JP2020012735A - On-vehicle environment recognition device - Google Patents
On-vehicle environment recognition device Download PDFInfo
- Publication number
- JP2020012735A JP2020012735A JP2018135236A JP2018135236A JP2020012735A JP 2020012735 A JP2020012735 A JP 2020012735A JP 2018135236 A JP2018135236 A JP 2018135236A JP 2018135236 A JP2018135236 A JP 2018135236A JP 2020012735 A JP2020012735 A JP 2020012735A
- Authority
- JP
- Japan
- Prior art keywords
- image
- camera
- viewpoint
- conversion
- viewpoint conversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 277
- 230000009466 transformation Effects 0.000 claims description 45
- 238000012545 processing Methods 0.000 claims description 24
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims description 18
- 230000008859 change Effects 0.000 claims description 11
- 238000012937 correction Methods 0.000 claims description 9
- 239000000284 extract Substances 0.000 claims description 4
- 230000000875 corresponding effect Effects 0.000 description 212
- 238000000034 method Methods 0.000 description 51
- 239000011159 matrix material Substances 0.000 description 24
- 238000004364 calculation method Methods 0.000 description 22
- 230000036544 posture Effects 0.000 description 14
- 230000006870 function Effects 0.000 description 13
- 230000008569 process Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 7
- 238000010008 shearing Methods 0.000 description 5
- 230000001131 transforming effect Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 230000004931 aggregating effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C3/00—Measuring distances in line of sight; Optical rangefinders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C3/00—Measuring distances in line of sight; Optical rangefinders
- G01C3/02—Details
- G01C3/06—Use of electric means to obtain final indication
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
- Closed-Circuit Television Systems (AREA)
- Image Processing (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
Description
本発明は車両に設置されたカメラにより車両の周囲環境を認識する車載環境認識装置に関する。 The present invention relates to an in-vehicle environment recognizing device that recognizes a surrounding environment of a vehicle using a camera installed in the vehicle.
車両に設置された2つのカメラにより車両の周囲環境を認識する車載カメラに関する技術がある。予防安全技術の製品化が普及期に入りつつあり、より多機能化かつ広視野なセンシングが廉価に求められるようになっている。 There is a technology related to an in-vehicle camera that recognizes a surrounding environment of a vehicle using two cameras installed in the vehicle. The commercialization of preventive safety technology is entering the spread period, and multifunctional and wide-field sensing is required at low cost.
車両に設置された2つのカメラ間の位置、姿勢を推定し、2つのカメラの画像が平行な位置関係となるように、幾何校正(キャリブレーション)する方法がある。この際に、2つのカメラの位置、姿勢の幾何関係を求めるための情報として、2つのカメラの画像上から得られる対応点を利用する手法が一般的である。この対応点を取得する手法は、左右画像上から特徴点といわれる画像上の角(コーナー)などのユニークな点を抽出し、その特徴点の周囲における輝度変化から特徴量を演算し、この特徴量が類似する特徴点を左右画像上で探索して発見された特徴点を対応点とし、左右画像における対応点の座標を基に幾何校正を実施する。 There is a method of estimating the position and orientation between two cameras installed in a vehicle and performing geometric calibration so that the images of the two cameras have a parallel positional relationship. At this time, a method of using corresponding points obtained from images of the two cameras is generally used as information for obtaining the geometric relationship between the positions and postures of the two cameras. The method of acquiring the corresponding point is to extract a unique point such as a corner (corner) on the image which is called a feature point from the left and right images, calculate a feature amount from a luminance change around the feature point, and calculate the feature amount. Feature points having similar amounts are searched for on the left and right images, and feature points found are set as corresponding points, and geometric calibration is performed based on the coordinates of the corresponding points in the left and right images.
例えば、特開2014−74632号公報(特許文献1)には、互いの視野が重なるように配置された左右のカメラの出力に基づき物体までの距離を算出するとともに物体の3次元位置を推定する3次元座標推定部と、3次元座標推定部における推定処理に用いられるカメラ間パラメータを記憶するカメラ間パラメータ記憶部と、左右のカメラの出力に基づき予め大きさが分かっている平面状の対象物を認識するとともに、対象物の特徴点座標を取得する対象物認識及び特徴点収集部と、特徴点座標に基づきカメラ間パラメータを求めるカメラ間パラメータ推定部とを備える車載ステレオカメラの校正装置が開示されている。 For example, Japanese Patent Application Laid-Open No. 2014-74632 (Patent Literature 1) describes that a distance to an object is calculated and a three-dimensional position of the object is estimated based on outputs of left and right cameras arranged so that their fields of view overlap. A three-dimensional coordinate estimating unit, an inter-camera parameter storage unit for storing inter-camera parameters used for estimation processing in the three-dimensional coordinate estimating unit, and a planar object whose size is known in advance based on the outputs of the left and right cameras A calibration device for an in-vehicle stereo camera including an object recognition and feature point collection unit for recognizing and acquiring feature point coordinates of an object, and an inter-camera parameter estimation unit for obtaining an inter-camera parameter based on the feature point coordinates is disclosed. Have been.
しかしながら、2つのカメラ間に映る風景や物体がカメラから近距離の場合や、2つのカメラの距離が離れている場合には、大きく異なる視点から同じ物体を観測することになり、2つの画像での同一物体の見え方(写り方)が大きく異なってしまう場合がある。このように同一物体の見え方が大きく異なると、2つの画像から対応を取りたい特徴点の抽出がうまくいっても、その点の周囲の輝度変化を基に演算した特徴量が2つのカメラ間で異なる可能性が高い。すなわち2つの特徴点の特徴量が異なる値となって計算されるため、対応点が見つからない、間違った対応点(誤対応点)が見つかる、又は対応点が見つかってもその個数が非常に少ない、といった課題が生じる。対応点が少ない又は誤対応点が多ければ、それだけカメラの幾何校正の精度が低下する要因となる。また、収束演算で2つのカメラ間の位置、姿勢が推定できないような場合も発生する。 However, when the scenery or object between the two cameras is close to the camera or when the two cameras are far apart, the same object is observed from a greatly different viewpoint, and the two images are used. Of the same object may be greatly different. When the appearance of the same object is greatly different in this way, even if the feature point to be correlated with the two images is successfully extracted, the feature amount calculated based on the luminance change around the point between the two cameras Likely to be different. That is, since the feature values of the two feature points are calculated as different values, no corresponding point is found, an incorrect corresponding point (erroneous corresponding point) is found, or even if a corresponding point is found, the number is very small. And the like. The smaller the number of corresponding points or the more erroneous corresponding points, the lower the accuracy of the geometric calibration of the camera. Further, there may be a case where the position and orientation between the two cameras cannot be estimated by the convergence calculation.
本発明の目的は、複数のカメラで撮影した画像に見え方の大きく異なる同一物体が写っている場合でも容易にカメラの幾何校正ができる車載環境認識装置を提供することにある。 An object of the present invention is to provide an in-vehicle environment recognizing device that can easily perform a geometric calibration of a camera even when an image captured by a plurality of cameras includes the same object having a significantly different appearance.
本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、第1カメラ及び第2カメラと、前記第1カメラによって撮像された第1画像と前記第2カメラによって撮像された第2画像の少なくとも一方を変形することで前記第1画像及び前記第2画像を共通の視点からの画像に変換する視点変換を行った後に複数の対応点を抽出し、前記視点変換前の前記第1画像及び前記第2画像における前記複数の対応点の座標を利用して前記第1カメラ及び前記第2カメラの幾何校正を行う制御装置とを備えることを特徴とする。 The present application includes a plurality of means for solving the above-mentioned problems. For example, a first camera and a second camera, a first image captured by the first camera, and an image captured by the second camera are provided. After performing viewpoint conversion for converting the first image and the second image to an image from a common viewpoint by deforming at least one of the second images, a plurality of corresponding points are extracted, and the plurality of corresponding points are extracted before the viewpoint conversion. A control device for performing geometric calibration of the first camera and the second camera using coordinates of the plurality of corresponding points in the first image and the second image.
本発明によれば、車両に設置された複数台のカメラの共通視野領域において、視点変換を実施することで、画像上で密な対応点を抽出し、この対応点に基づいて幾何校正することで、高精度にカメラ間の位置、姿勢を推定、2つのカメラの高精度な平行化を実現する。高精度な平行化を実施した状態でステレオマッチングすることで、高密度な視差画像の生成を実現、更にこの視差から高精度な距離復元を可能とする。 According to the present invention, dense corresponding points are extracted on an image by performing viewpoint conversion in a common visual field region of a plurality of cameras installed in a vehicle, and geometric calibration is performed based on the corresponding points. Thus, the position and orientation between the cameras can be estimated with high accuracy, and highly accurate parallelization of the two cameras can be realized. By performing stereo matching in a state where high-precision parallelization is performed, generation of a high-density parallax image is realized, and high-precision distance restoration is enabled from the parallax.
以下、本発明の実施形態について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
・第1実施形態
<図1 車載環境認識装置>
図1に本実施形態に係る車載環境認識装置1の構成図を示す。車載環境認識装置1は、水平方向の左右に間隔を介して配置された左カメラ(第1カメラ)100と右カメラ(第2カメラ)110と、2台のカメラ100,110から出力される撮像画像(左カメラ100による画像を第1画像、右カメラ110による画像を第2画像と称することがある)を基に、2台のカメラ100,110の幾何校正(キャリブレーション)を行う処理や、2台のカメラ100,110によって同一タイミングで撮像された2枚の画像をステレオマッチングして視差画像を作成する処理などを実行する制御装置(コンピュータ)10を備えている。
-First Embodiment <Fig. 1 In-vehicle environment recognition device>
FIG. 1 shows a configuration diagram of an in-vehicle environment recognition device 1 according to the present embodiment. The in-vehicle environment recognizing device 1 includes a left camera (first camera) 100 and a right camera (second camera) 110 arranged at intervals in the left and right directions in the horizontal direction, and imaging output from the two
制御装置(コンピュータ)10は、図示しない演算処理装置(例えばCPU)と、その演算処理装置が実行するプログラム等が記憶される記憶装置(例えば、メモリ、ハードディスク、フラッシュメモリ)と、内部の機器同士や外部との機器との通信を行うための通信装置等を備えている。制御装置10は、記憶装置に記憶されたプログラムを実行することで、視点変換部200、対応点探索部300、カメラ幾何校正部400及び視差画像生成部500として機能する。なお、プログラムの追加によりその他の機能の実装も可能である。
The control device (computer) 10 includes an arithmetic processing device (eg, CPU) not shown, a storage device (eg, memory, hard disk, flash memory) for storing a program executed by the arithmetic processing device, and internal devices. And a communication device for performing communication with external devices. The
一般に左右2台のカメラから成るステレオカメラは共通視野領域を利用して車載周囲環境を認識する。左右カメラを支持体の所定の位置に高精度に取り付けた後、カメラ工場において左右カメラでキャリブレーションチャートを撮像しながら左右カメラの位置、姿勢を推定し、その結果を利用して、左右カメラから撮像される画像がお互い平行になるようにパラメータを補正する。この状態でステレオマッチングすれば、高密度な視差と視差画像の取得が可能となり、さらにはその視差画像から高精度な距離が計測可能となる。しかし、高精度なカメラ製造や、温度変化、衝撃、振動及び経年変化等によるカメラの変形を抑制する部品や構造は高価である。 In general, a stereo camera composed of two cameras on the left and right recognizes the surrounding environment of the vehicle using a common field of view. After attaching the left and right cameras to the predetermined position of the support with high accuracy, the camera factory estimates the position and orientation of the left and right cameras while capturing the calibration chart with the left and right cameras, and uses the results to The parameters are corrected so that the captured images are parallel to each other. If stereo matching is performed in this state, it is possible to obtain a high-density parallax and a parallax image, and it is possible to measure a distance with high accuracy from the parallax image. However, high-precision camera manufacturing and parts and structures that suppress deformation of the camera due to temperature change, shock, vibration, aging, and the like are expensive.
本願発明者らは、この種のコスト抑制のために、カメラの位置ズレや温度・経年変化等によるカメラの変形を事後的に容易に補正可能で、走行中の高精度なキャリブレーションを実現可能なものとして本実施形態の車載環境認識装置1を発明した。 The present inventors can easily correct the deformation of the camera due to the positional shift of the camera, the temperature, the aging, etc. in order to suppress the cost of this kind, and realize the high-precision calibration during the traveling. As such, the in-vehicle environment recognition device 1 of the present embodiment was invented.
まず、本実施形態では、公知の技術と同様に、左右カメラ100,110の画像上から特徴点(例えば画像上の物体の角(コーナー)等のユニークな点)を抽出し、その特徴点の周囲の輝度変化から特徴量を計算し、左右画像上で類似する特徴量を保有する特徴点を探索し、左右画像上で特徴量が類似する1組の特徴点を1組の対応点として設定する。図8の画像は探索された左右画像上の複数の対応点同士を線でつないで表示した画像であり、この複数の対応点を基に左右カメラ100,110の幾何校正を実施する。
First, in the present embodiment, similarly to the known technique, feature points (unique points such as corners (corners) of an object on the image) are extracted from the images of the left and
図1において、対応点探索部300は、左右カメラ100,110の画像上から先ほど説明したような特徴点を抽出し、その特徴点の周囲の輝度変化から特徴量を計算し、左右画像上で類似する特徴量を保有する特徴点(対応点)を探索する。
In FIG. 1, the corresponding
カメラ幾何校正部400は、対応点探索部300で得られた複数の対応点を基に左右画像を平行にする幾何校正パラメータを演算する。左右カメラ100,110の画像を幾何校正した画像は、左右平行な位置関係であると共に、レンズ歪みの全くない画像となる。これにより幾何的にマッチングし易い、左右画像が準備可能となる。
The camera
視差画像生成部500は、同一タイミングで撮像されカメラ幾何校正部400の幾何校正パラメータで補正された2枚の画像(平行化画像)に対してステレオマッチングを実施して、2枚の画像上で同じ物(同じパターン)が撮影された位置のズレを示す距離情報(視差情報)を公知の方法で計算して視差画像(距離画像)を生成する。視差画像生成部500では、左カメラ100と右カメラ110から撮像された左右の画像を利用する。本実施形態では右カメラ110による右画像(第2画像)をベースとしてステレオマッチングを実施するために、基本的には右基準に感度、幾何などを合わせるものとする。視差画像生成部500は、幾何と感度の補正が適応された左右カメラの画像を入力してステレオマッチングを実施し、視差画像を生成し、最後にノイズ除去を実施することでノイズ除去された視差画像が得られる。
The parallax
本実施形態では視点変換部200で行われる処理が最も特徴的な部分となる。視点変換部200は、左カメラ100によって撮像された左画像(第1画像)と右カメラ110によって撮像された右画像(第2画像)の少なくとも一方を変形することで左右画像(第1画像及び前記第2画像)を共通の視点からの画像に変換する視点変換を行う。これにより対応点探索部300において左右画像から対応点が見つかりやすくなる。画像の変形方法(視点変換の方法)の詳細については後述するが、例えば、左カメラ100により撮像された画像(左画像,第1画像)を、右カメラ110の視点からの見え方に近づくように変形する(例えば、画像の拡大縮小、回転、平行移動、せん断を含むアフィン変換により画像を変形する)ことで、画像上の領域の全体又はその一部において、視点変換前よりも数の多い密な対応点の探索結果を対応点探索部300で得ることができる。この密な対応点を利用することで、後段で行われるカメラ幾何校正部400の処理では、高精度な幾何校正を実現する。幾何校正により正確に平行化された左右のペア画像を利用することで、視差画像生成部500における高密度かつ高精度な視差画像の生成が可能となる。
In the present embodiment, the processing performed by the
2つのカメラ間の距離が比較的大きい長基線長のステレオカメラの場合や、近距離対象物が撮像された場合、同じ物体を全く異なる角度から撮像することになり、左右画像に撮像される当該物体の見え方は大きく異なるため、左右画像上で類似する特徴量を探索する一般的な対応点抽出手法では、対応点が取得しづらい。例えば、図9の上側に示す左右画像では、遠距離は左右画像での変形が相対的に少ないため対応点の取得が容易であるが、路面上に置いた物体91をはじめとした近距離では変形が相対的に大きく対応点を密に得ることが難しい。対応点探索方法として、図10の(2)、(3)に示すように、左画像での路面上の4点の見え方(画像上の位置)が右画像と一致又は類似するように視点変換してから対応点探索する。このようにすると、変形前の図9下側の画像では対応点が路面からほとんど探索できなかったが、図10の最下段に示すように変形後は路面から対応点が密に得られていることが確認できる。
In the case of a stereo camera with a long base line in which the distance between the two cameras is relatively large, or when a short-distance object is imaged, the same object is imaged from completely different angles, and the right and left images are imaged. Since the appearance of the object is greatly different, it is difficult to obtain a corresponding point by a general corresponding point extraction method for searching for similar feature amounts on the left and right images. For example, in the left and right images shown in the upper part of FIG. 9, at a long distance, the deformation in the left and right images is relatively small, so that it is easy to obtain a corresponding point. However, at a short distance such as an
このように画像の変形、例えば視点変換による変形などを活用して、密な対応点を得ることで、高精度に幾何校正を実施し、平行化してからステレオマッチングすることで、高密度、高精度な視差画像の生成と測距を実現する。 In this way, by utilizing image deformation, for example, deformation by viewpoint transformation, dense correspondence points are obtained, high-precision geometric calibration is performed, parallelization is performed, and then stereo matching is performed. Achieve accurate parallax image generation and ranging.
<図2 視点変換部200>
次に視点変換部200で実施可能な視点変換(画像変形)の例について説明する。図2に示すように視点変換部200は、左右画像の少なくとも一方について視点変換を行う領域と行わない領域を設定する領域設定部210と、領域設定部210で設定された視点変換を行う領域を変形することで左右画像を共通の視点からの画像に変換するために必要な行列や関数のパラメータを生成する変換パラメータ生成部220と、変換パラメータ生成部220によって生成されたパラメータ(変換パラメータ)を有する行列や関数を利用することで左右画像の少なくとも一方を視点変換した画像(視点変換画像)を生成する視点変換画像生成部240と、視点変換後の画像を元に戻す逆変換に必要な逆行列や関数のパラメータ(逆変換パラメータ)を生成する逆変換パラメータ計算部230とを備えている。
<FIG. 2
Next, an example of viewpoint transformation (image deformation) that can be performed by the
視点変換画像生成部240により生成された視点変換画像は対応点探索部300における対応点探索で利用される。また、逆変換パラメータ計算部230で計算された逆変換パラメータはカメラ幾何校正部400の対応点逆変換補正部410で利用される。
The viewpoint converted image generated by the viewpoint converted
なお、領域設定部210ではカメラ画像内の全ての領域を視点変換を行う領域や視点変換を行わない領域として設定しても良い。左右カメラ100,110の視点変換先である共通の視点としては、左右カメラ100,110のいずれか一方の視点と、左右カメラ100,110のいずれとも異なる任意の視点がある。後者の場合には、例えば、左カメラ100と右カメラ110の間に位置する所定の視点(例えば左右カメラ100,110の中点)を共通の視点に設定して視点変換することができる。
Note that the
(1)簡易的な視点変換
視点変換の1つとしては、制御装置10の視点変換部200が、左右画像(第1画像及び前記第2画像)で重複して撮像された部分(重複領域)の少なくとも一部が平面であると仮定し、当該平面に対する左カメラ100及び右カメラ110の位置及び姿勢を左右画像に基づいてカメラ幾何的に演算し、その演算した当該平面に対する左カメラ100及び右カメラ110の位置及び姿勢に基づいて左画像(第1画像)を右カメラ110の視点からの画像に変換するものがある。
(1) Simple viewpoint conversion As one of viewpoint conversions, a part (overlap area) where the
この方法に関して図10の例では、左カメラ100の画像に撮像された一部が路面(平面)であると仮定して、左右カメラ100,110と当該路面(平面)上の任意の点との相対的な位置・姿勢をカメラ幾何的に演算し、その位置・姿勢を基に左カメラ100の画像を右カメラ110の位置・姿勢に視点変換した画像を生成することで密な対応点を取得している。
In the example of FIG. 10 regarding this method, assuming that a part captured in the image of the
ただし、ここで変形前の図9の下に示す画像(元画像)では遠方の立体物上で多くの密な対応点が抽出されており、反対に、変形後の図10の下に示す画像(視点変換画像)では、遠方の立体物上で対応点があまり抽出されていない代わりに路面上から多くの密な対応点が得られている。図10では、左カメラ100の元画像中の左下にある路面が右カメラ110の画像中の当該路面と同じ見え方になるように左右方向に平行な水平せん断変形を左画像に施した。これにより左右画像で当該路面の形状が類似した結果、当該路面上の対応点が密に得られた。ただし、この視点変換は、左画像の一部に過ぎない路面のみに着目して左画像全体を変形したため、路面上に存在しない立体物(特に図10に示す建物など)の形状に着目すると視点変換後に大きく斜めになっていることが確認できる。このような変形を施すと、当該建物については、むしろ変形前の方が左右画像上で見え方(形状)が類似しており、元々の画像(原画像)でもカメラ100,110から遠方では密な対応点が得られることが理解できる。
However, here, in the image (original image) shown in the lower part of FIG. 9 before the deformation, many dense corresponding points are extracted on a distant three-dimensional object, and conversely, the image shown in the lower part of FIG. In the (viewpoint conversion image), many dense corresponding points are obtained from the road surface instead of extracting much corresponding points on a distant three-dimensional object. In FIG. 10, the left image is subjected to horizontal shear deformation parallel to the left and right directions so that the road surface at the lower left in the original image of the
(2)上下2分割による視点変換
そこで、本実施形態では、左右画像からより多くの対応点を得るために、視点変換を行う領域と視点変換を行わない領域の2種類の領域に左画像を分割して対応点の探索を行うこととする。前者の視点変換を行う領域は、視点変換を行うと対応点が増加する領域と換言でき、例えばカメラから近距離の領域が該当する。後者の視点変換を行わない領域は、原画像でも密な対応点が取得できる領域と換言でき、例えばカメラから遠距離の領域が該当する。
(2) Perspective conversion by upper and lower two divisions In this embodiment, in order to obtain more corresponding points from the left and right images, the left image is divided into two types of regions, a region where viewpoint conversion is performed and a region where viewpoint conversion is not performed. The search is performed for the corresponding points by division. The former area in which the viewpoint conversion is performed can be said to be an area in which the number of corresponding points increases when the viewpoint conversion is performed. The latter area in which viewpoint conversion is not performed can be said to be an area in which dense corresponding points can be obtained even in the original image, and corresponds to, for example, an area far from the camera.
この種の視点変換としては、図11に示すように、画像中の消失点VPを基準として、左画像を水平方向の境界線で上下に2分割し、2つの領域のうち上側の領域(上側領域)111については視点変換を行わない領域として設定し、下側の領域(下側領域)112については視点変換を行う領域として設定するものがある。具体的には、制御装置10の視点変換部200が、消失点VPを含む又は消失点VPに接する境界を有する上側領域(遠景)111と、その上側領域111の下方に位置する下側領域(路面)112の2つの領域に左画像(第1画像)を上下に2分割し、下側領域112の少なくとも一部が平面であると仮定し、その平面に対する左右カメラ100,110の位置及び姿勢を演算し、その演算した当該平面に対する左右カメラ100,110の位置及び姿勢に基づいて下側領域112を右カメラ110の視点からの画像に変換し、その変換後の下側領域112と上側領域(視点変換無し)111を合わせたものを視点変換後の左画像(第1画像)とする。
As this kind of viewpoint conversion, as shown in FIG. 11, the left image is vertically divided into two by a horizontal boundary line based on a vanishing point VP in the image, and the upper region (upper region) of the two regions is divided. In some cases, the region (region) 111 is set as a region in which viewpoint conversion is not performed, and the lower region (lower region) 112 is set as a region in which viewpoint conversion is performed. Specifically, the
この視点変換は車載カメラ(車載環境認識装置)のカメラ幾何校正において最も簡単かつ有効なものの1つである。また、この方法では、視点変換後の画像(視点変換画像)をFPGA(Field-Programmable Gate Array),ASIC(Application Specific Integrated Circuit),GPU(Graphics Processing Unit)等のハードウェアで利用すること等を想定し、長方形にしか分割しないという制約をつけて簡易的に変換している。遠方の路面も平面と仮定して変形可能であるが、そもそも遠方であれば視点変換による路面の変形量が小さい。また遠景の立体物なども視点変換による変形が小さいため、消失点VPを含む上側の領域111は視点変換しない領域として領域設定部210において設定する。車載カメラの場合には、画面の下側の領域112には基本的に自車両が走行する道路が撮像されるため、多くの領域が平面である路面が撮像される可能性が非常に高い。そこで、下側領域112は、路面が撮像される領域である仮定して、視点変換する領域として領域設定部210において設定する。
This viewpoint conversion is one of the simplest and most effective ones in camera geometric calibration of an in-vehicle camera (in-vehicle environment recognition device). In addition, this method uses an image after viewpoint conversion (viewpoint conversion image) with hardware such as an FPGA (Field-Programmable Gate Array), an ASIC (Application Specific Integrated Circuit), and a GPU (Graphics Processing Unit). Assuming, conversion is simplified with the restriction that the image is divided only into rectangles. A distant road surface can also be deformed on the assumption that it is flat, but if it is far away, the amount of deformation of the road surface due to viewpoint conversion is small. Further, since a three-dimensional object in a distant view is not significantly deformed by the viewpoint conversion, the upper region 111 including the vanishing point VP is set in the
視点変換部200は、変換パラメータ生成部220で生成された変換パラメータを利用して下側領域112の視点変換を行う。簡単な視点変換方法としては、車両に取り付けられたカメラ100,110の位置・姿勢の設計値を利用して変換パラメータ生成部220で変換パラメータを生成する方法がある。車載環境認識装置1の画像処理によりカメラ100,110の位置・姿勢を設計値から補正している場合には補正後の値を使っても良い。また、路面上の少なくとも3点の距離情報に基づいて当該路面の姿勢をカメラの位置・姿勢と同時に推定している場合には路面の姿勢情報を利用してよい。なお、ここで左右カメラの位置・姿勢として設計値が利用可能としているのは、左右画像が視点変換前より類似することが重要であり、両者が数学的に完全に一致する必要はないという理由からである。なぜならば、視点変換の目的は視点変換後の画像で対応点を密に得ることであり、対応点が得られる程度に類似した画像を生成できれば足りるからである。また、変換パラメータによる視点変換後の対応点の座標は、もう一度、逆変換パラメータによって視点変換前の座標に戻した上でカメラの幾何校正に利用される。そのため必ずしも高精度なカメラの位置・姿勢が必要なわけではない。
The
(2−1)上下2分割による視点変換(画像の拡大縮小、回転、平行移動、せん断を含むアフィン変換)
上記のように、数学的にカメラ100,110と路面の相対位置・姿勢から数学的に視点変換の演算を実施しても良いが、視点変換の主目的は正確な変換にあるのではなく、左右画像の対応点を密に得ることである。このため、数学的に正確な変換でなかったとしても、ある程度の効果が認められる手法で代替も可能である。ハードウェアでの数学演算に基づく変換を省略しても良い。
(2-1) Viewpoint transformation by upper and lower division (affine transformation including scaling, rotation, translation, and shearing of image)
As described above, the viewpoint conversion may be mathematically performed based on the relative positions and postures of the
例えば、左右カメラ100,110の位置・姿勢が未知(未演算及び演算不可の場合を含む)で画像の変形量が決まっていない場合には、変換パラメータ生成部220において、消失点VRを中心と考えた画像の回転や路面のせん断変形等を含むアフィン変換で画像を変形して視点変換を行っても良い。
For example, when the positions and orientations of the left and
この場合の視点変換の具体的方法としては、制御装置10の視点変換部200が、左カメラ100による左画像(第1画像)にパラメータ(アフィン変換のための行列のパラメータ)を変化させながらアフィン変換を施して複数の変換画像を生成し、その複数の変換画像のそれぞれと右画像(第2画像)の対応点の抽出を実施し、その複数の変換画像の中で対応点の数が最も多くかつ所定の閾値(基準値)以上の変換画像を後続の処理で利用する最終的な視点変換画像(すなわち左画像を右カメラ110の視点からの画像に変換した画像)とする処理がある。この方法で複数の変換画像を生成する際には、例えば、画像の拡大縮小、回転、平行移動及びせん断の少なくとも1つを含む全ての組合せについて、パラメータを少しずつ変化させながらアフィン変換を施す。これにより実質的に全てのパターンの変換画像とそれに利用した変換行列が生成できる。その際、変換画像の数はパラメータを変化させる間隔で調整できる。そして、生成された全ての変換画像について右画像との対応点の探索を実行し、得られた対応点の数を比較することで、右画像に最も類似する形状に左画像を変形した視点変換画像と変換行列を取得できる。このように取得された変換行列のパラメータは変換パラメータとして利用できる。
As a specific method of viewpoint conversion in this case, the
図12を用いてアフィン変換としてせん断変形を利用した視点変換の方法について説明する。図12の例では、左画像の路面領域のせん断の変形量(せん断量)を所定の間隔で増やし続けて複数の変換画像を生成しつつ、各変換画像について右画像との対応点を探索し、その対応点の数が最も多くかつ基準(所定の閾値)より多い変換画像のせん断量を変換パラメータとして採用することを決定している。 A method of viewpoint transformation using shear deformation as affine transformation will be described with reference to FIG. In the example of FIG. 12, while generating a plurality of converted images by continuously increasing the amount of shear deformation (shear amount) of the road surface region of the left image at predetermined intervals, a corresponding point of each converted image with the right image is searched. It is determined that the shear amount of the converted image in which the number of corresponding points is the largest and which is larger than the reference (predetermined threshold) is used as the conversion parameter.
せん断量をApixel、Bpixel、Cpixel(但し、A>B>C)と増やすごとに左画像の路面領域(下側領域)の変形を増していき、その都度、左画像の路面と右画像の対応点数を記録する。その後、変形をCpixelまで続けていくと、Bpixel付近に対応点数のピークがあることがわかった。このような場合には、せん断量がBpixelの場合に右画像に最も類似した変形ができたことを示す。 Each time the shear amount is increased to Apixel, Bpixel, Cpixel (where A> B> C), the deformation of the road surface area (lower area) of the left image is increased, and each time, the correspondence between the road surface of the left image and the right image is increased. Record the score. Thereafter, when the deformation was continued up to Cpixel, it was found that there was a peak of the number of corresponding points near Bpixel. In such a case, it is indicated that when the shear amount is Bpixel, the deformation most similar to the right image has been performed.
このため、変換パラメータの算出に際しては、本来であれば乗員の乗車や走行中のピッチングなどを考慮して路面とカメラの位置・姿勢の関係を補正する必要があるが、これらを無視した上記の簡易な方法でも密な対応点を取得することができる。パラメータが毎回固定となるだけでなく、ありふれた変形であるため、比較的スペックの低いハードウェアでの利用や共通化なども容易となる。なお、ここではせん断を利用する場合について説明したが、回転、拡大縮小、平行移動などのアフィン変換を利用する場合にも上記と同様のアプローチで視点変換が可能である。 For this reason, when calculating the conversion parameters, it is necessary to correct the relationship between the road surface and the position and orientation of the camera in consideration of the occupant's riding and pitching while traveling. Dense corresponding points can be obtained by a simple method. Not only are the parameters fixed each time, but also a common deformation, it is easy to use and share hardware with relatively low-spec hardware. Although the case where shearing is used has been described here, the viewpoint conversion can be performed using the same approach as described above when using affine transformation such as rotation, enlargement / reduction, or translation.
下側領域112の視点変換が終わったら、視点変換画像生成部240は、視点変換後の下側領域112と視点変換を行わなかった上側領域111とを合わせて視点変換画像(視点変換後の左画像)を生成する。視点変換部200で生成された視点変換画像は、対応点探索部300で右画像と対比されて対応点が抽出される。抽出された対応点の座標は、図14に示すようにカメラ幾何校正部400による逆変換で原画像における座標に戻されてカメラ幾何校正に利用される。
When the viewpoint conversion of the lower region 112 is completed, the viewpoint conversion
このように、画像を遠景や立体物を含んだ上側領域111と、路面が大半を占める下側領域112に分割して対応点を得ることで、上側領域111では視点変換無しの画像から対応点を抽出し、下側領域112では視点変換有りの画像から対応点を抽出することとなり、上下から密な対応点を得ることができる。なお、視点変換部200においては、視点変換のパラメータ生成から視点変換画像生成と、逆変換パラメータの計算までを実施する。逆変換パラメータは特徴点を統合して利用するカメラ幾何校正部400で利用される。
As described above, by dividing the image into the upper region 111 including a distant view or a three-dimensional object and the lower region 112 occupying the majority of the road surface, corresponding points are obtained. Is extracted in the lower area 112, and corresponding points are extracted from the image with the viewpoint conversion, and dense corresponding points can be obtained from above and below. The
<図3 変換パラメータ生成部>
図3に示すように変換パラメータ生成部220は、視差解析部221と、属性決定部222と、変換パラメータ演算部223を備えている。
<Fig. 3 Conversion parameter generator>
As illustrated in FIG. 3, the conversion
視差解析部221は、領域設定部210によって視点変換を行う領域として設定された領域の視差を、視差画像生成部500で生成された前フレーム(例えば1フレーム前)の視差画像から取得し、その視差を解析することで当該領域内に平面に近似可能な部分が存在するか否かを判断する。
The
属性決定部222は、視差解析部221の解析結果に基づいて当該領域の平面属性を決定する。平面属性としては、まず、当該領域に平面に近似可能な部分が存在することを示す「平面」と、当該領域には平面に近似可能な部分が存在しないことを示す「非平面」がある。前者の「平面」の属性には、さらに、当該領域の種別を示す属性として「路面(地面)」や「壁面(壁)」がある。後者の「非平面」の属性には当該領域の種別を示す属性として「無限遠」がある。また、各領域には予め平面属性が付与されている場合がある。この場合、属性決定部222は、予め付与された平面属性が妥当か否かを視差解析部221の解析結果に基づいて判断し、妥当と判断した領域のうち左右カメラ100,110からの距離が所定の閾値未満の領域の平面属性を「平面」と決定し、その領域を視点変換の対象領域として決定する。距離が所定の閾値未満という条件を付することで、必要な場合にだけ、すなわち左右画像で同じ物体の見え方が大きく異なる場合にだけ視点変換を行うことができる。
The
変換パラメータ演算部223は、属性決定部222で平面属性が平面であると決定された領域を視点変換するための変換パラメータを演算する。変換パラメータは公知の方法で算出できる。ここではその一例を説明する。
The conversion
<視点変換計算>
まず、左カメラ100から見た変換対象領域内の平面4隅の3次元座標を計算する。簡単な手法としては、路面平面が高さ0cmにあると仮定すると共に、カメラ内部パラメータ(f,kn,Cn)、外部パラメータ(rnn,tn)、世界座標原点に対する左カメラ100の設置位置・姿勢が既知とすると、下記式(1)の右辺における第1及び第2の行列が既知となる。更に同式右辺の右端に位置する4要素を持つベクトルのYworldの世界座標が0であることから、未知の数字が世界座標のXworldとZworldのみで表現できる。画像座標は変換する領域を自ら設定しているため既知とできる。このようにして、変換したい領域内の平面4隅の画像座標を式(1)に入力すれば、その4隅の3次元の世界座標を演算できる。次に右辺右端のXworld,Yworld,Zworldに演算で求めた4隅の3次元座標を順に設定する。そして外部パラメータの行列に世界座標原点から見た右カメラの位置・姿勢を設定すると、世界座標系の4点の位置を右カメラで見た場合の画像座標へ変換できる。このようにして視点変換したい領域内の平面の4隅の画像座標を求めて4角形の変換パラメータを得る。4隅が計算できれば、その4角形内部の座標は全て内挿で算出できる。
<Viewpoint conversion calculation>
First, the three-dimensional coordinates of the four corners of the plane in the conversion target area viewed from the
変換パラメータの生成に際しては、まず、左画像(視点変換対象の画像)内で視点変換に利用する平面を決定する必要がある。例えば、上記のように左画像を上下2分割した場合であれば、視差解析部221において、路面が撮像されることが多い下側領域112は平面に近似可能な部分と推定される。各領域に平面に近似可能な部分が含まれているか否かはステレオ画像から得られる視差を利用して解析可能である。左カメラ100を中心に考えて3次元測量したとすると、左カメラ100から見た路面平面の位置を視差を利用して解析することができる。下側領域112に予め「路面」という平面属性が付与されており、解析結果からその属性が妥当と判断された場合には、下側領域112は視点変換の対象と決定される。これとは反対に、その属性が妥当でないと判断された場合には、下側領域112は視点変換の対象から除外される。すなわち視点変換を実施しないで対応点探索されることで誤った視点変換を抑制する。領域の平面属性として「路面」や「壁」といった属性が決定された場合には、変換パラメータ演算部223は当該領域の変換パラメータを演算する。
When generating the conversion parameters, first, it is necessary to determine a plane to be used for viewpoint conversion in the left image (view target conversion target image). For example, if the left image is divided into upper and lower parts as described above, the
<図4 対応点探索部300>
対応点探索部300は、視点変換部200で視点変換された左画像(視点変換画像)と、右画像の原画像とを対比して両者の対応点を探索する。なお、視点変換部200で左右画像に対して視点変換がされた場合には視点変換後の左右画像から対応点を探索する。図4に示すように対応点探索部300は、特徴点抽出部310と、特徴量記述部320と、最大誤差設定部330と、対応点探索部340と、信頼度計算部350として機能し得る。
<FIG. 4 Corresponding
The corresponding
特徴点抽出部310は、左画像において特徴点を抽出する。特徴点は、例えば画像上の物体の角(コーナー)等のユニークな点である。なお、左右画像のいずれか一方で特徴点を抽出すればよく、右画像で特徴点を抽出しても良い。
The feature
特徴量記述部320は、特徴点抽出部310で抽出した特徴点の周囲輝度変化を数値化した特徴量の記述を実施する。左画像上の特徴点・特徴量を基準にして右画像の対応点を探索する場合には、右画像の探索範囲を視差分だけ広げた領域に設定してもよい。
The feature
最大誤差設定部330は、対応点探索を実施する前に、左右カメラ100,110の最大縦誤差発生範囲を考慮して、画像の縦方向における探索範囲(縦探索範囲)を設定する。例えば左画像から特徴点を得る場合には、縦探索範囲は右画像に設定される。左右画像の平行化が完璧であれば、左画像の特徴点の対応点は、右画像における同一高さの横一列を探索すればよい。しかしながら、利用する部品の温度特性や組み付け精度によって縦誤差の範囲が異なる。このような場合に縦最大誤差を定義すると、左画像から抽出された特徴点の対応点は、右画像における同一座標から±縦最大誤差の範囲内で対応点探索を実施すれば足りる。最大誤差設定部330において、このように縦探索範囲を限定し、また領域も限定することによって、対応点探索の候補数を大幅に減らすことができる。縦の探索範囲を最大誤差設定部330において削減し、横方向は左画像の分割領域の視差最大値で設定する。これにより対応点探索部340が探索すべき特徴点の候補を削減できる。
The maximum
対応点探索部340は、特徴点について計算された特徴量の類似性を比較しながら右画像で対応点探索を実施する。通常は1つの特徴点について対応点の候補が複数発見されるが、その中でも最も類似性が高くかつ所定の閾値以上の類似性のある候補点を対応点とする。図14の例では、左右画像を上側領域と下側領域の2つの分割したうえで、上側領域(無限遠)では視点変換無しの画像から対応点を抽出し、下側領域(路面)では視点変換有りの画像から対応点を抽出する。これにより、視点変換を実施しない従前の場合と比較して、上下領域から多数の密な対応点を得ることができる。
The corresponding
信頼度計算部350は、対応点探索部340で得られた対応点の類似性の高さや対応点個数などから、当該領域が後段のカメラ幾何に利用してよい領域かどうかを判断するための指標値である信頼度を計算する。信頼度が低い場合には、その領域にカメラ幾何での利用不可の判定を下す。全ての領域において信頼度を計算してカメラ幾何への利用可否の判定を実施する。或る閾値以上の数の領域で利用不可とされた場合には、今回取得した画像ではキャリブレーション(幾何校正)ができないと判断する。
The
<図5 カメラ幾何校正部>
カメラ幾何校正部400は、対応点探索部300で得られた複数の対応点を基に左右画像が平行になるように左右カメラ100,110の幾何校正を実施する。図5に示すように、カメラ幾何校正部400は、対応点逆変換補正部410と、対応点集約部420と、ノイズ対応点削除部430と、幾何校正パラメータ推定部440と、利用可否判定部450と、幾何校正反映部460として機能し得る。
<Figure 5 Camera geometry calibration unit>
The camera
まず、対応点逆変換補正部410においては、視点変化や、画像変形を利用して得られた対応点の座標を、原画像上の座標系に戻す計算を実施する。本実施形態では原画像の座標系に戻すために逆変換パラメータを利用する。逆変換のパラメータは、既に逆変換パラメータ計算部230で求められており、左右画像のうち視点変換された画像(左画像)の対応点の座標を逆変換パラメータを利用して原画像の座標に逆変換する。図14に左画像の下側領域に視点変換を実施した場合の逆変換の方法について示す。この図の例では3段のうち中断の画像図に示すように左画像の下側領域だけに変形を加えて視点変換している。この状態で上側領域と下側領域の双方で対応点探索を実施する。対応点探索の後、下側領域では対応点(特徴点)の座標を視点変形前の座標に基に戻す逆変換(座標変換)を実施し、変形前の画像における対応点の位置を算出する。すなわち視点変換後の画像に基づいて発見した多数の対応点を原画像上の座標に逆変換した上で幾何校正に利用する。
First, the corresponding point inverse
このように対応点逆変換補正部410において視点変換(変形)した領域の対応点座標を逆変換して原画像の座標系上に移動させ、対応点集約部420は左右画像の全ての対応点を原画像の座標系における対応点として集約する。
In this way, the corresponding point inverse
次に、対応点集約部420が集めた対応点を利用してカメラ幾何校正を実施したいが、集約した段階の対応点には誤対応点も含まれる。そこで対応点のノイズ成分除去を実施する。まず、得られる対応点が画面全体に散らばるような所定組数(ここでは8組とする)の対応点をランダムに抽出し、その8組の対応点を基に左右画像の対応関係を数学的に示す基礎行列を計算する。これを基礎行列の基となる対応点を変えて複数回繰り返す。その結果、多くの基礎行列を得ることができるが、8組の対応点に誤対応点が混入している場合には、算出された基礎行列が真の値からはずれることになる。反対に、8組の対応点が全て正しい場合には、基礎行列が類似した値に集約される。このため類似した基礎行列を出力した対応点は信頼できる対応点とし、類似しないはずれ値の基礎行列を出力した対応点は8組中どの対応点が誤対応点なのかは不明のためその後の処理では利用しない。ただし、別の8組として選ばれた際に、基礎行列が類似した値に集約され、はずれ値でないことがわかった際に利用するものとする。
Next, it is desired to perform camera geometric calibration using the corresponding points collected by the corresponding
このようにして得られたはずれ値以外の基礎行列の中から、ある評価尺度を決定し、最も評価値が高かった基礎行列を初期値に利用する。評価尺度は例えば、基礎行列生成に利用しなかった8組の対応点を除く信頼のおける対応点のペアを更にランダムで選択し、その対応点のペアが基礎行列にどの程度の誤差を生じるかなどを評価尺度とする。このようにして得られた基礎行列を左右カメラ100,110の対応関係を示す基礎行列の初期値としてまずは設定し、更には、信頼できると判断された対応点を利用して高精度な幾何校正パラメータの最適化を実施する。
From the basic matrices other than the outliers obtained in this way, a certain evaluation scale is determined, and the basic matrix with the highest evaluation value is used as the initial value. The evaluation scale is, for example, a random selection of a pair of reliable corresponding points excluding the eight corresponding points not used for the generation of the basic matrix, and how much error the pair of corresponding points causes in the basic matrix. Is used as an evaluation scale. The basic matrix obtained in this manner is first set as an initial value of the basic matrix indicating the correspondence between the left and
上記の手法で得られた基礎行列を初期値として利用して、画像上の対応点と、基礎行列を利用して算出された推定点との距離誤差をコスト関数として最小化する最適化問題を幾何校正パラメータ推定部440にて解く。これにより8点法と比較して高精度な基礎行列(幾何校正パラメータ)を推定できる。
Using the basic matrix obtained by the above method as an initial value, an optimization problem that minimizes the distance error between the corresponding point on the image and the estimated point calculated using the basic matrix as a cost function The geometric calibration
次に、利用可否判定部450は、まず、対応点集約部420から得られる対応点の数(対応点数は所定数を超えているか)と、ノイズ対応点削除部430から得られるはずれ値以外の対応点のペア数(ペア数は所定数を超えているか)、幾何校正パラメータ推定部440から得られる最小化された距離誤差の大きさ(距離誤差の大きさは所定値未満か)等の外部情報を利用して、幾何校正パラメータ推定部440によるカメラ幾何校正の結果を利用して良いか否かを判定する。更に、求められた幾何校正パラメータを利用して左右カメラ画像を平行化した場合、求められていた対応点ペアのうち平行化後の左右画像座標において縦誤差が発生していない対応点ペアの存在比率が所定の割合(例えば95%)を超えているかどうかで利用可否を判定する。
Next, the
幾何校正反映部460では、利用可否判定部450において利用可能と判定された場合において、幾何校正パラメータ推定部440で推定された左右カメラ100,110の幾何を示すパラメータ基礎行列を利用して平行化画像を生成するための画像変形のアフィンテーブルの更新を実行する。
In the geometric
<図6 視差画像生成部500>
視差画像生成部500は、左右カメラ100,110で撮像された左右画像と、カメラ幾何校正部400でリアルタイムに更新される最新のアフィンテーブルに基づいて視差画像を生成する。本実施形態の視差画像生成部500は、図6に示すように平行化画像生成部510と、ステレオマッチング部520と、距離演算部530として機能する。
<FIG. 6 Parallax
The parallax
平行化画像生成部510は、カメラ幾何校正部400にて更新された平行化画像生成のためのアフィンテーブルを利用して左右平行化画像を生成する。ステレオマッチング部520は、平行化された左右画像に対してステレオマッチングを実施して視差画像を生成する。距離演算部530は、左右カメラ100,110の基線長や、カメラの内部パラメータ(焦点距離やセルサイズ)を利用して視差画像から3次元の距離変換を実施することで左右画像上の任意の物体までの距離を演算する。
The parallelized
<図15 制御装置10の処理フローチャート>
ここで上記のように左画像を上下に2分割した場合に制御装置10が実行する処理フローについて説明する。制御装置10は所定の周期で図15に示す一連の処理を繰り返している。
<FIG. 15 Processing flowchart of
Here, a processing flow executed by the
ステップS01では、まず、制御装置10(視点変換部200)は左右カメラ(ステレオカメラ)100,110で撮像された左右画像を入力する。 In step S01, first, the control device 10 (viewpoint conversion unit 200) inputs the left and right images captured by the left and right cameras (stereo cameras) 100 and 110.
ステップS02では、制御装置10(視点変換部200)は、ステップS04で入力した左画像を上下2分割することを決定する。なお、右画像については分割を行わない。 In step S02, the control device 10 (viewpoint conversion unit 200) determines to divide the left image input in step S04 into upper and lower parts. Note that the right image is not divided.
ステップS03では、制御装置10(視点変換部200)は、左画像を上下に2分割し、そのうち消失点VPを含む領域を上側領域111と設定する。上側領域111は消失点VPを含み遠方の景色が撮像される傾向のある領域であり、視点変換を施されることなくそのまま対応点探索に利用される。 In step S03, the control device 10 (viewpoint conversion unit 200) divides the left image into two vertically and sets an area including the vanishing point VP as the upper area 111. The upper region 111 is a region including the vanishing point VP and in which a distant scene tends to be imaged, and is used for the corresponding point search without performing the viewpoint conversion.
ステップS04では、制御装置10(視点変換部200)は、左画像から上側領域111を除いた領域(上側領域111の下方に位置する領域)を下側領域112と設定し、ステップS05に処理を移行する。下側領域112は、自車が走行する路面が撮像物の大半を占める領域であり、左右カメラ100,110から比較的近傍の路面では左右カメラ100,110で見え方の変化が特に大きいので視点変換の実施のために分割する。
In step S04, the control device 10 (viewpoint conversion unit 200) sets a region obtained by removing the upper region 111 from the left image (a region located below the upper region 111) as a lower region 112, and proceeds to step S05. Transition. The lower area 112 is an area in which the road surface on which the vehicle travels occupies the majority of the imaged object, and on the road surface relatively close to the left and
ステップS05では、制御装置10(視点変換部200)は、下側領域112を視点変換するための変換パラメータの生成と、視点変換後の下側領域112上の対応点を逆変換により視点変換前の座標上に戻すための逆変換パラメータを生成する。ここで生成される変換パラメータによる視点変換は、下側領域112の少なくとも一部が平面であると仮定し、その平面に対する左右カメラ100,110の位置及び姿勢を推定し、その推定した左右カメラ100,110の位置及び姿勢に基づいて下側領域112を右カメラ110の視点からの画像に変換するものである。
In step S05, the control device 10 (viewpoint conversion unit 200) generates a conversion parameter for performing the viewpoint conversion of the lower region 112, and converts the corresponding point on the lower region 112 after the viewpoint conversion by the inverse conversion before the viewpoint conversion. Generate an inverse transformation parameter for returning to the coordinates of. The viewpoint conversion based on the conversion parameters generated here assumes that at least a part of the lower region 112 is a plane, estimates the positions and orientations of the left and
ステップS06では、制御装置10(視点変換部200)は、ステップS05で生成した変換パラメータを利用して左画像の下側領域112を視点変換する。 In step S06, the control device 10 (viewpoint conversion unit 200) converts the viewpoint of the lower region 112 of the left image using the conversion parameters generated in step S05.
ステップS07では、制御装置10(視点変換部200)は、ステップS03で分割した上側領域111と、ステップS06で視点変換した下側領域112を合わせた視点変換画像を生成する。そして、制御装置10(対応点探索部300)は、その視点変換画像とステップS01で入力した右画像に対して対応点探索を実施する。すなわち、変形を実施していない上側領域111と変形を実施した下側領域112の画像上の特徴点及び特徴量を基準として右画像の対応点を探索する処理が実行される。これにより、視点変換後の左画像の下側領域112と、視点変換未実施の右画像の下側領域112とから、特徴点及び特徴量を基準として複数の対応点の集合である第1対応点群が抽出され、視点変換前の左画像の上側領域111と、視点変換未実施の右画像の上側領域111とから、特徴点及び特徴量を基準として複数の対応点の集合である第2対応点群が抽出される。 In step S07, the control device 10 (viewpoint conversion unit 200) generates a viewpoint conversion image in which the upper region 111 divided in step S03 and the lower region 112 subjected to viewpoint conversion in step S06 are combined. Then, the control device 10 (corresponding point search unit 300) performs a corresponding point search on the viewpoint converted image and the right image input in step S01. That is, a process of searching for a corresponding point in the right image based on the feature points and feature amounts on the image of the upper region 111 that has not been transformed and the lower region 112 that has been transformed is executed. As a result, the first correspondence that is a set of a plurality of corresponding points based on the feature points and the feature amounts is obtained from the lower area 112 of the left image after the viewpoint conversion and the lower area 112 of the right image that has not been subjected to the viewpoint conversion. A point group is extracted, and from the upper region 111 of the left image before the viewpoint conversion and the upper region 111 of the right image without the viewpoint conversion, a second set of a plurality of corresponding points based on the feature points and the feature amounts is obtained. A corresponding point group is extracted.
ステップS08では、制御装置10(カメラ幾何校正部400)は、ステップS07で下側領域112から発見された複数の対応点(第1対応点群)のうち上下の領域111,112に跨がったものは排除し、残りの対応点についてはステップS05で生成した逆変換パラメータを利用して逆変換し、当該残りの対応点の座標値を原画像(ステップS01で入力した左画像)で対応点をとった場合の座標値に戻す。 In step S08, the control device 10 (camera geometric calibration unit 400) straddles the upper and lower regions 111 and 112 of the plurality of corresponding points (first corresponding point group) found in the lower region 112 in step S07. The remaining corresponding points are excluded and the inverse transformation is performed using the inverse transformation parameter generated in step S05, and the coordinate values of the remaining corresponding points are corresponded to the original image (the left image input in step S01). Returns to the coordinate value when the point was taken.
ステップS09では、制御装置10(カメラ幾何校正部400)は、ステップS07で発見された上側領域111上の複数の対応点(第2対応点群)の座標値と、ステップS08で逆変換された下側領域112上の複数の対応点(第1対応点群)の座標値を集約する。このとき、第1対応点群のうち左画像上の対応点の座標は視点変換前の座標に逆変換した座標となり、第1対応点群のうち右画像上の対応点の座標は視点変換未実施の元々の座標となる。また、第2対応点群の座標は左右画像ともに視点変換前の座標となる。これにより上下側領域111,112すべての対応点の座標系が、左右の原画像での座標系で統一的に扱うことが可能になる。 In step S09, the control device 10 (camera geometric calibration unit 400) inversely transforms the coordinate values of the plurality of corresponding points (second corresponding point group) on the upper region 111 found in step S07 in step S08. The coordinate values of a plurality of corresponding points (first corresponding point group) on the lower area 112 are collected. At this time, the coordinates of the corresponding point on the left image in the first corresponding point group are the coordinates obtained by inversely converting the coordinates before the viewpoint conversion, and the coordinates of the corresponding point on the right image in the first corresponding point group are the coordinates of the unconverted viewpoint. The original coordinates of the implementation. Further, the coordinates of the second corresponding point group are the coordinates before the viewpoint conversion for both the left and right images. As a result, the coordinate system of all the corresponding points in the upper and lower areas 111 and 112 can be treated uniformly with the coordinate system of the left and right original images.
ステップS10では、制御装置10(カメラ幾何校正部400)は、ノイズ除去を実施する。ステップS09で集約された対応点のなかから、画像上で散らばる座標系になるようにかつランダムに8組の対応点ペアを選択し、選択した対応点ペア(入力対応点)を基にいわゆる8点法により基礎行列の値を計算する。そして、その基礎行列の値をベースにはずれ値とならなかった基礎行列の入力対応点を、その後の処理で利用できるようにフラグを立ててはずれ値となった入力対応点と区別する。 In step S10, the control device 10 (camera geometric calibration unit 400) performs noise removal. From the corresponding points aggregated in step S09, eight corresponding point pairs are selected at random so as to form a coordinate system scattered on the image, and a so-called eight corresponding point pair (input corresponding point) is selected based on the selected corresponding point pair (input corresponding point). Calculate the values of the fundamental matrix by the point method. Then, the input corresponding points of the basic matrix that did not become outliers based on the values of the basic matrix are distinguished from the input corresponding points that became outliers by setting a flag so that they can be used in subsequent processing.
ステップS11では、制御装置10(カメラ幾何校正部400)は、ステップS10でノイズと判定されなかった対応点の座標を利用し、幾何校正のパラメータ推定を実施する。上記の手法で得られた基礎行列を初期値として利用して、画像上の対応点と、基礎行列を利用して算出された推定点との距離誤差をコスト関数として最小化する最適化問題を解く。これにより8点法と比較して高精度な幾何校正パラメータを演算できる。 In step S11, the control device 10 (camera geometric calibration unit 400) uses the coordinates of the corresponding point not determined as noise in step S10 to perform geometric calibration parameter estimation. Using the basic matrix obtained by the above method as an initial value, an optimization problem that minimizes the distance error between the corresponding point on the image and the estimated point calculated using the basic matrix as a cost function solve. Thereby, it is possible to calculate a geometric calibration parameter with higher accuracy than the 8-point method.
ステップS12では、制御装置10(カメラ幾何校正部400)は、ステップS11で演算した距離誤差の大きさが所定値未満であるか、対応点の数が所定値以上か等の情報を利用して、ステップS11で演算した幾何校正パラメータを利用して良いか判定する。ここで幾何校正パラメータが利用可能と判断された場合にはステップS13に処理を進める。一方、利用不可と判断された場合には、アフィンテーブルを更新せずにステップS14に処理を進める。 In step S12, the control device 10 (camera geometric calibration unit 400) uses information such as whether the magnitude of the distance error calculated in step S11 is less than a predetermined value or whether the number of corresponding points is equal to or more than a predetermined value. It is determined whether the geometric calibration parameters calculated in step S11 can be used. If it is determined that the geometric calibration parameters can be used, the process proceeds to step S13. On the other hand, if it is determined that the affine table cannot be used, the process proceeds to step S14 without updating the affine table.
ステップS13では、制御装置10(カメラ幾何校正部400)は、前フレームに利用していた左右画像の平行化のためのアフィンテーブルをステップS11で演算した幾何校正パラメータに基づいて更新する。 In step S13, the control device 10 (camera geometric calibration unit 400) updates the affine table for parallelizing the left and right images used in the previous frame based on the geometric calibration parameters calculated in step S11.
ステップS14では、制御装置10(視差画像生成部500)は、記憶されているアフィンテーブルを利用して左右画像の平行化画像を生成し、これを利用してステレオマッチングを実施し視差画像を生成する。 In step S14, the control device 10 (the parallax image generation unit 500) generates a parallelized image of the left and right images using the stored affine table, performs stereo matching using the generated parallelized image, and generates a parallax image. I do.
上記のように較正した本実施形態の車載環境認識装置では、左右カメラ100,110(左右画像)で見え方の大きく異なる領域(下側領域112)に視点変換を施すことで、左右画像から発見される対応点の数を大幅に増加した。すなわち、カメラ100により撮像された左画像の下側領域112を、右カメラ110の視点からの見え方に近づくように変形することで、視点変換前よりも数の多い密な対応点の探索結果を対応点探索部300で得ることができる。この密な対応点を利用することで、カメラ幾何校正部400による処理では高精度な幾何校正が可能となる。幾何校正により正確に平行化された左右のペア画像を利用することで、視差画像生成部500における高密度かつ高精度な視差画像の生成が可能となる。
In the in-vehicle environment recognizing device of the present embodiment calibrated as described above, the left and
なお、上記では左右画像を上側領域と下側領域に分割し、下側領域については左画像に視点変換を実施してから対応点を探索し、上側領域については左右画像ともに視点変換を実施することなく対応点を探索したが、左右画像を複数の領域に分割する構成は必須ではない。例えば、視点変換後の左画像と視点変換未実施の右画像から複数の対応点(第1対応点群)を抽出し、視点変換前の左画像と視点変換未実施の右画像から複数の対応点(第2対応点群)を抽出して左右カメラ100,110の幾何校正を行っても良い。
In the above description, the left and right images are divided into an upper region and a lower region. For the lower region, the viewpoint conversion is performed on the left image, and then the corresponding point is searched. For the upper region, the viewpoint conversion is performed on both the left and right images. Although the corresponding points were searched without any problem, the configuration for dividing the left and right images into a plurality of regions is not essential. For example, a plurality of corresponding points (first corresponding point group) are extracted from the left image after the viewpoint conversion and the right image without the viewpoint conversion, and a plurality of correspondence points are extracted from the left image before the viewpoint conversion and the right image without the viewpoint conversion. The points (second corresponding point group) may be extracted and geometric calibration of the left and
<視点変換の変形例>
視点変換部200による視点変換の他の例について説明する。上記ではカメラ画像を上下に2分割する方式について説明したが、6分割にする方式や、自由な領域に分割する方式が利用可能である。
<Modification of viewpoint conversion>
Another example of viewpoint conversion by the
(1)6分割による視点変換
カメラの幾何校正は、画像上の全体から対応点が取れたほうが精度が向上する。ある固定箇所から密に対応点が得られたような場合に、そのまま対応点を利用すると対応点が密に得られた部分だけの幾何校正が小さくなるように計算されるため、画像全体から満遍なく対応点が得られたほうが本来の幾何校正すべき値に近い値が得られることが多い。しかし、画像全体において特徴点の抽出、特徴量の記述、対応点の探索などを実行すると処理負荷が重くなる。
(1) Viewpoint conversion by six divisions In the geometric calibration of the camera, the accuracy is improved when the corresponding points are obtained from the entire image. When corresponding points are obtained densely from a certain fixed point, if the corresponding points are used as they are, the geometric calibration of only the parts where the corresponding points are densely obtained is calculated so as to be small, so the entire image is evenly distributed. When the corresponding point is obtained, a value closer to the original value to be geometrically calibrated is often obtained. However, when a feature point is extracted, a feature amount is described, and a corresponding point is searched for in the entire image, the processing load becomes heavy.
そこで図13に示すように画像を6領域に分割し、この6領域に関して左右画像上で対応点を探す方法を選定する。この方法では、制御装置10は、左画像を6つの矩形領域に分割し、その6つの矩形領域には、自車走行中に各矩形領域に出現すると予測される平面属性が付与されており、その6つの矩形領域に付与された平面属性が妥当か否かを前フレームの視差画像を基に判断し、その6つの矩形領域において平面属性が妥当と判断された矩形領域のうち、左右カメラ100,110の距離が所定の閾値未満の矩形領域を変換対象領域に決定し、その変換対象領域に対する左右カメラ100,110の位置及び姿勢を推定し、その推定した左右カメラ100,110の位置及び姿勢に基づいて変換対象領域を右カメラの視点からの画像に変換し、その6つの領域から変換対象領域を除いた残りの領域と変換対象領域を合わせたものを視点変換後の左画像とする。6つの矩形領域は、左画像を縦に2つ、横に3つに分割して得られ、2行3列で各矩形領域が配置されている。画像を上段と下段の2段に分け、上段の左側から第1領域、第2領域、第3領域と称し、下段の左側から第4領域、第5領域、第6領域と称する。6つの矩形領域における下側の3つの矩形領域(第4−6領域)の平面属性は「路面」であり、6つの矩形領域における上側の3つの矩形領域のうち左右に位置する2つの矩形領域(第1、第3領域)の平面属性は「壁」であり、6つの矩形領域における上側の3つの矩形領域のうち中央に位置する矩形領域(第2領域)の平面属性は「無限遠」である。
Therefore, as shown in FIG. 13, the image is divided into six regions, and a method of searching for corresponding points on the left and right images for the six regions is selected. In this method, the
この方法は、特徴点抽出、記述の処理時間の削減、対応点探索候補の絞込みに効果がある。
この方法による視点変換に際して、自車走行中に各領域に出現すると予測される平面属性を決定しておくと、6領域毎に変形量を選択しやすい。例えば、図13に示す一例のように、基本を考えると、下段の3つの領域(第4−6領域)は従来どおり路面(地面)と仮定した視点変換による視点変換を実施する。上側の無限遠(消失点)辺りにある真ん中の領域(第2領域)は遠景や空しか入っていないために、変形無しとする。上側の左右の領域(第1,第3領域)であるが、これは走行路の風景にもよるが、街中を走行中などは、建築物や樹木などが走行路に対して「壁」のように左右に存在することが多々ある。このような場合には、走行路左右に存在する壁を想定した変換を実施する。路面や壁などを或る固定値を想定して変換してもよいし、図13の真ん中の図のように、壁の横位置と回転だけを、前フレームの視差画像から推定しておいてそれを利用するような手法でも良い。分割した領域内の視差値を距離に変換して平面推定を実施し、はずれ値の多さや、最終推定平面からある距離の範囲内にどれだけの何%の視差点群が占有するかなどを利用して平面に近似してよいかの判断を実施しても良い。これにより平面近似が可能と判別された場合には、この平面が2つのカメラ視点から見て近距離かつ視点を変えたことによる見え方の違いが大きいかどうかも計算する。見え方の違いが小さい場合にはそもそも視点変換の必要性が低い。見え方の違いが大きい場合に視点変換を行うと、対応点の探索性能が大幅に上がるため、多少の誤差が視点変換にあったとしても変換前の原画像で対応点探索を実施するよりも大幅に密な対応点の取得が可能となる。
This method is effective in extracting feature points, reducing the processing time of description, and narrowing down corresponding point search candidates.
At the time of viewpoint conversion by this method, if the plane attribute predicted to appear in each area while the own vehicle is running is determined, it is easy to select the deformation amount for each of the six areas. For example, as in the example shown in FIG. 13, considering the basics, the lower three regions (regions 4 to 6) perform the viewpoint conversion by the viewpoint conversion assuming the road surface (ground) as in the past. Since the middle area (second area) near the upper infinity (vanishing point) contains only a distant view or the sky, no deformation occurs. The upper left and right areas (the first and third areas) depend on the scenery of the running path, but when traveling in the city, buildings, trees, and the like are "walled" against the running path. There are many things that exist on the left and right. In such a case, conversion is performed assuming walls existing on the left and right of the travel path. The road surface or the wall may be converted assuming a certain fixed value, or only the lateral position and the rotation of the wall are estimated from the parallax image of the previous frame as shown in the middle diagram of FIG. A method that utilizes this may be used. Convert the disparity values in the divided area into distances and perform plane estimation, and determine the amount of outliers and how many percent of disparity points occupy within a certain distance from the final estimated plane. Judgment as to whether or not it may be approximated to a plane may be performed. If it is determined that the plane can be approximated, it is also calculated whether this plane is close to the two camera viewpoints and the difference in appearance due to the change of the viewpoint is large. If the difference in appearance is small, the need for viewpoint conversion is low in the first place. If viewpoint conversion is performed when the difference in appearance is large, the search performance of the corresponding point is greatly improved, so even if there is some error in the viewpoint conversion, it is better than performing the corresponding point search on the original image before conversion. Significantly closer correspondence points can be obtained.
図13の各矩形領域内に示したように、自車走行中に各矩形領域に出現すると予測される平面属性が予め各領域に付されている。例えば、上段の左右の領域(第1,第3領域)は「壁」、下段の3つの領域(第4−6領域)は「路面」、上段の中央の領域(第2領域)は「無限遠」という平面属性が付されており、前フレームの視差値から推定される平面がこれらの属性が規定する平面と類似しているか否かを判定する。予め付された平面属性と異なる場合には、うまく平面近似できなかったと仮定し、視点変換を実施しない。これにより間違えた視点変換を避けることが可能となる。また、予め平面属性を決めているため、不安定要素となるはずれ値除去も比較的実施しやすく、推定するパラメータが絞り込まれるので安定性が強化される。 As shown in each rectangular area in FIG. 13, a plane attribute predicted to appear in each rectangular area during traveling of the own vehicle is added to each area in advance. For example, the upper left and right regions (first and third regions) are “walls”, the lower three regions (4th to 6th regions) are “road surfaces”, and the upper central region (second region) is “infinity”. The plane attribute “far” is attached, and it is determined whether or not the plane estimated from the parallax value of the previous frame is similar to the plane defined by these attributes. If the plane attribute is different from the pre-assigned plane attribute, it is assumed that the plane cannot be approximated well, and the viewpoint conversion is not performed. This makes it possible to avoid erroneous viewpoint conversion. In addition, since the plane attribute is determined in advance, it is relatively easy to remove an outlier that is an unstable element, and the parameters to be estimated are narrowed, so that the stability is enhanced.
なお、上記のように6つの矩形領域に分割した場合、上段の左右に位置する2つの領域(第1,第3領域)は、走行路に沿った建物や樹木などがある場合に壁相当の平面(平面属性が「壁」の領域)があることを想定した視点変換を利用可能である。しかし、田舎道で走行路の周囲の立体物が少ない場合等にはその2つの領域に「平面」の属性を付与することなく、例えば「無限遠」等と非平面の属性を付与した方が対応点が多くなる場合もある。このため前フレームの視差画像から各領域に現れる風景の3次元構造の傾向を理解し、その後に視点変換の実施の有無を決定して対応点探索を実施しても良い。 When divided into six rectangular areas as described above, the two areas (first and third areas) located on the left and right of the upper row are equivalent to walls when there are buildings and trees along the traveling path. It is possible to use viewpoint conversion assuming that there is a plane (a region whose plane attribute is “wall”). However, when there are few three-dimensional objects around the road on a rural road, it is better to assign a non-planar attribute, such as "infinity", to the two regions without assigning the attribute of "plane". The number of corresponding points may increase. For this reason, it is possible to understand the tendency of the three-dimensional structure of the scenery appearing in each region from the parallax image of the previous frame, and then determine whether or not to perform the viewpoint conversion and perform the corresponding point search.
(2)自由領域分割による視点変換
また、GPUなどを活用した視点変換を実施する場合には、3次元の平面にカメラ画像を貼って変形すればよいので、矩形領域にこだわらずに自由な領域でカメラ画像を分割できる。そこで図16に示すように各領域の境界線に斜め線も利用した領域分割を実施する。前フレームの視差画像から得られる情報(例えば、路面領域推定結果と路端領域推定結果)に基づいて画像内に平面に近似可能な部分が存在するか否かを判断する。そして、平面に近似可能な部分と判断された部分を含む領域を路面平面領域と推定する。このとき当該領域から左右カメラ100,110までの距離が閾値未満か否かを判定し、距離が閾値未満の領域を路面平面領域、すなわち視点変換を行う領域として設定しても良い。また同様に、同一物体について左右カメラ100,110で見え方が大きく異なる領域であるか否かを判定しても良い。
(2) Viewpoint conversion by free region division When performing viewpoint conversion utilizing a GPU or the like, a camera image may be pasted on a three-dimensional plane and deformed. To split the camera image. Therefore, as shown in FIG. 16, a region division is performed using a diagonal line as a boundary line of each region. Based on information obtained from the parallax image of the previous frame (for example, a road surface area estimation result and a road edge area estimation result), it is determined whether or not a portion that can be approximated to a plane exists in the image. Then, a region including a portion determined to be a portion that can be approximated to a plane is estimated as a road surface plane region. At this time, it may be determined whether or not the distance from the area to the left and
また、路端領域の近辺には建築物や樹木がたっていることから、走行路の進行方向に沿って壁があると仮定した領域分割を画像の色合いと3次元の両方を活用して、領域分割を実施しても良い。分割した領域のそれぞれについて、3次元の平面に近似可能か否かを上記6領域の場合と同様に前フレームの視差画像から推定する。平面に近似可能な場合にはその平面に応じた視点変換を実施する。 In addition, since buildings and trees are standing near the roadside area, area division based on the assumption that there is a wall along the traveling direction of the traveling path is performed by using both the image color and the three-dimensional area. Division may be performed. For each of the divided areas, whether or not it can be approximated to a three-dimensional plane is estimated from the parallax image of the previous frame, as in the case of the six areas. If the plane can be approximated, the viewpoint conversion is performed according to the plane.
先述の矩形領域よりも適切で柔軟な領域で画像を分割しているため、画面全体を比較的有効に活用することが可能となる。ただし、カメラ画像の背景が複雑な場合には、領域の分割が実施しづらく、安定的な判定は6領域のようにある程度、どのような平面になるかわかっている前提を利用するものの方が安定性が高い。 Since the image is divided by a more appropriate and flexible area than the above-described rectangular area, the entire screen can be used relatively effectively. However, if the background of the camera image is complicated, it is difficult to divide the area, and it is better to use a premise that knows what plane is to some extent, such as six areas, for stable determination. High stability.
(3)左右カメラ双方の視点変換
上記の例ではステレオカメラの一方のカメラ(左カメラ100)の画像を他方のカメラ(右カメラ110)の視点からの画像に変換する場合について説明したが、ステレオカメラの両方のカメラ(左右カメラ100,110)の画像を他の視点(例えば、左右カメラ100,110間に位置する所定の視点)からの画像に変換しても良い。図17の例では、左右画像を上下2分割にしている。そして、それぞれの下側領域を、左右カメラ100,110の光軸の真ん中(すなわちステレオカメラの場合のベースラインの中央)に光軸を有する他のカメラの視点からの画像に視点変換している。
(3) Perspective conversion of both left and right cameras In the above example, the case where the image of one camera (left camera 100) of the stereo camera is converted into an image from the viewpoint of the other camera (right camera 110) has been described. Images from both cameras (left and
このように左右画像を視点変換すると、左右画像のそれぞれに視点変換による画質劣化が生じるため、同等の画質劣化状態でマッチングを実施でき、マッチングスコアの向上が見込める。更に、この方法の利点は環境認識装置が3つ以上のカメラを備え、複数カメラのペアから三角測量を実施するような場合であって、どのカメラ主体で3次元復元すべきかが明確でない多視点カメラによる3次元測量時に利用しやすい。このように本発明には図14に示すような右カメラ主体の3次元復元である必要性はない。 When the left and right images are viewpoint-converted in this manner, image quality degradation occurs due to viewpoint conversion in each of the left and right images, so that matching can be performed in the same image quality degradation state, and an improvement in the matching score can be expected. Furthermore, this method has an advantage in a case where the environment recognition apparatus includes three or more cameras and performs triangulation from a pair of multiple cameras, and it is not clear which camera mainly performs three-dimensional reconstruction. It is easy to use for three-dimensional surveying with a camera. As described above, the present invention does not need to be a three-dimensional restoration mainly performed by the right camera as shown in FIG.
・第2実施形態
上記の実施形態では視差画像生成部500における視差画像の生成に視点変換画像を利用しなかったが、視差画像の生成に視点変換画像を利用しても良い。本実施形態の制御装置10は視差画像生成部500Aを備えている。他の部分については第1実施形態と同じであるとし、説明は省略する。
-2nd Embodiment Although the viewpoint conversion image was not used for the generation of the parallax image in the parallax
<図7 視差画像生成部>
図7に示す視差画像生成部500Aは、領域別視点変換平行化画像生成部550と、領域別マッチング部560と、結果統合部570と、距離演算部580を備えている。
<FIG. 7 Parallax image generation unit>
The parallax
長基線長のステレオカメラでは、対応点探索と同様に視差画像生成時のステレオマッチングにおいても、近距離の被写体の見え方が左右カメラ100,110で大きく異なり得る。このためステレオマッチングにおいても視差のマッチングが困難になるおそれがある。しかし、第1実施形態の対応点探索のようにステレオマッチング時にも視点変換を行えば、路面など平面で構成されるシーンについては、その平面の視差を密に得ることができる。また、対応点同様に遠方の風景に関しては変形しなくとも対応点がそれなりに得ることができる。路面形状を解析したり、小さな凹凸を解析したりする目的や、自車両がどこを走行してよいかなど路面平面を主に観測するような目的のアルゴリズムに対しては、対応点の手法と同様に左画像を視点変換し、左右画像のステレオマッチングを行うことが好ましい。
In a stereo camera with a long base line length, even in stereo matching at the time of generating a parallax image as in the corresponding point search, the appearance of a short-distance subject may differ greatly between the left and
そこで、本実施形態では、まず、領域別視点変換平行化画像生成部550において、第1実施形態と同様に遠方と近傍で2つの領域(上側領域、下側領域)に左画像を分割する。そして、上側領域は視点変換を実施せず、下側領域は右カメラ視点への視点変換をアフィンテーブルによる平行化と同時に実施する。なお、平行化後に画像分割して視点変換を行っても良い。視点変換時の変換パラメータや平行化時(幾何校正時)のアフィンテーブルは第1実施形態と同様に視点変換部200とカメラ幾何校正部400で演算されたものを利用するものとする。次に、領域別マッチング部560において、画像生成部550で生成した2つの領域について個別に視差値を演算して個別に視差画像を生成する。結果統合部570において、領域別マッチング部560で演算された視差値のうち、下側領域に属する視差値(視差画像)には視点変換に応じた補正を施すことで上側領域と下側領域で視差値の意味合いを合わせる補正を実施し、その後に上側領域と下側領域の視差値(視差画像)の統合を実施する。更に、距離演算部580においては、左右カメラ100,l10の基線長の情報と左右カメラ100,110の内部パラメータの情報を利用して、結果統合部570で統合した視差画像から距離を演算する。これにより左右画像で見え方の大きく異なり得る下側領域(カメラから近距離の路面領域)については従前のステレオマッチングよりも多数の密な対応点に基づく視差画像が得られるので視差画像の精度が向上する。
Therefore, in the present embodiment, first, the region-specific viewpoint-converted parallelized
ただし、大半が路面であっても下側領域の端に歩行者がいる場合などは、視点変換画像を利用したステレオマッチングでは、ほぼ路面付近に存在する物体は、密な視差画像を得ることができるが、反対に歩行者部分は視点変換しない方が視差画像を綺麗に得られることがある。そこで、別の実施形態として、下側領域については、領域分割及び平行化の後に視点変換無しで左右画像(つまり、右画像と視点変換前の左画像のペア(第1ペア))をマッチングした結果と、領域分割及び平行化の後に視点変換有りで左右画像(つまり、右画像と視点変換後の左画像のペア(第2ペア))をマッチングした結果の双方を生成し、2つのマッチング結果のうち、どれだけ左右画像が類似していたかを示すマッチングスコアが高い方を利用して視差値及び視差画像を生成しても良い。この際、視点変換有りのマッチング結果を逆変換した状態に戻し、更に、どれだけ左右画像が類似していたかを示すマッチングスコアも両方の場合の各視差値から参照可能な状態としておくと良い。この手法であれば、例えば下側領域内に歩行者などの立体物が存在しており視点変換後の画像によるステレオマッチングではマッチングスコアが低下することが回避されるので視差画像の精度の平均を向上できる。 However, if there is a pedestrian at the edge of the lower area even if the majority is on the road, stereo matching using the viewpoint conversion image can obtain a dense parallax image for objects that are almost near the road. On the other hand, if the viewpoint is not changed in the pedestrian part, the parallax image may be obtained clearly. Therefore, as another embodiment, for the lower region, the left and right images (that is, the pair of the right image and the left image before the viewpoint conversion (first pair)) are matched without the viewpoint conversion after the region division and the parallelization. Both the result and the result of matching the left and right images (that is, the pair of the right image and the left image after the viewpoint conversion (second pair)) with the viewpoint conversion after the region division and parallelization are generated, and two matching results are generated. Among them, the parallax value and the parallax image may be generated by using the one with the higher matching score indicating how similar the left and right images are. At this time, it is preferable that the matching result with the viewpoint conversion is returned to the inversely converted state, and that the matching score indicating how similar the left and right images are similar can be referred to from each parallax value in both cases. According to this method, for example, a three-dimensional object such as a pedestrian is present in the lower region, and the stereo matching using the image after the viewpoint conversion can prevent the matching score from being reduced. Can be improved.
<図18 制御装置10による視差画像生成処理のフローチャート>
ここで上記のように視差画像生成時に左画像を上下に2分割した場合に制御装置10(視差画像生成部500A)が実行する処理フローについて説明する。制御装置10は視差画像の要求指令の入力に基づいて図18に示す一連の処理を繰り返している。なお、図中のステップDS02−DS04で実行されるキャリブレーション用の対応点探索や幾何校正パラメータの推定・更新の処理は、どのような手法を利用してもよく、図15に示した第1実施形態の方法に限られず、公知の方法を利用しても構わない。また、ここでは、既に平行化のためのキャリブレーションは左右画像に実施済みとして、第1実施形態の視点変換を視差画像生成に応用する方法の一例を示す。
<FIG. 18 Flowchart of parallax image generation processing by
Here, a processing flow executed by the control device 10 (the parallax
ステップDS01では、まず、制御装置10(視差画像生成部500A)は左右カメラ(ステレオカメラ)100,110で撮像された左右画像を入力する。
In step DS01, first, the control device 10 (the parallax
ステップDS02では、制御装置10(対応点探索部300)は、左右画像の対応点を探索する。 In step DS02, the control device 10 (corresponding point search unit 300) searches for corresponding points in the left and right images.
ステップDS03では、制御装置10(カメラ幾何校正部400)は、左右画像の平行化を実施するための幾何校正パラメータを推定する。 In step DS03, the control device 10 (camera geometric calibration unit 400) estimates geometric calibration parameters for performing parallelization of the left and right images.
ステップDS04では、制御装置10(カメラ幾何校正部400)は、ステップD02で演算された幾何校正パラメータでもって、左右画像の平行化画像を作成する際に利用される幾何校正用のパラメータを更新する。このとき、左右カメラ100,110の相対位置や姿勢の推定値や、路面とステレオカメラの位置姿勢のパラメータ更新も実施しても良い。
In step DS04, the control device 10 (camera geometric calibration unit 400) updates the geometric calibration parameters used when creating the parallelized image of the left and right images with the geometric calibration parameters calculated in step D02. . At this time, the estimated values of the relative positions and postures of the left and
ステップDS05では、制御装置10(視差画像生成部500A)は、ステップDS01で入力した左画像を上下2分割することを決定する。なお、右画像については分割を行わない。
In step DS05, the control device 10 (the parallax
ステップDS06では、制御装置10(視差画像生成部500A)は、左画像を上下に2分割し、そのうち消失点VPを含む領域を上側領域111と設定する。上側領域111は消失点VPを含み遠方の景色が撮像される傾向のある領域であり、視点変換を施されることなくそのままステレオマッチング(ステップDS07)に利用される。ただし、特に下側領域112において路面以外の物体の視差を重要視するような場合や処理に余裕がある場合には、左画像の全てを上側領域に設定し、視点変換を実施することなく右画像とステレオマッチングを実施しても良い(ステップDS07)。
In step DS06, the control device 10 (the parallax
ステップDS08では、制御装置10(視差画像生成部500A)は、左画像から上側領域111を除いた領域(上側領域111の下方に位置する領域)を下側領域112と設定する。下側領域112は、自車が走行する路面が撮像物の大半を占める領域であり、左右カメラ100,110から比較的近傍の路面では左右カメラ100,110で見え方の変化が特に大きいので視点変換の実施のために分割する。
In step DS08, the control device 10 (the parallax
そして、制御装置10(視差画像生成部500A)は、下側領域112を視点変換するための変換パラメータの生成と、視点変換後の下側領域112上の対応点を逆変換により視点変換前の座標上に戻すための逆変換パラメータを生成する。ここで生成される変換パラメータによる視点変換は、下側領域112の少なくとも一部が平面であると仮定し、その平面に対する左右カメラ100,110の位置及び姿勢を推定し、その推定した左右カメラ100,110の位置及び姿勢に基づいて下側領域112を右カメラ110の視点からの画像に変換するものである。
Then, the control device 10 (the parallax
さらに、制御装置10(視差画像生成部500A)は、生成した変換パラメータを利用して左画像の下側領域112を視点変換する。
Further, the control device 10 (the parallax
なお、このステップDS08で生成する視点変換画像は、左画像の視点を右カメラ110の視点に変換したような視点変換画像を生成しても良いし。左右カメラ100,110の中心位置にカメラがあると仮定したように左右カメラの画像を、ステレオカメラの重心位置に持っていったような画像変換をしても良い。
Note that the viewpoint conversion image generated in step DS08 may generate a viewpoint conversion image obtained by converting the viewpoint of the left image into the viewpoint of the
ステップDS07では、制御装置10(視差画像生成部500A)は、ステップDS06の上側領域111とこれに対応する右画像の領域をステレオマッチングして視差値を演算と視差画像の生成を行う。これと同時に、ステップDS09では、制御装置10(視差画像生成部500A)は、ステップDS08で視点変換した下側領域112とこれに対応する右画像の領域をステレオマッチングして視差値を演算と視差画像の生成を行う。
In step DS07, the control device 10 (the parallax
ステップDS10では、制御装置10(視差画像生成部500A)は、ステップDS10で生成された視点変換画像ベースの視差値を、逆変換パラメータを利用して逆変換することで視差値の視点変換分の換算を実施する。
In step DS10, the control device 10 (the parallax
ステップDS11では、制御装置10(視差画像生成部500A)は、視点変換前の平行化画像座標上における2枚の画像(左右画像)に重畳領域がある場合には、視点変換前の下側領域112と右画像の対応部分のマッチングスコアと、視点変換後の下側領域112と右画像の対応部分のマッチングスコアとを比較し、マッチングスコアが高い方の視差値を下側領域の視差値として選択する。これにより路面においては視点変換した場合の視差を優先的に利用し、立体物が存在する場合等には視点変換しない場合の視差を優先的に利用するようにスコアマッチングの比較が作用するので視差画像の精度が向上する。
In step DS11, the control device 10 (the parallax
ステップDS12では、制御装置10(視差画像生成部500A)は、ステップDS07で生成した上側領域111の視差画像と、ステップDS11の比較を介して選択された下側領域112の視差画像を一枚の視差画像(合成視差画像)として合成することで、従来よりも密でノイズの少ない視差画像生成が可能となる。
In step DS12, the control device 10 (the parallax
なお、本実施形態では、左画像を上下に分割する場合について説明したが、左右画像で見え方の大きく異なる領域であって平面に近似できる部分が含まれる領域であれば、視点変換による視差値の精度向上効果が望める。すなわち、上記で説明した下側領域とは異なる領域に視点変換を実施してステレオマッチングを行っても良く、この種の領域としては第1実施形態で視点変換を行う領域が含まれる。 Note that, in the present embodiment, the case where the left image is vertically divided is described. However, if the left image and the right image are regions that are significantly different in appearance and include a portion that can be approximated to a plane, the disparity value obtained by the viewpoint conversion is used. Can be expected to improve the accuracy of That is, stereo matching may be performed by performing viewpoint conversion on an area different from the lower area described above, and this type of area includes an area on which viewpoint conversion is performed in the first embodiment.
<その他>
図15のフローチャートにおいてステップS10,S12は省略可能である。
<Others>
In the flowchart of FIG. 15, steps S10 and S12 can be omitted.
本発明は,上記の各実施形態に限定されるものではなく,その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば,本発明は,上記の各実施形態で説明した全ての構成を備えるものに限定されず,その構成の一部を削除したものも含まれる。また,ある実施形態に係る構成の一部を,他の実施形態に係る構成に追加又は置換することが可能である。 The present invention is not limited to the above embodiments, and includes various modifications without departing from the gist thereof. For example, the present invention is not limited to those having all the configurations described in the above embodiments, but also includes those in which some of the configurations are deleted. Further, a part of the configuration according to one embodiment can be added to or replaced by the configuration according to another embodiment.
また,上記の制御装置10に係る各構成や当該各構成の機能及び実行処理等は,それらの一部又は全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現しても良い。また,上記の制御装置10に係る構成は,演算処理装置(例えばCPU)によって読み出し・実行されることで当該装置の構成に係る各機能が実現されるプログラム(ソフトウェア)としてもよい。当該プログラムに係る情報は,例えば,半導体メモリ(フラッシュメモリ,SSD等),磁気記憶装置(ハードディスクドライブ等)及び記録媒体(磁気ディスク,光ディスク等)等に記憶することができる。
In addition, the components of the
また,上記の各実施形態の説明では,制御線や情報線は,当該実施の形態の説明に必要であると解されるものを示したが,必ずしも製品に係る全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えて良い。 Further, in the description of each of the above embodiments, the control lines and the information lines that are understood to be necessary for the description of the embodiment are shown, but all the control lines and the information lines related to the product are not necessarily used. It is not necessarily shown. In fact, it can be considered that almost all components are interconnected.
100…左カメラ,110…右カメラ,111…上側領域,112…下側領域,200…視点変換部,210…領域設定部,220…変換パラメータ生成部,221…視差解析部,222…視点変換属性決定部,223…変換パラメータ演算部,230…逆変換パラメータ計算部,240…視点変換画像生成部,300…対応点探索部,310…特徴点抽出部,320…特徴量記述部,330…最大誤差設定部,340…対応点探索部,350…信頼度計算部,400…カメラ幾何校正部,410…対応点逆変換補正部,420…対応点集約部,430…ノイズ対応点削除部,440…幾何校正パラメータ推定部,450…利用可否判定部,460…幾何校正反映部,500…視差画像生成部,510…平行化画像生成部,520…ステレオマッチング部,530…距離演算部 100 left camera, 110 right camera, 111 upper region, 112 lower region, 200 viewpoint conversion unit, 210 region setting unit, 220 conversion parameter generation unit, 221 parallax analysis unit, 222 viewpoint conversion Attribute determination unit, 223: conversion parameter calculation unit, 230: inverse conversion parameter calculation unit, 240: viewpoint conversion image generation unit, 300: corresponding point search unit, 310: feature point extraction unit, 320: feature amount description unit, 330 ... Maximum error setting unit, 340: Corresponding point searching unit, 350: Reliability calculating unit, 400: Camera geometric calibration unit, 410: Corresponding point reverse conversion correcting unit, 420: Corresponding point aggregating unit, 430: Noise corresponding point deleting unit, 440: geometric calibration parameter estimating unit, 450: availability determining unit, 460: geometric calibration reflecting unit, 500: parallax image generating unit, 510: parallelized image generating unit, 520: stereo Etching unit, 530 ... distance calculator
Claims (12)
前記第1カメラによって撮像された第1画像と前記第2カメラによって撮像された第2画像の少なくとも一方を変形することで前記第1画像及び前記第2画像を共通の視点からの画像に変換する視点変換を行った後に複数の対応点を抽出し、前記視点変換前の前記第1画像及び前記第2画像における前記複数の対応点の座標を利用して前記第1カメラ及び前記第2カメラの幾何校正を行う制御装置と
を備えることを特徴とする車載環境認識装置。 A first camera and a second camera,
The first image and the second image are converted into an image from a common viewpoint by deforming at least one of a first image captured by the first camera and a second image captured by the second camera. After performing the viewpoint conversion, a plurality of corresponding points are extracted, and the coordinates of the plurality of corresponding points in the first image and the second image before the viewpoint conversion are used for the first camera and the second camera. A vehicle environment recognition device comprising: a control device for performing geometric calibration.
前記視点変換は、前記制御装置が、前記第1画像及び前記第2画像で重複して撮像された部分の少なくとも一部が平面であると仮定し、前記平面に対する前記第1カメラ及び前記第2カメラの位置及び姿勢を演算し、その演算した前記平面に対する前記第1カメラ及び前記第2カメラの位置及び姿勢に基づいて前記第1画像を前記第2カメラの視点からの画像に変換する視点変換であることを特徴とする車載環境認識装置。 The in-vehicle environment recognition device according to claim 1,
In the viewpoint conversion, the control device may assume that at least a part of a portion captured in the first image and the second image in a redundant manner is a plane, and the first camera and the second camera with respect to the plane may be used. Viewpoint conversion for calculating the position and orientation of a camera and converting the first image into an image from the viewpoint of the second camera based on the calculated positions and orientations of the first camera and the second camera with respect to the plane; An in-vehicle environment recognition device, characterized in that:
前記制御装置は、前記視点変換後の前記第1画像と前記視点変換が未実施の前記第2画像とから複数の対応点の集合である第1対応点群を抽出し、前記視点変換前の前記第1画像と前記視点変換が未実施の前記第2画像とから複数の対応点の集合である第2対応点群を抽出し、前記第1対応点群の座標を前記視点変換前の座標に変換した座標と、前記第2対応点群の座標とを利用して前記第1カメラ及び前記第2カメラの幾何校正を行うことを特徴とする車載環境認識装置。 The in-vehicle environment recognition device according to claim 2,
The control device extracts a first corresponding point group, which is a set of a plurality of corresponding points, from the first image after the viewpoint conversion and the second image on which the viewpoint conversion has not been performed. A second corresponding point group, which is a set of a plurality of corresponding points, is extracted from the first image and the second image on which the viewpoint conversion has not been performed, and coordinates of the first corresponding point group are coordinates before the viewpoint conversion. The geometric calibration of the first camera and the second camera is performed using the coordinates converted into the coordinates and the coordinates of the second corresponding point group.
前記視点変化は、前記制御装置が、前記第1画像にパラメータを変化させながらアフィン変換を施して複数の変換画像を生成し、前記複数の変換画像のそれぞれと前記第2画像の対応点の抽出を実施し、前記複数の変換画像の中で前記対応点の数が最も多くかつ所定の閾値以上の変換画像を、前記第1画像を前記第2カメラの視点からの画像に変換した画像とする視点変換であることを特徴とする車載環境認識装置。 The in-vehicle environment recognition device according to claim 1,
In the viewpoint change, the control device performs affine transformation while changing parameters on the first image to generate a plurality of transformed images, and extracts corresponding points between each of the plurality of transformed images and the second image. And the converted image having the largest number of the corresponding points among the plurality of converted images and equal to or greater than a predetermined threshold value is an image obtained by converting the first image into an image from the viewpoint of the second camera. An in-vehicle environment recognition device, which is a viewpoint conversion.
前記視点変換は、
前記制御装置が、
前記第1画像を消失点を含む又は消失点と接する上側領域と前記上側領域の下方に位置する下側領域の2つの領域に上下に2分割し、
前記下側領域の少なくとも一部が平面であると仮定し、
前記平面に対する前記第1カメラ及び前記第2カメラの位置及び姿勢を推定し、
その推定した前記平面に対する前記第1カメラ及び前記第2カメラの位置及び姿勢に基づいて前記下側領域を前記第2カメラの視点からの画像に変換し、
その変換後の前記下側領域と前記上側領域を合わせたものを視点変換後の第1画像とする視点変換であることを特徴とする車載環境認識装置。 The in-vehicle environment recognition device according to claim 1,
The viewpoint conversion includes:
The control device,
The first image is vertically divided into two regions, an upper region including a vanishing point or in contact with the vanishing point, and a lower region located below the upper region,
Assuming that at least a portion of the lower region is planar,
Estimating the position and orientation of the first camera and the second camera with respect to the plane,
Converting the lower area to an image from the viewpoint of the second camera based on the position and orientation of the first camera and the second camera with respect to the estimated plane,
An in-vehicle environment recognizing device, wherein viewpoint conversion is performed by combining the lower region and the upper region after the conversion with the first image after the viewpoint conversion.
前記視点変換は、
前記制御装置が、
前記第1画像を複数の領域に分割し、
前記複数の領域内に平面に近似可能な部分が存在するか否かを前フレームの視差画像を基に判断し、
前記複数の領域のうち前記平面に近似可能な部分が存在する領域のうち前記第1カメラ及び前記第2カメラからの距離が所定の閾値未満の領域を変換対象領域に決定し、
前記変換対象領域に対する前記第1カメラ及び前記第2カメラの位置及び姿勢を推定し、
その推定した前記第1カメラ及び前記第2カメラの位置及び姿勢に基づいて前記変換対象領域を前記第2カメラの視点からの画像に変換し、
前記複数の領域から前記変換対象領域を除いた残りの領域と前記変換対象領域を合わせたものを視点変換後の第1画像とする視点変換であることを特徴とする車載環境認識装置。 The in-vehicle environment recognition device according to claim 1,
The viewpoint conversion includes:
The control device,
Dividing the first image into a plurality of regions;
Determine whether there is a portion that can be approximated to a plane in the plurality of regions based on the parallax image of the previous frame,
Among the plurality of regions, a region having a portion that can be approximated to the plane exists, and a region whose distance from the first camera and the second camera is smaller than a predetermined threshold is determined as a conversion target region.
Estimating the position and orientation of the first camera and the second camera with respect to the conversion target area,
Converting the conversion target area into an image from the viewpoint of the second camera based on the estimated position and orientation of the first camera and the second camera;
An in-vehicle environment recognizing device, wherein the viewpoint conversion is a first image after a viewpoint conversion is performed by combining a remaining region excluding the conversion target region from the plurality of regions and the conversion target region.
前記視点変換は、
前記制御装置が、
前記第1画像を複数の矩形領域に分割し、
前記複数の矩形領域には、自車走行中に各矩形領域に出現すると予測される平面の属性が付与されており、
前記複数の矩形領域に付与された平面の属性が妥当か否かを前フレームの視差画像を基に判断し、
前記複数の矩形領域において前記平面の属性が妥当と判断された矩形領域のうち、前記第1カメラ及び前記第2カメラからの距離が所定の閾値未満の矩形領域を変換対象領域に決定し、
前記変換対象領域に対する前記第1カメラ及び前記第2カメラの位置及び姿勢を推定し、
その推定した前記第1カメラ及び前記第2カメラの位置及び姿勢に基づいて前記変換対象領域を前記第2カメラの視点からの画像に変換し、
前記複数の領域から前記変換対象領域を除いた残りの領域と前記変換対象領域を合わせたものを視点変換後の第1画像とする視点変換であることを特徴とする車載環境認識装置。 The in-vehicle environment recognition device according to claim 1,
The viewpoint conversion includes:
The control device,
Dividing the first image into a plurality of rectangular areas;
The plurality of rectangular areas are provided with an attribute of a plane that is predicted to appear in each rectangular area during traveling of the own vehicle,
Determine whether the attribute of the plane given to the plurality of rectangular areas is appropriate based on the parallax image of the previous frame,
In the plurality of rectangular regions, among the rectangular regions in which the attribute of the plane is determined to be appropriate, a rectangular region whose distance from the first camera and the second camera is smaller than a predetermined threshold is determined as a conversion target region,
Estimating the position and orientation of the first camera and the second camera with respect to the conversion target area,
Converting the conversion target area into an image from the viewpoint of the second camera based on the estimated position and orientation of the first camera and the second camera;
An in-vehicle environment recognizing device, wherein the viewpoint conversion is a first image after a viewpoint conversion is performed by combining a remaining region excluding the conversion target region from the plurality of regions and the conversion target region.
前記複数の矩形領域は、前記第1画像を縦に2つ、横に3つに分割して得られる6つの矩形領域であり、
前記6つの矩形領域における下側の3つの矩形領域の平面の属性は路面であり、
前記6つの矩形領域における上側の3つの矩形領域のうち左右の2つの矩形領域の平面の属性は壁であり、
前記6つの矩形領域における上側の3つの矩形領域のうち中央の矩形領域の平面の属性は無限遠であることを特徴とする車載環境認識装置。 The in-vehicle environment recognition device according to claim 7,
The plurality of rectangular areas are six rectangular areas obtained by dividing the first image into two vertically and three horizontally.
The attribute of the plane of the lower three rectangular areas in the six rectangular areas is a road surface,
The plane attribute of the left and right two rectangular areas of the upper three rectangular areas in the six rectangular areas is a wall,
An on-vehicle environment recognizing device, wherein the attribute of the plane of the central rectangular area among the upper three rectangular areas in the six rectangular areas is infinity.
前記制御装置は、前記第1画像及び前記第2画像を共通の視点からの画像に変換する視点変換を行った後にステレオマッチングして視差値を取得し、前記視差値に対して前記視点変換に応じた補正を施して視差画像を生成することを特徴とする車載環境認識装置。 The in-vehicle environment recognition device according to claim 1,
The control device performs a viewpoint conversion for converting the first image and the second image into an image from a common viewpoint, obtains a parallax value by performing stereo matching, and performs the viewpoint conversion on the parallax value. An in-vehicle environment recognizing device that generates a parallax image by performing a corresponding correction.
前記制御装置は、前記第2画像と前記視点変換後の第1画像をステレオマッチングして視差値を取得し、前記視差値のうち前記下側領域に属するものは前記視点変換に応じた補正を施して視差画像を生成することを特徴とする車載環境認識装置。 The in-vehicle environment recognition device according to claim 5,
The control device obtains a parallax value by performing stereo matching on the second image and the first image after the viewpoint conversion, and among the parallax values, those belonging to the lower region perform correction according to the viewpoint conversion. An in-vehicle environment recognizing device that generates a parallax image by performing a parallax image processing.
前記制御装置は、前記第2画像と前記視点変換前の第1画像からなる第1ペアと、前記第2画像と前記視点変換後の第1画像からなる第2ペアの2つのペアでステレオマッチングを実施し、前記2つのペアのうちステレオマッチングのマッチングスコアが高い方を利用して視差画像を生成することを特徴とする車載環境認識装置。 The in-vehicle environment recognition device according to claim 10,
The control device performs stereo matching on two pairs of a second pair including the second image and the first image before the viewpoint conversion and a second pair including the second image and the first image after the viewpoint conversion. Wherein the parallax image is generated using the higher matching score of the stereo matching among the two pairs.
前記視点変換は、
前記制御装置が、前記第1画像を変形して前記第1カメラと前記第2カメラの間に位置する所定の視点からの画像に変換する視点変換と、前記第2画像を変形して前記所定の視点からの画像に変換する視点変換とを行う視点変換であることを特徴とする車載環境認識装置。 The in-vehicle environment recognition device according to claim 1,
The viewpoint conversion includes:
The control device transforms the first image to convert the image to an image from a predetermined viewpoint located between the first camera and the second camera, and transforms the second image to the predetermined image. And a viewpoint conversion for converting a viewpoint into an image from the viewpoint.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018135236A JP7219561B2 (en) | 2018-07-18 | 2018-07-18 | In-vehicle environment recognition device |
CN201980046818.8A CN112424565B (en) | 2018-07-18 | 2019-07-04 | Vehicle-mounted environment recognition device |
PCT/JP2019/026561 WO2020017334A1 (en) | 2018-07-18 | 2019-07-04 | Vehicle-mounted environment recognition device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018135236A JP7219561B2 (en) | 2018-07-18 | 2018-07-18 | In-vehicle environment recognition device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020012735A true JP2020012735A (en) | 2020-01-23 |
JP7219561B2 JP7219561B2 (en) | 2023-02-08 |
Family
ID=69164301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018135236A Active JP7219561B2 (en) | 2018-07-18 | 2018-07-18 | In-vehicle environment recognition device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7219561B2 (en) |
CN (1) | CN112424565B (en) |
WO (1) | WO2020017334A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021131750A (en) * | 2020-02-20 | 2021-09-09 | 株式会社Subaru | Image processing device and image processing method |
WO2024009386A1 (en) * | 2022-07-05 | 2024-01-11 | 日立Astemo株式会社 | Image processing device and image processing method |
WO2024157410A1 (en) * | 2023-01-26 | 2024-08-02 | 日立Astemo株式会社 | Image processing device, imaging device, and image processing method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210147405A (en) * | 2020-05-28 | 2021-12-07 | 삼성전자주식회사 | Electronic device for performing object detection and operation mtehod thereof |
JP2024003407A (en) * | 2022-06-27 | 2024-01-15 | 日立Astemo株式会社 | External world recognition device and external world recognition method |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001243456A (en) * | 2000-02-29 | 2001-09-07 | Toshiba Corp | Device and method for detecting obstacle |
JP2001273488A (en) * | 2000-03-27 | 2001-10-05 | Toshiba Corp | Obstacle detector |
JP2003209858A (en) * | 2002-01-17 | 2003-07-25 | Canon Inc | Stereoscopic image generating method and recording medium |
JP2003256875A (en) * | 2002-02-27 | 2003-09-12 | Fuji Heavy Ind Ltd | Positional deviation adjusting device amd method for stereoscopic image, and stereoscopic type monitoring device |
JP2004258266A (en) * | 2003-02-25 | 2004-09-16 | Olympus Corp | Stereoscopic adapter and distance image input device using the same |
JP2005251123A (en) * | 2004-03-08 | 2005-09-15 | National Institute Of Advanced Industrial & Technology | Image processor and image processing method |
JP2006054504A (en) * | 2004-08-09 | 2006-02-23 | Olympus Corp | Image generating method and apparatus |
JP2009041972A (en) * | 2007-08-07 | 2009-02-26 | Toshiba Corp | Image processing device and method therefor |
JP2009276233A (en) * | 2008-05-15 | 2009-11-26 | Toyota Central R&D Labs Inc | Parameter calculating apparatus, parameter calculating system and program |
JP2012075060A (en) * | 2010-09-30 | 2012-04-12 | Hitachi Automotive Systems Ltd | Image processing device, and imaging device using the same |
WO2016189878A1 (en) * | 2015-05-27 | 2016-12-01 | 京セラ株式会社 | Arithmetic logic device, camera device, vehicle and calibration method |
JP2017528685A (en) * | 2014-05-30 | 2017-09-28 | オックスフォード ユニバーシティ イノベーション リミテッドOxford University Innovation Limited | Estimation of vehicle position |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3897984B2 (en) * | 2001-02-02 | 2007-03-28 | 三菱電機株式会社 | Surveillance camera calibration method and road surveillance camera |
JP2008187566A (en) * | 2007-01-31 | 2008-08-14 | Sanyo Electric Co Ltd | Camera calibration apparatus and method and vehicle |
JP5820787B2 (en) * | 2012-08-30 | 2015-11-24 | 株式会社デンソー | Image processing apparatus and program |
JP2015119372A (en) * | 2013-12-19 | 2015-06-25 | 株式会社日立製作所 | Multi-camera photographing system and method of combining multi-camera photographic images |
CN107194972B (en) * | 2017-05-16 | 2021-04-02 | 成都通甲优博科技有限责任公司 | Camera calibration method and system |
-
2018
- 2018-07-18 JP JP2018135236A patent/JP7219561B2/en active Active
-
2019
- 2019-07-04 WO PCT/JP2019/026561 patent/WO2020017334A1/en active Application Filing
- 2019-07-04 CN CN201980046818.8A patent/CN112424565B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001243456A (en) * | 2000-02-29 | 2001-09-07 | Toshiba Corp | Device and method for detecting obstacle |
JP2001273488A (en) * | 2000-03-27 | 2001-10-05 | Toshiba Corp | Obstacle detector |
JP2003209858A (en) * | 2002-01-17 | 2003-07-25 | Canon Inc | Stereoscopic image generating method and recording medium |
JP2003256875A (en) * | 2002-02-27 | 2003-09-12 | Fuji Heavy Ind Ltd | Positional deviation adjusting device amd method for stereoscopic image, and stereoscopic type monitoring device |
JP2004258266A (en) * | 2003-02-25 | 2004-09-16 | Olympus Corp | Stereoscopic adapter and distance image input device using the same |
JP2005251123A (en) * | 2004-03-08 | 2005-09-15 | National Institute Of Advanced Industrial & Technology | Image processor and image processing method |
JP2006054504A (en) * | 2004-08-09 | 2006-02-23 | Olympus Corp | Image generating method and apparatus |
JP2009041972A (en) * | 2007-08-07 | 2009-02-26 | Toshiba Corp | Image processing device and method therefor |
JP2009276233A (en) * | 2008-05-15 | 2009-11-26 | Toyota Central R&D Labs Inc | Parameter calculating apparatus, parameter calculating system and program |
JP2012075060A (en) * | 2010-09-30 | 2012-04-12 | Hitachi Automotive Systems Ltd | Image processing device, and imaging device using the same |
JP2017528685A (en) * | 2014-05-30 | 2017-09-28 | オックスフォード ユニバーシティ イノベーション リミテッドOxford University Innovation Limited | Estimation of vehicle position |
WO2016189878A1 (en) * | 2015-05-27 | 2016-12-01 | 京セラ株式会社 | Arithmetic logic device, camera device, vehicle and calibration method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021131750A (en) * | 2020-02-20 | 2021-09-09 | 株式会社Subaru | Image processing device and image processing method |
JP7465671B2 (en) | 2020-02-20 | 2024-04-11 | 株式会社Subaru | Image processing device and image processing method |
WO2024009386A1 (en) * | 2022-07-05 | 2024-01-11 | 日立Astemo株式会社 | Image processing device and image processing method |
WO2024157410A1 (en) * | 2023-01-26 | 2024-08-02 | 日立Astemo株式会社 | Image processing device, imaging device, and image processing method |
Also Published As
Publication number | Publication date |
---|---|
CN112424565B (en) | 2023-01-03 |
JP7219561B2 (en) | 2023-02-08 |
WO2020017334A1 (en) | 2020-01-23 |
CN112424565A (en) | 2021-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020017334A1 (en) | Vehicle-mounted environment recognition device | |
JP5870273B2 (en) | Object detection apparatus, object detection method, and program | |
CN110992356A (en) | Target object detection method and device and computer equipment | |
WO2019160032A1 (en) | Three-dimensional measuring system and three-dimensional measuring method | |
JP2017526082A (en) | Non-transitory computer-readable medium encoded with computer program code for causing a motion estimation method, a moving body, and a processor to execute the motion estimation method | |
KR102455632B1 (en) | Mehtod and apparatus for stereo matching | |
JP5250847B2 (en) | Image processing apparatus, information processing system, image processing method, and program | |
JP4701848B2 (en) | Image matching apparatus, image matching method, and image matching program | |
US10142613B2 (en) | Image processing apparatus, image processing system, and image processing method | |
CN111142514B (en) | Robot and obstacle avoidance method and device thereof | |
WO2020209046A1 (en) | Object detection device | |
JP6212021B2 (en) | Distance detector | |
JP6655869B2 (en) | Image processing apparatus, image processing method, and program | |
US10949988B2 (en) | Information processing apparatus, information processing method, and program | |
JP2009186287A (en) | Plane parameter estimating device, plane parameter estimating method, and plane parameter estimating program | |
CN114764823A (en) | Self-correcting depth calculation method, system, medium, and depth image processing apparatus | |
JP2019120590A (en) | Parallax value calculation device, parallax value calculation method and program | |
JP6571492B2 (en) | Corresponding point search method and distance measuring device | |
JP2017045124A (en) | Parallax detection device | |
JP7195785B2 (en) | Apparatus, method and program for generating 3D shape data | |
JP2001109879A (en) | Device and method for image processing, and medium | |
US10417783B2 (en) | Image processing apparatus, image processing method, and storage medium | |
US10453206B2 (en) | Method, apparatus for shape estimation, and non-transitory computer-readable storage medium | |
KR20200057929A (en) | Method for rectification of stereo images captured by calibrated cameras and computer program | |
KR102424664B1 (en) | Apparatus and method tracking object based on 3 dimension images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220913 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7219561 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |