A Active JP6465329B1 (en) 2018-07-24 2018-08-09 Ground injection device and ground injection method
JP2018233239A Active JP6531929B1 (en) 2018-07-24 2018-12-13 Ground injection method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018150782A Active JP6465329B1 (en) 2018-07-24 2018-08-09 Ground injection device and ground injection method

Country Status (1)

Country Link
JP (2) JP6465329B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022066686A (en) * 2020-10-19 2022-05-02 強化土エンジニヤリング株式会社 Ground consolidation material and ground improvement method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109797750B (en) * 2019-03-29 2024-01-02 长安大学 System and method for blocking foundation pit excavation influence
JP6712828B1 (en) * 2019-07-24 2020-06-24 強化土エンジニヤリング株式会社 Ground injection material and ground injection method
JP6867662B1 (en) * 2020-09-10 2021-05-12 株式会社 地巧社 Multi-stage simultaneous injection device
CN112813959B (en) * 2020-12-31 2022-08-05 中建市政工程有限公司 Sleeve valve pipe grouting device and method based on elastic film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110463A (en) * 2015-12-18 2017-06-22 強化土株式会社 Ground improvement method
JP2018012987A (en) * 2016-07-21 2018-01-25 強化土株式会社 Ground injection device and ground injection method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110463A (en) * 2015-12-18 2017-06-22 強化土株式会社 Ground improvement method
JP2018012987A (en) * 2016-07-21 2018-01-25 強化土株式会社 Ground injection device and ground injection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022066686A (en) * 2020-10-19 2022-05-02 強化土エンジニヤリング株式会社 Ground consolidation material and ground improvement method

Also Published As

Publication number Publication date
JP2020020248A (en) 2020-02-06
JP6465329B1 (en) 2019-02-06
JP6531929B1 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
JP2020020251A (en) Ground injection method
TWI333994B (en)
KR101500667B1 (en) steel pipe grouting device and tunnel reinforcement andbarrier grouting method using this
CN102434194B (en) Gas drainage drill hole structure formed in coal layer and method for fabricating same
CN107762532A (en) Tunnel vault band mould grouting construction method
JP5092103B1 (en) Ground improvement method and ground improvement equipment by soil desaturation
CN104594914A (en) Coal mine tunnel broken surrounding rock layering grouting technology and method
CN109798140B (en) Splitting grouting reinforcement support method for kilometer deep well soft rock
CN105926624B (en) Inverse-stopping type set hole grouting device and its construction method
JP5137153B1 (en) Grout injection method and apparatus
JP6995328B2 (en) Ground injection method and injection material
JP4689556B2 (en) Ground consolidation method using plastic gel injection material
JP5478386B2 (en) Improving method for ground with underground cavity
JP5780714B2 (en) Filling the underground cavity
JP4972661B2 (en) Ground injection method
US3783624A (en) Method of providing a pile in a ground formation having a high resistance to movement
CN103174428B (en) A kind of applied chemistry slurries implement the method for grouting for water blocking to vertical shaft
KR20190131262A (en) Fast permeating method and system for grouting of weak ground
JP6733892B1 (en) Proportional pouring grout monitor and proportional pouring method for hardened grout using the same
JP5190615B1 (en) Ground improvement method by desaturation of ground
JP6632018B1 (en) Tunnel waterproofing method, tunnel waterproofing system, and waterproofing material
JP5824588B1 (en) Vacuum grout injection method
CN110700236A (en) Novel high-low pressure composite grouting construction process
TWI260361B (en) Ground grouting device and ground grouting construction method
TWI262228B (en) Grouting equipment and grouting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181220

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181220

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190507

R150 Certificate of patent or registration of utility model

Ref document number: 6531929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250