JP2020013261A - Yard waiting demurrage time prediction device, method and program - Google Patents

Yard waiting demurrage time prediction device, method and program Download PDF

Info

Publication number
JP2020013261A
JP2020013261A JP2018134256A JP2018134256A JP2020013261A JP 2020013261 A JP2020013261 A JP 2020013261A JP 2018134256 A JP2018134256 A JP 2018134256A JP 2018134256 A JP2018134256 A JP 2018134256A JP 2020013261 A JP2020013261 A JP 2020013261A
Authority
JP
Japan
Prior art keywords
amount
yard
waiting time
arrival
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018134256A
Other languages
Japanese (ja)
Other versions
JP7103004B2 (en
Inventor
孝介 川上
Kosuke Kawakami
孝介 川上
敬和 小林
Takakazu Kobayashi
敬和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018134256A priority Critical patent/JP7103004B2/en
Publication of JP2020013261A publication Critical patent/JP2020013261A/en
Application granted granted Critical
Publication of JP7103004B2 publication Critical patent/JP7103004B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

To enable the prediction of an expectation value of a yard waiting demurrage time in landing articles transported by using a transport ship at an unloading point.SOLUTION: In the case where the amount obtained by adding a prediction object period start total stock in a yard of an unloading point and an unloading amount total (hereafter, the unloading amount total is called as an arrival amount) of a transport ship that arrives during a prediction object period exceeds the capacity of the yard, a yard waiting demurrage time prediction device 100 calculates an expectation value of a yard waiting demurrage time by integrating a function obtained by multiplying a formula of a prediction model by the occurrence probability of the arrival amount per predetermined unit time with respect to the arrival amount by using the prediction model that yard waiting demurrage occurs as much as a time obtained by dividing an excess by a used amount of the prediction object period.SELECTED DRAWING: Figure 1

Description

本発明は、輸送船を使用して輸送した物品を揚地にて荷揚げする際のヤード待ち滞船時間を予測するヤード待ち滞船時間予測装置、方法及びプログラムに関する。   The present invention relates to a yard waiting time estimation device, method, and program for estimating a yard waiting time at the time of unloading goods transported using a transport ship at a landing site.

鉄鋼業や電力会社等では、海外の生産拠点等から、船舶(輸送船)を使用して輸送した原燃料、材料、製品等の物品を、工場、在庫拠点等の揚地にて荷揚げし、ヤードと呼ばれる受け入れ地に在庫として保管する。
ここで、輸送船が揚地に到着した時点で、ヤードの容量が足りず、荷揚げができないために洋上での滞船が発生することがある。このような滞船はヤード待ち滞船と呼ばれ、輸送船の洋上滞船の原因の中で占める割合が大きく、ヤード待ち滞船を削減する抜本的な技術開発が望まれている。ヤード待ち滞船を抑えるためには、ヤードで保持する在庫量を減らせば良いが、在庫量を減らせば減らすほど、在庫切れによる操業停止リスクが増加するため、ヤード待ち滞船と安定操業に必要な在庫量のトレードオフの見極めが重要と言える。これまで、ヤード待ち滞船に対する理論的解析は十分に行われておらず、在庫量の削減に対して、どの程度ヤード待ち滞船が減るのかわからない課題があった。
In the steel industry, electric power companies, etc., unload raw materials, fuels, materials, products, etc., transported by ships (transportation vessels) from overseas production bases, etc., at landing sites such as factories and inventory bases. Store as inventory in receiving area called yard.
Here, when the transport ship arrives at the landing site, the capacity of the yard is insufficient, and the ship cannot be unloaded. Such a vessel is called a yard waiting vessel, and a large percentage of the causes of transport vessels staying at sea is large, and there is a demand for a drastic technological development to reduce the yard waiting vessel. In order to reduce the number of yards in the yard, it is necessary to reduce the amount of stock held in the yard.However, the lower the amount of inventory, the greater the risk of shutdown due to out of stock. It can be said that it is important to identify trade-offs in inventory levels. Until now, theoretical analysis has not been performed sufficiently on yards in yards, and there is a problem that it is not clear how much yards in yards will decrease in order to reduce inventory.

特許文献1には、複数のバースを有する港で複数の船舶と原料の荷役を行う原料荷役管理方法において、個々の船舶についての配船計画および契約情報に基づき、港が有する複数のバースそれぞれの規模、荷揚げ能力、および補修情報から前記船舶の接岸するバース、接岸日、および出港日を含む荷役計画を自動設定するとともに、前記船舶について早出・滞船料金を算出することにより、前記港全体の荷役計画および早出・滞船料金を出力し、配船計画の修正があった場合はその修正された配船計画に基づき、前記の手順を再度実行するようにした原料荷役管理方法が開示されている。   Patent Literature 1 discloses a raw material handling management method for loading and unloading raw materials with a plurality of ships at a port having a plurality of berths. From the scale, unloading capacity, and repair information, automatically set a cargo handling plan including the berth of the ship, the date of berthing, and the date of departure, and calculate the early departure / demurrage fee for the ship, so that the entire port A raw material handling management method is disclosed in which a cargo handling plan and an early leaving / shipping fee are output, and if there is a modification of the vessel assignment plan, the aforementioned procedure is executed again based on the modified vessel assignment plan. I have.

非特許文献1には、ポアソン過程に従って到着する製品をバッファに仮置きし、グループ制約条件が揃った場合に製品を出荷する倉庫に対して、待ち行列ネットワーク理論で倉庫システムをモデル化することで倉庫容量を解析的に算出する手法が開示されている。   Non-Patent Document 1 discloses that a product arriving according to a Poisson process is temporarily stored in a buffer, and a warehouse system is modeled by a queuing network theory for a warehouse that ships a product when group constraints are satisfied. A method for analytically calculating a warehouse capacity is disclosed.

特開平11−100127号公報JP-A-11-100127

尾崎 紀之、東 俊光、原 辰徳、太田 順:運用上の制約を考慮した自動倉庫のレイアウト設計法、2014年度精密工学会春季大会学術講演会講演論文集、pp.29−30、2014Noriyuki Ozaki, Toshimitsu Higashi, Tatsunori Hara, Jun Ota: Layout Design Method for Automatic Warehouse Considering Operational Constraints, Proc. 29-30, 2014

しかしながら、特許文献1は、確定した計画に対して早出・滞船料を精緻に計算する手法であって、船団構成や設備能力等の条件を所与としたときの、ヤード待ち滞船時間の期待値を予測するものではない。
また、非特許文献1は、現状の設備構成、製品の到着頻度から、倉庫容量を決める手法であって、倉庫容量を超過したときに製品が倉庫に入れない時間(輸送船のヤード待ち滞船時間に相当)を予測するものではない。
However, Patent Literature 1 is a technique for precisely calculating the early leaving / berthing fee for a fixed plan, and when a condition such as a fleet configuration or facility capacity is given, the yard waiting time is given. It does not predict the expected value.
Non-Patent Document 1 discloses a method of determining a warehouse capacity based on the current equipment configuration and the arrival frequency of products. When the warehouse capacity is exceeded, the time during which products cannot enter the warehouse (a yard waiting ship of a transport ship). Time).

本発明はこのような事情に鑑みてなされたものであり、船団構成や設備能力等の条件を所与としたときの、ヤード待ち滞船時間の期待値を予測できるようにすることを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to be able to predict an expected value of a yard waiting time when given conditions such as a fleet configuration and facility capacity. I do.

上記の課題を解決するための本発明の要旨は、以下のとおりである。
[1] 輸送船を使用して輸送した物品を揚地にて荷揚げする際のヤード待ち滞船時間を予測するヤード待ち滞船時間予測装置であって、
前記揚地のヤードにおける予測対象期間始在庫量と、前記予測対象期間に到着する輸送船の荷揚げ量合計(以下、荷揚げ量合計を入荷量と呼ぶ)とを足し合わせた量が、前記ヤードの容量を上回っていた場合、その超過分を前記予測対象期間の使用量で割った時間だけヤード待ち滞船が発生するとした予測モデルを用いて、
前記予測モデルの計算式に所定の単位時間あたりの入荷量の発生確率を掛け合わせた関数を、当該入荷量について積分することにより、ヤード待ち滞船時間の期待値を計算する手段を備えたことを特徴とするヤード待ち滞船時間予測装置。
[2] 実績データに基づいて、前記所定の単位時間あたりに到着する輸送船の数と、輸送船毎の荷揚げ量とをそれぞれ確率分布で表わし、
前記所定の単位時間あたりの入荷量を、前記所定の単位時間あたりに到着する輸送船の数の確率分布と、前記輸送船毎の荷揚げ量の確率分布とを複合した確率分布で表わすことを特徴とする[1]に記載のヤード待ち滞船時間予測装置。
[3] 実績データに基づいて、前記所定の単位時間あたりに到着する輸送船の数をポアソン分布で表わし、輸送船毎の荷揚げ量をガンマ分布で表わし、
前記所定の単位時間あたりの入荷量をTweedie分布で表わすことを特徴とする[2]に記載のヤード待ち滞船時間予測装置。
[4] 前記予測対象期間始在庫量、前記ヤードの容量、及び前記予測対象期間の使用量を固定値として与えることを特徴とする[1]乃至[3]のいずれか一つに記載のヤード待ち滞船時間予測装置。
[5] 積分区間は、前記ヤードの容量から前記予測対象期間始在庫量を引いた値から∞までとすることを特徴とする[4]に記載のヤード待ち滞船時間予測装置。
[6] 輸送船を使用して輸送した物品を揚地にて荷揚げする際のヤード待ち滞船時間を予測するヤード待ち滞船時間予測方法であって、
前記揚地のヤードにおける予測対象期間始在庫量と、前記予測対象期間に到着する輸送船の荷揚げ量合計(以下、荷揚げ量合計を入荷量と呼ぶ)とを足し合わせた量が、前記ヤードの容量を上回っていた場合、その超過分を前記予測対象期間の使用量で割った時間だけヤード待ち滞船が発生するとした予測モデルを用いて、
前記予測モデルの計算式に所定の単位時間あたりの入荷量の発生確率を掛け合わせた関数を、当該入荷量について積分することにより、ヤード待ち滞船時間の期待値を計算することを特徴とするヤード待ち滞船時間予測方法。
[7] 輸送船を使用して輸送した物品を揚地にて荷揚げする際のヤード待ち滞船時間を予測するためのプログラムであって、
前記揚地のヤードにおける予測対象期間始在庫量と、前記予測対象期間に到着する輸送船の荷揚げ量合計(以下、荷揚げ量合計を入荷量と呼ぶ)とを足し合わせた量が、前記ヤードの容量を上回っていた場合、その超過分を前記予測対象期間の使用量で割った時間だけヤード待ち滞船が発生するとした予測モデルを用いて、
前記予測モデルの計算式に所定の単位時間あたりの入荷量の発生確率を掛け合わせた関数を、当該入荷量について積分することにより、ヤード待ち滞船時間の期待値を計算する処理をコンピュータに実行させるためのプログラム。
The gist of the present invention for solving the above problems is as follows.
[1] A yard waiting time prediction device for predicting a yard waiting time at the time of unloading an article transported using a transport ship at a landing site,
The sum of the stock quantity at the beginning of the forecast period in the landing yard and the total unloading amount of the transport ship arriving during the forecast period (hereinafter, the total unloading amount is referred to as the receiving amount) is the amount of the yard. If the capacity was exceeded, using the prediction model that the yard waiting vessel occurs only the time divided by the amount of use in the prediction target period, the excess,
Means for calculating the expected value of the yard waiting time by integrating a function obtained by multiplying the calculation formula of the prediction model by the probability of occurrence of the amount of arrival per unit time with respect to the amount of arrival. A yard waiting time prediction device.
[2] Based on actual data, the number of transport ships arriving per the predetermined unit time and the unloading amount of each transport ship are represented by probability distributions, respectively.
The arrival amount per predetermined unit time is represented by a probability distribution that combines a probability distribution of the number of transport ships arriving per predetermined unit time and a probability distribution of unloading amount of each transport ship. A yard waiting time prediction device according to [1].
[3] Based on actual data, the number of transport ships arriving per the predetermined unit time is represented by a Poisson distribution, and the unloading amount of each transport ship is represented by a gamma distribution,
The yard waiting time estimation device according to [2], wherein the arrival amount per predetermined unit time is represented by a Tweedie distribution.
[4] The yard according to any one of [1] to [3], wherein the forecast stock at the start of the forecast period, the capacity of the yard, and the usage amount in the forecast period are given as fixed values. Waiting vessel time prediction device.
[5] The yard waiting time estimation device according to [4], wherein the integration section is set to ∞ from a value obtained by subtracting the stock amount at the start of the prediction period from the capacity of the yard.
[6] A yard waiting time prediction method for predicting a yard waiting time when unloading goods transported by using a transport ship at a landing site,
The sum of the stock quantity at the beginning of the forecast period in the landing yard and the total unloading amount of the transport ship arriving during the forecast period (hereinafter, the total unloading amount is referred to as the receiving amount) is the amount of the yard. If the capacity was exceeded, using the prediction model that the yard waiting vessel will occur for the time obtained by dividing the excess by the amount used in the prediction target period,
An expected value of the yard waiting time is calculated by integrating a function obtained by multiplying the calculation formula of the prediction model by the occurrence probability of the amount of arrival per unit time with respect to the amount of arrival. Yard waiting time prediction method.
[7] A program for predicting the yard waiting time when unloading goods transported using a transport ship at a landing site,
The sum of the stock quantity at the beginning of the forecast period in the landing yard and the total unloading amount of the transport ship arriving during the forecast period (hereinafter, the total unloading amount is referred to as the receiving amount) is the amount of the yard. If the capacity was exceeded, using the prediction model that the yard waiting vessel will occur for the time obtained by dividing the excess by the amount used in the prediction target period,
A computer calculates the expected value of the yard waiting time by integrating a function obtained by multiplying the calculation formula of the prediction model by the probability of occurrence of the arrival amount per unit time with respect to the arrival amount. Program to let you.

本発明によれば、船団構成や設備能力等の条件を所与としたときの、ヤード待ち滞船時間の期待値を予測することができる。   ADVANTAGE OF THE INVENTION According to this invention, when conditions, such as a fleet composition and equipment capacity, are given, the expected value of yard waiting time can be predicted.

実施形態に係るヤード待ち滞船時間予測装置を含む全体システムの概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an entire system including a yard waiting time estimation device according to an embodiment. 実施形態に係るヤード待ち滞船時間予測装置によるヤード待ち滞船時間計算方法を示すフローチャートである。5 is a flowchart illustrating a yard waiting time calculation method by the yard waiting time prediction apparatus according to the embodiment. ヤード待ち滞船時間の考え方を説明するための図である。It is a figure for explaining a way of thinking of yard waiting time. 製鉄所の輸送船の到着間隔の分布の例を示すグラフである。It is a graph which shows the example of distribution of the arrival interval of the transport ship of a steelworks. 製鉄所に到着した輸送船毎の荷揚げ量の分布の例を示すグラフである。It is a graph which shows the example of distribution of the unloading amount for every transport ship which arrived at the steelworks. 一日あたりの入荷量をTweedie分布で表わした結果を示すグラフである。It is a graph which shows the result of having expressed the amount of arrival per day by Tweedie distribution. ヤード余力に対するヤード待ち滞船時間の期待値を示すグラフである。It is a graph which shows the expected value of the yard waiting time with respect to yard surplus.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。
本実施形態では、鉄鋼業を例として、世界中に点在する山元から、輸送船を使用して輸送した鉱石や石炭等の原材料を、製鉄所にて荷揚げする状況下において、ヤード待ち滞船時間の期待値(以下、単に、ヤード待ち滞船時間とも呼ぶ)を予測する事例を説明する。なお、原材料が本発明でいう物品に、製鉄所が本発明でいう揚地に相当する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
In the present embodiment, as an example of the steel industry, in a situation where raw materials such as ore and coal transported using a transport ship are unloaded at steelworks from mountains located around the world, An example of predicting an expected value of time (hereinafter, also simply referred to as yard waiting time) will be described. The raw material corresponds to the article referred to in the present invention, and the steelworks corresponds to the landing in the present invention.

ヤード待ち滞船時間の予測は、日単位で行うこととする。操業データは日単位で更新されることから、ヤード待ち滞船時間も日単位で予測することが望ましいからである。なお、本発明は、日単位に限定されず、異なる単位時間でヤード待ち滞船時間を予測する場合にも適用可能である。例えば複数日を単位時間とすれば、複数日における平均的なヤード待ち滞船時間を予測することができる。   The forecast of yard waiting time shall be made on a daily basis. Because the operation data is updated on a daily basis, it is desirable to predict the yard waiting time on a daily basis. The present invention is not limited to the day unit, but is also applicable to the case where the yard waiting time is predicted at different unit times. For example, if a plurality of days is set as a unit time, an average yard waiting time in a plurality of days can be predicted.

図1は、実施形態に係るヤード待ち滞船時間予測装置を含む全体システムの概略構成を示す図である。
ヤード待ち滞船時間予測装置100は、予測対象期間に発生するヤード待ち滞船時間を予測する。データベース200は、ヤード待ち滞船時間予測装置100で使用する実績データを含む各種データや、ヤード待ち滞船時間予測装置100による計算結果のデータを格納する。上位コンピュータ300は、ビジネスコンピュータ等とも称され、データベース200に格納されたデータを参照したり、データベース200にデータを格納、更新したりする。
FIG. 1 is a diagram illustrating a schematic configuration of an entire system including a yard waiting time estimation device according to an embodiment.
The yard waiting vessel time prediction device 100 predicts the yard waiting vessel time occurring in the prediction target period. The database 200 stores various data including actual data used by the yard waiting time prediction device 100 and data of calculation results by the yard waiting time prediction device 100. The host computer 300 is also referred to as a business computer or the like, and refers to data stored in the database 200, and stores and updates data in the database 200.

ヤード待ち滞船時間予測装置100において、データ取り込み部101は、データベース200から、対象とする製鉄所でのデータ解析期間における、各輸送船の到着日時、各輸送船の荷揚げ量、原材料の日別平均使用量、ヤードの日別平均在庫量、ヤードの容量等のデータを取り込む。データ解析期間は、例えばユーザが任意の期間を指定できるようにすればよい。   In the yard waiting time estimation device 100, the data capturing unit 101 reads, from the database 200, the arrival date and time of each transport ship, the unloading amount of each transport ship, and the daily amount of raw materials during the data analysis period at the target steelworks. Data such as average usage, daily average inventory of yards, and yard capacity are captured. As the data analysis period, for example, the user may be allowed to specify an arbitrary period.

予測モデル構築部102は、データ取り込み部101で取り込んだデータに基づいて、ヤード待ち滞船時間を予測する予測モデルを構築する。
本実施形態では、ある予測対象期間における単位時間あたりのヤード待ち滞船時間を予測するものとし、予測対象期間、単位時間ともに一日とする。もし、予測対象期間が一ヶ月等複数の単位時間に亘るときは、それぞれ単位時間に対して以下の計算を行う。この計算を行う日を、以下、当日とも呼ぶ。図3に示すように、製鉄所のヤードにおける予測対象期間始在庫量となる前日の在庫量と、当日に到着する輸送船の荷揚げ量合計(以下、荷揚げ量合計を入荷量と呼ぶ)とを足し合わせた量が、ヤードの容量を上回っていた場合、その超過分を当日の使用量で割った時間だけヤード待ち滞船が発生すると考える。すなわち、ヤード待ち滞船時間[日(day)]は、式(1)の計算式で表わされる。本実施形態では、前日の在庫量[トン(t)]、ヤードの容量[トン]、及び当日の使用量[トン]を固定値として与える。前日の在庫量は、例えばヤードの日別平均在庫量とすればよい。また、当日の使用量は、例えば原材料の日別平均使用量とすればよい。このように式(1)において当日の入荷量[トン]が確率変数となり、ヤード待ち滞船時間の期待値を計算するためには、当日の入荷量の確率分布を求めればよい。
The prediction model construction unit 102 constructs a prediction model for predicting the yard waiting time based on the data acquired by the data acquisition unit 101.
In the present embodiment, it is assumed that the yard waiting time per unit time in a certain prediction target period is predicted, and both the prediction target period and the unit time are one day. If the prediction target period extends over a plurality of unit times such as one month, the following calculation is performed for each unit time. The day on which this calculation is performed is hereinafter also referred to as the current day. As shown in FIG. 3, the inventory amount of the previous day, which is the forecasted inventory amount at the yard of the steelworks, and the total unloading amount of the transport ship arriving on the day (hereinafter, the total unloading amount is referred to as the receiving amount). If the combined amount exceeds the capacity of the yard, it is considered that a yard waiting vessel will occur only for the time obtained by dividing the excess by the usage on the day. That is, the yard waiting time [day (day)] is represented by the calculation formula of Expression (1). In the present embodiment, the stock amount [ton (t)] of the previous day, the yard capacity [ton], and the usage amount [ton] of the day are given as fixed values. The stock quantity of the previous day may be, for example, a daily average stock quantity of the yard. Further, the usage amount on the day may be, for example, a daily average usage amount of the raw materials. In this manner, in equation (1), the incoming quantity [ton] of the day becomes a probability variable, and the expected value of the yard waiting time can be calculated by calculating the probability distribution of the incoming quantity of the day.

Figure 2020013261
Figure 2020013261

ヤード待ち滞船時間に最も影響を及ぼす影響因子は当日の入荷量であり、それ以外の項目を確定的な値とした場合でも、計算精度が大きく劣化することはない。なお、前日の在庫量、ヤードの容量、及び当日の使用量は固定値に限らず、関数として与えてもよい。例えば前日の使用量、前日の在庫量、ヤードの容量に日々の実績データを与えれば、その日に期待されるヤード待ち滞船時間を予測することができる。   The most influential factor on the yard waiting time is the amount of goods received on the day, and the calculation accuracy does not significantly deteriorate even if other items are set to definite values. Note that the inventory amount, yard capacity, and usage amount on the previous day are not limited to fixed values, and may be given as functions. For example, if daily performance data is given to the usage amount of the previous day, the stock amount of the previous day, and the capacity of the yard, the yard waiting time expected on that day can be predicted.

当日に到着する輸送船の集合をi=1、2、3、・・・、N、輸送船毎の荷揚げ量をXiとすると、当日の入荷量yは、式(2)に示すように、当日に到着する輸送船の荷揚げ量Xiの合計として与えられる。
ここで、一日あたりに到着する輸送船の数Nは日によってばらつく確率変数である。また、輸送船毎の荷揚げ量Xiも輸送船によってばらつく確率変数である。したがって、当日の入荷量yを確率分布で表わすには、一日あたりに到着する輸送船の数Nの確率分布と、輸送船毎の荷揚げ量Xiの確率分布とを求めればよい。
Assuming that the set of transport ships arriving on the day is i = 1, 2, 3,..., N, and the unloading amount of each transport ship is X i , the incoming amount y of the day is expressed as shown in Expression (2). , it is given as the sum of unloading amount of X i of the transport ship to arrive on the day.
Here, the number N of transport ships arriving per day is a random variable that varies from day to day. Moreover, unloading amount X i for each transport ship is also a random variable which varies by transport ship. Therefore, to represent the stock amount y of the day with a probability distribution, it may be obtained and the probability distribution of the number N of the transport ship to arrive per day, and the probability distribution of the unloading amount X i of each transport ship.

Figure 2020013261
Figure 2020013261

予測モデル構築部102は、船数モデル化部102aと、荷揚げ量モデル化部102bと、入荷量モデル化部102cとを備える。船数モデル化部102aは、詳細は後述するが、一日あたりに到着する輸送船の数Nを確率分布で表わす。また、荷揚げ量モデル化部102bは、詳細は後述するが、輸送船毎の荷揚げ量Xiを確率分布で表わす。そして、入荷量モデル化部102cは、一日あたりの入荷量を、船数モデル化部102aで求めた一日あたりに到着する輸送船の数Nの確率分布と、荷揚げ量モデル化部102bで求めた輸送船毎の荷揚げ量Xiの確率分布とを複合した確率分布で表わす。
なお、ここでいう予測モデルの構築とは、式(1)の計算式そのものを作り出すという意味ではなく、予め設定されている計算式の枠組みに、与えられた情報を反映させて予測モデルを設定することをいう。
The prediction model construction unit 102 includes a ship number modeling unit 102a, an unloading amount modeling unit 102b, and a receiving amount modeling unit 102c. Although the details will be described later, the ship number modeling unit 102a represents the number N of transport ships arriving per day by a probability distribution. Moreover, unloading amount modeling unit 102b will be described in detail later, it represents the unloading amount X i for each transport ship in a probability distribution. Then, the arrival amount modeling unit 102c calculates the amount of arrival per day by the probability distribution of the number N of transport ships arriving per day obtained by the number of ships modeling unit 102a and the unloading amount modeling unit 102b. represented by a probability distribution obtained by combining the probability distributions of the landing amount X i for each determined transport ship.
It should be noted that the construction of the prediction model here does not mean that the calculation formula of equation (1) itself is created, but the prediction model is set by reflecting the given information in the framework of the calculation formula set in advance. To do.

計算部103は、予測モデル構築部102で構築した予測モデルの計算式(式(1))に、一日あたりの入荷量の発生確率を掛け合わせた関数を、当該入荷量について積分することにより、ヤード待ち滞船時間の期待値を計算する。   The calculation unit 103 integrates a function obtained by multiplying the calculation formula (formula (1)) of the prediction model constructed by the prediction model construction unit 102 by the probability of occurrence of the amount of arrival per day for the amount of arrival. Calculate the expected value of the yard waiting time.

計算結果出力部104は、計算部103の計算結果であるヤード待ち滞船時間の期待値を出力する。計算結果を出力するとは、例えば不図示の表示装置に表示したり、データベース200等の外部機器に送出したりすることをいう。   The calculation result output unit 104 outputs the expected value of the yard waiting time, which is the calculation result of the calculation unit 103. Outputting the calculation result means, for example, displaying it on a display device (not shown) or sending it to an external device such as the database 200.

図2は、実施形態に係るヤード待ち滞船時間予測装置100によるヤード待ち滞船時間予測方法を示すフローチャートである。
ステップS1で、データ取り込み部101は、データベース200から、対象とする製鉄所でのデータ解析期間における、各輸送船の到着日時、各輸送船の荷揚げ量、原材料の日別平均使用量、ヤードの日別平均在庫量、ヤードの容量等のデータを取り込む。
FIG. 2 is a flowchart illustrating a yard waiting time estimation method by the yard waiting time estimation device 100 according to the embodiment.
In step S1, the data capturing unit 101 reads, from the database 200, the date and time of arrival of each transport ship, the amount of unloading of each transport ship, the average daily usage of raw materials, and the yardage during the data analysis period at the target steelworks. Import data such as daily average inventory and yard capacity.

ステップS2〜S4で、予測モデル構築部102は、ステップS1において取り込んだデータに基づいて、ヤード待ち滞船時間を予測する予測モデルを構築する。
上述したように、ヤード待ち滞船時間は式(1)の計算式で表わされ、ヤード待ち滞船時間の期待値を計算するためには、当日の入荷量の確率分布を求めればよい。
In steps S2 to S4, the prediction model construction unit 102 constructs a prediction model for predicting the yard waiting time on the basis of the data captured in step S1.
As described above, the yard waiting time is expressed by the equation (1), and the expected value of the yard waiting time can be calculated by calculating the probability distribution of the arrival amount on the day.

ステップS2で、船数モデル化部102aは、ステップS1において取り込んだデータに基づいて、一日あたりに到着する輸送船の数Nを確率分布で表わす。
図4に、製鉄所の輸送船の到着間隔の分布の例を示す。図4の横軸は輸送船の到着間隔[日]を表わし、縦軸は頻度[回]を表わす。図4の分布は、ステップS1において取り込んだ、データ解析期間における各輸送船の到着日時に基づいて得られる。図4より、輸送船の到着間隔は、指数分布に従うことがわかる。指数分布は、ランダムな到着を表わす分布であり、式(3)に示すように、パラメータλで特徴付けられる分布である。λは単位時間あたりに平均的に製鉄所へ到着する輸送船の数を表す。本実施形態では、λは一日あたりに平均的に製鉄所へ到着する輸送船の数となる。図4の輸送船の到着間隔の分布に対して、非線形回帰分析によるフィッティングを行った結果、λ=0.25の値が得られた。
In step S2, the number-of-ships modeling unit 102a represents the number N of transport ships arriving per day in a probability distribution based on the data captured in step S1.
FIG. 4 shows an example of the distribution of arrival intervals of transport ships at a steelworks. The horizontal axis in FIG. 4 represents the arrival interval [days] of the transport ship, and the vertical axis represents the frequency [times]. The distribution in FIG. 4 is obtained based on the arrival date and time of each transport ship during the data analysis period captured in step S1. From FIG. 4, it can be seen that the arrival intervals of the transport vessels follow an exponential distribution. The exponential distribution is a distribution representing random arrival, and is a distribution characterized by a parameter λ as shown in equation (3). λ represents the average number of transport ships arriving at the steelworks per unit time. In the present embodiment, λ is the average number of transport ships arriving at the steelworks per day. As a result of fitting by non-linear regression analysis to the distribution of the arrival intervals of the transport ship in FIG. 4, a value of λ = 0.25 was obtained.

Figure 2020013261
Figure 2020013261

ここで、イベントの間隔が指数分布に従う過程を定常ポアソン過程といい、到着間隔が指数分布に従う到着過程の単位時間あたりの到着数はポアソン分布に従うことが知られている。したがって、当日に到着する輸送船の数がNである確率をP[N]とすると、その確率分布は式(4)で表わされる。   Here, a process in which the intervals of events follow an exponential distribution is called a stationary Poisson process, and it is known that the number of arrivals per unit time in an arrival process in which the arrival intervals follow an exponential distribution follows a Poisson distribution. Therefore, if the probability that the number of transport ships arriving on the day is N is P [N], the probability distribution is represented by Expression (4).

Figure 2020013261
Figure 2020013261

本実施形態では、輸送船の到着間隔を指数分布で表わしたが、指数分布に限定されるものではない。例えば複数の港で輸送船を融通する場合には、輸送船の到着間隔がガンマ分布に従うことがある。この場合、輸送船の到着間隔をガンマ分布で表わしてもよい。また、輸送船の到着間隔が季節によって変化する場合、指数分布のパラメータλを時間tで変化する関数λ(t)とすることも可能である。この場合、一日あたりに到着する輸送船の数Nは、非定常ポアソン分布と呼ばれる確率分布で表わすことが可能となる。   In the present embodiment, the arrival interval of the transport ship is represented by an exponential distribution, but is not limited to the exponential distribution. For example, when a transport ship is accommodated in a plurality of ports, the arrival intervals of the transport ships may follow a gamma distribution. In this case, the arrival interval of the transport ship may be represented by a gamma distribution. When the arrival interval of the transport ship changes depending on the season, the parameter λ of the exponential distribution can be a function λ (t) that changes with time t. In this case, the number N of transport ships arriving per day can be represented by a probability distribution called a non-stationary Poisson distribution.

ステップS3で、荷揚げ量モデル化部102bは、ステップS1において取り込んだデータに基づいて、輸送船毎の荷揚げ量Xiを確率分布で表わす。
図5に、製鉄所に到着した輸送船毎の荷揚げ量の分布の例を示す。図5の横軸は輸送船毎の荷揚げ量[トン]を表わし、縦軸は頻度[回]を表わす。図5の分布は、ステップS1において取り込んだ、データ解析期間における各輸送船の荷揚げ量に基づいて得られる。図5より、輸送船毎の荷揚げ量は、40000トン〜60000トン程度にピークを持ち、右側に裾の長い分布であることがわかる。本実施形態では、輸送船毎の荷揚げ量Xiを、ガンマ分布で表わす。ガンマ分布は、右側に長い裾を持つ分布に対するモデル化手法として適していることが知られており、式(5)に示すように、尺度パラメータα及び形状パラメータθで特徴付けられる分布である。図5の輸送船毎の荷揚げ量の分布に対して、ガンマ分布によって非線形回帰分析を行った結果、α=4.2×10-5、θ=3.24の値が得られた。
In step S3, the unloading amount modeling unit 102b, based on the acquired data in step S1, represents the unloading amount X i for each transport ship in a probability distribution.
FIG. 5 shows an example of the distribution of the unloading amount of each transport ship arriving at the steelworks. The horizontal axis in FIG. 5 represents the unloading amount [ton] for each transport ship, and the vertical axis represents the frequency [times]. The distribution in FIG. 5 is obtained based on the unloading amount of each transport ship during the data analysis period, which is taken in step S1. From FIG. 5, it can be seen that the unloading amount of each transport ship has a peak at about 40,000 to 60,000 tons, and has a long tail on the right side. In the present embodiment, the unloading amount X i for each transport ship, represented by gamma distribution. The gamma distribution is known to be suitable as a modeling method for a distribution having a long tail on the right side, and is a distribution characterized by a scale parameter α and a shape parameter θ as shown in Expression (5). As a result of performing a non-linear regression analysis by a gamma distribution on the distribution of the unloading amount of each transport ship in FIG. 5, values of α = 4.2 × 10 −5 and θ = 3.24 were obtained.

Figure 2020013261
Figure 2020013261

本実施形態では、輸送船毎の荷揚げ量Xiをガンマ分布で表わしたが、ガンマ分布に限定されるものではない。例えば輸送船毎の荷揚げ量がある平均ロットサイズを中心に一様なばらつきを持つ場合、輸送船毎の荷揚げ量が正規分布に従うことがある。この場合、輸送船毎の荷揚げ量Xiを正規分布で表わしてもよい。 In the present embodiment, the unloading amount X i for each transport ship expressed in gamma distribution, it is not limited to a gamma distribution. For example, if the unloading amount of each transport ship has a uniform variation centered on a certain average lot size, the unloading amount of each transport ship may follow a normal distribution. In this case, the unloaded quantity X i for each transport ship may be represented by a normal distribution.

ステップS4で、入荷量モデル化部102cは、一日あたりの入荷量を、ステップS2において求めた一日あたりに到着する輸送船の数Nの確率分布と、ステップS3において求めた輸送船毎の荷揚げ量Xiの確率分布とを複合した確率分布で表わす。
本実施形態では、上述したように、一日あたりに到着する輸送船の数Nをポアソン分布で表わし、輸送船毎の荷揚げ量Xiをガンマ分布で表わした。ここで、イベント発生回数がポアソン分布に従い、イベント毎の処理(荷揚げ量)がガンマ分布に従う分布は、Tweedie分布と呼ばれる分布でモデル化可能であることが知られている。Tweedie分布は、指数分布族の一種であり、累積分布関数が式(6)に従う。
In step S4, the arrival amount modeling unit 102c calculates the arrival amount per day based on the probability distribution of the number N of transport ships arriving per day obtained in step S2 and the probability distribution of each transportation ship obtained in step S3. represented by a probability distribution obtained by combining the probability distributions of the landing amount X i.
In the present embodiment, as described above, represents the number N of transport vessels arriving per day at Poisson distribution, it expressed the landing amount X i for each transport ship in gamma distribution. Here, it is known that a distribution in which the number of event occurrences follows a Poisson distribution and a processing (loading amount) for each event follows a gamma distribution can be modeled as a distribution called a Tweedie distribution. The Tweedie distribution is a kind of exponential distribution family, and the cumulative distribution function follows Expression (6).

Figure 2020013261
Figure 2020013261

図6に、図4に基づく一日あたりに到着する輸送船の数Nの確率分布と、図5に基づく輸送船毎の荷揚げ量Xiの確率分布とを用いて一日あたりの入荷量をTweedie分布で表わした結果を示す。図6の横軸は一日あたりの入荷量[トン]を表わし、左の縦軸は確率を、右の縦軸は累積確率を表わす。図6の実線は確率分布を、点線は累積確率分布を表わす。一日あたりの入荷量は、0の可能性が最も高く、入荷があるときは50000〜60000トン付近で確率が最大となることがわかる。Tweedie分布は、0付近に高い確率を持つ分布を上手く表現できる利点があり、一日あたりの入荷量を精度良くモデル化することができる。 6, the probability distribution of the number N of transport vessels arriving per day based on FIG. 4, the arrival of the daily by using the probability distribution of the landing amount X i for each transport ship according to FIG. 5 The result represented by the Tweedie distribution is shown. The horizontal axis in FIG. 6 represents the amount of incoming cargo [ton] per day, the left vertical axis represents the probability, and the right vertical axis represents the cumulative probability. The solid line in FIG. 6 represents the probability distribution, and the dotted line represents the cumulative probability distribution. It can be seen that the probability of arrival per day is most likely to be 0, and when there is an arrival, the probability becomes maximum around 50,000 to 60,000 tons. The Tweedie distribution has the advantage that a distribution having a high probability near 0 can be well represented, and the amount of stock per day can be accurately modeled.

本実施形態では、一日あたりに到着する輸送船の数Nをポアソン分布で表わし、輸送船毎の荷揚げ量Xiをガンマ分布で表わし、一日あたりの入荷量をTweedie分布で表わしたが、Tweedie分布に限定されるものではない。例えば一日あたりに到着する輸送船の数Nがポアソン分布に従い、輸送船毎の荷揚げ量Xiが対数正規分布に従うとした場合、一日あたりの入荷量を、対数正規型複合ポアソン過程を用いて計算するようにしてもよい。又は、一日あたりの入荷量の実績データを非線形関数で近似し、近似した関数を一日あたりの入荷量の確率分布として用いてもよい。例えば、一日あたりの入荷量の実績データから0値を除外した後に、非線形関数としてガンマ分布を適用し、近似関数を作成してもよい。 In this embodiment, represents the number N of transport vessels arriving per day in a Poisson distribution, the unloading amount X i for each transport ship expressed as a gamma distribution, but represents the arrival of the daily in Tweedie distribution, It is not limited to the Tweedie distribution. For example, according to the number N is Poisson distribution freighter arriving per day, if the unloaded quantity X i for each transport ship has to follow a log-normal distribution, the stock amount per day, using a log-normal compound Poisson process May be calculated. Alternatively, the actual data of the amount received per day may be approximated by a non-linear function, and the approximated function may be used as a probability distribution of the amount received per day. For example, an approximate function may be created by excluding the zero value from the actual data of the amount received per day and then applying a gamma distribution as a nonlinear function.

ステップS5で、計算部103は、ステップS2〜S4において構築した予測モデルの計算式(式(1))に、一日あたりの入荷量の発生確率を掛け合わせた関数を、当該入荷量について積分することにより、ヤード待ち滞船時間の期待値を計算する。
前日の在庫量をs、当日の入荷量をy、ヤードの容量をW、当日の使用量をuとすると、式(1)で表わされるヤード待ち滞船時間は(s+y−W)/uである。ヤード待ち滞船時間の期待値は、ヤード待ち滞船時間(s+y−W)/uに、一日あたりの入荷量yの発生確率pを掛け合わせた関数を積分することにより計算される。ここで、図3に示すように、ヤードの容量Wから前日の在庫量sを引いた値をヤード余力と定義すると、当日の入荷量yがヤード余力に達するとヤード待ち滞船が発生する。積分区間は、当日の入荷量yに関してヤード待ち滞船が発生するヤード余力(W−s)から∞までとする。なお、積分区間の上限は∞に限らず、操業実績から滞船が発生する最大の時間がわかるのであればその値を設定してもよい。一日あたりの入荷量の発生確率をp(y|λ,α,θ)と置くと、ヤード待ち滞船時間Tの期待値E[T]は式(7)で表わされる。
In step S5, the calculation unit 103 integrates a function obtained by multiplying the calculation formula (formula (1)) of the prediction model constructed in steps S2 to S4 by the probability of occurrence of the amount of arrival per day for the amount of arrival. Then, the expected value of the yard waiting time is calculated.
Assuming that the previous day's inventory amount is s, the day's arrival amount is y, the yard capacity is W, and the day's usage amount is u, the yard waiting time expressed by the equation (1) is (s + y-W) / u. is there. The expected value of the yard waiting time is calculated by integrating a function obtained by multiplying the yard waiting time (s + y-W) / u by the probability of occurrence p of the incoming quantity y per day. Here, as shown in FIG. 3, if a value obtained by subtracting the inventory amount s of the previous day from the yard capacity W is defined as the yard surplus, a yard waiting vessel occurs when the arrival amount y of the day reaches the yard surplus. The integration interval is from the yard surplus (W-s) at which a yard waiting vessel occurs to the arrival amount y on the day to ∞. Note that the upper limit of the integration section is not limited to ∞, and the value may be set as long as the maximum time during which a wreck occurs is known from the operation results. Assuming that the probability of occurrence of the arrival quantity per day is p (y | λ, α, θ), the expected value E [T] of the yard waiting time T is expressed by equation (7).

Figure 2020013261
Figure 2020013261

本実施形態では、前日の在庫量s、ヤードの容量W、当日の使用量uを固定値として与えるが、これに限られるものではない。もし、予測対象期間が複数日に亘る場合、すなわち、ヤード待ち滞船時間の期待値を複数日に亘って計算する場合は、1日目は初期在庫を与え、2日目以降は、実際の輸送船による原料の入荷量や使用量に応じて在庫量を計算し、計算によって与えられた在庫量を当日の在庫として、ヤード待ち滞船時間の期待値を計算してもよい。もしくは、予測対象期間における在庫量を近似的にすべて一定の値を与えて、ヤード待ち滞船時間の期待値を計算してもよい。また、前日の在庫量s、ヤードの容量W、当日の使用量uのすべて又は一部が確率的に変化する値である場合には、その確率的に変化する値に対して発生確率を掛け合わせた関数を重積分すれば、ヤード待ち滞船時間の期待値を計算することができる。   In the present embodiment, the stock amount s, the yard capacity W, and the usage amount u of the current day are given as fixed values on the previous day, but are not limited thereto. If the forecast target period extends over multiple days, that is, if the expected value of the yard waiting time is calculated over multiple days, the initial inventory is given on the first day, and the actual The inventory amount may be calculated according to the amount of raw materials received or used by the transport ship, and the expected value of the yard waiting time may be calculated using the inventory amount given by the calculation as inventory on the day. Alternatively, an expected value of the yard waiting time may be calculated by giving a substantially constant value to all of the stock amounts in the prediction target period. If all or part of the inventory amount s, the yard capacity W, and the usage amount u on the previous day are values that change stochastically, the value that changes stochastically is multiplied by the occurrence probability. By integrating the combined functions, the expected value of the yard waiting time can be calculated.

ステップS6で、計算結果出力部104は、ステップS5における計算結果であるヤード待ち滞船時間の期待値を出力する。
図7は、ヤード余力に対するヤード待ち滞船時間の期待値を示すグラフである。図7の横軸はヤード余力を表わし、縦軸はヤード待ち滞船時間の期待値を表わす。図中の十字線は、製鉄所の平均的なヤード余力とそれに対応するヤード滞船時間の期待値を示す。図7から、データ解析期間における実績データに基づいて予測されるヤード待ち滞船時間は、一日平均4.5時間であることがわかる。同期間における実績のヤード滞船時間は10.1[h/日]であり、実績に比べてやや低い値が得られた。
本実施形態で計算されるヤード待ち滞船時間は、設備や操業トラブル影響等を除く、設備能力だけを鑑みて計算した結果であり、そのため、実績に比べて低い値が計算されたと想定される。ヤードの扱い方、銘柄毎に制約がある場合には、銘柄を管理するヤード別に本発明を適用すれば、計算精度がより向上することが期待される。ところで、設備投資判断や導入効果を見積もる上では、設備能力を鑑みてヤード待ち滞船時間の下限値を見積もることが重要であり、これらを検討する上で、本発明は十分有益な指標となると言える。
In step S6, the calculation result output unit 104 outputs the expected value of the yard waiting time as the calculation result in step S5.
FIG. 7 is a graph showing an expected value of the yard waiting time with respect to the yard surplus. The horizontal axis in FIG. 7 represents the yard reserve, and the vertical axis represents the expected value of the yard waiting time. The crosshairs in the figure show the average yard surplus of the steelworks and the expected value of the corresponding yard stay time. From FIG. 7, it can be seen that the yard waiting time estimated based on the actual data during the data analysis period is an average of 4.5 hours per day. The actual yard detention time in the same period was 10.1 [h / day], which was slightly lower than the actual value.
The yard waiting time calculated in the present embodiment is a result calculated only in consideration of the equipment capacity, excluding the effects of equipment and operation trouble, etc., and therefore, it is assumed that a lower value is calculated compared to the actual result. . In the case where there is a restriction on how to handle yards and brands, if the present invention is applied to each yard for managing brands, it is expected that the calculation accuracy will be further improved. By the way, it is important to estimate the lower limit of the yard waiting time in consideration of the equipment capacity in determining capital investment and estimating the effect of introduction.In considering these, the present invention is a sufficiently useful index. I can say.

以上述べたように、ヤード待ち滞船に対する理論的解析に基づいて、ヤード待ち滞船時間の期待値を予測することができる。これにより、ヤード待ち滞船と安定操業に必要な在庫量のトレードオフの見極めが可能となり、ヤード待ち滞船を抑えるとともに適切な在庫量を確保することが可能となる。   As described above, the expected value of the yard waiting time can be predicted based on the theoretical analysis of the yard staying vessel. This makes it possible to determine the trade-off between the yard waiting vessels and the stock quantity necessary for stable operation, thereby suppressing the yard waiting vessels and securing an appropriate stock quantity.

以上、本発明を実施形態と共に説明したが、上記実施形態は本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
図2のフローチャートでは、ステップS2乃至S4の予測モデルの構築を都度行うように示したが、これに限られるものではない。例えばデータ解析期間における実績データに基づいて予測モデルの構築を予め実施しておき、その結果をヤード待ち滞船時間予測装置100やデータベース200で予め保有するようにしてもよい。
As described above, the present invention has been described with the embodiment. However, the above embodiment is merely an example of the embodiment in carrying out the present invention, and the technical scope of the present invention is interpreted in a limited manner. It must not be. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features.
Although the flowchart of FIG. 2 illustrates that the prediction models in steps S2 to S4 are constructed each time, the present invention is not limited to this. For example, a prediction model may be constructed in advance based on the actual data during the data analysis period, and the result may be stored in the yard waiting time prediction device 100 or the database 200 in advance.

本発明を適用したヤード待ち滞船時間予測装置は、例えばCPU、ROM、RAM等を備えたコンピュータ装置により実現される。なお、図1ではヤード待ち滞船時間予測装置100を一台の装置として図示したが、例えば複数台の装置により構成される形態でもかまわない。
また、本発明は、本発明の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータがプログラムを読み出して実行することによっても実現可能である。
The yard waiting time estimation device to which the present invention is applied is realized by a computer device having, for example, a CPU, a ROM, a RAM, and the like. Although the yard waiting time prediction device 100 is shown as one device in FIG. 1, for example, a configuration constituted by a plurality of devices may be used.
The present invention can also be realized by supplying software (program) for realizing the functions of the present invention to a system or apparatus via a network or various storage media, and a computer of the system or apparatus reads and executes the program. It is feasible.

100:ヤード待ち滞船時間予測装置、101:データ取り込み部、102:滞船予測モデル構築部、102a:船数モデル化部、102b:荷揚げ量モデル化部、102c:入荷量モデル化部、103:計算部、104:計算結果出力部   100: yard waiting time prediction device, 101: data capture unit, 102: vessel prediction model construction unit, 102a: number of ships modeling unit, 102b: unloading amount modeling unit, 102c: receiving amount modeling unit, 103 : Calculation unit, 104: calculation result output unit

Claims (7)

輸送船を使用して輸送した物品を揚地にて荷揚げする際のヤード待ち滞船時間を予測するヤード待ち滞船時間予測装置であって、
前記揚地のヤードにおける予測対象期間始在庫量と、前記予測対象期間に到着する輸送船の荷揚げ量合計(以下、荷揚げ量合計を入荷量と呼ぶ)とを足し合わせた量が、前記ヤードの容量を上回っていた場合、その超過分を前記予測対象期間の使用量で割った時間だけヤード待ち滞船が発生するとした予測モデルを用いて、
前記予測モデルの計算式に所定の単位時間あたりの入荷量の発生確率を掛け合わせた関数を、当該入荷量について積分することにより、ヤード待ち滞船時間の期待値を計算する手段を備えたことを特徴とするヤード待ち滞船時間予測装置。
A yard waiting time prediction device that predicts a yard waiting time when unloading goods transported using a transport ship at a landing site,
The sum of the stock quantity at the beginning of the forecast period in the landing yard and the total unloading amount of the transport ship arriving during the forecast period (hereinafter, the total unloading amount is referred to as the receiving amount) is the amount of the yard. If the capacity was exceeded, using the prediction model that the yard waiting vessel occurs only the time divided by the amount of use in the prediction target period, the excess,
Means for calculating the expected value of the yard waiting time by integrating a function obtained by multiplying the calculation formula of the prediction model by the probability of occurrence of the amount of arrival per unit time with respect to the amount of arrival. A yard waiting time prediction device.
実績データに基づいて、前記所定の単位時間あたりに到着する輸送船の数と、輸送船毎の荷揚げ量とをそれぞれ確率分布で表わし、
前記所定の単位時間あたりの入荷量を、前記所定の単位時間あたりに到着する輸送船の数の確率分布と、前記輸送船毎の荷揚げ量の確率分布とを複合した確率分布で表わすことを特徴とする請求項1に記載のヤード待ち滞船時間予測装置。
Based on actual data, the number of transport ships arriving per the predetermined unit time and the unloading amount of each transport ship are represented by probability distributions, respectively.
The arrival amount per predetermined unit time is represented by a probability distribution that combines a probability distribution of the number of transport ships arriving per predetermined unit time and a probability distribution of unloading amount of each transport ship. The yard waiting time estimation device according to claim 1, wherein
実績データに基づいて、前記所定の単位時間あたりに到着する輸送船の数をポアソン分布で表わし、輸送船毎の荷揚げ量をガンマ分布で表わし、
前記所定の単位時間あたりの入荷量をTweedie分布で表わすことを特徴とする請求項2に記載のヤード待ち滞船時間予測装置。
Based on actual data, the number of transport ships arriving per the predetermined unit time is represented by a Poisson distribution, and the unloading amount of each transport ship is represented by a gamma distribution,
The yard waiting time estimation device according to claim 2, wherein the amount of arrival per predetermined unit time is represented by a Tweedie distribution.
前記予測対象期間始在庫量、前記ヤードの容量、及び前記予測対象期間の使用量を固定値として与えることを特徴とする請求項1乃至3のいずれか1項に記載のヤード待ち滞船時間予測装置。   The yard waiting time estimation according to any one of claims 1 to 3, wherein the prediction target period start stock amount, the yard capacity, and the usage amount of the prediction target period are given as fixed values. apparatus. 積分区間は、前記ヤードの容量から前記予測対象期間始在庫量を引いた値から∞までとすることを特徴とする請求項4に記載のヤード待ち滞船時間予測装置。   5. The yard waiting time prediction device according to claim 4, wherein the integration section is set to a value obtained by subtracting the forecast stock at the start of the target period from the capacity of the yard to ∞. 輸送船を使用して輸送した物品を揚地にて荷揚げする際のヤード待ち滞船時間を予測するヤード待ち滞船時間予測方法であって、
前記揚地のヤードにおける予測対象期間始在庫量と、前記予測対象期間に到着する輸送船の荷揚げ量合計(以下、荷揚げ量合計を入荷量と呼ぶ)とを足し合わせた量が、前記ヤードの容量を上回っていた場合、その超過分を前記予測対象期間の使用量で割った時間だけヤード待ち滞船が発生するとした予測モデルを用いて、
前記予測モデルの計算式に所定の単位時間あたりの入荷量の発生確率を掛け合わせた関数を、当該入荷量について積分することにより、ヤード待ち滞船時間の期待値を計算することを特徴とするヤード待ち滞船時間予測方法。
A yard waiting time prediction method for predicting a yard waiting time when unloading goods transported using a transport ship at a landing site,
The sum of the stock quantity at the beginning of the forecast period in the landing yard and the total unloading amount of the transport ship arriving during the forecast period (hereinafter, the total unloading amount is referred to as the receiving amount) is the amount of the yard. If the capacity was exceeded, using the prediction model that the yard waiting vessel occurs only the time divided by the amount of use in the prediction target period, the excess,
An expected value of the yard waiting time is calculated by integrating a function obtained by multiplying the calculation formula of the prediction model by the probability of occurrence of the amount of arrival per unit time with respect to the amount of arrival. Yard waiting time prediction method.
輸送船を使用して輸送した物品を揚地にて荷揚げする際のヤード待ち滞船時間を予測するためのプログラムであって、
前記揚地のヤードにおける予測対象期間始在庫量と、前記予測対象期間に到着する輸送船の荷揚げ量合計(以下、荷揚げ量合計を入荷量と呼ぶ)とを足し合わせた量が、前記ヤードの容量を上回っていた場合、その超過分を前記予測対象期間の使用量で割った時間だけヤード待ち滞船が発生するとした予測モデルを用いて、
前記予測モデルの計算式に所定の単位時間あたりの入荷量の発生確率を掛け合わせた関数を、当該入荷量について積分することにより、ヤード待ち滞船時間の期待値を計算する処理をコンピュータに実行させるためのプログラム。
A program for predicting a yard waiting time when unloading goods transported using a transport ship at a landing site,
The sum of the stock quantity at the beginning of the forecast period in the landing yard and the total unloading amount of the transport ship arriving during the forecast period (hereinafter, the total unloading amount is referred to as the receiving amount) is the amount of the yard. If the capacity was exceeded, using the prediction model that the yard waiting vessel occurs only the time divided by the amount of use in the prediction target period, the excess,
A computer calculates the expected value of the yard waiting time by executing a function of integrating the function obtained by multiplying the calculation formula of the prediction model by the probability of occurrence of the arrival amount per unit time with respect to the arrival amount. Program to let you.
JP2018134256A 2018-07-17 2018-07-17 Yard waiting time predictor, method and program Active JP7103004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018134256A JP7103004B2 (en) 2018-07-17 2018-07-17 Yard waiting time predictor, method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018134256A JP7103004B2 (en) 2018-07-17 2018-07-17 Yard waiting time predictor, method and program

Publications (2)

Publication Number Publication Date
JP2020013261A true JP2020013261A (en) 2020-01-23
JP7103004B2 JP7103004B2 (en) 2022-07-20

Family

ID=69170818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018134256A Active JP7103004B2 (en) 2018-07-17 2018-07-17 Yard waiting time predictor, method and program

Country Status (1)

Country Link
JP (1) JP7103004B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112232584A (en) * 2020-10-28 2021-01-15 中冶南方工程技术有限公司 Bulk raw fuel automobile sampling and batching method and system for iron and steel enterprises
CN114066303A (en) * 2021-11-25 2022-02-18 交通运输部规划研究院 AIS-based port planning adaptability analysis method and system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211503A (en) * 1984-04-05 1985-10-23 Kajima Corp Physical distribution control system including container ship
JPH07315284A (en) * 1994-05-24 1995-12-05 Chichibu Onoda Cement Corp Physical distribution simulation system in bulk production factory
JPH11310313A (en) * 1998-02-26 1999-11-09 Kobe Steel Ltd Physical distribution planing device
JP2005165676A (en) * 2003-12-02 2005-06-23 Mitsubishi Heavy Ind Ltd Facility management system and facility management method
JP2006111387A (en) * 2004-10-14 2006-04-27 Kobe Steel Ltd Raw material ship sailing plan device, raw material ship sailing plan method, and program
JP2010095333A (en) * 2008-10-16 2010-04-30 Jfe Steel Corp Device for planning and supporting warehousing work
US20140278704A1 (en) * 2013-03-15 2014-09-18 Luis D. ELIZONDO System and method of shipping scheduling involving parallel port operations using prepositioned vessels
JP2018073200A (en) * 2016-10-31 2018-05-10 新日鐵住金株式会社 Safety inventory determination device, method and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211503A (en) * 1984-04-05 1985-10-23 Kajima Corp Physical distribution control system including container ship
JPH07315284A (en) * 1994-05-24 1995-12-05 Chichibu Onoda Cement Corp Physical distribution simulation system in bulk production factory
JPH11310313A (en) * 1998-02-26 1999-11-09 Kobe Steel Ltd Physical distribution planing device
JP2005165676A (en) * 2003-12-02 2005-06-23 Mitsubishi Heavy Ind Ltd Facility management system and facility management method
JP2006111387A (en) * 2004-10-14 2006-04-27 Kobe Steel Ltd Raw material ship sailing plan device, raw material ship sailing plan method, and program
JP2010095333A (en) * 2008-10-16 2010-04-30 Jfe Steel Corp Device for planning and supporting warehousing work
US20140278704A1 (en) * 2013-03-15 2014-09-18 Luis D. ELIZONDO System and method of shipping scheduling involving parallel port operations using prepositioned vessels
JP2018073200A (en) * 2016-10-31 2018-05-10 新日鐵住金株式会社 Safety inventory determination device, method and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
笹嶋博,ほか1名: "船舶特性と埠頭特性を考慮した滞船現象に関する一考察", 港湾技研資料, JPN6020042638, December 1973 (1973-12-01), JP, pages 1 - 30, ISSN: 0004684069 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112232584A (en) * 2020-10-28 2021-01-15 中冶南方工程技术有限公司 Bulk raw fuel automobile sampling and batching method and system for iron and steel enterprises
CN112232584B (en) * 2020-10-28 2023-11-24 中冶南方工程技术有限公司 Method and system for sampling and batching bulk raw fuel automobiles of iron and steel enterprises
CN114066303A (en) * 2021-11-25 2022-02-18 交通运输部规划研究院 AIS-based port planning adaptability analysis method and system
CN114066303B (en) * 2021-11-25 2022-07-19 交通运输部规划研究院 AIS-based port planning adaptability analysis method and system

Also Published As

Publication number Publication date
JP7103004B2 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
Cullinane et al. The efficiency analysis of container port production using DEA panel data approaches
Wu et al. An integrated programming model for storage management and vehicle scheduling at container terminals
Lin et al. Simulation-based investment planning for Humen Port
CN103606021B (en) A kind of LNG receiving station dynamically stock forecast dispatching method
JP6740860B2 (en) Safety stock determination device, method and program
Vandaele et al. Advanced resource planning
US20200394744A1 (en) Method and system for predicting a port-stay duration of a vessel at a port
Leachman et al. Congestion analysis of waterborne, containerized imports from Asia to the United States
JP2020013261A (en) Yard waiting demurrage time prediction device, method and program
Alcalde et al. Optimal space for storage yard considering yard inventory forecasts and terminal performance
GB2526840A (en) Inventory setting system
US20160283895A1 (en) Plan determination method, computer-readable recording medium storing plan determination program, and plan determination apparatus
Arda et al. Multi-period vehicle loading with stochastic release dates
KR100298268B1 (en) Method for preestimating a plan of a container terminal
CN114444751A (en) Material demand prediction method and device, computer equipment and storage medium
Derse et al. A simulation modelling approach for analysing the transportation of containers in a container terminal system
Schenk et al. Intra market optimization for express package carriers with station to station travel and proportional sorting
CN115293443B (en) Bridge crane and container ship loading and unloading operation time prediction method, system and medium
Průša et al. Using a non-parametric technique to evaluate the efficiency of a logistics company
Zhai et al. Optimization and simulation on tanker vessels scheduling for efficient terminal operations
CN113343166A (en) Logistics inventory management system based on discrete event simulation
JP6848624B2 (en) Shipage estimation device, method and program
Okorokov Strategic management of transport cargo complex
JPH11100127A (en) Raw material handling control method
Al Fathin et al. THE EFFORTS TO INCREASE DRY BULK UNLOADING PERFORMANCE AT THE PORT OF PT. BANDAR BAKAU JAYA BANTEN

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220620

R151 Written notification of patent or utility model registration

Ref document number: 7103004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151