JP2020011886A - Diamond polycrystal body and industrial tool equipped with the same - Google Patents

Diamond polycrystal body and industrial tool equipped with the same Download PDF

Info

Publication number
JP2020011886A
JP2020011886A JP2018187312A JP2018187312A JP2020011886A JP 2020011886 A JP2020011886 A JP 2020011886A JP 2018187312 A JP2018187312 A JP 2018187312A JP 2018187312 A JP2018187312 A JP 2018187312A JP 2020011886 A JP2020011886 A JP 2020011886A
Authority
JP
Japan
Prior art keywords
diamond
polycrystalline diamond
knoop
less
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018187312A
Other languages
Japanese (ja)
Inventor
角谷 均
Hitoshi Sumiya
均 角谷
山本 佳津子
Kazuko Yamamoto
佳津子 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2018187312A priority Critical patent/JP2020011886A/en
Publication of JP2020011886A publication Critical patent/JP2020011886A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

To provide a diamond polycrystal body having excellent defect resistance while maintaining high hardness, and an industrial tool equipped with the same.SOLUTION: In a Knoop hardness test performed under a condition stipulated in JIS Z 2251:2009, if a is a length of a longer diagonal line of a first Knoop impression formed on a surface of a diamond polycrystal body in a state where a Knoop indenter of a test load 4.9 N is pushed into the surface of the diamond polycrystal body, and a' is a length of a longer diagonal line of a second Knoop impression remaining on the surface of the diamond polycrystal body after releasing the test load, a value of a ratio (a'/a) of the a' with regard to the a is 0.99 or less.SELECTED DRAWING: Figure 1

Description

本開示は、ダイヤモンド多結晶体及びそれを備えた工具に関する。   The present disclosure relates to a polycrystalline diamond and a tool including the same.

ダイヤモンド多結晶体は、優れた硬度を有するとともに、硬さの方向性や劈開性がないことから、切削バイトや、ドレッサー、ダイス等の工具や、掘削ビット等に広く用いられている。   BACKGROUND ART Polycrystalline diamond has excellent hardness and lacks hardness directionality and cleavage properties, and is therefore widely used in tools such as cutting tools, dressers, dies, and drill bits.

従来のダイヤモンド多結晶体は、原料であるダイヤモンドの粉末を、焼結助剤や結合材とともに、ダイヤモンドが熱力学的に安定な高圧高温(一般的には、圧力が5〜8GPa程度及び温度が1300〜2200℃程度)の条件で焼結することにより得られる。焼結助剤としては、Fe、Co、Ni等の鉄族元素金属、CaCO3等の炭酸塩等が用いられる。結合材としては、SiC等のセラミックス等が用いられる。 Conventional polycrystalline diamond is prepared by adding diamond powder, which is a raw material, together with a sintering aid and a binder to a high pressure and high temperature at which diamond is thermodynamically stable (generally, a pressure of about 5 to 8 GPa and a temperature of (About 1300-2200 ° C.). As the sintering aid, iron group element metals such as Fe, Co, and Ni, and carbonates such as CaCO 3 are used. Ceramics such as SiC are used as the binder.

上記の方法で得られるダイヤモンド多結晶体には、焼結助剤や結合材が含まれる。焼結助剤や結合材は、ダイヤモンド多結晶体の硬度や強度等の機械的特性や耐熱性を低下させる原因となり得る。   The polycrystalline diamond obtained by the above method contains a sintering aid and a binder. The sintering aid and the binder may cause deterioration of mechanical properties such as hardness and strength of the polycrystalline diamond and heat resistance.

ダイヤモンド多結晶体中の焼結助剤を酸処理により除去したものや、結合材として耐熱性のSiCを用いた耐熱性に優れたダイヤモンド多結晶体も知られている。しかし該ダイヤモンド多結晶体は硬度や強度が低く、工具材料としての機械的特性は不十分である。   There are also known diamond polycrystals obtained by removing a sintering aid from an acid treatment and heat-resistant polycrystalline diamond using heat-resistant SiC as a binder. However, the polycrystalline diamond has low hardness and strength, and has insufficient mechanical properties as a tool material.

一方、グラファイト、グラッシーカーボン、アモルファスカーボン、オニオンライクカーボン等の非ダイヤモンド炭素材料を超高圧高温下で、焼結助剤等を用いることなく、直接的にダイヤモンドに変換させることが可能である。非ダイヤモンド相からダイヤモンド相へ直接変換すると同時に焼結させることでダイヤモンド多結晶体が得られる。   On the other hand, non-diamond carbon materials such as graphite, glassy carbon, amorphous carbon, and onion-like carbon can be directly converted to diamond under ultra-high pressure and high temperature without using a sintering aid or the like. The polycrystalline diamond is obtained by directly converting the non-diamond phase to the diamond phase and simultaneously sintering.

特開2015−227278号公報(特許文献1)には、非ダイヤモンド炭素粉末を圧力をP(GPa)、温度をT(℃)としたときに、P≧0.0000168T2−0.0876T+124、T≦2300、および、P≦25の条件を満たす超高温高圧下でダイヤモンドに直接変換させてダイヤモンド多結晶体を得る技術が開示されている。得られたダイヤモンド多結晶体は、ヌープ硬度測定において、ヌープ圧痕の対角線の長い方の対角線の長さaと短い方の対角線の長さbとの比b/aが0.08以下であり、弾性を有する。   Japanese Patent Application Laid-Open No. 2015-227278 (Patent Document 1) discloses that P ≧ 0.0000168T2−0.0876T + 124 and T ≦ when the pressure of non-diamond carbon powder is P (GPa) and the temperature is T (° C.). There is disclosed a technique of obtaining a polycrystalline diamond by directly converting into diamond under ultra-high temperature and pressure satisfying the conditions of 2300 and P ≦ 25. In the Knoop hardness measurement, the ratio b / a of the length a of the longer diagonal of the Knoop indentation and the length b of the shorter diagonal of the obtained polycrystalline diamond is 0.08 or less, It has elasticity.

特開2018−008875号公報(特許文献2)には、原料であるオニオンライクカーボンを、1200℃〜2300℃、4GPa〜25GPaの超高温高圧下でダイヤモンドに直接変換させることにより、ビッカース硬度が155〜350GPaで、ヌープ硬度が140〜240GPaの超高硬度ナノ双晶ダイヤモンドバルク材料を得る技術が開示されている。   Japanese Patent Application Laid-Open No. 2018-008875 (Patent Document 2) discloses that a Vickers hardness of 155 is obtained by directly converting onion-like carbon as a raw material into diamond under an ultra-high temperature and pressure of 1200 to 2300 ° C. and 4 GPa to 25 GPa. A technique for obtaining an ultra-high hardness nano-twin diamond bulk material having a Knoop hardness of 140 to 240 GPa at ~ 350 GPa is disclosed.

特開2015−227278号公報JP-A-2005-227278 特開2018−008875号公報JP 2018-008875 A

[1]本開示のダイヤモンド多結晶体は、
JIS Z 2251:2009に規定される条件で行われるヌープ硬さ試験において、ダイヤモンド多結晶体の表面に試験荷重4.9Nのヌープ圧子を押し込んだ状態において前記ダイヤモンド多結晶体の表面に形成される第1ヌープ圧痕の長い方の対角線の長さをaとし、前記試験荷重を解除した後に前記ダイヤモンド多結晶体の表面に残る第2ヌープ圧痕の長い方の対角線の長さをa’とした場合に、前記aに対する前記a’の比(a’/a)の値が0.99以下である、ダイヤモンド多結晶体である。
[1] The polycrystalline diamond of the present disclosure includes:
In a Knoop hardness test performed under the conditions specified in JIS Z 2251: 2009, a Knoop indenter with a test load of 4.9 N is pressed into the surface of a polycrystalline diamond and formed on the surface of the polycrystalline diamond. When the length of the longer diagonal of the first Knoop indentation is a and the length of the longer diagonal of the second Knoop indentation remaining on the surface of the diamond polycrystal after releasing the test load is a ' In addition, the polycrystalline diamond has a ratio of a ′ to a ′ (a ′ / a) of 0.99 or less.

[2]本開示の工具は、上記[1]のダイヤモンド多結晶体を備えた工具である。   [2] The tool of the present disclosure is a tool including the polycrystalline diamond according to [1].

図1は、ヌープ圧痕を説明する図である。FIG. 1 is a diagram illustrating Knoop indentations.

[本開示が解決しようとする課題]
特許文献1のダイヤモンド多結晶体は、高い硬度及び靱性を有するが、耐欠損性の更なる向上が求められている。
[Problems to be solved by the present disclosure]
Although the polycrystalline diamond of Patent Document 1 has high hardness and toughness, further improvement in fracture resistance is required.

特許文献2の超高硬度ナノ双晶ダイヤモンドバルク材料は、非常に高い硬度を有するが、靱性が不十分であり、耐欠損性が不十分であった。   The ultra-high hardness nanotwin diamond bulk material of Patent Document 2 has very high hardness, but has insufficient toughness and insufficient fracture resistance.

そこで、本目的は、高い硬度を維持したまま、優れた耐欠損性を有するダイヤモンド多結晶体及びそれを備えた工具を提供することを目的とする。   Accordingly, an object of the present invention is to provide a polycrystalline diamond having excellent fracture resistance while maintaining high hardness, and a tool provided with the same.

[本開示の効果]
本開示によれば、高い硬度を維持したまま、優れた耐欠損性を有するダイヤモンド多結晶体、及び、それを備えた工具を提供することが可能となる。
[Effects of the present disclosure]
According to the present disclosure, it is possible to provide a polycrystalline diamond having excellent fracture resistance while maintaining high hardness, and a tool including the same.

[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。
[Description of Embodiment of the Present Disclosure]
First, embodiments of the present disclosure will be listed and described.

(1)本開示の一態様に係るダイヤモンド多結晶体は、
JIS Z 2251:2009に規定される条件で行われるヌープ硬さ試験において、ダイヤモンド多結晶体の表面に試験荷重4.9Nのヌープ圧子を押し込んだ状態において前記ダイヤモンド多結晶体の表面に形成される第1ヌープ圧痕の長い方の対角線の長さをaとし、前記試験荷重を解除した後に前記ダイヤモンド多結晶体の表面に残る第2ヌープ圧痕の長い方の対角線の長さをa’とした場合に、前記aに対する前記a’の比(a’/a)の値が0.99以下である、ダイヤモンド多結晶体である。
(1) The polycrystalline diamond according to one embodiment of the present disclosure includes:
In a Knoop hardness test performed under the conditions specified in JIS Z 2251: 2009, a Knoop indenter with a test load of 4.9 N is pressed into the surface of a polycrystalline diamond and formed on the surface of the polycrystalline diamond. When the length of the longer diagonal of the first Knoop indentation is a and the length of the longer diagonal of the second Knoop indentation remaining on the surface of the diamond polycrystal after releasing the test load is a ' In addition, the polycrystalline diamond has a ratio of a ′ to a ′ (a ′ / a) of 0.99 or less.

このダイヤモンド多結晶体は、高い硬度を維持したまま、優れた耐欠損性を有する。
(2)前記ダイヤモンド多結晶体は、前記aの値から算出されたヌープ硬度が100GPa以上140GPa未満であることが好ましい。このダイヤモンド多結晶体は、硬度が高く、耐摩耗性に優れている。
This polycrystalline diamond has excellent fracture resistance while maintaining high hardness.
(2) The polycrystalline diamond preferably has a Knoop hardness calculated from the value of a of not less than 100 GPa and less than 140 GPa. This polycrystalline diamond has high hardness and excellent wear resistance.

(3)前記ダイヤモンド多結晶体は、前記aの値から算出されたヌープ硬度が120GPa以上140GPa未満であることが好ましい。このダイヤモンド多結晶体は、硬度が高いため、更に耐摩耗性に優れている。   (3) The polycrystalline diamond preferably has a Knoop hardness calculated from the value of a of not less than 120 GPa and less than 140 GPa. Since the polycrystalline diamond has high hardness, it is further excellent in wear resistance.

(4)前記ダイヤモンド多結晶体は、複数のダイヤモンド粒子から構成され、
前記ダイヤモンド粒子は、平均粒径が100nm以下であることが好ましい。
(4) The polycrystalline diamond is composed of a plurality of diamond particles,
The diamond particles preferably have an average particle size of 100 nm or less.

これによると、ダイヤモンド多結晶体は、高負荷加工や微細加工等の強靭で高精度な刃先が求められる用途の工具に、好適に適用することができる。   According to this, the polycrystalline diamond can be suitably applied to tools for applications requiring a tough and high-precision cutting edge, such as high-load processing and fine processing.

(5)本開示の一態様に係る工具は、上記(1)〜(4)のいずれかに記載のダイヤモンド多結晶体を備えた工具である。   (5) A tool according to one embodiment of the present disclosure is a tool including the polycrystalline diamond according to any one of (1) to (4).

この工具は、各種材料の加工において、優れた耐欠損性を有する。
[本開示の実施形態の詳細]
本開示の一実施形態に係るダイヤモンド多結晶体及びダイヤモンド多結晶体を用いた工具の具体例を、以下に図面を参照しつつ説明する。
This tool has excellent fracture resistance in processing various materials.
[Details of Embodiment of the Present Disclosure]
A specific example of a polycrystalline diamond according to an embodiment of the present disclosure and a tool using the polycrystalline diamond will be described below with reference to the drawings.

本明細書において「A〜B」という形式の表記は、範囲の下限上限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。   In the present specification, the notation in the form of “A to B” means the lower and upper limit of the range (that is, A or more and B or less), and when a unit is not described in A and a unit is described only in B, A And the unit of B are the same.

[ダイヤモンド多結晶体]
本実施形態に係るダイヤモンド多結晶体は、ダイヤモンドを基本組成とする。すなわち、ダイヤモンド多結晶体は、ダイヤモンドを基本組成とし、実質的に、焼結助剤及び結合材の一方又は両方により形成される結合相(バインダー)を含まない。従って、非常に高い硬度と強度を備えて、高温条件下においても結合材との熱膨張率の差異や結合材の触媒作用による機械的特性の劣化や脱粒が発生しない。
[Polycrystalline diamond]
The polycrystalline diamond according to the present embodiment has a basic composition of diamond. That is, the polycrystalline diamond has a basic composition of diamond and does not substantially include a binder phase (binder) formed by one or both of the sintering aid and the binder. Therefore, it has extremely high hardness and strength, and does not suffer from a difference in the coefficient of thermal expansion from the binder and the deterioration of mechanical properties and the degranulation due to the catalytic action of the binder even under high temperature conditions.

ダイヤモンド多結晶体は、複数のダイヤモンド粒子により構成される多結晶であることから、単結晶のような異方性及び劈開性がなく、全方位に対して等方的な硬度及び耐摩耗性を有する。   Since a diamond polycrystal is a polycrystal composed of a plurality of diamond particles, it does not have anisotropy and cleavage properties like a single crystal and has isotropic hardness and wear resistance in all directions. Have.

本開示にあるダイヤモンド多結晶体とは、X線回折法により得られたX線回折スペクトルにおいて、ダイヤモンド構造由来のすべての回折ピークの積分強度の合計に対して、10%より大きな積分強度を有する、ダイヤモンド構造以外に由来する回折ピークが存在しないことで規定される。すなわち、X線回折スペクトルによって、当該ダイヤモンド多結晶体は上記結合相を含まないことが確認できる。回折ピークの積分強度はバックグラウンドを除いた値とする。X線回折スペクトルは、下記の方法により得ることができる。   The polycrystalline diamond according to the present disclosure refers to an X-ray diffraction spectrum obtained by an X-ray diffraction method having an integrated intensity of more than 10% with respect to the total integrated intensity of all diffraction peaks derived from a diamond structure. Is defined by the absence of diffraction peaks derived from sources other than the diamond structure. That is, from the X-ray diffraction spectrum, it can be confirmed that the diamond polycrystal does not contain the above-mentioned binder phase. The integrated intensity of the diffraction peak is a value excluding the background. The X-ray diffraction spectrum can be obtained by the following method.

ダイヤモンド多結晶体をダイヤモンド砥石で研削加工し、その加工面を観察面とする。
X線回折装置(Rigaku社製「MiniFlex600」(商品名))を用いてダイヤモンド多結晶体の切断面のX線回折スペクトルを得る。このときのX線回折装置の条件は例えば、下記の通りとする。
特性X線: Cu−Kα(波長1.54Å)
管電圧: 45kV
管電流: 40mA
フィルター: 多層ミラー
光学系: 集中法
X線回折法: θ−2θ法。
The diamond polycrystal is ground with a diamond grindstone, and the processed surface is used as an observation surface.
An X-ray diffraction spectrum of a cut surface of the polycrystalline diamond is obtained using an X-ray diffractometer (“MiniFlex600” (trade name) manufactured by Rigaku Corporation). The conditions of the X-ray diffractometer at this time are as follows, for example.
Characteristic X-ray: Cu-Kα (wavelength 1.54 °)
Tube voltage: 45kV
Tube current: 40mA
Filter: Multilayer mirror optical system: Focused X-ray diffraction method: θ-2θ method.

ダイヤモンド多結晶体は、本実施形態の効果を示す範囲において不可避不純物を含んでいても構わない。不可避不純物としては、例えば、1ppm以下の水素、1ppm以下の酸素、1ppm以下の窒素等を挙げることができる。本明細書中、不可避不純物の濃度とは、原子数を基準とした濃度を意味する。   The polycrystalline diamond may contain unavoidable impurities as long as the effect of the present embodiment is exhibited. Examples of the inevitable impurities include 1 ppm or less of hydrogen, 1 ppm or less of oxygen, and 1 ppm or less of nitrogen. In this specification, the concentration of unavoidable impurities means a concentration based on the number of atoms.

ダイヤモンド多結晶体中の水素、酸素及び窒素のそれぞれの濃度は、強度向上の観点から、1ppm以下が好ましく、0.1ppm以下が更に好ましい。また、ダイヤモンド多結晶体中の全不純物濃度は、3ppm以下が好ましく、0.3ppm以下が更に好ましい。ダイヤモンド多結晶体中の水素、酸素及び窒素のそれぞれの濃度の下限値は特に限定されないが、製造上の観点から0.001ppm以上が好ましい。   The concentration of each of hydrogen, oxygen and nitrogen in the polycrystalline diamond is preferably 1 ppm or less, more preferably 0.1 ppm or less, from the viewpoint of improving strength. Further, the total impurity concentration in the polycrystalline diamond is preferably 3 ppm or less, more preferably 0.3 ppm or less. The lower limit of each concentration of hydrogen, oxygen and nitrogen in the polycrystalline diamond is not particularly limited, but is preferably 0.001 ppm or more from the viewpoint of production.

ダイヤモンド多結晶体中の水素、酸素、窒素の濃度は、二次イオン質量分析法(SIMS)によって測定することができる。   The concentrations of hydrogen, oxygen, and nitrogen in the polycrystalline diamond can be measured by secondary ion mass spectrometry (SIMS).

本実施形態のダイヤモンド多結晶体は焼結体であるが、通常焼結体とはバインダーを含むことを意図する場合が多いため、本実施形態では「多結晶体」という用語を用いている。   Although the polycrystalline diamond according to the present embodiment is a sintered body, the term “polycrystalline” is used in the present embodiment since a sintered body is usually intended to include a binder in many cases.

(ダイヤモンド粒子)
ダイヤモンド粒子は、平均粒径が100nm以下であることが好ましい。このような小さい平均粒径を有するダイヤモンド粒子から構成されるダイヤモンド多結晶体は、高負荷加工や微細加工等の強靭で高精度な刃先が求められる用途の工具に、好適に適用することができる。ダイヤモンド粒子の平均粒径が100nmを超えると、刃先の精度が悪化し、更に、刃先の欠損が起こりやすくなり、高負荷で精密な加工用工具に適用できない。
(Diamond particles)
The diamond particles preferably have an average particle size of 100 nm or less. The polycrystalline diamond composed of diamond particles having such a small average particle diameter can be suitably applied to tools for applications requiring a tough and high-precision cutting edge such as high-load machining or micromachining. . When the average particle diameter of the diamond particles exceeds 100 nm, the accuracy of the cutting edge is deteriorated, and the cutting edge is liable to be broken, so that it cannot be applied to a high-load and precise machining tool.

ダイヤモンド多結晶体を、強靭で高精度な刃先が求められる用途の工具に、好適に適用するという観点からは、ダイヤモンド粒子の平均粒径は、50nm以下がより好ましく、20nm以下が更に好ましい。この観点からは、ダイヤモンド粒子の平均粒径は、15nm以下とすることができ、10nm以下とすることもできる。   The average particle size of the diamond particles is more preferably 50 nm or less, and even more preferably 20 nm or less, from the viewpoint of suitably applying the polycrystalline diamond to tools for applications requiring a tough and high-precision cutting edge. From this viewpoint, the average particle size of the diamond particles can be set to 15 nm or less, and can be set to 10 nm or less.

ダイヤモンド特有の機械的強度を得られるという観点からは、ダイヤモンド粒子の平均粒径の下限値は、1nm以上が好ましい。この観点からは、ダイヤモンド粒子の平均粒径は、10nm以上とすることができ、15nm以上とすることもできる。   From the viewpoint that mechanical strength unique to diamond can be obtained, the lower limit of the average diameter of the diamond particles is preferably 1 nm or more. From this viewpoint, the average particle diameter of the diamond particles can be 10 nm or more, and can be 15 nm or more.

ダイヤモンド粒子の平均粒径は、1nm以上100nm以下が好ましく、10nm以上60nm以下がより好ましく、15nm以上50nm以下が更に好ましい。   The average diameter of the diamond particles is preferably from 1 nm to 100 nm, more preferably from 10 nm to 60 nm, even more preferably from 15 nm to 50 nm.

ダイヤモンド粒子の平均粒径は、ダイヤモンド多結晶体を研磨加工により平坦な鏡面に仕上げた表面を、走査型電子顕微鏡(SEM)を用いて画像観察をすることにより求めることができる。具体的な方法は下記の通りである。   The average particle size of the diamond particles can be determined by observing the surface of a polycrystalline diamond which has been finished into a flat mirror surface by polishing, using a scanning electron microscope (SEM). The specific method is as follows.

ダイヤモンドホイール等の研磨加工により平坦な鏡面に仕上げたダイヤモンド多結晶体の表面を、高分解能走査型電子顕微鏡を用いて、1000〜100000倍の倍率で観察し、SEM画像を得る。高分解能走査型電子顕微鏡としては、例えば、電界放出型走査電子顕微鏡(FE−SEM)を用いるのが好ましい。   The surface of the polycrystalline diamond, which has been finished to a flat mirror surface by polishing with a diamond wheel or the like, is observed at a magnification of 1000 to 100000 using a high-resolution scanning electron microscope to obtain an SEM image. As the high-resolution scanning electron microscope, for example, a field emission scanning electron microscope (FE-SEM) is preferably used.

次に、そのSEM画像に円を描き、その円の中心から8本の直線を放射状(各直線間の交差角度がほぼ等しくなるよう)に円の外周まで引く。この場合、上記の観察倍率及び円の直径は、上記の直線1本あたりに載るダイヤモンド粒子(結晶粒子)の個数が10〜50個程度になるように設定することが好ましい。   Next, a circle is drawn on the SEM image, and eight straight lines are drawn from the center of the circle radially (so that the intersection angles between the straight lines are substantially equal) to the outer periphery of the circle. In this case, the observation magnification and the diameter of the circle are preferably set so that the number of diamond particles (crystal particles) on one straight line is about 10 to 50.

次に、上記の各直線毎にダイヤモンド粒子の結晶粒界を横切る数を数え、直線の長さをその横切る数で割ることにより平均切片長さを求め、その平均切片長さに1.128をかけて得られる数値を平均粒径とする。3枚のSEM画像を用いて、各画像毎に上記のような方法で平均粒径を求め、3枚の画像の平均粒径の平均値を「ダイヤモンド粒子の平均粒径」とする。   Next, the number intersecting the crystal grain boundaries of the diamond particles is counted for each straight line, and the average intercept length is obtained by dividing the length of the straight line by the number intersecting the line. The value obtained by multiplication is defined as the average particle size. Using the three SEM images, the average particle size is determined for each image by the above-described method, and the average value of the average particle sizes of the three images is defined as “the average particle size of diamond particles”.

SEM画像におけるダイヤモンド粒子の長径Aと短径Bとのアスペクト比(A/B)は、微細亀裂の発生抑制の観点から、1≦A/B<4であることが好ましい。ここで、長径とは、ダイヤモンド粒子の外郭線上において最も離れた2点間の距離を意味する。短径とは、長径を規定する直線に直交し、かつ、ダイヤモンド粒子の外郭との2点の交点間の距離が最長である直線の距離を意味する。   The aspect ratio (A / B) between the major axis A and the minor axis B of the diamond particles in the SEM image is preferably 1 ≦ A / B <4 from the viewpoint of suppressing the occurrence of microcracks. Here, the major axis means a distance between two points which are farthest from each other on the outline of the diamond particle. The minor axis refers to the distance of a straight line that is orthogonal to the straight line that defines the major axis and that has the longest distance between the intersections of the diamond particles and the outline of the diamond particle.

(ヌープ硬度)
本実施形態のダイヤモンド多結晶体は、JIS Z 2251:2009に規定される条件で行われるヌープ硬さ試験において、ダイヤモンド多結晶体の表面に試験荷重4.9Nのヌープ圧子を押し込んだ状態においてダイヤモンド多結晶体の表面に形成される第1ヌープ圧痕の長い方の対角線の長さをaとし、試験荷重を解除した後にダイヤモンド多結晶体の表面に残る第2ヌープ圧痕の長い方の対角線の長さをa’とした場合に、aに対するa’の比(a’/a)の値が0.99以下である。
(Knoop hardness)
In the Knoop hardness test performed under the conditions specified in JIS Z 2251: 2009, the diamond polycrystal of the present embodiment has a diamond in a state where a Knoop indenter with a test load of 4.9 N is pressed into the surface of the diamond polycrystal. Let a be the length of the longer diagonal of the first Knoop indentation formed on the surface of the polycrystal, and assume the length of the longer diagonal of the second Knoop indentation remaining on the surface of the diamond polycrystal after releasing the test load. When the value is a ', the value of the ratio of a' to a (a '/ a) is 0.99 or less.

JIS Z 2251:2009に規定されるヌープ硬さ試験は、工業材料の硬さの測定方法の一つとして公知である。ヌープ硬さ試験は、所定の温度及び所定の荷重(試験荷重)でヌープ圧子を被測定材料へ押圧することにより、被測定材料の硬度を求めるものである。本実施形態において、所定の温度は23℃±5℃であり、所定の荷重は4.9Nである。   The Knoop hardness test specified in JIS Z 2251: 2009 is known as one of the methods for measuring the hardness of industrial materials. The Knoop hardness test is to determine the hardness of the material to be measured by pressing a Knoop indenter against the material to be measured at a predetermined temperature and a predetermined load (test load). In the present embodiment, the predetermined temperature is 23 ° C. ± 5 ° C., and the predetermined load is 4.9N.

ヌープ圧子とは、底面が菱型の四角錐の形状を有するダイヤモンド製の圧子をいう。ヌープ硬さ試験では、ヌープ圧子の底面とは反対側の頂点側を被測定材に押し込む。本明細書において、ヌープ圧痕とは、所定の温度及び所定の試験荷重でヌープ圧子を被測定材料の表面に押し込んだ状態において被測定材料(本実施形態ではダイヤモンド多結晶体)の表面に形成される菱形の痕跡である第1ヌープ圧痕(図1の「第1ヌープ圧痕」参照。)、及び、試験荷重を解除した直後に、被測定材料の表面に残った永久変形した痕跡である第2ヌープ圧痕(図1の「第2ヌープ圧痕」参照。)を含む意味として定義される。   The Knoop indenter is a diamond indenter having a diamond-shaped quadrangular pyramid on the bottom surface. In the Knoop hardness test, the vertex side opposite to the bottom surface of the Knoop indenter is pressed into the material to be measured. In the present specification, a Knoop indentation is formed on the surface of a material to be measured (a polycrystalline diamond in the present embodiment) in a state where a Knoop indenter is pushed into the surface of the material to be measured at a predetermined temperature and a predetermined test load. The first Knoop indentation (see “1st Knoop indentation” in FIG. 1), which is a diamond-shaped trace, and the second permanently imprinted trace remaining on the surface of the material to be measured immediately after the test load is released. It is defined as a meaning including a Knoop indentation (refer to “2nd Knoop indentation” in FIG. 1).

通常の金属材料のような完全塑性体では、ヌープ圧子を押し込んだ状態における第1ヌープ圧痕と、ヌープ圧子を除去した後に残る第2圧痕とは等しい形状になる。ヌープ圧痕は試験荷重の解除前後で同一形状を呈し、例えば、図1中の「第1ヌープ圧痕」として破線で示した菱形となる。従って、完全塑性体では、上記aと上記a’は同一(a=a’)である。更に、第1ヌープ圧痕の短い方の対角線の長さb(図1参照)と、第2ヌープ圧痕の短い方の対角線の長さb’(図1参照)も同一(b=b’)である。   In a completely plastic body such as an ordinary metal material, the first Knoop indentation in a state where the Knoop indenter is pressed has the same shape as the second indentation remaining after the Knoop indenter is removed. The Knoop indentation has the same shape before and after the test load is released, and is, for example, a rhombus indicated by a broken line as “first Knoop indentation” in FIG. Therefore, in the completely plastic body, the a and the a 'are the same (a = a'). Furthermore, the shorter diagonal length b of the first Knoop indentation (see FIG. 1) and the shorter diagonal length b ′ of the second Knoop indentation (see FIG. 1) are also the same (b = b ′). is there.

一方、被測定材料が弾性体の場合、圧子を除去して試験荷重を解除すると、ヌープ圧痕に図1の弾性回復を示す矢印の方向の弾性回復が生じ、ヌープ圧痕が元に戻ろうとし、永久変形した痕跡に到達する(弾性回復)。この場合、上記aと上記a’とは、a>a’の関係を示し、上記bと上記b’とは、b>b’の関係を示す。   On the other hand, when the material to be measured is an elastic body, when the test load is released by removing the indenter, elastic recovery in the direction of the arrow indicating the elastic recovery in FIG. 1 occurs in the Knoop indentation, and the Knoop indentation attempts to return to the original state, Reach the trace of permanent deformation (elastic recovery). In this case, a and a 'indicate a relationship of a> a', and b and b 'indicate a relationship of b> b'.

図1の弾性回復を示す矢印の方向の戻りが大きくなれば、上記aに対する上記a’の比(a’/a)の値、及び、上記bに対する上記b’の比(b’/b)の値は小さくなる。すなわち、比(a’/a)の値、及び、比(b’/b)の値が小さいほど弾性回復(弾性的性質)が大きいことを示している。   If the return in the direction of the arrow indicating the elastic recovery in FIG. 1 increases, the value of the ratio of the a ′ to the a (a ′ / a) and the ratio of the b ′ to the b (b ′ / b) Becomes smaller. In other words, the smaller the value of the ratio (a '/ a) and the value of the ratio (b' / b), the greater the elastic recovery (elastic property).

弾性回復は、ヌープ圧痕の短い方の対角線に沿う方向(bからb’への弾性回復)の方が、ヌープ圧痕の長い方の対角線に沿う方向(aからa’への弾性回復)よりも生じやすい。   The elastic recovery is such that the direction along the shorter diagonal line of the Knoop indentation (elastic recovery from b to b ') is greater than the direction along the longer diagonal line of the Knoop indentation (elastic recovery from a to a'). Easy to occur.

従来の一般的なダイヤモンド多結晶体は、弾性が非常に小さいため、上記aと上記a’は同一の長さ(a=a’)であり、上記bと上記b’も同一の長さ(b=b’)である。   Since a conventional general polycrystalline diamond has very low elasticity, a and a ′ have the same length (a = a ′), and b and b ′ have the same length ( b = b ′).

特許文献1のダイヤモンド多結晶体は弾性を有するため、上記bと上記b’とは、b>b’の関係を示す。しかし、弾性が小さいため、上記aと上記a’の値はほぼ同一(a≒a’)である。   Since the polycrystalline diamond of Patent Document 1 has elasticity, the above b and the above b 'show a relationship of b> b'. However, because of low elasticity, the values of a and a 'are almost the same (a'a').

一方、本実施形態のダイヤモンド多結晶体は、上記aに対する上記a’の比(a’/a)の値が0.99以下であり、特許文献1のダイヤモンド多結晶体よりも弾性が大きい。本実施形態のダイヤモンド多結晶体は、大きな弾性を有するため、引張応力に対する耐亀裂発生性が向上している。このため、ダイヤモンド多結晶体を工具の材料として用いた場合に、刃先にかかる応力集中が緩和され、刃先の欠損による損傷が抑えられる。   On the other hand, the polycrystalline diamond of the present embodiment has a ratio of the a 'to the a (a' / a) of 0.99 or less, and is higher in elasticity than the polycrystalline diamond of Patent Document 1. Since the polycrystalline diamond of the present embodiment has large elasticity, crack resistance to tensile stress is improved. Therefore, when the polycrystalline diamond is used as a material for the tool, the concentration of stress on the cutting edge is reduced, and damage due to chipping of the cutting edge is suppressed.

更に、本実施形態のダイヤモンド多結晶体は、超精密であることが要求される切削に用いられた場合に、刃先が弾性的に変形することから、鏡面加工などで問題となる切削痕に起因する回折現象(いわゆる虹目模様)が発生しにくくなる。   Furthermore, when the polycrystalline diamond of the present embodiment is used for cutting that is required to be ultra-precise, since the cutting edge is elastically deformed, it is caused by a cutting mark that becomes a problem in mirror polishing or the like. Diffraction phenomenon (so-called iridescent pattern) hardly occurs.

本実施形態に係るダイヤモンド多結晶体は、上記aに対する上記a’の比(a’/a)の値は、0.99以下である。前記比(a’/a)の値が0.99を超えると、脆性が高くなり、局所的な応力をかけた場合に、クラックが生じやすくなる。   In the polycrystalline diamond according to this embodiment, the value of the ratio of a 'to a' (a '/ a) is 0.99 or less. When the value of the ratio (a '/ a) exceeds 0.99, the brittleness increases, and cracks are likely to occur when a local stress is applied.

前記比(a’/a)の値は0.98以下が好ましく、0.9以下がより好ましい。前記比(a’/a)の値は、小さいほど弾性変形性が大きくなる。弾性変形性が大きくなり過ぎると、工具として使用した場合に、加工中の刃先の変形により加工性が悪化する場合がある。かかる観点から、前記比(a’/a)の値は、0.7以上とすることが好ましい。前記比(a’/a)の値は0.7以上0.99以下が好ましく、0.7以上0.98以下がより好ましく、0.7以上0.9以下が更に好ましい。   The value of the ratio (a '/ a) is preferably 0.98 or less, more preferably 0.9 or less. The smaller the value of the ratio (a '/ a), the greater the elastic deformability. If the elastic deformability becomes too large, when used as a tool, the workability may be deteriorated due to deformation of the cutting edge during processing. From such a viewpoint, the value of the ratio (a '/ a) is preferably set to 0.7 or more. The value of the ratio (a '/ a) is preferably 0.7 or more and 0.99 or less, more preferably 0.7 or more and 0.98 or less, and even more preferably 0.7 or more and 0.9 or less.

本明細書において、第1ヌープ圧痕における長い方の対角線の長さa及び短い方の対角線の長さb、並びに、第2ヌープ圧痕における長い方の対角線の長さa’及び短い方の対角線の長さb’は、下記の方法により計測される。   In this specification, the length a of the longer diagonal and the length b of the shorter diagonal in the first Knoop indentation, and the length a ′ and the shorter diagonal of the longer diagonal in the second Knoop indentation The length b 'is measured by the following method.

JIS Z 2251:2009に規定される条件で行われるヌープ硬さ試験において、ダイヤモンド多結晶体の表面に試験荷重4.9Nのヌープ圧子を押し込む。その後、試験荷重を解除した後に、ダイヤモンド多結晶体の表面に形成された永久変形した第2ヌープ圧痕を、通常の微小硬度計に備え付けられている光学顕微鏡で観察、あるいはレーザー顕微鏡で観察することにより、第2ヌープ圧痕における長い方の対角線の長さa’及び短い方の対角線の長さb’を計測する。   In the Knoop hardness test performed under the conditions specified in JIS Z 2251: 2009, a Knoop indenter with a test load of 4.9 N is pressed into the surface of the polycrystalline diamond. Then, after releasing the test load, observe the permanent deformed second Knoop indentation formed on the surface of the polycrystalline diamond with an optical microscope equipped with a normal microhardness tester or with a laser microscope. Thus, the length a ′ of the longer diagonal and the length b ′ of the shorter diagonal in the second Knoop indentation are measured.

更に、試験荷重を解除した後のダイヤモンド多結晶体の表面を、高分解能走査型電子顕微鏡(例えば、電界放出型走査電子顕微鏡(FE−SEM))や高感度微分干渉顕微鏡(偏光干渉により干渉色のコントラストを付けて可視化する顕微鏡)で精密に観察する。   In addition, the surface of the polycrystalline diamond after the test load is released may be scanned with a high-resolution scanning electron microscope (for example, a field emission scanning electron microscope (FE-SEM)) or a high-sensitivity differential interference microscope (an interference color due to polarized light interference). Observation with a microscope that visualizes with a contrast of

ダイヤモンド多結晶体の表面を高分解能走査型電子顕微鏡や高感度微分干渉顕微鏡で観察すると、図1に示されるように、永久変形した第2ヌープ圧痕の頂点から第2ヌープ圧痕の外側に向けて、通常の光学顕微鏡では観察されない極わずかな筋状圧痕が観察される。   When the surface of the diamond polycrystal is observed with a high-resolution scanning electron microscope or a high-sensitivity differential interference microscope, as shown in FIG. 1, from the top of the permanently deformed second Knoop indentation to the outside of the second Knoop indentation. However, very slight streaky indentations that cannot be observed with a normal optical microscope are observed.

第2ヌープ圧痕における長い方の対角線の長さa’と、長い方の対角線の端部と連続する筋状圧痕の長さa’1及びa’2を計測する。長い方の対角線の長さa’と、筋状圧痕の長さa’1及びa’2との合計(a’+a’1+a’2)を第1ヌープ圧痕における長い方の対角線の長さaとする。   The length a 'of the longer diagonal line in the second Knoop indentation and the lengths a'1 and a'2 of the streak indentation connected to the end of the longer diagonal line are measured. The sum (a '+ a'1 + a'2) of the length a' of the longer diagonal and the lengths a'1 and a'2 of the streak indentation is calculated as the length a of the longer diagonal in the first Knoop indentation. And

第2ヌープ圧痕における短い方の対角線の長さb’と、短い方の対角線の端部と連続する筋状圧痕の長さb’1及びb’2を計測する。短い方の対角線の長さb’と、筋状圧痕の長さb’1及びb’2との合計(b’+b’1+b’2)を第1ヌープ圧痕における短い方の対角線の長さbとする。   The length b 'of the shorter diagonal line in the second Knoop indentation and the lengths b'1 and b'2 of the streak indentation connected to the end of the shorter diagonal line are measured. The sum (b '+ b'1 + b'2) of the length b' of the shorter diagonal and the lengths b'1 and b'2 of the streak indentation is calculated as the length b of the shorter diagonal in the first Knoop indentation. And

本実施形態のダイヤモンド多結晶体は、上記aの値から算出されたヌープ硬度が100GPa以上140GPa未満であることが好ましい。このダイヤモンド多結晶体は硬度が高く、優れた耐摩耗性を有することができる。ヌープ硬度が100GPa未満であると、例えば、ダイヤモンド多結晶体を用いて切削工具を作製した場合に、刃先摩耗が大きくなり、使用できない場合がある。一方、ヌープ硬度が140GPa以上であると、例えば、ダイヤモンド多結晶体を用いて切削工具を作製した場合に、刃先が欠損しやすくなる場合がある。ヌープ硬度は、耐摩耗性向上の観点から、120GPa以上140GPa未満がより好ましく、130GPa以上140GPa未満が更に好ましい。   In the polycrystalline diamond of the present embodiment, the Knoop hardness calculated from the value of a is preferably 100 GPa or more and less than 140 GPa. This polycrystalline diamond has high hardness and can have excellent wear resistance. If the Knoop hardness is less than 100 GPa, for example, when a cutting tool is manufactured using a polycrystalline diamond, the wear of the cutting edge becomes large, and it may not be used. On the other hand, when the Knoop hardness is 140 GPa or more, for example, when a cutting tool is manufactured using a polycrystalline diamond, the cutting edge may be easily broken. The Knoop hardness is more preferably 120 GPa or more and less than 140 GPa, and further preferably 130 GPa or more and less than 140 GPa, from the viewpoint of improving wear resistance.

本明細書において、ヌープ硬度とは、第1ヌープ圧痕に基づき、下記の方法により得られる値である。まず、第1ヌープ圧痕の長い方の対角線の長さa(μm)を計測する。第1ヌープ圧痕の長い方の対角線の長さaの計測方法については、上記に説明した通りであるため、その説明は繰り返さない。長い方の対角線の長さaの値を用いて、下記式(1)よりヌープ硬度(HK)を算出する。
HK=14229×F/a 式(1)
なお、第2ヌープ圧痕におけるa’に基づきヌープ硬度を算出した場合、このヌープ硬度は、弾性回復後のみかけの硬度となり、第1ヌープ圧痕に基づく本来のヌープ硬度の値よりも大きくなる。このみかけの硬度は、JIS Z 2251:2009で規定される、永久変形の圧痕が形成されることを前提とした工業材料の正確な硬さを示すものではない。
In this specification, the Knoop hardness is a value obtained by the following method based on the first Knoop indentation. First, the length a (μm) of the longer diagonal line of the first Knoop indentation is measured. The method of measuring the length a of the longer diagonal line of the first Knoop indentation is as described above, and thus the description will not be repeated. Using the value of the length a of the longer diagonal line, Knoop hardness (HK) is calculated from the following equation (1).
HK = 14229 × F / a 2 Equation (1)
When the Knoop hardness is calculated based on a ′ in the second Knoop indentation, the Knoop hardness becomes apparent hardness after the elastic recovery, and is larger than the original value of the Knoop hardness based on the first Knoop indentation. This apparent hardness does not indicate the exact hardness of an industrial material that is defined in JIS Z 2251: 2009 on the assumption that an indentation of permanent deformation is formed.

[工具]
本実施形態のダイヤモンド多結晶体は、硬度が高く、かつ大きな弾性を有し、耐欠損性に優れているため、切削工具、耐摩工具、研削工具、摩擦撹拌接合用ツール等に好適に用いることができる。すなわち、本実施形態の工具は、上記のダイヤモンド多結晶体を備えたものである。
[tool]
Since the polycrystalline diamond of the present embodiment has high hardness, high elasticity, and excellent fracture resistance, it is preferably used for cutting tools, wear-resistant tools, grinding tools, friction stir welding tools, and the like. Can be. That is, the tool of the present embodiment is provided with the above-mentioned diamond polycrystal.

上記の工具は、その全体がダイヤモンド多結晶体で構成されていても良いし、その一部(例えば切削工具の場合、刃先部分)のみがダイヤモンド多結晶体で構成されていても良い。また、各工具は、その表面にコーティング膜が形成されていても良い。   The tool described above may be entirely made of a polycrystalline diamond, or only a part thereof (for example, a cutting edge portion in the case of a cutting tool) may be made of a polycrystalline diamond. Further, each tool may have a coating film formed on its surface.

切削工具としては、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、切削バイト等を挙げることができる。   Cutting tools include drills, end mills, replaceable cutting tips for drills, replaceable cutting tips for end mills, replaceable cutting tips for milling, replaceable cutting tips for turning, metal saws, gear cutting tools, reamers , Taps, cutting tools, and the like.

耐摩工具としては、ダイス、スクライバー、スクライビングホイール、ドレッサー等を挙げることができる。   Examples of the wear-resistant tool include a die, a scriber, a scribing wheel, and a dresser.

研削工具としては、研削砥石等を挙げることができる。
[ダイヤモンド多結晶体の製造方法]
上記のダイヤモンド多結晶体は、例えば、下記の方法で製造することができる。
Examples of the grinding tool include a grinding wheel.
[Method for producing polycrystalline diamond]
The above polycrystalline diamond can be produced, for example, by the following method.

まず、グラファイト化度が0.4以下の非ダイヤモンド状炭素材料を準備する。非ダイヤモンド状炭素材料は、グラファイト化度が0.4以下でありダイヤモンドでない炭素材料であれば特に制限はない。   First, a non-diamond-like carbon material having a degree of graphitization of 0.4 or less is prepared. The non-diamond-like carbon material is not particularly limited as long as it is a non-diamond carbon material having a degree of graphitization of 0.4 or less.

例えば、高純度ガスからの熱分解法により非ダイヤモンド状炭素材料を作製すると、グラファイト化度が0.4以下であり、かつ、水素、酸素、窒素等の不純物濃度がそれぞれ1ppm以下の非ダイヤモンド状炭素材料を得ることができる。   For example, when a non-diamond-like carbon material is produced by a thermal decomposition method from a high-purity gas, the degree of graphitization is 0.4 or less, and the concentration of impurities such as hydrogen, oxygen, and nitrogen is 1 ppm or less, respectively. A carbon material can be obtained.

非ダイヤモンド炭素材料は、高純度ガスからの熱分解法により作製されたものに限定されない。例えば、高純度な不活性ガス雰囲気中で微粉砕したグラファイトや、高純度精製処理されたアモルファスカーボン等のグラファイト化度の低いグラファイトや、非結晶質炭素材料であってもよいし、これらの混合物であってもよい。   The non-diamond carbon material is not limited to one produced by a pyrolysis method from a high-purity gas. For example, graphite finely pulverized in a high-purity inert gas atmosphere, graphite having a low degree of graphitization such as amorphous carbon subjected to high-purity purification, or an amorphous carbon material may be used, or a mixture thereof. It may be.

非ダイヤモンド状炭素材料のグラファイト化度Pは、以下のようにして求められる。非ダイヤモンド状炭素材料のX線回折により、非ダイヤモンド状炭素材料のグラファイトの(002)面の面間隔d002を測定して、以下の式(2)により、
002=3.440−0.086×(1−p2) 式(2)
非ダイヤモンド状炭素材料の乱層構造部の比率pが算出される。こうして得られた乱層構造部の比率pから、以下の式(3)により、
P=1−p 式(3)
グラファイト化度Pが算出される。
The degree of graphitization P of the non-diamond-like carbon material is obtained as follows. By X-ray diffraction of the non-diamond-like carbon material, the interplanar spacing d 002 of the (002) plane of graphite of the non-diamond-like carbon material was measured.
d 002 = 3.440−0.086 × (1−p 2 ) Equation (2)
The ratio p of the turbostratic structure portion of the non-diamond-like carbon material is calculated. From the thus obtained ratio p of the turbostratic structure portion, the following expression (3) is used.
P = 1−p Equation (3)
The degree of graphitization P is calculated.

非ダイヤモンド状炭素材料は、結晶粒の成長を抑制する観点から、不純物である鉄族元素金属を含まないものが好ましい。   From the viewpoint of suppressing the growth of crystal grains, the non-diamond-like carbon material preferably does not contain an iron group element metal which is an impurity.

非ダイヤモンド状炭素材料は、結晶粒の成長を抑制し、ダイヤモンドへの直接変換を促進する観点から、不純物である水素、酸素、窒素等の濃度が低いものが好ましい。非ダイヤモンド状炭素材料中の水素、酸素及び窒素の濃度は、それぞれ1ppm以下が好ましく、0.1ppm以下が更に好ましい。また、非ダイヤモンド状炭素材料中の全不純物濃度は3ppm以下が好ましく、0.3ppm以下が更に好ましい。本明細書中、不純物の濃度とは、原子数を基準とした濃度を意味する。   The non-diamond-like carbon material preferably has a low concentration of impurities such as hydrogen, oxygen, and nitrogen from the viewpoint of suppressing the growth of crystal grains and promoting direct conversion to diamond. The concentrations of hydrogen, oxygen and nitrogen in the non-diamond carbon material are each preferably 1 ppm or less, more preferably 0.1 ppm or less. Further, the total impurity concentration in the non-diamond-like carbon material is preferably 3 ppm or less, more preferably 0.3 ppm or less. In this specification, the concentration of an impurity means a concentration based on the number of atoms.

非ダイヤモンド状炭素原料中の水素、酸素及び窒素等の不純物の濃度は、二次イオン質量分析法(SIMS)によって測定することができる。   The concentration of impurities such as hydrogen, oxygen and nitrogen in the non-diamond-like carbon raw material can be measured by secondary ion mass spectrometry (SIMS).

次に、上記の非ダイヤモンド状炭素材料を、圧力をP(GPa)、温度をT(℃)とした場合、T≦1000℃かつP≦10GPaを満たす条件下から、PおよびTを同時に上昇させて、P≧0.0000903T−0.394T+443、かつ、P≦0.000148T−0.693T+823を満たす圧力及び温度まで昇圧昇温し、該昇圧昇温により到達した圧力及び温度で1分以上保持することにより、ダイヤモンド多結晶体を得る。 Next, when the pressure of the non-diamond-like carbon material is P (GPa) and the temperature is T (° C.), P and T are simultaneously increased under the conditions of T ≦ 1000 ° C. and P ≦ 10 GPa. Then, the pressure is raised to a pressure and temperature satisfying P ≧ 0.0000903T 2 −0.394T + 443 and P ≦ 0.000148T 2 −0.693T + 823, and the pressure and temperature reached by the pressure raising and heating is 1 minute or more. By holding, a polycrystalline diamond is obtained.

上記の条件を満たす温度より高い温度であると、圧力に関わらずダイヤモンド粒子の粒径が粗大化して、高強度なダイヤモンド多結晶体を得ることができないおそれがある。一方上記の条件を満たす温度より低い温度であると、焼結性が低下し、圧力に関わらずダイヤモンド粒子同士の結合力が低下するおそれがある。上記の圧力及び温度における焼結時間は5分〜20分が好ましく、10分〜20分がより好ましい。   If the temperature is higher than the temperature that satisfies the above conditions, the diameter of the diamond particles may become large regardless of the pressure, and a high-strength polycrystalline diamond may not be obtained. On the other hand, when the temperature is lower than the temperature satisfying the above conditions, the sinterability is reduced, and the bonding force between diamond particles may be reduced regardless of the pressure. The sintering time at the above pressure and temperature is preferably 5 minutes to 20 minutes, more preferably 10 minutes to 20 minutes.

本実施形態のダイヤモンド多結晶体の製造方法において用いられる高圧高温発生装置は、ダイヤモンド相が熱力学的に安定な相である圧力及び温度の条件が得られる装置であれば特に制限はないが、生産性及び作業性を高める観点から、ベルト型又はマルチアンビル型が好ましい。また、原料である非ダイヤモンド状炭素材料を収納する容器は、耐高圧高温性の材料であれば特に制限はなく、たとえば、TaやNb等が好適に用いられる。   The high-pressure high-temperature generating apparatus used in the method for producing a polycrystalline diamond of the present embodiment is not particularly limited as long as the apparatus can obtain pressure and temperature conditions in which the diamond phase is a thermodynamically stable phase. From the viewpoint of enhancing productivity and workability, a belt type or a multi-anvil type is preferable. The container for accommodating the non-diamond-like carbon material as the raw material is not particularly limited as long as it is a high-pressure and high-temperature resistant material. For example, Ta or Nb is preferably used.

ダイヤモンド多結晶体中への不純物の混入を防止するためには、例えば、原料である非ダイヤモンド状炭素材料をTaやNb等の高融点金属製のカプセルに入れて真空中で加熱して密封し、非ダイヤモンド状炭素材料から吸着ガスや空気を除去して、上記の圧力及び温度(圧力をP(GPa)、温度をT(℃)とした場合、T≦1000℃かつP≦10GPaを満たす条件下から、PおよびTが同時に昇圧昇温されて到達する、P≧0.0000903T−0.394T+443、かつ、P≦0.000148T−0.693T+823を満たす圧力及び温度)である超高圧高温下でダイヤモンドに直接変換することが好ましい。 In order to prevent impurities from being mixed into the polycrystalline diamond, for example, a non-diamond-like carbon material as a raw material is placed in a capsule made of a high melting point metal such as Ta or Nb, and heated and sealed in a vacuum. The conditions for satisfying T ≦ 1000 ° C. and P ≦ 10 GPa when the adsorbed gas and air are removed from the non-diamond-like carbon material and the above pressure and temperature (pressure is P (GPa) and temperature is T (° C.)) From the bottom, P and T are simultaneously boosted and heated to reach an ultra-high pressure and high temperature (P ≧ 0.0000903T 2 −0.394T + 443 and P ≦ 0.000148T 2 −0.693T + 823). It is preferred to convert directly to diamond below.

本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。   The present embodiment will be described more specifically by way of examples. However, the present embodiment is not limited by these examples.

[製造例1〜製造例11]
(ダイヤモンド多結晶体の作製)
まず、ダイヤモンド多結晶体の原料を準備する。製造例1〜製造例4及び製造例8〜製造例11では、表1に示されるグラファイト化度を有する非ダイヤモンド状炭素材料を準備する。製造例5及び製造例6では、グラファイト粉末を焼成して作製した通常の等方性グラファイトを準備する。製造例7では、グラファイト化度が低く、不純物(水素及び酸素)を約0.1質量%含むグラファイトを、遊星ボールミルで平均粒径を8nmに粉砕した粉末を準備する。
[Production Example 1 to Production Example 11]
(Production of polycrystalline diamond)
First, a raw material of a polycrystalline diamond is prepared. In Production Examples 1 to 4 and Production Examples 8 to 11, non-diamond-like carbon materials having the degree of graphitization shown in Table 1 are prepared. In Production Examples 5 and 6, ordinary isotropic graphite produced by firing graphite powder is prepared. In Production Example 7, a powder prepared by pulverizing graphite having a low degree of graphitization and containing about 0.1% by mass of impurities (hydrogen and oxygen) with a planetary ball mill to an average particle size of 8 nm is prepared.

次に、製造例1〜製造例10では、上記で準備した原料をTa製のカプセルに入れて真空中加熱して密閉し、高圧高温発生装置を用いて、圧力8GPaまで加圧した後、温度300℃まで加熱し、続いて、圧力16GPa及び温度2170℃まで、圧力及び温度を同時に上昇させ、この圧力及び温度条件下で15分間高圧高温処理してダイヤモンド多結晶体を得る。なお、原料には、焼結助剤、及び、結合材のいずれも添加しない。   Next, in Production Examples 1 to 10, the raw material prepared above was put in a capsule made of Ta, heated and sealed in vacuum, and after being pressurized to 8 GPa using a high-pressure high-temperature generator, the temperature was increased. Heat to 300 ° C., then simultaneously increase the pressure and temperature to a pressure of 16 GPa and a temperature of 2170 ° C., and perform high-pressure and high-temperature treatment under these pressure and temperature conditions for 15 minutes to obtain a polycrystalline diamond. Note that neither the sintering aid nor the binder is added to the raw material.

製造例11では、上記で準備した原料をTa製のカプセルに入れて真空中加熱して密閉し、高圧高温発生装置を用いて、圧力16GPaまで加圧した後に、温度2170℃まで加熱し、この圧力及び温度条件下で15分間高圧高温処理してダイヤモンド多結晶体を得る。なお、原料には、焼結助剤、及び、結合材のいずれも添加しない。   In Production Example 11, the raw material prepared above was placed in a capsule made of Ta, heated and sealed in vacuum, pressurized to 16 GPa using a high-pressure high-temperature generator, and then heated to 2170 ° C. A high pressure and high temperature treatment is performed for 15 minutes under pressure and temperature conditions to obtain a polycrystalline diamond. Note that neither the sintering aid nor the binder is added to the raw material.

得られたダイヤモンド多結晶体について、ダイヤモンド粒子の平均粒径、X線回折スペクトル、不純物濃度、第1ヌープ圧痕の長い方の対角線の長さa、第2ヌープ圧痕の長い方の対角線の長さa’、ヌープ硬度、及び、亀裂発生荷重を測定する。   About the obtained polycrystalline diamond, the average particle diameter of diamond particles, X-ray diffraction spectrum, impurity concentration, length a of the longer diagonal of the first Knoop indentation, length of the longer diagonal of the second Knoop indentation a ′, Knoop hardness, and crack initiation load are measured.

(ダイヤモンド粒子の平均粒径)
各ダイヤモンド多結晶体に含まれるダイヤモンド粒子の平均粒径を、走査型電子顕微鏡(SEM)を用いた切断法により求める。具体的な方法は下記の通りである。
(Average diameter of diamond particles)
The average particle size of the diamond particles contained in each diamond polycrystal is determined by a cutting method using a scanning electron microscope (SEM). The specific method is as follows.

まず電界放出型走査電子顕微鏡(FE−SEM)を用いて研磨加工したダイヤモンド多結晶体を観察し、SEM画像を得る。   First, a polished diamond polycrystal is observed using a field emission scanning electron microscope (FE-SEM) to obtain an SEM image.

次にそのSEM画像に円を描き、その円の中心から8本の直線を放射状(各直線間の交差角度がほぼ等しくなるよう)に円の外周まで引く。この場合、上記の観察倍率及び円の直径は、上記の直線1本あたりに載るダイヤモンド粒子の個数が10〜50個程度になるように設定する。   Next, a circle is drawn on the SEM image, and eight straight lines are drawn radially from the center of the circle (so that the intersection angles between the straight lines are substantially equal) to the outer periphery of the circle. In this case, the observation magnification and the diameter of the circle are set so that the number of diamond particles placed on one straight line is about 10 to 50.

引続き、上記の各直線毎にダイヤモンド粒子の結晶粒界を横切る数を数え、直線の長さをその横切る数で除することにより平均切片長さを求め、その平均切片長さに1.128をかけて得られる数値を平均粒径とする。   Subsequently, the number intersecting the grain boundary of the diamond particles is counted for each straight line, and the average intercept length is obtained by dividing the length of the straight line by the number intersecting the line. The value obtained by multiplication is defined as the average particle size.

なお、上記のSEM画像の倍率は30000倍とする。その理由は、これ以下の倍率では、円内の粒の数が多くなり、粒界が見えにくくなるとともに計測ミスが発生する上、線を引く際に板状組織を含める可能性が高くなるからである。また、これ以上の倍率では、円内の粒の数が少な過ぎて、正確な平均粒径が算出できないからである。   The magnification of the SEM image is 30,000 times. The reason is that, at a magnification lower than this, the number of grains in a circle increases, making it difficult to see grain boundaries, causing measurement errors, and increasing the possibility of including a plate-like structure when drawing a line. It is. In addition, if the magnification is higher than this, the number of grains in the circle is too small, so that an accurate average particle size cannot be calculated.

各製造例毎に、1つの試料に対して別々の箇所を撮影した3枚のSEM画像を使用し、各SEM画像毎に上記の方法で平均粒径を求め、得られた3つの平均粒径の平均値を平均粒径とする。結果を表1の「ダイヤモンド粒子の平均粒径」の欄に示す。   For each of the production examples, three SEM images obtained by photographing different portions of one sample were used, and the average particle size was obtained by the above-described method for each SEM image. Is defined as the average particle size. The results are shown in the column of "Average particle size of diamond particles" in Table 1.

(X線回折スペクトル)
得られたダイヤモンド多結晶体について、X線回折法によりX線回折スペクトルを得る。X線回折法の具体的な方法は、上記の発明を実施するための形態に記載した通りであるため、その説明は繰り返さない。全ての製造例のダイヤモンド多結晶体のX線回折スペクトルにおいて、ダイヤモンド構造由来のすべての回折ピークの積分強度の合計の10%より大きな積分強度を有する、ダイヤモンド構造以外に由来する回折ピークが存在しないことが確認される。
(X-ray diffraction spectrum)
An X-ray diffraction spectrum is obtained for the obtained polycrystalline diamond by an X-ray diffraction method. Since the specific method of the X-ray diffraction method is as described in the above-described embodiment, the description will not be repeated. In the X-ray diffraction spectra of the polycrystalline diamonds of all the production examples, there are no diffraction peaks derived from sources other than the diamond structure having an integrated intensity greater than 10% of the total integrated intensity of all diffraction peaks derived from the diamond structure. It is confirmed that.

(不純物濃度)
SIMSを用いて、ダイヤモンド多結晶体中の窒素(N)、水素(H)、酸素(O)の各濃度を測定する。
(Impurity concentration)
Using SIMS, each concentration of nitrogen (N), hydrogen (H), and oxygen (O) in the polycrystalline diamond is measured.

製造例1〜製造例6、製造例8〜製造例11のダイヤモンド多結晶体は、いずれも窒素、水素及び酸素の合計量が3ppm以下である。製造例7は、水素及び酸素を、それぞれ1000ppmのオーダーで含む。   Each of the polycrystalline diamonds of Production Examples 1 to 6 and Production Examples 8 to 11 has a total amount of nitrogen, hydrogen and oxygen of 3 ppm or less. Production Example 7 contains hydrogen and oxygen on the order of 1000 ppm each.

(第1ヌープ圧痕の長い方の対角線の長さa、第2ヌープ圧痕の長い方の対角線の長さa’)
JIS Z 2251:2009に規定される条件で行われるヌープ硬さ試験において、ダイヤモンド多結晶体の表面に試験荷重4.9Nのヌープ圧子を押し込む。ヌープ圧子の押し込みは10秒間行う。その後、試験荷重を解除した後に、ダイヤモンド多結晶体の表面に形成された永久変形した第2ヌープ圧痕を、通常の微小硬度計に備え付けられている光学顕微鏡で観察することにより、第2ヌープ圧痕における長い方の対角線の長さa’(以下、「a’」とも記す。)を計測する。
(Long diagonal length a of the first Knoop indentation, long diagonal length a 'of the second Knoop indentation)
In the Knoop hardness test performed under the conditions specified in JIS Z 2251: 2009, a Knoop indenter with a test load of 4.9 N is pressed into the surface of the polycrystalline diamond. The Knoop indenter is pushed for 10 seconds. Then, after the test load is released, the second Knoop indentations formed on the surface of the polycrystalline diamond are observed by an optical microscope equipped with a normal microhardness tester. , The length a ′ of the longer diagonal (hereinafter also referred to as “a ′”) is measured.

更に、試験荷重を解除した後のダイヤモンド多結晶体の表面を電界放出型走査電子顕微鏡(FE−SEM)で観察し、第1ヌープ圧痕の長い方の対角線の長さa(以下、「a」とも記す。)を測定する。   Further, the surface of the polycrystalline diamond after the test load was released was observed with a field emission scanning electron microscope (FE-SEM), and the length a of the longer diagonal line of the first Knoop indentation (hereinafter referred to as “a”) was obtained. The measurement is also made.)

(ヌープ硬度)
第1ヌープ圧痕の長い方の対角線の長さa(μm)の値から、下記式(4)によりヌープ硬度(HK)を算出する。
HK=14229×4.9/a 式(4)
結果を表1の「a」、「a’」「ヌープ硬度」の欄に示す。更に、「a」及び「a’」の値に基づき、「a’/a」の値を算出する。結果を表1の「a’/a」の欄に示す。
(Knoop hardness)
From the value of the length a (μm) of the longer diagonal line of the first Knoop indentation, the Knoop hardness (HK) is calculated by the following equation (4).
HK = 14229 × 4.9 / a 2 Equation (4)
The results are shown in the columns of "a", "a '" and "Knoop hardness" in Table 1. Further, the value of “a ′ / a” is calculated based on the values of “a” and “a ′”. The results are shown in the column “a ′ / a” in Table 1.

(亀裂発生荷重)
ダイヤモンド多結晶体について、亀裂発生荷重を測定するために、以下の条件で破壊強度試験を実施する。
(Crack initiation load)
A fracture strength test is performed on the polycrystalline diamond under the following conditions to measure the crack initiation load.

先端半径R50μmの球状のダイヤモンド圧子を準備し、室温(23℃±5℃)で、1N/秒の負荷速度で各試料に荷重をかけていき、試料に亀裂が発生した瞬間の荷重(亀裂発生荷重)を測定する。亀裂が発生する瞬間はAEセンサーで測定する。この測定を5回行う。各試料の亀裂発生荷重は、5回測定した結果の5つの値の平均値とする。結果を表1の「亀裂発生荷重」の欄に示す。亀裂発生荷重が大きいほど、試料の強度が高く、耐欠損性が優れていることを示す。   A spherical diamond indenter having a tip radius R of 50 μm was prepared, and a load was applied to each sample at room temperature (23 ° C. ± 5 ° C.) at a load speed of 1 N / sec. Load). The moment when the crack occurs is measured with an AE sensor. This measurement is performed five times. The crack initiation load of each sample is an average value of five values measured five times. The results are shown in the column of "Crack initiation load" in Table 1. The larger the crack initiation load, the higher the strength of the sample and the better the fracture resistance.

(鏡面切削加工試験)
各製造例のダイヤモンド多結晶体を備えた工具の耐欠損性を調べるために、ダイヤモンド多結晶体を用いて直径0.5mmのボールエンドミル工具を作製し、超硬合金(WC−12%Co,粒径0.3μm)の端面の鏡面切削加工を行う。具体的な切削条件は下記の通りである。
(Mirror cutting test)
In order to examine the fracture resistance of the tool provided with the polycrystalline diamond of each of the production examples, a ball end mill tool having a diameter of 0.5 mm was prepared using the polycrystalline diamond, and a cemented carbide (WC-12% Co, Mirror cutting of the end face having a particle size of 0.3 μm) is performed. Specific cutting conditions are as follows.

回転数:36,000rpm、切削幅:120mm/min、加工長:5μm、切削幅:1μm、加工時間:3.5hr、加工面積:4×5mm。   Rotation speed: 36,000 rpm, cutting width: 120 mm / min, processing length: 5 μm, cutting width: 1 μm, processing time: 3.5 hr, processing area: 4 × 5 mm.

切削加工後に工具の刃先状態を観察し、刃先チッピングの有無を確認する。ここで、刃先チッピングが「有」とは、幅0.1μm以上、又は、深さ0.01μm以上の凹部が発生した状態を意味する。結果を表1の「鏡面切削加工試験」の「刃先チッピング」欄に示す。   After cutting, observe the state of the cutting edge of the tool to check for the presence of chipping. Here, “presence” of the edge tipping means a state in which a concave portion having a width of 0.1 μm or more or a depth of 0.01 μm or more has occurred. The results are shown in Table 1 in the "mirror surface cutting test" column of "Cutting edge".

切削加工後に工具の刃先状態を観察し、刃先の摩耗量を測定する。ここで、摩耗量が「小」とは、摩耗量が0μm以上5μm以下であり、摩耗量が「中」とは、摩耗量が5μm超20μm以下であり、摩耗量が「大」とは、摩耗量が20μm超であることを意味する。結果を表1の「鏡面切削加工試験」の「摩耗量」欄に示す。   After cutting, the condition of the cutting edge of the tool is observed, and the wear amount of the cutting edge is measured. Here, the wear amount is “small”, the wear amount is 0 μm or more and 5 μm or less, and the wear amount is “medium”, the wear amount is more than 5 μm and 20 μm or less, and the wear amount is “large”. It means that the wear amount is more than 20 μm. The results are shown in Table 1 in the column "Abrasion amount" of "Mirror surface cutting test".

切削加工後に、被削材である超硬合金の加工面の面粗度(Ra)をレーザ顕微鏡により測定する。面粗度(Ra)の値が小さいほど、加工面が良好であることを示す。結果を表1の「鏡面切削加工試験」の「加工面粗さRa」の欄に示す。   After the cutting, the surface roughness (Ra) of the machined surface of the cemented carbide as the work material is measured with a laser microscope. The smaller the value of the surface roughness (Ra), the better the processed surface. The results are shown in Table 1 in the column of “Processed surface roughness Ra” of “Mirror surface cutting test”.

Figure 2020011886
Figure 2020011886

(考察)
製造例1〜製造例4及び製造例8〜製造例10ダイヤモンド多結晶体は、比(a’/a)の値が0.99以下であり、実施例に該当する。製造例5〜製造例7及び製造例11のダイヤモンド多結晶体は、比(a’/a)の値が0.99を超えており、比較例に該当する。
(Discussion)
Production Example 1 to Production Example 4 and Production Example 8 to Production Example 10 Each of the polycrystalline diamonds has a ratio (a ′ / a) of 0.99 or less, which corresponds to an example. The ratios (a ′ / a) of the polycrystalline diamonds of Production Examples 5 to 7 and 11 are more than 0.99, and correspond to Comparative Examples.

製造例1〜製造例4のダイヤモンド多結晶体は、高い硬度を有し、かつ、製造例5〜製造例7及び製造例11に比べて、亀裂発生荷重が大きく、強度が高く、耐欠損性が優れていることが確認される。製造例1〜製造例4の工具は、鏡面切削加工試験において刃先チッピングが生じず、摩耗量も小さく、耐欠損性及び耐摩耗性に優れていることが確認される。更に、製造例1〜製造例4の工具によると、鏡面切削加工試験において、被削材の加工面の面粗度が小さく、加工面が良好であることが確認される。   The polycrystalline diamonds of Production Examples 1 to 4 have high hardness, and have a higher crack generation load, higher strength, and fracture resistance than Production Examples 5 to 7 and Production Example 11. Is confirmed to be excellent. It is confirmed that the tools of Production Examples 1 to 4 do not cause edge chipping in the mirror cutting test, have a small wear amount, and are excellent in chipping resistance and wear resistance. Furthermore, according to the tools of Production Examples 1 to 4, it is confirmed in the mirror cutting test that the surface roughness of the processed surface of the work material is small and the processed surface is good.

製造例5、製造例6及び製造例11のダイヤモンド多結晶体は、高い硬度を有するが、製造例1〜製造例4よりも亀裂発生荷重が小さく、耐欠損性が劣っていることが確認される。更に、製造例5及び製造例6及び製造例11の工具は、鏡面切削加工試験において刃先チッピングが生じ、耐欠損性が劣っていることが確認される。   The polycrystalline diamonds of Production Example 5, Production Example 6, and Production Example 11 have high hardness, but have a smaller crack initiation load than Production Example 1 to Production Example 4, and are inferior in fracture resistance. You. Further, it is confirmed that the tools of Production Example 5, Production Example 6, and Production Example 11 suffered from edge chipping in the mirror cutting test and were inferior in chipping resistance.

製造例7のダイヤモンド多結晶体は、硬度が不十分であり、かつ、亀裂発生荷重も小さく、耐欠損性が劣っていることが確認される。更に、製造例7の工具は、鏡面切削加工試験において刃先チッピングが生じ、耐欠損性が劣っていることが確認される。   It is confirmed that the polycrystalline diamond of Production Example 7 has insufficient hardness, a small crack initiation load, and poor fracture resistance. Furthermore, it is confirmed that the tool of Production Example 7 suffered from chipping of the cutting edge in the mirror-cutting test and was inferior in chipping resistance.

製造例8ダイヤモンド多結晶体は、高い硬度を有し、かつ、製造例5〜製造例7及び製造例11に比べて、亀裂発生荷重が大きく、強度が高く、耐欠損性が優れていることが確認される。製造例8の工具は、鏡面切削加工試験において刃先チッピングが生じず、摩耗量も中程度であり、耐欠損性及び耐摩耗性に優れていることが確認される。更に、製造例8の工具によると、鏡面切削加工試験において、被削材の加工面の面粗度が小さく、加工面が良好であることが確認される。   Production Example 8 The polycrystalline diamond has high hardness, and has a large crack generation load, high strength, and excellent fracture resistance compared to Production Examples 5 to 7 and Production Example 11. Is confirmed. The tool of Production Example 8 did not cause edge chipping in the mirror cutting test, had a moderate wear amount, and was confirmed to be excellent in chipping resistance and wear resistance. Furthermore, according to the tool of Production Example 8, it was confirmed that the surface roughness of the machined surface of the work material was small and the machined surface was good in the mirror cutting test.

製造例9のダイヤモンド多結晶体は、高い硬度を有し、かつ、製造例5〜製造例7及び製造例11に比べて、亀裂発生荷重が大きく、強度が高く、耐欠損性が優れていることが確認される。製造例9の工具は、鏡面切削加工試験において刃先チッピングが生じず、摩耗量も中程度であり、耐欠損性及び耐摩耗性に優れていることが確認される。更に、製造例9の工具によると、鏡面切削加工試験において、被削材の加工面の面粗度が小さく、加工面が良好であることが確認される。   The polycrystalline diamond of Production Example 9 has high hardness, and has a large crack generation load, high strength, and excellent fracture resistance compared to Production Examples 5 to 7 and Production Example 11. It is confirmed that. The tool of Production Example 9 did not cause edge chipping in the mirror cutting test, had a moderate amount of wear, and was confirmed to be excellent in chipping resistance and wear resistance. Furthermore, according to the tool of Production Example 9, it was confirmed that the surface roughness of the machined surface of the work material was small and the machined surface was good in the mirror cutting test.

製造例10のダイヤモンド多結晶体は、高い硬度を有し、かつ、製造例5〜製造例7及び製造例11に比べて、亀裂発生荷重が大きく、強度が高く、耐欠損性が優れていることが確認される。製造例10の工具は、鏡面切削加工試験において刃先チッピングが生じず、摩耗量も中程度であり、耐欠損性及び耐摩耗性に優れていることが確認される。   The polycrystalline diamond of Production Example 10 has high hardness, and has a large crack initiation load, high strength, and excellent fracture resistance compared to Production Examples 5 to 7 and Production Example 11. It is confirmed that. The tool of Production Example 10 did not cause edge chipping in the mirror-cutting test, had a moderate amount of wear, and was confirmed to be excellent in chipping resistance and wear resistance.

以上のように本発明の実施の形態及び実施例について説明を行なったが、上述の各実施の形態及び実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。   As described above, the embodiments and examples of the present invention have been described. However, it is planned from the beginning that the configurations of the above-described embodiments and examples are appropriately combined and variously modified.

今回開示された実施の形態及び実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態及び実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed this time are illustrative in all aspects and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the embodiments and examples described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (5)

JIS Z 2251:2009に規定される条件で行われるヌープ硬さ試験において、ダイヤモンド多結晶体の表面に試験荷重4.9Nのヌープ圧子を押し込んだ状態において前記ダイヤモンド多結晶体の表面に形成される第1ヌープ圧痕の長い方の対角線の長さをaとし、前記試験荷重を解除した後に前記ダイヤモンド多結晶体の表面に残る第2ヌープ圧痕の長い方の対角線の長さをa’とした場合に、前記aに対する前記a’の比(a’/a)の値が0.99以下である、ダイヤモンド多結晶体。   In a Knoop hardness test performed under the conditions specified in JIS Z 2251: 2009, a Knoop indenter with a test load of 4.9 N is pressed into the surface of a polycrystalline diamond and formed on the surface of the polycrystalline diamond. When the length of the longer diagonal of the first Knoop indentation is a and the length of the longer diagonal of the second Knoop indentation remaining on the surface of the diamond polycrystal after releasing the test load is a ' 2. The polycrystalline diamond according to claim 1, wherein the value of the ratio (a '/ a) of a' to a is 0.99 or less. 前記ダイヤモンド多結晶体は、前記aの値から算出されたヌープ硬度が100GPa以上140GPa未満である、請求項1に記載のダイヤモンド多結晶体。   The polycrystalline diamond according to claim 1, wherein the polycrystalline diamond has a Knoop hardness calculated from the value of a of not less than 100 GPa and less than 140 GPa. 前記ダイヤモンド多結晶体は、前記aの値から算出されたヌープ硬度が120GPa以上140GPa未満である、請求項2に記載のダイヤモンド多結晶体。   3. The polycrystalline diamond according to claim 2, wherein the polycrystalline diamond has a Knoop hardness calculated from the value of a of not less than 120 GPa and less than 140 GPa. 4. 前記ダイヤモンド多結晶体は、複数のダイヤモンド粒子から構成され、
前記ダイヤモンド粒子は、平均粒径が100nm以下である、請求項1〜請求項3のいずれか1項に記載のダイヤモンド多結晶体。
The polycrystalline diamond is composed of a plurality of diamond particles,
4. The polycrystalline diamond according to claim 1, wherein the diamond particles have an average particle diameter of 100 nm or less. 5.
請求項1〜請求項4のいずれか1項に記載のダイヤモンド多結晶体を備えた工具。   A tool comprising the polycrystalline diamond according to any one of claims 1 to 4.
JP2018187312A 2018-10-02 2018-10-02 Diamond polycrystal body and industrial tool equipped with the same Pending JP2020011886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018187312A JP2020011886A (en) 2018-10-02 2018-10-02 Diamond polycrystal body and industrial tool equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018187312A JP2020011886A (en) 2018-10-02 2018-10-02 Diamond polycrystal body and industrial tool equipped with the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018540500A Division JP6421905B1 (en) 2018-07-20 2018-07-20 Diamond polycrystalline body and tool provided with the same

Publications (1)

Publication Number Publication Date
JP2020011886A true JP2020011886A (en) 2020-01-23

Family

ID=69169681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018187312A Pending JP2020011886A (en) 2018-10-02 2018-10-02 Diamond polycrystal body and industrial tool equipped with the same

Country Status (1)

Country Link
JP (1) JP2020011886A (en)

Similar Documents

Publication Publication Date Title
JP6489281B2 (en) Method for producing boron nitride polycrystal
US10421129B2 (en) Polycrystalline diamond body, cutting tool, wear-resistant tool, grinding tool, and method for producing polycrystalline diamond body
JP6387897B2 (en) Diamond polycrystals, cutting tools, wear-resistant tools, and grinding tools
JP6421904B1 (en) Diamond polycrystalline body and tool provided with the same
JP6421905B1 (en) Diamond polycrystalline body and tool provided with the same
JP2020011887A (en) Diamond polycrystal body and industrial tool equipped with the same
KR102599911B1 (en) Diamond polycrystals, tools with diamond polycrystals and methods for manufacturing diamond polycrystals
JP2020011886A (en) Diamond polycrystal body and industrial tool equipped with the same
WO2021059700A1 (en) Polycrystal cubic crystal boron nitride and tool