JP2020012831A - Magnetic sensor and magnetic sensor device - Google Patents

Magnetic sensor and magnetic sensor device Download PDF

Info

Publication number
JP2020012831A
JP2020012831A JP2019149992A JP2019149992A JP2020012831A JP 2020012831 A JP2020012831 A JP 2020012831A JP 2019149992 A JP2019149992 A JP 2019149992A JP 2019149992 A JP2019149992 A JP 2019149992A JP 2020012831 A JP2020012831 A JP 2020012831A
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetic field
length
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2019149992A
Other languages
Japanese (ja)
Inventor
喜々津 哲
Satoru Kikitsu
哲 喜々津
岩崎 仁志
Hitoshi Iwasaki
仁志 岩崎
聡志 白鳥
Satoshi Shiratori
聡志 白鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2019149992A priority Critical patent/JP2020012831A/en
Publication of JP2020012831A publication Critical patent/JP2020012831A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

To provide a magnetic sensor and a magnetic sensor device capable of suppressing noise and having high sensitivity.SOLUTION: A magnetic sensor according to the present embodiment comprises: a magnetic field detection part having a magnetic layer the length of which in a first direction is 10 times the length in a second direction orthogonal to the first direction or more, and the length of which in a third direction orthogonal to the first direction and the second direction is 1/2 the length in the second direction or less; a first magnetic substance member arranged along the first direction of the magnetic field detection part and the length of which in the third direction is longer than the length of the magnetic layer in the third direction; a first nonmagnetic insulation layer arranged between the magnetic field detection part and the first magnetic substance member and the length of which in the second direction is 1/2 the length of the magnetic layer in the second direction or less; and a circuit for sending a current to the magnetic layer.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、磁気センサおよび磁気センサ装置に関する。   Embodiments described herein relate generally to a magnetic sensor and a magnetic sensor device.

従来、生体から発生する磁界を計測する装置として、SQUID(Superconducting Quantum Interference Device:超伝導量子干渉素子)磁気センサを用いた生体磁気計測装置が提案されている。この生体磁気計測装置においては、多数のSQUID磁気センサを配列させて生体磁気の計測に用いることで、脳磁図、心磁図等の二次元生体磁気情報を得ることができる。このSQUID磁気センサは超伝導を用いるため、液体ヘリウムなどの冷媒で冷却する必要がある。このため、SQUID磁気センサを用いた生体磁気計測装置は、装置が巨大になり、冷媒を用いるため運営コストが高くなり、消費電力も大きくなり、測定対象(患者)の拘束が必要になる。   Conventionally, as a device for measuring a magnetic field generated from a living body, a biomagnetic measurement device using a SQUID (Superconducting Quantum Interference Device) magnetic sensor has been proposed. In this biomagnetism measuring apparatus, two-dimensional biomagnetic information such as a magnetoencephalogram and a magnetocardiogram can be obtained by arranging a large number of SQUID magnetic sensors and using them for measuring biomagnetism. Since this SQUID magnetic sensor uses superconductivity, it needs to be cooled with a refrigerant such as liquid helium. For this reason, the biomagnetism measuring device using the SQUID magnetic sensor becomes bulky, uses a refrigerant, increases operating costs, increases power consumption, and requires the measurement object (patient) to be restrained.

また、TMR型磁気センサ(トンネル磁気抵抗効果(Tunnel Magneto-Resistance)を用いた素子)が知られている。このTMR型磁気センサは出力が大きいがノイズレベルも大きく、結果として、SN比が悪化してしまう。   Further, a TMR type magnetic sensor (an element using a tunnel magneto-resistance effect) is known. This TMR type magnetic sensor has a large output but a large noise level, and as a result, the SN ratio deteriorates.

一方、CIP−GMR型磁気センサ(面内通電巨大磁気抵抗効果CIP−GMR(Current In Plane-Giant Magneto-Resistance)を用いた素子)が提案されている。このCIP−GMR型磁気センサは抵抗が小さいため、ノイズレベルは小さいが、磁気抵抗変化率が小さいので出力が小さい。また、CIP−GMR型磁気センサに、軟磁性体からなる磁束収束部(MFC:Magnetic Flux Concentrator)を設けた構成にして出力を向上させる素子が提案されている。   On the other hand, a CIP-GMR type magnetic sensor (an element using an in-plane energized giant magnetoresistance effect CIP-GMR (Current In Plane-Giant Magneto-Resistance)) has been proposed. This CIP-GMR type magnetic sensor has a small noise level due to a small resistance, but has a small output due to a small magnetoresistance change rate. Further, there has been proposed an element which has a configuration in which a magnetic flux concentrator (MFC: Magnetic Flux Concentrator) made of a soft magnetic material is provided in a CIP-GMR type magnetic sensor to improve the output.

CIP−GMR型磁気センサが検出する磁界方向は長軸に垂直な方向であり、磁化検出層の磁化がその方向に回転すると、細線の側壁面に磁気チャージ(磁荷)が発生するために反磁界が生じる。この反磁界は磁化の回転に非線形な歪を発生させ、またその歪は細線の位置によって異なってくるため、磁界検出のSN比の低下を招くという課題がある。   The direction of the magnetic field detected by the CIP-GMR type magnetic sensor is a direction perpendicular to the long axis, and when the magnetization of the magnetization detection layer rotates in that direction, a magnetic charge (magnetic charge) is generated on the side wall surface of the fine wire, so that the magnetic field is detected. A magnetic field is created. This demagnetizing field causes non-linear distortion in the rotation of the magnetization, and the distortion varies depending on the position of the thin wire, which causes a problem of lowering the S / N ratio of the magnetic field detection.

特開2001−358378号公報JP 2001-358378 A 特開2004−150994号公報JP 2004-150994 A

Japanese Journal of Applied Physics 52 (2013) 04CM07Japanese Journal of Applied Physics 52 (2013) 04CM07 IEEE Transaction on Magnetics, vol.43, No.6 p.2376IEEE Transaction on Magnetics, vol.43, No.6 p.2376

本実施形態は、ノイズを抑制することができるとともに高い感度を有する磁気センサおよび磁気センサ装置を提供する。   The present embodiment provides a magnetic sensor and a magnetic sensor device that can suppress noise and have high sensitivity.

本実施形態による磁気センサは、第1方向の長さが前記第1方向に直交する第2方向の長さの10倍以上でかつ前記第1方向および前記第2方向に直交する第3方向の長さが前記第2方向の長さの1/2以下である磁性層を有する磁界検出部と、前記磁界検出部の前記第1方向に沿って配置され、前記磁性層の前記第3方向の長さより前記第3方向の長さが長い第1磁性体部材と、前記磁界検出部と前記第1磁性体部材との間に配置され、前記第2方向の長さが前記磁性層の前記第2方向の長さの1/2以下である第1非磁性絶縁層と、前記磁性層に電流を流す回路と、を備えている。   In the magnetic sensor according to the present embodiment, the length in the first direction is at least 10 times the length in the second direction orthogonal to the first direction, and the length in the third direction orthogonal to the first direction and the second direction. A magnetic field detection unit having a magnetic layer whose length is equal to or less than の of the length in the second direction; and a magnetic field detection unit disposed along the first direction of the magnetic field detection unit, the magnetic layer having a length in the third direction. A first magnetic member having a length in the third direction longer than a length, and being disposed between the magnetic field detecting section and the first magnetic member; A first non-magnetic insulating layer having a length equal to or less than の of a length in two directions, and a circuit for flowing a current through the magnetic layer;

第1実施形態による磁気センサの平面図。FIG. 2 is a plan view of the magnetic sensor according to the first embodiment. 図2(a)、2(b)は、外部磁界による磁気抵抗層内の磁化の回転を模式的に示した図。2A and 2B are diagrams schematically showing rotation of magnetization in a magnetoresistive layer due to an external magnetic field. 短軸方向に印加する外部磁界に対する磁気抵抗層の磁化の短軸方向の変化を示す図。FIG. 7 is a diagram illustrating a change in the short axis direction of the magnetization of the magnetoresistive layer with respect to an external magnetic field applied in the short axis direction. 磁界収束体の動作を模式的に示す図。The figure which shows operation | movement of a magnetic field converging body typically. 図5(a)乃至図5(d)は、磁界収束体の動作をy−z面で模式的に示す図。FIGS. 5A to 5D are diagrams schematically showing the operation of the magnetic field converging body in the yz plane. 磁気抵抗層と磁界収束体との距離と磁界検出感度の関係を計算するシミュレーションに用いたモデルの模式図。FIG. 3 is a schematic diagram of a model used for a simulation for calculating a relationship between a distance between a magnetoresistive layer and a magnetic field converging body and a magnetic field detection sensitivity. 磁気抵抗層の厚さが10nmのときのシミュレーションで求めたヒステリシス曲線を示す図。The figure which shows the hysteresis curve calculated | required by the simulation when the thickness of a magnetoresistive layer is 10 nm. 磁気抵抗層の厚さが20nmのときのシミュレーションで求めたヒステリシス曲線を示す図。The figure which shows the hysteresis curve calculated | required by the simulation when the thickness of a magnetoresistive layer is 20 nm. 磁気抵抗層の厚さが50nmのときのシミュレーションで求めたヒステリシス曲線を示す図。The figure which shows the hysteresis curve calculated | required by the simulation when the thickness of a magnetoresistive layer is 50 nm. 間隔gapの長さに対するμ_95の変化のシミュレーション結果を示す図。The figure showing the simulation result of change of μ_95 to the length of interval gap. 間隔gapの長さに対する規格化したμ_95の変化のシミュレーション結果を示す図。The figure showing the simulation result of change of μ_95 normalized to the length of interval gap. 磁気抵抗層と磁界収束体の短軸方向の長さが200nmの場合のヒステリシスループの計算結果を示す図。The figure which shows the calculation result of the hysteresis loop when the length of the short axis direction of a magnetoresistive layer and a magnetic field converging body is 200 nm. 磁気抵抗層と磁界収束体の短軸方向の長さが200nm、長軸方向の長さが2000nmである場合のヒステリシスループの計算結果を示す図。The figure which shows the calculation result of the hysteresis loop when the length of the short axis direction of a magnetoresistive layer and a magnetic field converging body is 200 nm, and the length of a long axis direction is 2000 nm. 第2実施形態による磁気センサの平面図。FIG. 6 is a plan view of a magnetic sensor according to a second embodiment. 第2実施形態の変形例による磁気センサの平面図。FIG. 13 is a plan view of a magnetic sensor according to a modification of the second embodiment. 第3実施形態による磁気センサの平面図。FIG. 13 is a plan view of a magnetic sensor according to a third embodiment. 図17(a)、17(b)は、第3実施形態による磁界検出部の断面図。17A and 17B are cross-sectional views of a magnetic field detection unit according to the third embodiment. 磁界検出部の第1例を示す断面図。FIG. 4 is a sectional view showing a first example of a magnetic field detection unit. 磁界検出部の第2例を示す断面図。FIG. 6 is a sectional view showing a second example of the magnetic field detection unit. 磁界検出部の第3例を示す断面図。Sectional drawing which shows the 3rd example of a magnetic field detection part. 磁界検出部の第4例を示す断面図。Sectional drawing which shows the 4th example of a magnetic field detection part. 磁界検出部の第5例を示す断面図。Sectional drawing which shows the 5th example of a magnetic field detection part. 磁界検出部の第6例を示す断面図。Sectional drawing which shows the 6th example of a magnetic field detection part. 図24(a)乃至24(c)は磁気センサの製造方法を説明する平面図。FIGS. 24A to 24C are plan views illustrating a method for manufacturing a magnetic sensor. 図25(a)乃至25(c)は磁気センサの製造方法を説明する断面図。25A to 25C are cross-sectional views illustrating a method for manufacturing a magnetic sensor. 図26(a)および26(b)は磁気センサの製造方法を説明する断面図。26A and 26B are cross-sectional views illustrating a method for manufacturing a magnetic sensor. 図27は、ノイズレベルの見積もりの用いた磁気センサの形状を示す図、図27(b)は、ノイズレベルの見積もり結果を示す図。FIG. 27 is a diagram showing the shape of the magnetic sensor used for estimating the noise level, and FIG. 27B is a diagram showing the result of estimating the noise level. 第4実施形態による磁気センサ装置を示す図。The figure which shows the magnetic sensor apparatus by 4th Embodiment. 第4実施形態の第1変形例による磁気センサ装置を示す図。FIG. 14 is a diagram showing a magnetic sensor device according to a first modification of the fourth embodiment. 第4実施形態の第2変形例による磁気センサ装置を示す図。FIG. 14 is a diagram showing a magnetic sensor device according to a second modification of the fourth embodiment. センサ部の一実施例を示す図。The figure which shows one Example of a sensor part.

以下に図面を参照して実施形態について詳細に説明する。   Hereinafter, embodiments will be described in detail with reference to the drawings.

(第1実施形態)
第1実施形態による磁気センサの平面の模式図を図1に示す。この第1実施形態の磁気センサ1は、磁界検出部11と、この磁界検出部11を挟むように設けられた非磁性絶縁層12a、12bと、非磁性絶縁層12aに対して磁界検出部11と反対側に設けられた磁界収束体13aと、非磁性絶縁層12bに対して磁界検出部11と反対側に設けられた磁界収束体13bと、を備えている。この第1実施形態においては、磁界検出部として磁気抵抗層(磁性層)11Aが用いられる。
(1st Embodiment)
FIG. 1 shows a schematic plan view of the magnetic sensor according to the first embodiment. The magnetic sensor 1 according to the first embodiment includes a magnetic field detecting unit 11, nonmagnetic insulating layers 12a and 12b provided so as to sandwich the magnetic field detecting unit 11, and a magnetic field detecting unit 11 with respect to the nonmagnetic insulating layer 12a. And a magnetic field converging body 13b provided on the side opposite to the magnetic field detecting unit 11 with respect to the nonmagnetic insulating layer 12b. In the first embodiment, a magnetoresistive layer (magnetic layer) 11A is used as a magnetic field detecting unit.

磁気抵抗層11Aの長軸(x方向)の端面には非磁性絶縁体12a、12bが接している。さらに非磁性絶縁体12a、12bには磁界収束体13a、13bがそれぞれ接している。磁気抵抗層11Aには、長軸方向に電流を流し、外部磁界によって磁気抵抗層11Aの磁化が回転し、それにより両端の電気抵抗が変化することによって磁界強度を検出する検出回路16が接続されている。図1においてz方向が膜厚方向である。測定する磁界の方向は符号17に示す方向になる。   Non-magnetic insulators 12a and 12b are in contact with the end surface of the long axis (x direction) of the magnetoresistive layer 11A. Further, magnetic field converging members 13a and 13b are in contact with the non-magnetic insulators 12a and 12b, respectively. A detection circuit 16 is connected to the magnetoresistive layer 11A to detect a magnetic field intensity by causing a current to flow in the major axis direction, rotating the magnetization of the magnetoresistive layer 11A by an external magnetic field, and thereby changing the electric resistance at both ends. ing. In FIG. 1, the z direction is the film thickness direction. The direction of the magnetic field to be measured is the direction indicated by reference numeral 17.

磁気抵抗層11Aは、いわゆる、磁気抵抗効果(AMR(Anisotropic Magneto-Resistive))、あるいは、面内通電型巨大磁気抵抗効果(CIP(Current In Plane)−GMR(Giant Magneto-resistance))現象により、磁界強度を測定する。測定する磁界によって磁気抵抗層11A内の磁化が回転し、それが磁気抵抗層11Aの抵抗変化となる現象を利用する。この現象を効果的に利用するには、磁気抵抗層11A内の磁化が面内で均一な磁化状態を保って回転する必要がある。このため、磁気抵抗層11Aの短軸方向(y方向)の長さと、長軸方向(x方向)の長さとの比は10以上であることが好ましい。   The magnetoresistive layer 11A is formed by a so-called magnetoresistive effect (AMR (Anisotropic Magneto-Resistive)) or an in-plane conduction type giant magnetoresistive effect (CIP (Current In Plane) -GMR (Giant Magneto-resistance)). Measure the magnetic field strength. The phenomenon in which the magnetization in the magnetoresistive layer 11A is rotated by the magnetic field to be measured, which changes the resistance of the magnetoresistive layer 11A is used. In order to effectively use this phenomenon, it is necessary to rotate the magnetization in the magnetoresistive layer 11A while maintaining a uniform magnetization state in the plane. For this reason, it is preferable that the ratio of the length of the short axis direction (y direction) of the magnetoresistive layer 11A to the length of the long axis direction (x direction) is 10 or more.

このように構成すると、磁気異方性を磁気抵抗層11Aに特に付与しない場合には、形状磁気異方性により、磁気抵抗層11A内の磁化は、外部磁界がゼロのときは均一に長軸方向を向く。また、磁界中の冷却等により短軸方向に磁気異方性を付与した場合には、磁気抵抗層11A内の磁化は均一に短軸方向を向く。磁気抵抗層11Aの短軸と長軸の比が10未満であると、形状磁気異方性が弱くなるので、磁気抵抗層11Aの内部の磁化は均一に同一方向を向きにくくなり、複数の磁区が発生する。これにより磁界測定の感度が悪くなり、またノイズが増えるので好ましくない。   With this configuration, when the magnetic anisotropy is not particularly given to the magnetoresistive layer 11A, the magnetization in the magnetoresistive layer 11A is uniformly long axis when the external magnetic field is zero due to the shape magnetic anisotropy. Turn in the direction. When the magnetic anisotropy is given in the short axis direction by cooling in a magnetic field or the like, the magnetization in the magnetoresistive layer 11A is uniformly directed in the short axis direction. If the ratio of the short axis to the long axis of the magnetoresistive layer 11A is less than 10, the shape magnetic anisotropy is weakened, so that the magnetization inside the magnetoresistive layer 11A is difficult to be uniformly oriented in the same direction. Occurs. This undesirably deteriorates the sensitivity of the magnetic field measurement and increases noise.

また、磁気抵抗層11Aの厚さ(z方向の長さ)は短軸方向(y方向)の長さの1/2以下であることが好ましい。厚さが短軸方向の長さの1/2より大きいと、磁化は膜面に垂直方向にも向きやすくなり、磁区が発生しやすくなる。また、膜面内での均一な磁化の回転が起こりにくくなる。したがって、磁界測定の感度が悪くなり、またノイズが増えるので好ましくない。   The thickness (length in the z direction) of the magnetoresistive layer 11A is preferably equal to or less than の of the length in the short axis direction (y direction). If the thickness is larger than 1/2 of the length in the minor axis direction, the magnetization tends to be directed also in the direction perpendicular to the film surface, and magnetic domains are easily generated. In addition, uniform rotation of magnetization in the film plane does not easily occur. Therefore, the sensitivity of the magnetic field measurement deteriorates and noise increases, which is not preferable.

磁界収束体13a、13bは軟磁性体で形成することが好ましい。磁界収束体13aは、磁気抵抗層11A側の面14の断面積がその対向面15の断面積よりも小さい。磁束収束体13bも磁束収束体13aと同様に、磁気抵抗層11A側の断面積がその対向面の断面積よりも小さい。このような断面積の差を作り出す手法として、図1に示すように、磁界収束体13a,13bの膜厚を一定にして、その磁気抵抗層11A側の面14のx方向の長さがその対向面15のx方向の長さよりも小さくすることができる。また、磁気抵抗層11A側の面14のx方向の長さとその対向面15のx方向の長さを同じにして、面14の厚さ(z方向の長さ)を面15の厚さよりも薄くしても良い。また、この二つの手法を組み合わせても良い。   The magnetic field converging members 13a and 13b are preferably formed of a soft magnetic material. In the magnetic field converging body 13a, the cross-sectional area of the surface 14 on the magnetoresistive layer 11A side is smaller than the cross-sectional area of the opposing surface 15 thereof. Similarly to the magnetic flux converging body 13a, the cross-sectional area of the magnetic flux converging body 13b on the side of the magnetoresistive layer 11A is smaller than that of the opposing surface. As a method of creating such a difference in cross-sectional area, as shown in FIG. 1, the film thickness of the magnetic field converging bodies 13a and 13b is made constant, and the length of the surface 14 on the side of the magnetoresistive layer 11A in the x direction is adjusted. The length can be smaller than the length of the facing surface 15 in the x direction. Further, the length of the surface 14 on the side of the magnetoresistive layer 11A in the x direction is equal to the length of the opposing surface 15 in the x direction, and the thickness of the surface 14 (the length in the z direction) is made larger than the thickness of the surface 15. It may be thin. Further, these two methods may be combined.

図1に示す第1実施形態においては、磁界収束体13a、13bが磁気抵抗層11Aの長軸側の端面の両側に非磁性絶縁層12a、12bを介して設けられているが、片側に設けてもよい。この場合、製造プロセスが簡単になるが、磁界収束効果が減少する。   In the first embodiment shown in FIG. 1, the magnetic field converging bodies 13a and 13b are provided on both sides of the end face on the long axis side of the magnetoresistive layer 11A via the nonmagnetic insulating layers 12a and 12b, but are provided on one side. You may. In this case, the manufacturing process is simplified, but the magnetic field focusing effect is reduced.

第1実施態様で用いられている磁界収束体13a、13bは、一般に、MFC(Magnetic Flux Concentrator)として用いられている。すなわち、磁気センサ1の最も外側の面15に到着した磁束線は、磁界収束体13a中でその反対側の面14に絞り込まれ、磁束密度、すなわち磁界強度が断面積の比に応じて増加する。本実施形態による磁気センサ1は磁界収束体13a、13bを用いて、磁界測定効率を向上させることができる。   The magnetic field converging bodies 13a and 13b used in the first embodiment are generally used as an MFC (Magnetic Flux Concentrator). That is, the magnetic flux lines arriving at the outermost surface 15 of the magnetic sensor 1 are narrowed down to the opposite surface 14 in the magnetic field converging body 13a, and the magnetic flux density, that is, the magnetic field intensity increases according to the ratio of the cross-sectional area. . The magnetic sensor 1 according to the present embodiment can improve the magnetic field measurement efficiency by using the magnetic field converging bodies 13a and 13b.

磁界収束体13a、13bと磁気抵抗層11Aとの間には非磁性絶縁体12a、12bがそれぞれ設けられている。   Non-magnetic insulators 12a and 12b are provided between the magnetic field concentrators 13a and 13b and the magnetoresistive layer 11A, respectively.

非磁性絶縁体12a、12bが設けられていない場合、磁界収束体13a、13bと磁気抵抗層11Aが導通してしまうため、磁気抵抗層11Aに流れる電流が不均一に減少し、検出される信号のSN比が劣化してしまう。また、磁気抵抗層11Aと磁界収束体13a、13bが交換結合してしまうため、外部磁界による磁気抵抗層11Aの磁化の回転が均一でなくなり、検出感度が落ちかつノイズが増えて好ましくない。したがって、非磁性絶縁体12a、12bは非磁性でかつ絶縁体であることが好ましい。   If the non-magnetic insulators 12a and 12b are not provided, the magnetic field concentrators 13a and 13b and the magnetoresistive layer 11A conduct, so that the current flowing through the magnetoresistive layer 11A decreases non-uniformly and the detected signal Will deteriorate. Further, since the magnetoresistive layer 11A and the magnetic field converging bodies 13a and 13b are exchange-coupled, the rotation of the magnetization of the magnetoresistive layer 11A due to the external magnetic field is not uniform, and the detection sensitivity is lowered and noise is increased, which is not preferable. Therefore, it is preferable that the nonmagnetic insulators 12a and 12b are nonmagnetic and insulators.

非磁性絶縁体12a、12bの長軸方向(x方向)の長さは磁気抵抗層11Aと同じでも良いし、それより大きくても良い。短軸方向(y方向)の長さは50nm以下、あるいは磁気抵抗層11Aの短軸方向の長さの1/2以下であることが好ましい。非磁性絶縁体12a、12bの短軸方向(y方向)の長さが1nm以下になると、絶縁体として連続した構造を作成するのが困難になるため、好ましくない。非磁性絶縁体12a、12bの厚さ(z方向の長さ)は磁気抵抗層11Aと同じでも良いし、それより大きくても良い。   The length of the non-magnetic insulators 12a and 12b in the major axis direction (x direction) may be the same as or larger than that of the magnetoresistive layer 11A. It is preferable that the length in the short axis direction (y direction) is 50 nm or less, or 1/2 or less of the length of the magnetoresistive layer 11A in the short axis direction. If the length of the nonmagnetic insulators 12a and 12b in the minor axis direction (y direction) is 1 nm or less, it is difficult to form a continuous structure as an insulator, which is not preferable. The thickness (the length in the z direction) of the nonmagnetic insulators 12a and 12b may be the same as or larger than the magnetoresistive layer 11A.

磁界収束体13a、13bの磁束収束効果、および磁気抵抗層11Aの磁化の回転に悪影響を及ぼさない範囲で、磁界収束体13a、13bと非磁性絶縁体12a、12bとの間、あるいは非磁性絶縁体12a、12bと磁気抵抗層11Aとの間に、磁性体あるいは別の非磁性体を設けてもよい。   As long as the magnetic flux converging bodies 13a and 13b do not adversely affect the magnetic flux converging effect of the magnetic field converging bodies 13a and 13b and the rotation of the magnetization of the magnetoresistive layer 11A, the magnetic field converging bodies 13a and 13b and the non-magnetic insulators 12a and 12b or non-magnetic insulating A magnetic material or another non-magnetic material may be provided between the bodies 12a and 12b and the magnetoresistive layer 11A.

磁界収束体13a、13bの磁気抵抗層11A側の面の長さ(x方向の長さ)は、磁気抵抗層11Aの長さ(x方向の長さ)よりも長くても短くても良い。磁界収束体13a、13bの長さが長い場合、収束した磁束の一部を失い、結果として磁界強度が減少してしまう。しかし、磁界収束体13a、13bの端部における磁界の乱れの影響を小さくすることができる。   The length (length in the x direction) of the surfaces of the magnetic field converging bodies 13a and 13b on the magnetoresistive layer 11A side may be longer or shorter than the length (length in the x direction) of the magnetoresistive layer 11A. When the length of the magnetic field converging bodies 13a and 13b is long, a part of the converged magnetic flux is lost, and as a result, the magnetic field intensity decreases. However, the influence of the disturbance of the magnetic field at the ends of the magnetic field converging bodies 13a and 13b can be reduced.

一方、磁界収束体13a、13bのx方向の長さが磁気抵抗層11Aのx方向の長さよりも短い場合には、収束した磁束をすべて検出できる利点がある。しかし、磁気センサ1内の磁界強度に分布ができるので、線形性を損ねる可能性がある。磁界収束体13a、13bの磁気抵抗層11A側の面14の長さは、作成する磁気センサ1の要求仕様に基づいて決定すればよい。   On the other hand, when the length of the magnetic field converging bodies 13a and 13b in the x direction is shorter than the length of the magnetoresistive layer 11A in the x direction, there is an advantage that all the converged magnetic fluxes can be detected. However, since the magnetic field strength in the magnetic sensor 1 is distributed, linearity may be lost. The length of the surface 14 of the magnetic field converging bodies 13a and 13b on the side of the magnetoresistive layer 11A may be determined based on the required specifications of the magnetic sensor 1 to be created.

磁界収束体13a、13bのy方向の長さは特に制限はないが、磁気抵抗層11Aのy方向の長さよりも長い方が現実的な収束効果が期待できるので好ましい。   The length of the magnetic field converging members 13a and 13b in the y direction is not particularly limited, but is preferably longer than the length of the magnetoresistive layer 11A in the y direction because a realistic convergence effect can be expected.

図1に示す本実施形態による磁気センサ1が、低ノイズで高感度な磁界検出ができる作用を以下に説明する。図2(a)、2(b)は、外部磁界による磁気抵抗層21内の磁化22の回転を模式的に示したものである。図2(a)は外部磁界がゼロの場合で、この場合には、磁化22は均一に長手方向を向いている。このとき、磁気抵抗層21の長軸側の端面、すなわち、長軸に沿った端面23には磁荷が現れない。   The operation of the magnetic sensor 1 according to the present embodiment shown in FIG. 1 that can detect a magnetic field with low noise and high sensitivity will be described below. FIGS. 2A and 2B schematically show rotation of the magnetization 22 in the magnetoresistive layer 21 due to an external magnetic field. FIG. 2A shows the case where the external magnetic field is zero. In this case, the magnetization 22 is uniformly oriented in the longitudinal direction. At this time, no magnetic charges appear on the end face on the long axis side of the magnetoresistive layer 21, that is, on the end face 23 along the long axis.

図2(b)は外部磁界が短軸方向に印加された場合であり、このとき磁化22は図に示すように回転する。このとき、磁気抵抗層21の長軸側の端面23には磁荷24が発生する。この磁荷24は反磁界、すなわち磁荷24からの漏洩磁界を発生し、それによって磁化22自身の向きを変える。磁荷24の分布、すなわち反磁界の分布は局所的であるため、磁気抵抗層21内に磁区ができやすくなり、また磁化の回転状態は不均一になる。特に磁気抵抗層21の端部25のあたりでは磁荷による磁化回転の不均一性が著しくなる。   FIG. 2B shows a case where an external magnetic field is applied in the short axis direction. At this time, the magnetization 22 rotates as shown in the figure. At this time, a magnetic charge 24 is generated on the end face 23 on the long axis side of the magnetoresistive layer 21. The magnetic charge 24 generates a demagnetizing field, that is, a leakage magnetic field from the magnetic charge 24, thereby changing the direction of the magnetization 22 itself. Since the distribution of the magnetic charge 24, that is, the distribution of the demagnetizing field is local, a magnetic domain is easily formed in the magnetoresistive layer 21, and the rotation state of the magnetization becomes non-uniform. In particular, in the vicinity of the end 25 of the magnetoresistive layer 21, the nonuniformity of the magnetization rotation due to the magnetic charge becomes remarkable.

このような現象が起こると、外部磁界に対して磁化の回転は非線形になって、精度の高い磁界測定ができなくなる。このことを模式的に図3に示す。図3は外部磁界Hに対する、磁気抵抗層21の短軸方向の磁化Mの変化を表したものである。理想的な磁気センサの場合には、グラフ31で示すように、磁化Mは磁界に対して直線的に増加し、飽和磁界Hk以降では変化を起こさなくなる。このような特性であれば、Hk以下の磁界において、磁界強度Hと磁化Mとが精度の良い比例関係にあるので、高精度の磁界測定ができる。   When such a phenomenon occurs, the rotation of the magnetization becomes nonlinear with respect to the external magnetic field, and it becomes impossible to measure the magnetic field with high accuracy. This is schematically shown in FIG. FIG. 3 shows a change in the magnetization M in the minor axis direction of the magnetoresistive layer 21 with respect to the external magnetic field H. In the case of an ideal magnetic sensor, as shown in the graph 31, the magnetization M increases linearly with respect to the magnetic field, and does not change after the saturation magnetic field Hk. With such characteristics, the magnetic field strength H and the magnetization M are in a highly accurate proportional relationship in a magnetic field of Hk or less, so that a highly accurate magnetic field measurement can be performed.

一方、上述の、図2(b)で示したような、磁荷が発生して磁化回転が非線形になる場合には、例えばグラフ32に示すような特性になる。磁界Hの変化に対して磁化Mは非線形に変化するので、磁界測定の精度が悪くなる。また、磁界を増加する場合と減少する場合とで同じ磁界Hの値に対して磁化Mの値が異なる、いわゆるヒステリシスが発生し、測定の再現性や信頼性が劣化してしまう。   On the other hand, when a magnetic charge is generated and the magnetization rotation becomes non-linear as shown in FIG. 2B, the characteristics are as shown in a graph 32, for example. Since the magnetization M changes nonlinearly with the change in the magnetic field H, the accuracy of the magnetic field measurement deteriorates. In addition, a so-called hysteresis, in which the value of the magnetization M is different from the same value of the magnetic field H when the magnetic field is increased and when the magnetic field is decreased, occurs, and the reproducibility and reliability of the measurement deteriorate.

このような磁荷発生による非線形現象を防ぐには、一般に、長軸方向の磁気異方性を大きくして、磁荷による漏洩磁界の影響を相対的に小さくする手法が知られている。しかし、この場合、グラフ33に示すように飽和磁界Hkが大きくなってしまい、図3では、図に示す範囲内に飽和磁界Hkが存在しないことになり、磁界Hに対する磁化Mの変化が小さくなる。その結果、磁界感度が低下してしまう。   In order to prevent such a non-linear phenomenon due to the generation of magnetic charges, a method of increasing the magnetic anisotropy in the major axis direction and relatively reducing the influence of the leakage magnetic field due to the magnetic charges is generally known. However, in this case, the saturation magnetic field Hk increases as shown in the graph 33. In FIG. 3, the saturation magnetic field Hk does not exist in the range shown in the figure, and the change in the magnetization M with respect to the magnetic field H decreases. . As a result, the magnetic field sensitivity decreases.

このように、磁気抵抗層11Aの磁化回転による磁界測定を行う場合、磁化の回転に伴って長軸側の端部に発生する磁荷によって、測定精度が劣化してしまう問題があった。   As described above, when performing the magnetic field measurement by rotating the magnetization of the magnetoresistive layer 11A, there is a problem that the measurement accuracy is deteriorated by the magnetic charge generated at the long-axis end due to the rotation of the magnetization.

本実施形態では、磁界収束体13a、13bを設けることによってこの問題を解決するものである。すなわち、磁気抵抗層11Aの長軸に沿った端面に非磁性絶縁体12a、12bを介して磁界収束体13a、13bを設ける。この部分の説明のための模式図を図4に示す。磁気抵抗層11Aの磁化は外部磁界によって回転して磁荷24aが発生している。この磁荷24aを「+」の記号で記す。この磁気抵抗層11Aに近接して軟磁性体からなる磁界収束体13を設置する。   In the present embodiment, this problem is solved by providing the magnetic field converging bodies 13a and 13b. That is, the magnetic field converging members 13a and 13b are provided on the end face along the long axis of the magnetoresistive layer 11A via the nonmagnetic insulators 12a and 12b. FIG. 4 is a schematic diagram for explaining this part. The magnetization of the magnetoresistive layer 11A is rotated by an external magnetic field to generate a magnetic charge 24a. This magnetic charge 24a is indicated by a symbol “+”. The magnetic field converging body 13 made of a soft magnetic material is provided near the magnetoresistive layer 11A.

磁界収束体13は軟磁性であるので、磁気抵抗層11Aの磁荷24aが発生する漏洩磁界によって、磁界収束体13の磁気抵抗層11A側の面の磁化が回転し、ちょうど逆向きの磁荷24bを発生する。この磁荷24bを、「−」の記号で示す。このように、磁荷24a、24bが発生すると、それぞれの磁荷24a、24bを直接結ぶ磁束線ができ、結果として、磁気抵抗層11Aの磁化の回転に影響を与えるような漏洩磁界(反磁界)が消えてしまう。このことは、磁気抵抗層11Aから見ると、長軸の端部が存在せず、あたかも磁気抵抗層11Aがy方向に無限に続いているように見えることになる。   Since the magnetic field converging member 13 is soft magnetic, the leakage magnetic field generated by the magnetic charge 24a of the magnetoresistive layer 11A rotates the magnetization of the surface of the magnetic field converging member 13 on the magnetoresistive layer 11A side, and the magnetic charges in the opposite direction. 24b is generated. This magnetic charge 24b is indicated by the symbol "-". As described above, when the magnetic charges 24a and 24b are generated, magnetic flux lines directly connecting the magnetic charges 24a and 24b are formed, and as a result, a leakage magnetic field (demagnetizing field) that affects the rotation of the magnetization of the magnetoresistive layer 11A is formed. ) Disappears. This means that, when viewed from the magnetoresistive layer 11A, the end of the major axis does not exist, and the magnetoresistive layer 11A looks as if it continues infinitely in the y direction.

この状況を、図5(a)乃至図5(d)に示す。図5(a)乃至図5(d)は、磁気抵抗層11Aおよび磁界収束体13をy−z面で示す。図5(a)は磁気抵抗層11Aと磁界収束体13の厚さが同じで距離が離れている場合を示し、磁荷24aからの漏洩磁界は磁界収束体13の磁荷24bにすべて吸収されるわけではなく、一部は外に漏れて自身の磁化24aに影響を与えてしまう。   This situation is shown in FIGS. 5 (a) to 5 (d). 5A to 5D show the magnetoresistive layer 11A and the magnetic field converging body 13 in the yz plane. FIG. 5A shows a case where the thickness of the magnetoresistive layer 11A and the magnetic field converging body 13 are the same and the distance is large, and the leakage magnetic field from the magnetic charge 24a is completely absorbed by the magnetic charge 24b of the magnetic field converging body 13. However, some of them leak out and affect their own magnetization 24a.

磁気抵抗層11Aと磁界吸収体13の距離が十分に近ければ、図5(b)に示すように、外に漏れて自身の磁化24aに影響を与えてしまう磁束を少なくし、反磁界をキャンセルすることができる。   If the distance between the magnetoresistive layer 11A and the magnetic field absorber 13 is sufficiently short, as shown in FIG. 5B, the magnetic flux that leaks out and affects its magnetization 24a is reduced, and the demagnetizing field is canceled. can do.

一方、図5(c)に示すように、磁界収束体13の厚さ(z方向の長さ)が磁気抵抗層11Aの厚さ(z方向の長さ)よりも薄いと、両者の距離が十分に小さくても磁気抵抗層11A自身に回り込む反磁界が発生してしまう。   On the other hand, as shown in FIG. 5C, when the thickness (length in the z direction) of the magnetic field converging body 13 is smaller than the thickness (length in the z direction) of the magnetoresistive layer 11A, the distance between the two is reduced. Even if it is sufficiently small, a demagnetizing field which goes around the magnetoresistive layer 11A itself is generated.

逆に、磁界収束体13の厚さ(z方向の長さ)が、磁気抵抗層11Aの厚さ(z方向の長さ)よりも厚いと、図5(d)に示すように、より安定して反磁界のキャンセルが可能となる。   Conversely, when the thickness (length in the z direction) of the magnetic field converging body 13 is larger than the thickness (length in the z direction) of the magnetoresistive layer 11A, as shown in FIG. As a result, the demagnetizing field can be canceled.

(磁気抵抗層と磁界収束体との距離と、磁界検出感度の関係)
次に、磁気抵抗層11Aと磁界収束体13a、13bとの距離と、磁界検出感度の関係について、LLG(Landau-Lifshitz-Gilbert)方程式を用いてシミュレーションを行った。計算に用いたモデルの模式図を図6に示す。磁気抵抗層11Aとして、幅100nm、長さ1000nm(長軸と短軸の比10)で、厚さtを10、20、50nmと変えたものをモデルとして用いた。これを一辺が10nmの直方体のメッシュで分割した。材料の特性は、磁気抵抗層11AとしてNiFeを用いると想定して飽和磁化Msを800emu/ccとし、y方向に磁気異方性Kuを1kerg/ccとした。メッシュ間の交換定数Aを1μerg/cmとし、ギルバートダンピング定数αを1.0として計算した。磁界収束体13a、13bは、磁気抵抗層11Aと同じ大きさ、同じ磁気特性のものを用い、図6に示すように、所定の間隔(gap)を隔てて同じ平面上に配置した。間隔gapは10、20、30、50、100nmの5種類を用意した。
(Relationship between the distance between the magnetoresistive layer and the magnetic field concentrator and the magnetic field detection sensitivity)
Next, the relationship between the distance between the magnetoresistive layer 11A and the magnetic field converging bodies 13a and 13b and the magnetic field detection sensitivity was simulated using the Landau-Lifshitz-Gilbert (LLG) equation. FIG. 6 is a schematic diagram of the model used for the calculation. As the magnetoresistive layer 11A, a model having a width of 100 nm, a length of 1000 nm (major axis / minor axis ratio of 10), and a thickness t of 10, 20, and 50 nm was used as a model. This was divided by a rectangular mesh having one side of 10 nm. Properties of a material, the saturation magnetization Ms assuming using NiFe as the magnetoresistive layer 11A and 800 emu / cc, and a 1kerg / cc magnetic anisotropy Ku y in the y direction. The calculation was performed with an exchange constant A between meshes of 1 μerg / cm and a Gilbert damping constant α of 1.0. The magnetic field converging bodies 13a and 13b have the same size and the same magnetic characteristics as the magnetoresistive layer 11A, and are arranged on the same plane at a predetermined interval (gap) as shown in FIG. Five types of gaps of 10, 20, 30, 50, and 100 nm were prepared.

磁界収束体13a、13bを本実施形態に近い大きなサイズにすることは、計算時間が膨大になるため困難であった。そこで、磁界収束体13a、13bの磁化回転を擬似的に実現するために、磁界収束体13a、13bの磁気抵抗層11Aと反対側の端部10nm分(1メッシュ分)の磁化をx方向に20kOeの磁界で固着する操作を行った。この操作により、磁界収束体13a、13bの磁気抵抗層11A側の対向面での磁荷発生による漏洩磁界発生がなくなり、前述したように、磁界収束体13a、13bはy方向に無限に長い軟磁性体に似た磁化回転をするようになる。この操作は、軟磁性体の磁化回転のシミュレーションを行う際に一般的に用いられるものである。   It is difficult to make the magnetic field converging bodies 13a and 13b large in size close to the present embodiment because the calculation time becomes enormous. In order to simulate the rotation of the magnetization of the magnetic field converging bodies 13a and 13b, the magnetization of the magnetic field converging bodies 13a and 13b at the end 10 nm (one mesh) on the opposite side to the magnetoresistive layer 11A is shifted in the x direction. An operation of fixing with a magnetic field of 20 kOe was performed. By this operation, the generation of the leakage magnetic field due to the generation of the magnetic charge on the opposing surfaces of the magnetic field converging bodies 13a and 13b on the side of the magnetoresistive layer 11A is eliminated, and as described above, the magnetic field converging bodies 13a and 13b are infinitely long in the y direction. The magnetization rotation resembles that of a magnetic material. This operation is generally used when simulating the magnetization rotation of the soft magnetic material.

計算したヒステリシスループを図7乃至図9に示す。横軸は印加磁界強度、縦軸は磁気抵抗層11Aのy方向の磁化を規格化したものである。外部磁界は図6に示すように、y方向に印加した。磁気抵抗層11Aの中央部(x−y面内の500nm×100nmの矩形部分)のみの磁化のy方向成分をプロットしてある。これにより、計算領域の狭さに起因する人為的なヒステリシスノイズを除いた、GMRあるいはAMR出力に直接対応する量に相当するヒステリシスとなる。図7は図6に示す厚さtが10nm、図8は図6に示す厚さtが20nm、図9は図6に示す厚さtが50nmである場合のヒステリシスループを示す。全ての場合において各ヒステリシスループは概ね閉じており、比較的直線性の良い特性が得られている。ヒステリシスの大きさや直線性は膜厚tが薄いほど向上する。このことは、磁気抵抗層11Aの膜厚方向の磁化回転がほとんどないことを意味し、このことから、磁気抵抗層11Aの膜厚は短軸の長さ(=100nm)の1/2以下である場合に良好な軟磁気特性が得られることが示された。   FIGS. 7 to 9 show the calculated hysteresis loop. The horizontal axis is the applied magnetic field strength, and the vertical axis is the normalized magnetization in the y direction of the magnetoresistive layer 11A. An external magnetic field was applied in the y direction as shown in FIG. The y-direction component of the magnetization of only the central portion (a rectangular portion of 500 nm × 100 nm in the xy plane) of the magnetoresistive layer 11A is plotted. As a result, hysteresis corresponding to an amount directly corresponding to the GMR or AMR output, excluding artificial hysteresis noise caused by the narrow calculation region, is obtained. 7 shows a hysteresis loop when the thickness t shown in FIG. 6 is 10 nm, FIG. 8 shows a hysteresis loop when the thickness t shown in FIG. 6 is 20 nm, and FIG. 9 shows a hysteresis loop when the thickness t shown in FIG. In all cases, the hysteresis loops are almost closed, and relatively linear characteristics are obtained. The magnitude and linearity of the hysteresis improve as the film thickness t decreases. This means that there is almost no magnetization rotation in the film thickness direction of the magnetoresistive layer 11A. Therefore, the film thickness of the magnetoresistive layer 11A is less than half the length of the short axis (= 100 nm). It was shown that in some cases good soft magnetic properties were obtained.

各ヒステリシスループから、磁界検出感度に相当する指標として、飽和磁化Msの95%に達する磁界H_95を求め、その逆数1/(H_95)をμ_95として求めた。磁界H_95の求め方を図9に模式的に示した。線101は磁化が飽和量の95%になる位置であり、その磁化における外部磁界がH_95となる。磁界H_95が小さいほど、すなわちμ_95が大きいほど、磁界に対して磁界検出感度が高いことを意味する。   From each hysteresis loop, a magnetic field H_95 reaching 95% of the saturation magnetization Ms was obtained as an index corresponding to the magnetic field detection sensitivity, and its reciprocal 1 / (H_95) was obtained as μ_95. FIG. 9 schematically shows how to determine the magnetic field H_95. Line 101 is a position where the magnetization becomes 95% of the saturation amount, and the external magnetic field at the magnetization becomes H_95. The smaller the magnetic field H_95, that is, the larger μ_95, the higher the magnetic field detection sensitivity to the magnetic field.

間隔gapの大きさに対するμ_95の変化を図10に示す。この図10に示すグラフを間隔gapが100nmの時の値で規格化したものを図11に示す。図11からわかるように、どの膜厚においても、50nmより小さい間隔gapにおいてμ_95が急激に増加している。特に、間隔gapが20nmより小さくなると、μ_95が20%以上増加する。これは、図5(a)乃至5(d)で説明したように、磁界収束体13a、13bと磁気抵抗層11Aとの距離を短くしたことで、反磁界の発生が抑えられ、理想的な軟磁気特性が得られるようになったためである。図10、11の結果から、磁気抵抗層11Aと磁界収束体13a、13bの距離が50nm以下、より好ましくは20nm以下の場合に、すなわち、磁気抵抗層11Aの幅の1/2以下の場合に、この効果が著しく現れることがわかった。なお、磁気抵抗層11Aと磁界収束体13a、13bの距離が0nm、すなわち非磁性絶縁体12a、12bが無くなった場合には、前述のように、測定電流の分流が起こり、また、磁化回転が不均一になるため、磁界検出信号のSN比が劣化して好ましくない。   FIG. 10 shows a change in μ_95 with respect to the size of the gap “gap”. FIG. 11 shows a graph obtained by normalizing the graph shown in FIG. 10 with a value when the interval gap is 100 nm. As can be seen from FIG. 11, μ_95 sharply increases at an interval gap smaller than 50 nm for any film thickness. In particular, when the gap “gap” is smaller than 20 nm, μ_95 increases by 20% or more. This is because, as described with reference to FIGS. 5A to 5D, the distance between the magnetic field converging bodies 13a and 13b and the magnetoresistive layer 11A is shortened, so that the generation of a demagnetizing field is suppressed, and an ideal This is because soft magnetic characteristics can be obtained. From the results of FIGS. 10 and 11, when the distance between the magnetoresistive layer 11A and the magnetic field converging bodies 13a and 13b is 50 nm or less, more preferably 20 nm or less, that is, when the width of the magnetoresistive layer 11A is 1/2 or less. It was found that this effect remarkably appeared. When the distance between the magnetoresistive layer 11A and the magnetic field concentrators 13a and 13b is 0 nm, that is, when the non-magnetic insulators 12a and 12b are eliminated, a shunt of the measurement current occurs as described above, and the magnetization rotation occurs. Since it becomes non-uniform, the SN ratio of the magnetic field detection signal deteriorates, which is not preferable.

次に、磁気抵抗層11Aと磁界収束体13a、13bの短軸方向(y方向)の長さ(幅)を200nmとした場合を計算した。膜厚t=10nmの場合の結果を図12に示す。ヒステリシスループの計算領域は磁気抵抗層11Aの中央部、すなわちx−y面内の500nm×200nmの矩形部分である。図12からわかるように、極端な非線形性、すなわち、大きなヒステリシスループが現れ、磁化曲線の直線性がほとんど失われたヒステリシスループが得られた。このことは、前述のように、磁気抵抗層11Aの短軸と長軸の比が10未満となったために磁気抵抗層11Aの内部の磁化が均一に回転しにくくなっていることを示す。この傾向は、膜厚tを20、50、100nmとしても同様であった。   Next, a case was calculated in which the length (width) of the short axis direction (y direction) of the magnetic resistance layer 11A and the magnetic field converging bodies 13a and 13b was 200 nm. FIG. 12 shows the result when the film thickness t = 10 nm. The calculation region of the hysteresis loop is a central portion of the magnetoresistive layer 11A, that is, a rectangular portion of 500 nm × 200 nm in the xy plane. As can be seen from FIG. 12, extreme nonlinearity, that is, a large hysteresis loop appeared, and a hysteresis loop in which the linearity of the magnetization curve was almost lost was obtained. This indicates that, as described above, since the ratio of the short axis to the long axis of the magnetoresistive layer 11A is less than 10, the magnetization inside the magnetoresistive layer 11A is difficult to rotate uniformly. This tendency was the same even when the film thickness t was 20, 50, and 100 nm.

次に、磁気抵抗層11Aと磁界収束体13a、13bの短軸方向(y方向)の長さ(幅)を200nm、厚さtを10nmとして、磁気抵抗層11Aと磁界収束体13a、13bの長軸方向(x方向)の長さを2000nmにした場合の結果を図13に示す。ヒステリシスループの計算領域は磁気抵抗層11Aの中央部、すなわちx−y面内の1000nm×200nmの矩形部分とした。計算時間が膨大になるため、間隔gapが10、nm
20nmの場合の計算のみを行ったが、図12で認められた非線形性が消失していることがわかる。このことから、磁気抵抗層11Aの短軸と長軸の比は10以上であることが好ましいことがわかった。
Next, the length (width) of the short axis direction (y direction) of the magnetoresistive layer 11A and the magnetic field converging bodies 13a and 13b is set to 200 nm, and the thickness t is set to 10 nm. FIG. 13 shows the results when the length in the major axis direction (x direction) was 2000 nm. The calculation region of the hysteresis loop was a central portion of the magnetoresistive layer 11A, that is, a rectangular portion of 1000 nm × 200 nm in the xy plane. Since the calculation time is enormous, the interval gap is 10, nm
Only the calculation for the case of 20 nm was performed, and it can be seen that the nonlinearity observed in FIG. 12 has disappeared. From this, it was found that the ratio of the short axis to the long axis of the magnetoresistive layer 11A is preferably 10 or more.

以上説明したように、第1実施形態によれば、検出感度の非線形性を抑制することができ、これによりノイズを抑制するとともに高い感度を有する磁気センサを提供することができる。   As described above, according to the first embodiment, it is possible to suppress the nonlinearity of the detection sensitivity, thereby providing a magnetic sensor that suppresses noise and has high sensitivity.

(第2実施形態)
次に、第2実施形態による磁気センサについて図14を参照して説明する。図14は、第2実施形態の磁気センサ1Aの平面図である。
(2nd Embodiment)
Next, a magnetic sensor according to a second embodiment will be described with reference to FIG. FIG. 14 is a plan view of a magnetic sensor 1A according to the second embodiment.

一般に、面内通電型の磁気センサでは、検出出力やSN比を高めるためには、磁気抵抗層11Aを長くすればよい。ただし、一方向に長く伸ばすとセンサの形状が細長くなってしまい、小型のセンサとするのが難しくなる。この問題を解決した磁気センサを第2実施形態として説明する。   In general, in the in-plane magnetic sensor, in order to increase the detection output and the SN ratio, the length of the magnetoresistive layer 11A may be increased. However, if the sensor is elongated in one direction, the shape of the sensor becomes elongated, and it becomes difficult to make the sensor small. A magnetic sensor that solves this problem will be described as a second embodiment.

第2実施形態の磁気センサ1Aは、図1に示す第1実施形態の磁気センサ1において、図14に示すように磁界検出部となる磁気抵抗層11Aを折り返してつづら折り状にした構成を有している。図14では2回折り返しているが、折り返さない場合に比べると、磁気センサ1A全体のx方向の長さを1/3に小さくすることができる利点がある。   The magnetic sensor 1A according to the second embodiment has a configuration in which the magnetoresistive layer 11A serving as a magnetic field detecting unit is folded back to form a zigzag shape as shown in FIG. 14 in the magnetic sensor 1 according to the first embodiment shown in FIG. ing. In FIG. 14, the magnetic sensor 1A is folded twice. However, as compared with the case where the magnetic sensor 1A is not folded, there is an advantage that the length of the entire magnetic sensor 1A in the x direction can be reduced to 3.

この第2実施形態においても、第1実施形態と同様に、低ノイズで高感度な磁界検出ができる磁気センサを実現することができる。すなわち、図14に示すように、磁気抵抗層11Aの最も外側の部分に対して、長軸側の端面に非磁性絶縁体12a、12bと、軟磁性体からなる磁界収束体13a、13bをこの順番で設置し、かつ非磁性絶縁体12a、12bの幅、すなわち磁気抵抗層11Aと磁界収束体13a、13bとの距離を50nm以下(磁気抵抗層11Aの短軸の長さの1/2以下)とすればよい。この時の磁界収束体13a、13bが満たすべき要件は第1実施形態と同じである。   Also in the second embodiment, as in the first embodiment, a magnetic sensor capable of detecting a magnetic field with low noise and high sensitivity can be realized. That is, as shown in FIG. 14, the outermost portion of the magnetoresistive layer 11A is provided with nonmagnetic insulators 12a and 12b and magnetic field converging members 13a and 13b made of a soft magnetic material on the end face on the long axis side. The width of the nonmagnetic insulators 12a and 12b, that is, the distance between the magnetoresistive layer 11A and the magnetic field converging bodies 13a and 13b is 50 nm or less ((the length of the short axis of the magnetoresistive layer 11A or less). )And it is sufficient. The requirements to be satisfied by the magnetic field converging bodies 13a and 13b at this time are the same as in the first embodiment.

低ノイズで高感度な磁界検出ができる作用は、第1実施形態と同様である。軟磁性体からなる磁界収束体13a、13bが、磁気抵抗層11Aの端部に発生する磁荷による反磁界をキャンセルする作用を持っているために、磁化の非線形な回転を防ぐのである。   The operation of detecting the magnetic field with low noise and high sensitivity is the same as that of the first embodiment. Since the magnetic field converging members 13a and 13b made of a soft magnetic material have the function of canceling the demagnetizing field due to the magnetic charge generated at the end of the magnetoresistive layer 11A, the non-linear rotation of the magnetization is prevented.

この第2実施形態も第1実施形態と同様に、ノイズを抑制するとともに高い感度を有する磁気センサを提供することができる。 As in the first embodiment, the second embodiment can provide a magnetic sensor that suppresses noise and has high sensitivity.

(変形例)
第2実施形態の変形例による磁気センサを図15に示す。この第1変形例の磁気センサ1Bは、図14に示す第2実施形態の磁気センサ1Aにおいて、つづら折りの磁気抵抗層11Aを平行に離間して配置された3本の磁気抵抗層11Aa、11Ab、11Acに置き換えるとともに、隣接する2本の磁気抵抗層11Aa、11Abを導電体161aで直列に接続し、隣接する2本の磁気抵抗層11Ab、11Acを導電体161bで直列に接続した構成を有している。磁気抵抗層11Aをこのような構成とすることにより、図14に示す第2実施形態の磁気抵抗層11Aと電気的に同様な構成となる。
(Modification)
FIG. 15 shows a magnetic sensor according to a modification of the second embodiment. The magnetic sensor 1B according to the first modification is the same as the magnetic sensor 1A according to the second embodiment shown in FIG. 14 except that the three magnetoresistive layers 11Aa, 11Ab, 11Ac, two adjacent magnetoresistive layers 11Aa and 11Ab are connected in series by a conductor 161a, and two adjacent magnetoresistive layers 11Ab and 11Ac are connected in series by a conductor 161b. ing. With such a configuration of the magnetoresistive layer 11A, the configuration is electrically similar to the magnetoresistive layer 11A of the second embodiment shown in FIG.

図14に示すように、磁気抵抗層11Aをつづら折り形状にした場合、磁気抵抗層11Aの測定する磁界方向17と同じ向きの部分は、測定する磁界に対して磁化が回転しないか、回転しても非線形な回転を行うので、検出感度の寄与は小さい。このため、この部分がなくとも磁気センサとしての作用を発揮することができる。むしろ、非線形部分をなくすことができるので、より低ノイズの磁気センサを得ることができる。   As shown in FIG. 14, when the magnetoresistive layer 11A is formed in a zigzag shape, the portion of the magnetoresistive layer 11A having the same direction as the measured magnetic field direction 17 does not rotate or does not rotate with respect to the measured magnetic field. Also performs a non-linear rotation, so that the contribution of the detection sensitivity is small. For this reason, the function as a magnetic sensor can be exhibited without this part. Rather, since the non-linear portion can be eliminated, a magnetic sensor with lower noise can be obtained.

図15に示す変形例の場合においても、第2実施形態と同様に、低ノイズで高感度な磁界検出ができる磁気センサを実現することができる。すなわち、最も外側の磁気抵抗層11Aの長軸側の端面に非磁性絶縁体12a、12bと軟磁性体からなる磁界収束体13a、13bをこの順番で設置し、かつ非磁性絶縁体12a、12bの幅、すなわち磁気抵抗層11Aと磁界収束体13a、13bとの距離を50nm以下(磁気抵抗層11Aの短軸の長さの1/2以下)とすればよい。この時の磁界収束体13a、13bが満たすべき要件は、第1実施形態と同じである。また、低ノイズで高感度な磁界検出ができる作用は第1実施形態と同じである。   Also in the case of the modified example shown in FIG. 15, it is possible to realize a magnetic sensor capable of detecting a magnetic field with low noise and high sensitivity as in the second embodiment. That is, the nonmagnetic insulators 12a and 12b and the magnetic field concentrators 13a and 13b made of a soft magnetic material are disposed in this order on the end face on the long axis side of the outermost magnetoresistive layer 11A, and the nonmagnetic insulators 12a and 12b , Ie, the distance between the magnetoresistive layer 11A and the magnetic field converging bodies 13a and 13b may be set to 50 nm or less ((or less of the length of the short axis of the magnetoresistive layer 11A). The requirements to be satisfied by the magnetic field converging members 13a and 13b at this time are the same as in the first embodiment. The operation of detecting a magnetic field with low noise and high sensitivity is the same as that of the first embodiment.

また、図14と図15に示す磁気抵抗層11Aの中間の形態、例えば、つづら折りの磁気抵抗層の上に導電体161a、161bを設置しても良いし、導電体161a、161bの下で磁気抵抗層11Aが部分的につながった形状であってもよい。   In addition, the conductors 161a and 161b may be provided on an intermediate form of the magnetoresistive layer 11A shown in FIGS. 14 and 15, for example, on a zigzag magnetoresistive layer, or may be provided under the conductors 161a and 161b. The resistance layer 11A may have a partially connected shape.

この変形例も第2実施形態と同様に、ノイズを抑制するとともに高い感度を有する磁気センサを提供することができる。   This modification can also provide a magnetic sensor that suppresses noise and has high sensitivity, as in the second embodiment.

(第3実施形態)
第3実施形態による磁気センサの平面図を図16に示す。この第3実施形態の磁気センサ1Cは、図1に示す第1実施形態の磁気センサ1において、磁界検出部11として、帯状の磁気抵抗層11Aの代わりに面内方向に直線状に配置された垂直通電型GMR素子171を面内方向に直列接続し、素子全体として面内方向に通電する構成としたものである。すなわち、第3実施形態の磁気センサ1Cは、図1に示す第1実施形態の磁気センサ1において、磁界検出部11として、磁気抵抗層11Aの代わりに、電気的に直列接続されかつ一列に並んだ垂直通電型GMR素子171を設けた構成を有している。なお、垂直通電型GMR素子171の代わりに垂直通電型TMR素子を用いてもよい。また、磁界の検出感度は悪くなるが、1つの垂直通電型GMR素子171を磁界検出部11として用いてもよい。
(Third embodiment)
FIG. 16 is a plan view of a magnetic sensor according to the third embodiment. The magnetic sensor 1C of the third embodiment differs from the magnetic sensor 1 of the first embodiment shown in FIG. 1 in that the magnetic field detector 11 is arranged linearly in the in-plane direction instead of the strip-shaped magnetoresistive layer 11A. The vertical conduction type GMR elements 171 are connected in series in the in-plane direction, and the entire element is configured to conduct electricity in the in-plane direction. That is, the magnetic sensor 1C according to the third embodiment differs from the magnetic sensor 1 according to the first embodiment shown in FIG. 1 in that the magnetic field detector 11 is electrically connected in series instead of the magnetoresistive layer 11A and arranged in a line. It has a configuration in which a vertical conduction type GMR element 171 is provided. Note that a vertical conduction type TMR element may be used instead of the vertical conduction type GMR element 171. In addition, although the detection sensitivity of the magnetic field is deteriorated, one vertical conduction type GMR element 171 may be used as the magnetic field detection unit 11.

垂直通電型GMR素子171は、それぞれy方向の端面において、非磁性絶縁体12a、12bに接して配置される。図16に示す点線172の位置でのx−z断面を図17(a)に示す。垂直通電型GMR素子171は、導線184によって、図に示す配置で直列接合されている。各垂直通電型GMR素子171のx−z面の詳細な構成を図17(b)に示す。垂直通電型GMR素子171は磁性体からなる固着層181、非磁性層182、磁性体からなるフリー層183がこの順で積層された構成を有している。   The vertical conduction type GMR element 171 is disposed in contact with the non-magnetic insulators 12a and 12b at the end faces in the y direction. FIG. 17A shows an xz cross section taken along a dotted line 172 shown in FIG. The vertical conduction type GMR elements 171 are joined in series in the arrangement shown in FIG. FIG. 17B shows a detailed configuration of the xz plane of each of the vertical conduction type GMR elements 171. The vertical conduction type GMR element 171 has a configuration in which a fixed layer 181 made of a magnetic material, a nonmagnetic layer 182, and a free layer 183 made of a magnetic material are stacked in this order.

固着層181とフリー層183はともに、磁化方向が膜面に平行な磁性体、すなわち磁化がx−y面内で回転する磁性体である。固着層181は、外部磁界によって磁化が回転しにくいように設計されている。この目的のためには、高い磁気異方性を持つ材料である反強磁性体(図示せず)を固着層181の下に設け、その磁化方向が交換結合によって固着層181に伝えられるようにする、といった手法がとられる。   Both the pinned layer 181 and the free layer 183 are a magnetic material whose magnetization direction is parallel to the film surface, that is, a magnetic material whose magnetization rotates in the xy plane. The pinned layer 181 is designed so that the magnetization is not easily rotated by an external magnetic field. For this purpose, an antiferromagnetic material (not shown), which is a material having high magnetic anisotropy, is provided below the pinned layer 181 so that its magnetization direction is transmitted to the pinned layer 181 by exchange coupling. Is performed.

フリー層183は、測定磁界によって磁化が回転しやすい性質を持つ磁性体である。この目的のためには、軟磁性を有する材料が用いられる。非磁性中間層182は金属あるいは絶縁体から選ばれる。MgOなどの薄い絶縁体を用いる場合には、GMR素子は一般にTMR素子と呼ばれるが、TMR素子を用いる方が抵抗変化率が大きくて好ましい。   The free layer 183 is a magnetic material having a property that magnetization is easily rotated by a measurement magnetic field. For this purpose, a material having soft magnetism is used. The non-magnetic intermediate layer 182 is selected from a metal or an insulator. When a thin insulator such as MgO is used, the GMR element is generally called a TMR element, but it is preferable to use a TMR element because the resistance change rate is large.

このように構成された磁気センサ1Cが低ノイズで高感度な磁界検出ができる作用は、第1実施形態と同じである。外部磁界に対する磁化の応答は、磁気抵抗層11Aの場合とフリー層183の場合で同じである。このため、外部磁界によってフリー層183内の磁化が回転した際に、軟磁性体からなる磁界収束体13a、13bが、フリー層183の端部に発生する磁荷による反磁界をキャンセルする作用を持ち、これにより、磁化の非線形な回転を防ぐのである。   The operation of the magnetic sensor 1C thus configured to detect a magnetic field with low noise and high sensitivity is the same as that of the first embodiment. The magnetization response to an external magnetic field is the same in the case of the magnetoresistive layer 11A and the case of the free layer 183. For this reason, when the magnetization in the free layer 183 is rotated by the external magnetic field, the magnetic field converging members 13 a and 13 b made of a soft magnetic material have an effect of canceling the demagnetizing field due to the magnetic charge generated at the end of the free layer 183. This prevents non-linear rotation of the magnetization.

非磁性絶縁体12a、12bの幅(GMR素子171と磁界収束体13a、13bとの距離)を50nm以下、あるいは、フリー層183の短軸の長さの1/2以下とすることで、反磁界キャンセル効果が得られる。   By setting the width of the nonmagnetic insulators 12a and 12b (the distance between the GMR element 171 and the magnetic field concentrators 13a and 13b) to 50 nm or less, or 1/2 or less the length of the short axis of the free layer 183, A magnetic field cancellation effect is obtained.

また、垂直通電GMR素子171の面内配置をつづら折り状にして直列接続すれば、第2実施形態と同様の作用を得ることができる。   If the in-plane arrangement of the vertical conducting GMR element 171 is folded in a zigzag shape and connected in series, the same operation as in the second embodiment can be obtained.

フリー層183の材料としては、FeCo合金あるいはホイスラー合金であると、高スピン偏極が得られて、抵抗変化率が大きくなるので好ましい。固着層181の材料としては、結晶磁気異方性を高める方法として、CoPt、CoPdなどの合金、あるいは、FePt、CoPt、CoPdなどの規則相合金、あるいは、Co/Pd、Co/Pt、Co/Niなどの極薄磁性層を多層積層したいわゆる人工格子膜を用いることもできる。また、固着層181の材料としてフリー層183と同様の軟磁性材料を用い、その下に反強磁性層あるいは磁気異方性の高いピンニング層を設置し、固着層181とピンニング層とを交換結合させても良い。   It is preferable that the material of the free layer 183 be an FeCo alloy or a Heusler alloy because a high spin polarization is obtained and the rate of change in resistance is increased. As a material for the pinned layer 181, alloys such as CoPt and CoPd, or ordered phase alloys such as FePt, CoPt and CoPd, or Co / Pd, Co / Pt and Co / A so-called artificial lattice film in which ultra-thin magnetic layers of Ni or the like are stacked in multiple layers can also be used. Also, a soft magnetic material similar to that of the free layer 183 is used as the material of the pinned layer 181, and an antiferromagnetic layer or a pinning layer having high magnetic anisotropy is provided thereunder, and the pinned layer 181 and the pinning layer are exchange-coupled. You may let it.

非磁性中間層182としては、例えばCuを含む非磁性金属を用いることができる。GMR素子の代わりにTMR素子を用いる場合には、非磁性中間層182としては、Al−O、Ti−O、MgO等を用いることができる。   As the nonmagnetic intermediate layer 182, for example, a nonmagnetic metal containing Cu can be used. When a TMR element is used instead of the GMR element, the nonmagnetic intermediate layer 182 can be made of Al-O, Ti-O, MgO, or the like.

(構成要素の材料)
次に、第1乃至第3実施形態を構成する各要素の材料について説明する。
(Material of component)
Next, the material of each element constituting the first to third embodiments will be described.

磁界検出部11としての磁気抵抗層11Aは、良好な軟磁気特性を持つ、すなわち、小さい磁界でも磁化が回転する特性を持ち、かつ、大きな磁気抵抗変化を示す磁気特性を持つ必要がある。磁界検出部の詳細な構成要件については後述する。   The magnetoresistive layer 11A as the magnetic field detecting section 11 needs to have good soft magnetic properties, that is, it has a property that magnetization rotates even with a small magnetic field and a magnetic property that shows a large change in magnetoresistance. Detailed configuration requirements of the magnetic field detection unit will be described later.

非磁性絶縁体12a、12bは、一般の素子に用いられる絶縁体のうち、非磁性のものであれば何でもよい。特にSi−O、Si−N、Al−O、Mg−Oといった金属と酸素や窒素などのガスとの化合物とするのが一般的である。Feの酸化物は組成によっては磁性を持つものもあるが、非磁性組成であれば使うことができる。そのほか、磁気抵抗層11や磁界収束体13a、13b、あるいは後述する保護層などの構成元素の酸化物でも構わない。   The non-magnetic insulators 12a and 12b may be any of non-magnetic insulators used in general devices. In particular, a compound of a metal such as Si—O, Si—N, Al—O, and Mg—O and a gas such as oxygen or nitrogen is generally used. Some Fe oxides have magnetism depending on the composition, but may be used if they have a nonmagnetic composition. In addition, oxides of constituent elements such as the magnetoresistive layer 11, the magnetic field concentrators 13a and 13b, and a protective layer described later may be used.

磁界収束体13a、13bは、磁気抵抗層11Aと同様の軟磁気特性の良い磁性材料が好ましい。たとえば、NiFe合金、FeCo合金、ホイスラー合金、を含む材料とすることで、優れた軟磁気特性を得ることができる。   The magnetic field converging members 13a and 13b are preferably made of a magnetic material having the same soft magnetic properties as the magnetic resistance layer 11A. For example, by using a material including a NiFe alloy, an FeCo alloy, and a Heusler alloy, excellent soft magnetic characteristics can be obtained.

抵抗変化を検出する回路16は、通常の磁気抵抗素子に用いられるものを使うことができる。例えば、直流電流源から磁気抵抗層11Aの長軸方向の両端に電流が印加されるようになっており、同時に、磁気抵抗層11Aの両端の電圧が測定できる機構があれば、抵抗変化を測定することができる。第1乃至第3実施形態の磁気センサは、高感度な磁気センサであるので、ノイズが少ない電流源や増幅器を用いる必要がある。   As the circuit 16 for detecting a change in resistance, a circuit used for an ordinary magnetic resistance element can be used. For example, if a current can be applied to both ends of the magnetoresistive layer 11A in the major axis direction from a direct current source, and at the same time, if there is a mechanism capable of measuring the voltages at both ends of the magnetoresistive layer 11A, the resistance change is measured. can do. Since the magnetic sensors of the first to third embodiments are high-sensitivity magnetic sensors, it is necessary to use a current source and an amplifier with little noise.

磁気抵抗層11A、非磁性絶縁体12a、12b、磁界収束体13a、13bにはそれぞれ、必要に応じて、結晶性や磁気特性などを向上するための下地層を用いることができる。また、その後のレジスト塗布などのプロセスダメージを防ぐ目的で、成膜後に続けて保護層を堆積させて良い。保護層は、磁気センサの作用の妨げにならない限り、プロセス中に除去しても良いし、除去せずに磁気センサ中に残しておいても良い。   Underlayers for improving crystallinity, magnetic properties, and the like can be used for the magnetoresistive layer 11A, the nonmagnetic insulators 12a and 12b, and the magnetic field concentrators 13a and 13b, as needed. Further, for the purpose of preventing process damage such as subsequent application of a resist, a protective layer may be deposited continuously after the film formation. The protective layer may be removed during the process or may be left in the magnetic sensor without being removed as long as it does not hinder the operation of the magnetic sensor.

(磁界検出部)
次に、磁界検出部11として用いられる例について説明する。
(Magnetic field detector)
Next, an example used as the magnetic field detection unit 11 will be described.

(第1例)
第1乃至第2実施形態の磁気センサを構成する磁界検出部11の第1例としては、図18に示すように、NiFeCrなどの非磁性下地212上に形成された、NiFe合金、FeCo合金、およびホイスラー合金のいずれかを含む材料211とすることができる。図18に示すように、軟磁性材料211が第1乃至第2の実施形態の磁気抵抗層11Aに対応する。この場合、抵抗変化は、いわゆる金属磁気抵抗効果(AMR(Anisotropic Magneto-Resistive))と呼ばれる現象に基づいて起こる。
(First example)
As a first example of the magnetic field detector 11 constituting the magnetic sensor of the first or second embodiment, as shown in FIG. 18, a NiFe alloy, FeCo alloy, And a material 211 containing any one of a Heusler alloy and a Heusler alloy. As shown in FIG. 18, the soft magnetic material 211 corresponds to the magnetoresistive layer 11A of the first and second embodiments. In this case, the change in resistance occurs based on a phenomenon called a so-called metal magnetoresistance effect (AMR (Anisotropic Magneto-Resistive)).

AMR素子は構造がシンプルであるため、安価で信頼性の高い磁気センサを作ることができる。また、電気抵抗が低いため低ノイズであり、高感度磁気センサの課題の一つであるノイズを小さくする効果が得られる。しかしながら、抵抗変化率が小さいので、感度はあまり高くない。   Since the AMR element has a simple structure, an inexpensive and highly reliable magnetic sensor can be manufactured. Further, since the electric resistance is low, the noise is low, and the effect of reducing the noise, which is one of the problems of the high-sensitivity magnetic sensor, can be obtained. However, the sensitivity is not very high because the resistance change rate is small.

(第2例)
第1乃至第2実施形態の磁気センサを構成する磁界検出部11の第2例としては、図19に示すように、軟磁性体からなる第1磁性層221、非磁性導電層222、軟磁性体からなる第2磁性層223がこの順に積層され、かつ、第1磁性層221と第2磁性層223が非磁性導電層222を介して反強磁性結合をしている構成とすることができる。図19に示すように、第1磁性層221、非磁性導電層222、第2磁性層223の三層の積層部分が、第1乃至第2実施形態を構成する磁気抵抗層11Aに対応する。
(Second example)
As shown in FIG. 19, a second example of the magnetic field detection unit 11 constituting the magnetic sensor according to the first or second embodiment includes a first magnetic layer 221 made of a soft magnetic material, a nonmagnetic conductive layer 222, and a soft magnetic layer. The second magnetic layer 223 made of a body is laminated in this order, and the first magnetic layer 221 and the second magnetic layer 223 can be antiferromagnetically coupled via the nonmagnetic conductive layer 222. . As shown in FIG. 19, a laminated portion of three layers of a first magnetic layer 221, a nonmagnetic conductive layer 222, and a second magnetic layer 223 corresponds to the magnetoresistive layer 11A of the first and second embodiments.

この第2例の磁界検出部は、シザーズ型のCIP−GMR素子と呼ばれるものであり、第1磁性層221と第2磁性層223とが反強磁性交換結合しているため、外部磁界がゼロの下では各層の磁化は長軸方向に互いに逆方向を向いている。磁界検出部11の短軸方向に磁界が印加されると、各層の磁化はそれぞれ短軸方向に回転して、両層221、223の磁化のなす角度が180度から低下する。この角度変化が磁気抵抗変化として検出される。   The magnetic field detector of the second example is called a scissors-type CIP-GMR element. Since the first magnetic layer 221 and the second magnetic layer 223 are antiferromagnetically exchange-coupled, the external magnetic field is zero. Below, the magnetizations of the respective layers are oriented in opposite directions in the major axis direction. When a magnetic field is applied in the short axis direction of the magnetic field detection unit 11, the magnetization of each layer rotates in the short axis direction, and the angle formed by the magnetizations of the two layers 221 and 223 decreases from 180 degrees. This angle change is detected as a change in magnetic resistance.

非磁性導電層222としては、例えば、Cu、Ru、またはIrを含む非磁性金属を用いることができ、第1および第2磁性層221、223に反強磁性結合を誘起するには、2nm程度以下の厚さにすればよい。   As the nonmagnetic conductive layer 222, for example, a nonmagnetic metal containing Cu, Ru, or Ir can be used. To induce antiferromagnetic coupling in the first and second magnetic layers 221 and 223, about 2 nm is used. The thickness may be as follows.

第1磁性層221、第2磁性層223に対して、磁場中で冷却などの処理を施すことで、短軸方向に異方性をつけても良い。こうすることにより、外部磁化がゼロでも第1および第2磁性層221、223の磁化が180度よりも小さい角度を持つようになる。測定磁界が印加されるとこの角度が更に小さくなる。   By subjecting the first magnetic layer 221 and the second magnetic layer 223 to processing such as cooling in a magnetic field, anisotropy may be provided in the minor axis direction. By doing so, even if the external magnetization is zero, the magnetizations of the first and second magnetic layers 221 and 223 have an angle smaller than 180 degrees. This angle becomes even smaller when the measuring magnetic field is applied.

一般に、CIP−GMR素子は、各層の磁化のなす角度が90度近辺の場合に最も大きな磁気抵抗変化を示すので、磁化の相対角が90度に近づくような変化によって検出感度が向上して好ましい。ただし、短軸方向の異方性を付与するプロセスの分のコストがかかることになる。また、短軸方向の異方性のばらつきが発生して、ノイズが大きくなる可能性もある。   In general, the CIP-GMR element exhibits the largest magnetoresistance change when the angle between the magnetizations of the respective layers is around 90 degrees. Therefore, the detection sensitivity is improved by the change such that the relative angle of the magnetization approaches 90 degrees, which is preferable. . However, the cost for the process of giving the anisotropy in the short axis direction is increased. Further, there is a possibility that the anisotropy in the short axis direction varies and noise increases.

第1磁性層221および第2磁性層223として、FeCo合金あるいはホイスラー合金を用いると、高スピン偏極が得られて、抵抗変化率が大きくなるので好ましい。   It is preferable to use an FeCo alloy or a Heusler alloy for the first magnetic layer 221 and the second magnetic layer 223 because high spin polarization can be obtained and the resistance change rate can be increased.

(第3例)
第1乃至第2実施形態の磁気センサを構成する磁界検出部11の第3例としては、図20に示すように、磁化が長軸方向に固定された固着層231と、外部磁界を検知して磁化が回転する軟磁性体からなるフリー層233と、固着層とフリー層の間に設けられた非磁性導電層232とを積層した構成にすることができる。図20に示すように、フリー層233の部分が、第1乃至第2実施態様の磁気センサを構成する磁気抵抗層11Aに対応する。図20では、磁化が長軸方向に固着されている様子を矢印234で示している。
(Third example)
As a third example of the magnetic field detecting unit 11 constituting the magnetic sensor of the first or second embodiment, as shown in FIG. 20, a fixed layer 231 whose magnetization is fixed in the major axis direction and an external magnetic field are detected. A free layer 233 made of a soft magnetic material whose magnetization rotates and a nonmagnetic conductive layer 232 provided between the pinned layer and the free layer can be laminated. As shown in FIG. 20, the portion of the free layer 233 corresponds to the magnetoresistive layer 11A constituting the magnetic sensor according to the first or second embodiment. In FIG. 20, the state in which the magnetization is fixed in the major axis direction is indicated by an arrow 234.

このような構成は、スピンバルブ型のCIP−GMR素子と呼ばれるものであり、測定磁界によってフリー層233の磁化が回転して、固着層231の磁化の向きとなす角度が変化する。この角度変化が磁気抵抗変化として検出される。非磁性導電層232としては、例えばCu含む非磁性金属を用いることができる。   Such a configuration is called a spin valve type CIP-GMR element, and the magnetization of the free layer 233 is rotated by the measurement magnetic field, and the angle formed by the magnetization of the fixed layer 231 changes. This angle change is detected as a change in magnetic resistance. As the nonmagnetic conductive layer 232, for example, a nonmagnetic metal containing Cu can be used.

固着層231の磁化を固着する方法としては、結晶磁気異方性または形状磁気異方性を利用する方法が一般的である。   As a method for fixing the magnetization of the fixed layer 231, a method utilizing crystal magnetic anisotropy or shape magnetic anisotropy is generally used.

この第3例の磁界検出部11を用いた磁気センサは、長軸方向に長い構成をとっているので、長軸方向、すなわち図20に示す矢印234の方向に大きな形状磁気異方性を付与することができる。   Since the magnetic sensor using the magnetic field detector 11 of the third example has a configuration that is long in the major axis direction, a large shape magnetic anisotropy is provided in the major axis direction, that is, the direction of the arrow 234 shown in FIG. can do.

フリー層233に対して、磁場中で冷却などの処理を施すことで、短軸方向に異方性をつけても良い。こうすることにより、外部磁界がゼロの下でフリー層233と固着層231の磁化のなす角度を90度近辺にすることができ、前述のように、最も大きな磁気抵抗変化を得ることができるので好ましい。ただし、短軸方向の異方性を付与するプロセスの分のコストがかかることになる。また、短軸方向の異方性のばらつきが発生して、ノイズが大きくなる可能性もある。   By subjecting the free layer 233 to processing such as cooling in a magnetic field, anisotropy may be provided in the minor axis direction. By doing so, the angle formed by the magnetization of the free layer 233 and the pinned layer 231 can be made close to 90 degrees when the external magnetic field is zero, and the largest change in magnetoresistance can be obtained as described above. preferable. However, the cost for the process of giving the anisotropy in the short axis direction is increased. Further, there is a possibility that the anisotropy in the short axis direction varies and noise increases.

フリー層233および固着層231としては、FeCo合金あるいはホイスラー合金を用いると、高スピン偏極が得られて、抵抗変化率が大きくなるので好ましい。固着層231の結晶磁気異方性を高める方法としては、CoPt、CoPdなどの合金、あるいは、FePt、CoPt、CoPdなどの規則相合金、あるいは、Co/Pd、Co/Pt、Co/Niなどの極薄の磁性層を多層積層したいわゆる人工格子膜を用いることが挙げられる。   It is preferable to use an FeCo alloy or a Heusler alloy for the free layer 233 and the pinned layer 231 because a high spin polarization is obtained and a resistance change rate is increased. As a method for increasing the crystal magnetic anisotropy of the fixed layer 231, alloys such as CoPt and CoPd, or ordered phase alloys such as FePt, CoPt, and CoPd, or Co / Pd, Co / Pt, and Co / Ni The use of a so-called artificial lattice film in which ultra-thin magnetic layers are stacked in multiple layers is used.

次に、図20に示す第3例の磁界検出部11を用いた場合の固着層231の磁化を固着する方法について説明する。   Next, a method of fixing the magnetization of the fixed layer 231 when the magnetic field detection unit 11 of the third example shown in FIG. 20 is used will be described.

固着層231の磁化を一方向(矢印234の方向)に向ける手法として、例えば、図21に示すように、固着層231の下に厚さ2nm以下のRu層241を介して反強磁性層242を設けることが挙げられる。   As a method of directing the magnetization of the pinned layer 231 in one direction (the direction of arrow 234), for example, as shown in FIG. 21, an antiferromagnetic layer 242 is provided below a pinned layer 231 via a Ru layer 241 having a thickness of 2 nm or less. Is provided.

これは、一般に反強磁性体ピンニングとよばれるもので、反強磁性層242の最表面の磁化と固着層231の磁化とを交換結合させるものである。反強磁性層242中の磁化は外部磁界によって回転させるのが困難であり、固着層231の磁化はそれと強く交換結合しているため、一方向(矢印234の方向)に向いた状態が保持される。反強磁性層242からの交換磁界を一方向に揃えるには、例えば、磁界中で熱処理をすることで可能となる。   This is generally called antiferromagnetic material pinning, and exchange-couples the magnetization of the outermost surface of the antiferromagnetic layer 242 and the magnetization of the fixed layer 231. It is difficult to rotate the magnetization in the antiferromagnetic layer 242 by an external magnetic field, and the magnetization of the pinned layer 231 is strongly exchange-coupled to it, so that the magnetization is kept in one direction (the direction of the arrow 234). You. The exchange magnetic field from the antiferromagnetic layer 242 can be aligned in one direction, for example, by performing heat treatment in a magnetic field.

Ru層241は、反強磁性層242の最表面と固着層231の最下面の磁化を反強磁性交換結合させるため、また、交換結合強度を制御するために用いている。しかし、Ru層241を用いずに、固着層231を反強磁性層242の上に直接積層しても良い。こうすることで構造がシンプルになる利点が得られる。しかし、交換結合の制御が難しくなり、また、安定した交換結合磁界を得るのが困難になる場合がある。Ru層の代わりに、Rh層あるいはCu層を用いても良い。   The Ru layer 241 is used for antiferromagnetic exchange coupling between the magnetization of the outermost surface of the antiferromagnetic layer 242 and the lowermost surface of the fixed layer 231 and for controlling the exchange coupling strength. However, the pinned layer 231 may be directly laminated on the antiferromagnetic layer 242 without using the Ru layer 241. This has the advantage of simplifying the structure. However, it may be difficult to control the exchange coupling, and it may be difficult to obtain a stable exchange coupling magnetic field. Instead of the Ru layer, a Rh layer or a Cu layer may be used.

ピンニング層(反強磁性層)242に用いる反強磁性材料としては、IrMnが安定して反強磁性状態を保つことができるので好ましい。   As the antiferromagnetic material used for the pinning layer (antiferromagnetic layer) 242, IrMn is preferable because it can stably maintain the antiferromagnetic state.

次に、図19に示す第1磁性層221および第2磁性層223の構成について図22を参照して詳細に説明する。図22は磁界検出部11の一例を示す断面図である。   Next, the configuration of the first magnetic layer 221 and the second magnetic layer 223 shown in FIG. 19 will be described in detail with reference to FIG. FIG. 22 is a cross-sectional view illustrating an example of the magnetic field detection unit 11.

図22に示すように、第1磁性層221としては、軟磁性高電気抵抗層253aと軟磁性低電気抵抗層251aとがRu層252aを介して積層された構造を有している。軟磁性高電気抵抗層253aと軟磁性低電気抵抗層251aとがRu層252aを介して反強磁性交換結合している。また、第2磁性層223としては、軟磁性低電気抵抗層251bと軟磁性高電気抵抗層253bとがRu層252bを介して積層された構造を有している。軟磁性低電気抵抗層251bと軟磁性高電気抵抗層253bとがRu層252bを介して反強磁性交換結合している。軟磁性低電気抵抗層251a、251bは非磁性導電層232の側に設置する。   As shown in FIG. 22, the first magnetic layer 221 has a structure in which a soft magnetic high electric resistance layer 253a and a soft magnetic low electric resistance layer 251a are laminated via a Ru layer 252a. The soft magnetic high electric resistance layer 253a and the soft magnetic low electric resistance layer 251a are anti-ferromagnetic exchange-coupled via the Ru layer 252a. Further, the second magnetic layer 223 has a structure in which a soft magnetic low electric resistance layer 251b and a soft magnetic high electric resistance layer 253b are stacked via a Ru layer 252b. The soft magnetic low electric resistance layer 251b and the soft magnetic high electric resistance layer 253b are antiferromagnetic exchange-coupled via the Ru layer 252b. The soft magnetic low electric resistance layers 251 a and 251 b are provided on the nonmagnetic conductive layer 232 side.

次に、図21に示すフリー層233について図23を参照して説明する。図23は磁界検出部11の一例を示す断面図である。図23に示すように、フリー層233としては、軟磁性低電気抵抗層251と軟磁性高電気抵抗層253とがRu層252を介して積層された構造を有している。軟磁性低電気抵抗層251と軟磁性高電気抵抗層253とがRu層252を介して反強磁性交換結合している。   Next, the free layer 233 shown in FIG. 21 will be described with reference to FIG. FIG. 23 is a cross-sectional view illustrating an example of the magnetic field detection unit 11. As shown in FIG. 23, the free layer 233 has a structure in which a soft magnetic low electric resistance layer 251 and a soft magnetic high electric resistance layer 253 are laminated via a Ru layer 252. The soft magnetic low electric resistance layer 251 and the soft magnetic high electric resistance layer 253 are antiferromagnetic exchange-coupled via the Ru layer 252.

なお、図20に示すフリー層233も図23に示す場合と同様に、軟磁性低電気抵抗層251と軟磁性高電気抵抗層253とがRu層252を介して積層された構造を有し、軟磁性低電気抵抗層251と軟磁性高電気抵抗層253とがRu層252を介して反強磁性交換結合している構造としてもよい。   The free layer 233 shown in FIG. 20 also has a structure in which the soft magnetic low electric resistance layer 251 and the soft magnetic high electric resistance layer 253 are laminated via the Ru layer 252, as in the case shown in FIG. The structure may be such that the soft magnetic low electric resistance layer 251 and the soft magnetic high electric resistance layer 253 are antiferromagnetic exchange-coupled via the Ru layer 252.

第1磁性層221、第2磁性層223、またはフリー層233を用いたCIP−GMRでは、伝導電子は非磁性導電層232とその上下にある軟磁性層(第1磁性層221、第2磁性層223、またはフリー層233)との界面で散乱されることで磁気抵抗変化を発生させる。このとき、軟磁性層(第1磁性層221、第2磁性層223、またはフリー層233)の厚さを厚くすると、熱揺らぎに起因するノイズを低減することができて、磁気センサの感度を高めることができる。   In the CIP-GMR using the first magnetic layer 221, the second magnetic layer 223, or the free layer 233, conduction electrons are transferred to the nonmagnetic conductive layer 232 and the soft magnetic layers above and below the nonmagnetic conductive layer 232 (the first magnetic layer 221, the second magnetic layer 223). The scattering at the interface with the layer 223 or the free layer 233) causes a change in magnetoresistance. At this time, if the thickness of the soft magnetic layer (first magnetic layer 221, second magnetic layer 223, or free layer 233) is increased, noise due to thermal fluctuation can be reduced, and the sensitivity of the magnetic sensor can be reduced. Can be enhanced.

しかし、軟磁性層を厚くしてしまうと、電流が軟磁性層の内部にも多く流れてしまい、磁気抵抗変化の効率が低下する。そこで、軟磁性層の電気抵抗を高くすると、電子が軟磁性体の界面から侵入しにくくなり、やはり抵抗変化率は大きくならない。このため、軟磁性低電気抵抗層251a、251b、251と軟磁性高電気抵抗層253a、253b、253とがRu層252a、252b、252を介して積層した構造を用い、軟磁性低電気抵抗層251a、251b、251が非磁性導電層232に接するようにすれば、伝導電子は界面から軟磁性低電気抵抗層251a、251b、251の内部に侵入して散乱される。しかし、軟磁性高電気抵抗層253a、253b、253との界面で反射され再び非磁性導電層232との界面に達し、結果として散乱回数が増え、抵抗変化率を大きくすることができる。   However, when the thickness of the soft magnetic layer is increased, a large amount of current also flows inside the soft magnetic layer, and the efficiency of the magnetoresistance change is reduced. Therefore, when the electric resistance of the soft magnetic layer is increased, electrons hardly enter from the interface of the soft magnetic material, and the resistance change rate does not increase. For this reason, a soft magnetic low electric resistance layer having a structure in which the soft magnetic low electric resistance layers 251a, 251b, 251 and the soft magnetic high electric resistance layers 253a, 253b, 253 are laminated via the Ru layers 252a, 252b, 252 is used. If 251a, 251b, and 251 are in contact with the nonmagnetic conductive layer 232, the conduction electrons enter the soft magnetic low electric resistance layers 251a, 251b, and 251 from the interface and are scattered. However, the light is reflected at the interface with the soft magnetic high electric resistance layers 253a, 253b, and 253 and reaches the interface with the nonmagnetic conductive layer 232 again. As a result, the number of scattering increases and the resistance change rate can be increased.

一方、軟磁性低電気抵抗層251a、251b、251はRu層252を介して軟磁性高電気抵抗層253a、253b、253と交換結合しているので、磁化の回転は一体化して起こり、そのため磁気的な体積が大きくなり、熱揺らぎ起因のノイズを低減することができる。   On the other hand, since the soft magnetic low electric resistance layers 251a, 251b, and 251 are exchange-coupled with the soft magnetic high electric resistance layers 253a, 253b, and 253 via the Ru layer 252, the rotation of magnetization occurs integrally, and thus Therefore, noise due to thermal fluctuation can be reduced.

軟磁性低電気抵抗層251a、251b、251の材料としては、FeCo合金あるいはホイスラー合金を用いることで、非磁性導電層232との界面でのスピン偏極度を高くすることができるので磁気抵抗変化率が大きくなって好ましい。また、軟磁性高電気抵抗層253a、253b、253の材料としては、CoFeSi、CoFeSiB、CoZrNb、CoFeB、を含むアモルファス合金とすることで、良好な軟磁気特性を得ることができて好ましい。   By using an FeCo alloy or a Heusler alloy as a material of the soft magnetic low electric resistance layers 251 a, 251 b, and 251, the spin polarization at the interface with the nonmagnetic conductive layer 232 can be increased. Is preferred. In addition, as a material of the soft magnetic high electric resistance layers 253a, 253b, and 253, an amorphous alloy containing CoFeSi, CoFeSiB, CoZrNb, and CoFeB is preferable because good soft magnetic characteristics can be obtained.

(磁気センサの製造方法)
次に、第1実施形態の磁気センサ1の製造方法について図24(a)乃至図26(b)を参照して説明する。図24(a)乃至図24(c)は、製造方法を示す平面図。図25(a)乃至図26(b)は、図24(b)、(c)に示す切断線271で切断した断面図である。
(Method of manufacturing magnetic sensor)
Next, a method for manufacturing the magnetic sensor 1 according to the first embodiment will be described with reference to FIGS. 24A to 24C are plan views showing a manufacturing method. FIGS. 25A to 26B are cross-sectional views taken along a cutting line 271 shown in FIGS. 24B and 24C.

まず、図25(a)に示すように、基板281の上に、所望の特性を持つ下地層282、磁気抵抗層11A、保護層283を成膜する。下地層282は磁気抵抗層11Aの結晶性や磁気特性の制御、密着性向上といった目的で、適宜用いられる。保護層283はプロセス中の磁気抵抗層11Aへのダメージを抑制する、または磁気センサの形成後の保護の目的で堆積される。   First, as shown in FIG. 25A, an underlayer 282 having desired characteristics, a magnetoresistive layer 11A, and a protective layer 283 are formed on a substrate 281. The underlayer 282 is appropriately used for the purpose of controlling the crystallinity and magnetic properties of the magnetoresistive layer 11A and improving the adhesion. The protective layer 283 is deposited for the purpose of suppressing damage to the magnetoresistive layer 11A during the process or protecting the magnetic sensor after the formation of the magnetic sensor.

その後、保護層283上にレジスト284を塗布し、露光および現像を行ってレジスト284からなるマスクパターンを形成する。このマスクパターンを用いて、保護層283、磁気抵抗層11A、および下地層282をエッチングし、所望の形状にパターニングする。図24(a)、図25(a)はこのパターニングを行った後を示す平面図および断面図である。図24(a)に示すように、磁気抵抗層11Aは帯状に加工されている。一般にマスクを介したエッチングプロセスを行うと、台形状に加工される。その状態を図25(a)に示す。   After that, a resist 284 is applied on the protective layer 283, and exposure and development are performed to form a mask pattern made of the resist 284. Using this mask pattern, the protective layer 283, the magnetoresistive layer 11A, and the underlayer 282 are etched and patterned into a desired shape. FIGS. 24A and 25A are a plan view and a cross-sectional view showing the state after the patterning is performed. As shown in FIG. 24A, the magnetoresistive layer 11A is processed into a belt shape. In general, when an etching process is performed through a mask, it is processed into a trapezoidal shape. FIG. 25A shows this state.

次に、パターニング後のレジストを残したまま、非磁性絶縁体12、磁界収束体13、絶縁保護層285を順に成膜する。この状態を図25(b)に示す。絶縁保護層285は後述の磁界収束体の加工等のプロセス中のダメージを抑制し、また、意図しない電気的短絡を防ぐために堆積される。   Next, the non-magnetic insulator 12, the magnetic field converging body 13, and the insulating protective layer 285 are formed in this order while leaving the resist after patterning. This state is shown in FIG. The insulating protective layer 285 is deposited in order to suppress damage during a process such as processing of a magnetic field converging body, which will be described later, and to prevent an unintended electrical short circuit.

その後、レジスト284を剥離して磁気抵抗層11Aの上に堆積された非磁性絶縁体12、磁界収束体13、絶縁保護層285を、リフトオフ法を用いて除去する。続いて、バリや残渣などを研磨で除去し、表面を平坦化する。この状態を図24(b)および図25(c)に示す。上述のように、パターニングされた磁気抵抗層11Aは台形状の断面形状を有しているので、側壁には非磁性絶縁体12、磁界収束体13、絶縁保護層285が堆積される。リフトオフ後は、図24(b)に示すように、磁気抵抗層11Aの端部の外側に非磁性絶縁体12と磁界収束体13が現れる。図24(b)においては、この後の説明を容易にするため、絶縁保護層285の形状は省略してある。   After that, the resist 284 is peeled off, and the nonmagnetic insulator 12, the magnetic field converging body 13, and the insulating protective layer 285 deposited on the magnetoresistive layer 11A are removed by a lift-off method. Subsequently, burrs and residues are removed by polishing, and the surface is flattened. This state is shown in FIGS. 24 (b) and 25 (c). As described above, since the patterned magnetoresistive layer 11A has a trapezoidal cross-sectional shape, the nonmagnetic insulator 12, the magnetic field concentrator 13, and the insulating protection layer 285 are deposited on the side walls. After the lift-off, as shown in FIG. 24B, the non-magnetic insulator 12 and the magnetic field converging body 13 appear outside the end of the magnetoresistive layer 11A. In FIG. 24B, the shape of the insulating protective layer 285 is omitted to facilitate the following description.

続いて、磁界収束体13の形状加工のために、再度レジスト286を磁界収束体13および絶縁保護膜285上に塗布する。このレジスト286を、リソグラフィー技術を用いて所望の形状に露光および現像し、レジストマスクを形成する。この状態を図26(a)に示す。このレジストマスク286を介してエッチングプロセスを行い、磁界収束体13を加工し、レジストマスク286を除去する。この状態を図24(c)、図26(b)に示す。   Subsequently, a resist 286 is applied again on the magnetic field converging body 13 and the insulating protective film 285 to shape the magnetic field converging body 13. The resist 286 is exposed and developed into a desired shape using a lithography technique to form a resist mask. This state is shown in FIG. An etching process is performed through the resist mask 286, the magnetic field converging body 13 is processed, and the resist mask 286 is removed. This state is shown in FIGS. 24 (c) and 26 (b).

以上の加工プロセスを用いることにより、磁気抵抗層11Aと磁界収束体13との間の距離は、非磁性絶縁体12を成膜する厚さで制御できることになる。これにより、第1乃至第2実施形態の磁気センサに必要な、数nmから50nmの範囲を容易に制御することができる。また、図24(a)乃至図26(b)からわかるように、磁気抵抗層11Aに適切な下地層と保護層を設けることにより、磁気抵抗層11Aの厚さを磁界収束体13よりも薄くすることができ、また、磁界収束体13の膜厚方向のほぼ中央の位置に磁気抵抗層11Aを配置することができるので、磁気抵抗層11Aの端部の磁荷から発生する漏洩磁界を効果的に磁界収束体13に吸収させて反磁界を低く抑えることができる。   By using the above processing process, the distance between the magnetoresistive layer 11A and the magnetic field converging body 13 can be controlled by the thickness of the nonmagnetic insulator 12 formed. Thereby, the range of several nm to 50 nm required for the magnetic sensors of the first and second embodiments can be easily controlled. Further, as can be seen from FIGS. 24A to 26B, by providing an appropriate underlayer and a protective layer on the magnetoresistive layer 11A, the thickness of the magnetoresistive layer 11A can be made smaller than that of the magnetic field converging body 13. In addition, since the magnetoresistive layer 11A can be disposed substantially at the center of the magnetic field converging body 13 in the thickness direction, the leakage magnetic field generated from the magnetic charge at the end of the magnetoresistive layer 11A can be effectively reduced. The demagnetizing field can be suppressed to a low level by being absorbed by the magnetic field converging body 13.

なお、磁気抵抗層11Aを、図14または図15に示す形状に加工する場合は、図24(a)に示すプロセスにおいて、図14または図15に示す磁気抵抗層11Aの形状になるように加工マスクを設定し、図26(a)、26(b)に示すプロセスにおいて、最も外側の磁気抵抗層11Aの外側にのみ磁界収束体13が形成されるような加工マスクを用いればよい。   When the magnetoresistive layer 11A is processed into the shape shown in FIG. 14 or FIG. 15, in the process shown in FIG. 24A, it is processed so as to have the shape of the magnetoresistive layer 11A shown in FIG. 14 or FIG. A mask is set, and in the process shown in FIGS. 26A and 26B, a processing mask that allows the magnetic field converging body 13 to be formed only outside the outermost magnetoresistive layer 11A may be used.

なお、図24(c)において、磁気抵抗層11A短軸側の端面にも非磁性絶縁体12がある。磁気抵抗層11Aに電流を印加するための導線を接続する際には、この非磁性絶縁体12を避けるか、一部を削除して配置すればよい。図1の模式図はこのような措置をした後の状態を模式的に示したものである。   In FIG. 24C, the nonmagnetic insulator 12 is also provided on the end face on the short axis side of the magnetoresistive layer 11A. When connecting a conducting wire for applying a current to the magnetoresistive layer 11A, the nonmagnetic insulator 12 may be avoided or a part thereof may be deleted. The schematic diagram of FIG. 1 schematically shows a state after such measures are taken.

(ノイズレベルの見積もり)
次に、第3実施形態による磁気センサのノイズレベルの見積もりを行った。図27(a)、27(b)にその結果を示す。図27(a)は想定している磁気センサの概要を模式的に示したものである。
(Estimation of noise level)
Next, the noise level of the magnetic sensor according to the third embodiment was estimated. 27 (a) and 27 (b) show the results. FIG. 27A schematically shows an outline of an assumed magnetic sensor.

この磁気センサは磁界検出部11の磁気抵抗層11Aとして図20に示すCIP−GMR素子171を用いた構成を有している。このCIP−GMR素子171は、幅が4μm、長さが800μm、厚さが15nmの寸法を有している。磁界収束体13a、13bの磁界検出部11側の長さを800μm、反対側の長さを10mm、厚さを600nm、磁界強度の拡大率を400倍とした。磁界検出部11の抵抗Rが4kΩ(ジョンソンノイズ:〜6nV)、印加電圧Vbが1.2V(0.36mW)、抵抗変化率(dR/R)を20%と仮定した。AMRの文献値より、1Hzでのノイズ(1/fノイズ+ジョンソンノイズ)を50nV/Hz0.5とした。 This magnetic sensor has a configuration using a CIP-GMR element 171 shown in FIG. The CIP-GMR element 171 has dimensions of 4 μm in width, 800 μm in length, and 15 nm in thickness. The length of the magnetic field converging bodies 13a and 13b on the side of the magnetic field detecting section 11 was 800 μm, the length on the opposite side was 10 mm, the thickness was 600 nm, and the magnification of the magnetic field intensity was 400 times. It is assumed that the resistance R of the magnetic field detector 11 is 4 kΩ (Johnson noise: 〜6 nV), the applied voltage Vb is 1.2 V (0.36 mW), and the resistance change rate (dR / R) is 20%. From the AMR literature value, the noise at 1 Hz (1 / f noise + Johnson noise) was set to 50 nV / Hz 0.5 .

図10、11に示したように、磁界検出部11と磁界収束体13との間の距離を50nm以下にする、すなわち磁界検出部11の短軸方向の長さの1/2以下にすることにより、飽和磁界Hk(感度の逆数)を半分程度に小さくすることができる。この結果を基に、磁界検出部11と磁界収束体13との間の距離を徐々に小さくしていくことで2×Hkが80、40、20、10Oeと減少していくと仮定した。図10,11の計算では軟磁性体の長軸と短軸の比が10であったが、本見積もりでは200であるので飽和磁界Hkの低減率はより大きくなると予想されるが、その分は考慮していない。この2×Hkを横軸として、縦軸にpT(ピコテスラ)当たりの出力電圧、および信号出力がノイズレベルと一致する磁界強度、すなわち限界検出磁界強度Dを図27(b)にプロットした。図27(b)からわかるように、1pTを切る磁界の検出が期待できることがわかった。この結果は、これまで述べてきたように、第1乃至第3実施形態による磁気センサを用いることにより、低ノイズ化と高感度化が達成できたことによるものである。   As shown in FIGS. 10 and 11, the distance between the magnetic field detection unit 11 and the magnetic field converging body 13 is set to 50 nm or less, that is, 1/2 or less of the length of the magnetic field detection unit 11 in the short axis direction. Thereby, the saturation magnetic field Hk (the reciprocal of the sensitivity) can be reduced to about half. Based on this result, it was assumed that 2 × Hk was reduced to 80, 40, 20, and 10 Oe by gradually reducing the distance between the magnetic field detection unit 11 and the magnetic field converging body 13. In the calculations of FIGS. 10 and 11, the ratio of the long axis to the short axis of the soft magnetic material was 10, but in the present estimation, it was 200, so the reduction rate of the saturation magnetic field Hk is expected to be larger. Not considered. The horizontal axis represents this 2 × Hk, and the vertical axis plots the output voltage per pT (picotesla) and the magnetic field strength at which the signal output matches the noise level, that is, the limit detection magnetic field strength D in FIG. 27B. As can be seen from FIG. 27B, it was found that detection of a magnetic field of less than 1 pT can be expected. This result is, as described above, that the use of the magnetic sensors according to the first to third embodiments achieves a reduction in noise and an increase in sensitivity.

(第4実施形態)
次に、第1乃至第3実施形態のいずれかの磁気センサを、脳神経が発する磁界を検出する脳磁計に用いることができる。これを第4実施形態として説明する。
(Fourth embodiment)
Next, the magnetic sensor according to any of the first to third embodiments can be used for a magnetoencephalograph that detects a magnetic field generated by a cranial nerve. This will be described as a fourth embodiment.

第4実施形態による磁気センサ装置について、図28を参照して説明する。この第4実施形態の磁気センサ装置100は脳磁計であって、図28の左側の図は、この脳磁計100を人体の頭部に装着した状態を模式的に示す。この脳磁計100は、複数のセンサ部、例えば100個程度のセンサ部301が柔軟性のある基体302の上に設置された構成を有している。   A magnetic sensor device according to a fourth embodiment will be described with reference to FIG. The magnetic sensor device 100 of the fourth embodiment is a magnetoencephalograph, and the diagram on the left side of FIG. 28 schematically shows a state where the magnetoencephalograph 100 is mounted on the head of a human body. The magnetoencephalograph 100 has a configuration in which a plurality of sensor units, for example, about 100 sensor units 301 are installed on a flexible base 302.

このセンサ部301は、第1乃至第3実施形態およびそれらの変形例のいずれかによる磁気センサが1個配置されていても良いし、複数個配置されていても良い。また、複数の磁気センサが差動検出等の回路を構成していても良いし、また、電位端子や加速度センサなどの別のセンサが同時に設置されていても良い。第1乃至第3実施形態およびそれらの変形例のいずれかによる磁気センサは、従来のSQUID磁気センサに比べて非常に小さく作成できるので、このような複数のセンサ部の設置や回路の設置や他のセンサとの共存も容易である。   In the sensor unit 301, one magnetic sensor according to any of the first to third embodiments and their modifications may be provided, or a plurality of magnetic sensors may be provided. A plurality of magnetic sensors may constitute a circuit for differential detection or the like, or another sensor such as a potential terminal or an acceleration sensor may be installed at the same time. The magnetic sensor according to any one of the first to third embodiments and their modifications can be made very small as compared with a conventional SQUID magnetic sensor. Coexistence with other sensors is also easy.

柔軟性のある基体302は、例えばシリコーン樹脂などの弾性体からなり、帯状に各センサ部301をつないで頭部に密着できるように構成されている。基体302は連続した膜を帽子状に加工したものでも良いが、図28に示すようなネット状のものが、装着性が良く、また人体への密着性が向上するので好ましい。   The flexible base 302 is made of, for example, an elastic body such as a silicone resin, and is configured so as to connect the sensor portions 301 in a belt shape and to be in close contact with the head. The base 302 may be formed by processing a continuous film into a hat shape, but a net shape as shown in FIG. 28 is preferable because it has good mounting properties and improves the adhesion to the human body.

センサ部301の入出力コード303は、診断装置500のセンサ駆動部506および信号入出力部504とつながっている。センサ駆動部506からの電力と信号入出力部504からの制御信号に基づきセンサ部301は所定の磁界測定を行い、その結果は、並行して信号入出力部504へ入力される。信号入出力部504で得た信号はその後、信号処理部508へ送られ、この信号処理部508において、ノイズの除去、フィルタリング、増幅、信号演算などの処理が施される。その後、これらの信号は、脳磁計測のための特定の信号を抽出したり、信号位相を合わせたりする信号解析が信号解析部510において行われる。信号解析が終了したデータは、データ処理部512に送られる。データ処理部512では、MRI(Magnetic Resonance Imaging)などの画像データやEEG(Electroencephalogram)などの頭皮電位情報なども取り入れて、神経発火点解析や逆問題解析などの、データ解析を行う。その結果は画像化診断部516へ送られ、診断の助けとなるような画像化が行われる。これら一連の動作は制御機構502によって制御されており、一次信号データやデータ処理途中のメタデータなど、必要なデータは、データサーバに保存される。なお、図28に示すようにデータサーバと制御機構が一体化していても良い。   The input / output code 303 of the sensor unit 301 is connected to the sensor drive unit 506 and the signal input / output unit 504 of the diagnostic device 500. The sensor unit 301 performs a predetermined magnetic field measurement based on the power from the sensor driving unit 506 and the control signal from the signal input / output unit 504, and the result is input to the signal input / output unit 504 in parallel. The signal obtained by the signal input / output unit 504 is then sent to a signal processing unit 508, where the signal processing unit 508 performs processing such as noise removal, filtering, amplification, and signal calculation. After that, the signal analysis unit 510 performs signal analysis on these signals, such as extracting a specific signal for magnetoencephalography measurement and adjusting the signal phase. The data for which the signal analysis has been completed is sent to the data processing unit 512. The data processing unit 512 also incorporates image data such as MRI (Magnetic Resonance Imaging) and scalp potential information such as EEG (Electroencephalogram) and performs data analysis such as nerve firing point analysis and inverse problem analysis. The result is sent to the imaging diagnosis unit 516, and imaging is performed to assist diagnosis. These series of operations are controlled by the control mechanism 502, and necessary data such as primary signal data and metadata during data processing are stored in the data server. Note that the data server and the control mechanism may be integrated as shown in FIG.

図28に示す第4実施形態では、センサ部301が人体頭部に設置されているが、これを人体胸部に設置すれば、心磁測定が可能となる。また、妊婦の腹部に設置すれば、胎児の心拍検査に用いることもできる。   In the fourth embodiment shown in FIG. 28, the sensor unit 301 is installed on the head of the human body, but if it is installed on the chest of the human body, the magnetocardiography can be measured. Moreover, if it is installed on the abdomen of a pregnant woman, it can be used for a heart rate test of a fetus.

被験者を含めた磁気センサ装置全体は、地磁気や磁気ノイズを防ぐためにシールドルーム内に設置されるのが好ましい。あるいは、人体の測定部位やセンサ部301を局所的にシールドする機構を設けても良い。また、センサ部301にシールド機構を設けたり、信号解析やデータ処理で実効的なシールドを行っても良い。   The entire magnetic sensor device including the subject is preferably installed in a shield room to prevent geomagnetism and magnetic noise. Alternatively, a mechanism for locally shielding the measurement site of the human body and the sensor unit 301 may be provided. Further, a shield mechanism may be provided in the sensor unit 301, or an effective shield may be performed by signal analysis or data processing.

図28に示す磁気センサ100は、高感度磁気センサを備えたセンサ部301が柔軟性のある基体302に設置されているが、従来の脳磁計や心磁計のように、固定された基体に設置されていても構わない。その例を図29および図30に示す。図29は脳磁計の一例であるが、ヘルメット状の硬質の基体304上にセンサ部301が設置されている。図30は心磁計の一例であるが、平板状の硬質の基体305上にセンサ部301が設置されている。いずれの場合も、センサ部301からの信号の入出力とその処理は図28と同様である。   In the magnetic sensor 100 shown in FIG. 28, a sensor unit 301 having a high-sensitivity magnetic sensor is installed on a flexible base 302, but is installed on a fixed base like a conventional magnetoencephalograph or magnetocardiograph. It does not matter. The example is shown in FIG. 29 and FIG. FIG. 29 shows an example of a magnetoencephalograph, in which a sensor unit 301 is provided on a hard base 304 having a helmet shape. FIG. 30 shows an example of a magnetocardiograph, in which a sensor section 301 is provided on a flat rigid base 305. In any case, the input and output of signals from the sensor unit 301 and the processing are the same as those in FIG.

(センサ部)
上記の脳磁計や心磁計におけるセンサ部301を構成する一実施例として、複数の磁気センサをブリッジ接続しても良い。この実施例を図31に示す。4つの磁界検出部11が矩形上に配置されており、各磁界検出部11は図31に示すようなブリッジ接続をされ、矢印17の方向の磁界を検出する。図31の左上と右下の磁界検出部11が、第1乃至第3実施形態およびそれらの変形例のいずれかによる磁気センサを構成する。この磁界検出部11を挟むように非磁性絶縁体12が設けられ、この非磁性絶縁体12に対して磁界検出部11と反対側に磁界収束体13が設けられている。
(Sensor part)
As an embodiment of the sensor unit 301 in the magnetoencephalograph or the magnetocardiograph, a plurality of magnetic sensors may be connected in a bridge. This embodiment is shown in FIG. The four magnetic field detectors 11 are arranged on a rectangle, and each magnetic field detector 11 is bridge-connected as shown in FIG. 31 to detect a magnetic field in the direction of arrow 17. The upper left and lower right magnetic field detectors 11 in FIG. 31 constitute a magnetic sensor according to any of the first to third embodiments and their modifications. A nonmagnetic insulator 12 is provided so as to sandwich the magnetic field detection unit 11, and a magnetic field converging body 13 is provided on the opposite side of the nonmagnetic insulator 12 from the magnetic field detection unit 11.

上述のように、磁界収束体13を設けた磁気センサは測定磁界の増強効果により、磁界収束体を設けない場合に比べて、桁違いに大きな出力信号を出す。従って、図31において、左上と右下の磁界検出部11は測定磁界に応じて抵抗が変化するが、左下と右上の磁界検出部11は実質的に測定磁界に応じて抵抗が変化しない固定抵抗となる。   As described above, the magnetic sensor provided with the magnetic field converging body 13 produces an output signal that is orders of magnitude larger than the case where no magnetic field converging body is provided due to the enhancement effect of the measured magnetic field. Therefore, in FIG. 31, the upper left and lower right magnetic field detectors 11 change their resistance according to the measured magnetic field, but the lower left and upper right magnetic field detectors 11 have fixed resistances whose resistance does not substantially change according to the measured magnetic field. Becomes

図31の構成で測定磁界が印加されると、図31の左上と右下の磁界検出部11が変化し、電圧検出部600での検出電圧は、単体の電圧変化の二倍の出力を得ることができる。一方で、検出電圧は磁界検出部11の電圧ではなく、図31の右側と左側のブロック600の電位差であるため、電流源650が本質的に持つノイズはキャンセルされる。すなわち、ノイズを抑えて出力を増やすことができる。   When a measurement magnetic field is applied in the configuration of FIG. 31, the upper left and lower right magnetic field detectors 11 of FIG. 31 change, and the voltage detected by the voltage detector 600 obtains an output twice as large as the voltage change of a single unit. be able to. On the other hand, since the detection voltage is not the voltage of the magnetic field detection unit 11 but the potential difference between the right and left blocks 600 in FIG. 31, the noise inherent in the current source 650 is canceled. That is, the output can be increased while suppressing noise.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are provided by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the invention described in the claims and their equivalents.

1,1A,1B,1C・・・磁気センサ、11・・・磁界検出部、11A・・・磁気抵抗層、12,12a,12b・・・非磁性絶縁体、13,13a、13b・・・磁界収束体、14・・・磁界収束体の磁気抵抗層側の端面、15・・・磁界収束体の磁気抵抗層側の反対側の端面、16・・・検出回路,17・・・測定磁界の方向、21・・・磁気抵抗層、22・・・磁気抵抗層内の磁化、23・・・磁気抵抗層の長軸側の端面、24a,24b・・・磁化の回転により発生した磁荷、25・・・磁気抵抗層の端部、161a,161b・・・導電体、171・・・垂直通電型磁気抵抗素子、181・・・固着層、182・・・非磁性中間層、183・・・フリー層、184・・・導線、211・・・磁気抵抗層、212・・・ 非磁性下地層、221・・・軟磁性体からなる第1磁性層、222・・・非磁性導電層、223・・・軟磁性体からなる第2磁性層、231・・・固着層、232・・・非磁性導電層、233・・・フリー層、234・・・長軸方向、241・・・Ru層、242・・・反強磁性層、251a,251b・・・軟磁性低電気抵抗層、252・・・Ru層、253a、253b・・・軟磁性高電気抵抗層、281・・・基板、282・・・下地層、283・・・保護層、284・・・レジスト、285・・・絶縁保護層、286・・・レジスト、301・・・センサ部、302・・・基体、303・・・入出力コード、304・・・ 基体、305・・・基体   1, 1A, 1B, 1C: magnetic sensor, 11: magnetic field detector, 11A: magnetoresistive layer, 12, 12a, 12b: non-magnetic insulator, 13, 13a, 13b ... Magnetic field converging body, 14 ... End face of magnetic field converging body on magnetoresistive layer side, 15 ... End face of magnetic field converging body on opposite side of magnetoresistive layer, 16 ... Detector circuit, 17 ... Measurement magnetic field , 21 ... magnetoresistive layer, 22 ... magnetization in magnetoresistance layer, 23 ... long-axis end face of magnetoresistance layer, 24a, 24b ... magnetic charge generated by rotation of magnetization , 25... End of the magnetoresistive layer, 161 a, 161 b... Conductor, 171... Perpendicularly conducting magnetoresistive element, 181... Fixed layer, 182. ..Free layer, 184... Conducting wire, 211... Magnetoresistive layer, 212... 221: a first magnetic layer made of a soft magnetic material; 222: a nonmagnetic conductive layer; 223: a second magnetic layer made of a soft magnetic material; 231, a fixed layer; Magnetic conductive layer, 233 free layer, 234 long axis direction, 241 Ru layer, 242 antiferromagnetic layer, 251a, 251b soft magnetic low electric resistance layer, 252 ..Ru layer, 253a, 253b: soft magnetic high electric resistance layer, 281: substrate, 282: base layer, 283: protective layer, 284: resist, 285: insulation protection Layer, 286 resist, 301 sensor part, 302 base, 303 input / output code, 304 base, 305 base

Claims (1)

第1方向の長さが前記第1方向に直交する第2方向の長さの10倍以上でかつ前記第1方向および前記第2方向に直交する第3方向の長さが前記第2方向の長さの1/2以下である磁性層を有する磁界検出部と、
前記磁界検出部の前記第1方向に沿って配置され、前記磁性層の前記第3方向の長さより前記第3方向の長さが長い第1磁性体部材と、
前記磁界検出部と前記第1磁性体部材との間に配置され、前記第2方向の長さが前記磁性層の前記第2方向の長さの1/2以下である第1非磁性絶縁層と、
前記磁性層に電流を流す回路と、
を備えた磁気センサ。
The length of the first direction is at least 10 times the length of the second direction orthogonal to the first direction, and the length of the third direction orthogonal to the first direction and the second direction is the length of the second direction. A magnetic field detector having a magnetic layer that is not more than half the length;
A first magnetic member that is arranged along the first direction of the magnetic field detection unit and has a length in the third direction longer than a length of the magnetic layer in the third direction;
A first non-magnetic insulating layer disposed between the magnetic field detector and the first magnetic member, wherein the length in the second direction is not more than half the length of the magnetic layer in the second direction; When,
A circuit for passing a current through the magnetic layer;
Magnetic sensor provided with.
JP2019149992A 2019-08-19 2019-08-19 Magnetic sensor and magnetic sensor device Abandoned JP2020012831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019149992A JP2020012831A (en) 2019-08-19 2019-08-19 Magnetic sensor and magnetic sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019149992A JP2020012831A (en) 2019-08-19 2019-08-19 Magnetic sensor and magnetic sensor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016012642A Division JP6581516B2 (en) 2016-01-26 2016-01-26 Magnetic sensor and magnetic sensor device

Publications (1)

Publication Number Publication Date
JP2020012831A true JP2020012831A (en) 2020-01-23

Family

ID=69170942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019149992A Abandoned JP2020012831A (en) 2019-08-19 2019-08-19 Magnetic sensor and magnetic sensor device

Country Status (1)

Country Link
JP (1) JP2020012831A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022065866A (en) * 2020-10-16 2022-04-28 株式会社東芝 Magnetic sensor and inspection device
JP2022088883A (en) * 2020-12-03 2022-06-15 株式会社東芝 Magnetic sensor and inspection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022065866A (en) * 2020-10-16 2022-04-28 株式会社東芝 Magnetic sensor and inspection device
JP7421462B2 (en) 2020-10-16 2024-01-24 株式会社東芝 Magnetic sensor and inspection equipment
JP2022088883A (en) * 2020-12-03 2022-06-15 株式会社東芝 Magnetic sensor and inspection device
JP7393319B2 (en) 2020-12-03 2023-12-06 株式会社東芝 Magnetic sensor and inspection equipment

Similar Documents

Publication Publication Date Title
JP6581516B2 (en) Magnetic sensor and magnetic sensor device
JP5452006B2 (en) Manufacturing method of magnetic device and manufacturing method of magnetic field angle sensor
US7813087B2 (en) Magnetic memory device having spin wave oscillator arranged to heat magnetic tunnel junction element
JP4513804B2 (en) Magnetic field detector, current detection device using the same, position detection device, and rotation detection device
US7248045B2 (en) Magnetic sensing device, method of forming the same, magnetic sensor, and ammeter
US7064937B2 (en) System and method for fixing a direction of magnetization of pinned layers in a magnetic field sensor
JP5509208B2 (en) Three-dimensional magnetic recording / reproducing device
US8537504B2 (en) Current-perpendicular-to-plane (CPP) read sensor with ferromagnetic buffer, shielding and seed layers
US20060002031A1 (en) Magnetic sensing device and method of forming the same
JP5805500B2 (en) Manufacturing method of biomagnetic sensor
US20170209062A1 (en) Magnetic sensor and magnetic sensor apparatus
US8451566B2 (en) Current-perpendicular-to-plane (CPP) read sensor with ferromagnetic buffer and seed layers
JP2020012831A (en) Magnetic sensor and magnetic sensor device
JPH11238924A (en) Spin-dependent transmission element electronic component using the same, and magnetic part
Elzwawy et al. Free and forced Barkhausen noises in magnetic thin film based cross-junctions
JP3212569B2 (en) Dual spin valve thin film magnetic element, thin film magnetic head, and method of manufacturing dual spin valve thin film magnetic element
JP6572141B2 (en) Magnetic sensor and magnetic sensor device
JPH11273033A (en) Magnetoresistance multi-layer film and thin film magnetic head provided with its multi-layer film
JP2017059591A (en) Magnetic sensor and magnetic sensor device
Weitensfelder et al. Temperature dependence of noise in giant-and tunneling magnetoresistive vortex sensors
Matsuzono et al. Study on requirements for shielded current perpendicular to the plane spin valve heads based on dynamic read tests
US5958576A (en) Magnetoresistance effect device and magnetic head
JPH11195824A (en) Magnetoresistance effect element and magnetoresistance effect type head
JP3243092B2 (en) Thin film magnetic head
US20240003998A1 (en) Sensor and inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191001

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20200408