JP2020010880A - Non-invasive sugar in blood meter - Google Patents

Non-invasive sugar in blood meter Download PDF

Info

Publication number
JP2020010880A
JP2020010880A JP2018135768A JP2018135768A JP2020010880A JP 2020010880 A JP2020010880 A JP 2020010880A JP 2018135768 A JP2018135768 A JP 2018135768A JP 2018135768 A JP2018135768 A JP 2018135768A JP 2020010880 A JP2020010880 A JP 2020010880A
Authority
JP
Japan
Prior art keywords
blood glucose
reflectance
sugar
light
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018135768A
Other languages
Japanese (ja)
Other versions
JP7080480B2 (en
JP2020010880A5 (en
Inventor
二朗 有馬
Jiro Arima
二朗 有馬
武 小坂
Takeshi Kosaka
武 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018135768A priority Critical patent/JP7080480B2/en
Publication of JP2020010880A publication Critical patent/JP2020010880A/en
Publication of JP2020010880A5 publication Critical patent/JP2020010880A5/ja
Application granted granted Critical
Publication of JP7080480B2 publication Critical patent/JP7080480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To solve the problem that, measurement accuracy of a non-invasive sugar in the blood meter for measuring transmission factor of the sugar in the blood should be improved in practical use.SOLUTION: There is provided a non-invasive sugar in the blood meter which has no problem in practical use and which measures not transmission factor of the sugar in the blood but reflectance ratio on a boundary surface of a skin. The figure 6 shows a main constitution block diagram of the invention. The L is a CO2 gas laser light source, a plurality of bright line-state flux diameters with wavelength of 9.2 to 10.8 μm are injected at oscillation frequency 1 KHZ-100 KHZ of almost several mm. A level of the injected light is monitored by a light reception element Mr by a branch mirror of Ms. The F is a device for taking out a required wavelength from the L. Wavelength dependency of a light absorption factor of the sugar in the blood (decline factor) is 8.5μ to 10.0μ. The light is made to enter the measured portion vertically as possible from an M3 mirror and normal reflectance is received on the light reception element D as possible. Based on measurement of the normal reflectance on the boundary, density of sugar in the blood is calculated. The measured portion is fixed by a FX during a measurement period.SELECTED DRAWING: Figure 6

Description

光を生体に当て生体 内部を計測する 応用生体光計測分野。 Applied biological light measurement field that measures the inside of a living body by applying light to the living body.

従来の光を利用した非侵襲血糖計のアイデアは 糖分子の吸光度に注目したものであり、典型的な例は 図1のように指に入射光I0を照射し、透過光Itを計測するものである。
すると(1)が成り立つ。
The idea of a conventional non-invasive blood glucose meter using light focuses on the absorbance of sugar molecules, and a typical example is to irradiate a finger with incident light I0 and measure transmitted light It as shown in Fig. 1. It is.
Then, (1) holds.

Figure 2020010880
Figure 2020010880

意図するところは Itを計測し(1)からαを算出するものである。
ところが 実用的には 全て失敗している。理由はαdが 大きすぎ 或はItの信号レベルが小さすぎ 現在の検出器では α検知に至らない ということである。
図2は従来例である。手指・耳朶の透過を狙ったものである。出典は下記の非特許文献である。
これも失敗例である。
そこで 従来の透過例を鑑みて 出来るだけdを小さくする目的で図3 のようなアイデアが考案されている。
図3のように入射光I0を指の肉厚面に接するが如く斜入射する。透過光Itは 指の肉厚面に接するが如く斜め拡散出射する。これはdの出来るだけ小さいことを狙って 指の表皮に斜入射、斜拡散出射の構成になっている。
この場合 拡散反射光(=透過光=皮膚に入り 再び皮膚から外の空気域に出る光)を計測している。この場合の 最近 出願公開されている例を下記の特許文献に示す。
その図4のなかで読み取れるように斜光線入射の工夫がされているが 実用的には 失敗している。
それは dが小さくとれなく トータル 測定精度に問題があると考えられることである。
The intention is to measure It and calculate α from (1).
However, practically everything has failed. The reason is that αd is too large or the signal level of It is too small and the current detector does not lead to α detection.
FIG. 2 shows a conventional example. It aims to transmit through fingers and earlobes. The source is the following non-patent literature.
This is also a failure.
Therefore, an idea as shown in Fig. 3 has been devised for the purpose of making d as small as possible in view of the conventional transmission example.
As shown in FIG. 3, the incident light I0 is obliquely incident so as to be in contact with the thick surface of the finger. The transmitted light It is obliquely diffused and emitted as if it were in contact with the thick surface of the finger. This is a configuration of oblique incidence and oblique diffusion emission to the skin of the finger aiming at d as small as possible.
In this case, the diffuse reflected light (= transmitted light = light that enters the skin and exits the skin to the outside air area) is measured. The following patent documents show examples of recently published applications in this case.
The oblique light beam is devised so that it can be read in Fig. 4, but it has failed in practice.
It is considered that d cannot be small and there is a problem in total measurement accuracy.

M.Noda et al.:Diabetologia,35(suppl),pA204(1994)
近赤外センシング技術 (株)サイエンス フォーラム)
出願番号特願2016-570633(P2016-570633)
M. Noda et al. : Diabetologia, 35 (suppl), pA204 (1994)
Near-infrared sensing technology (Science Forum)
Application No. 2016-570633 (P2016-570633)

従来の光を使った 非侵襲血糖計は 皮膚内に入った透過光が再び空気域に出ていく透過光 或は 拡散反射光には注目していた。それは(1)式によって表されるα・dが大きく 結果Itの信号レベルが小さく測定精度に問題があった。
それに対して本発明は 本発明は、皮膚内に入った透過光が再び空気域に出ていく透過光
或は 拡散反射光には注目していなく、空気域と媒体(皮膚)の境界面における反射率変化と人体の間質液の糖濃度に注目する。
本発明は 人体の間質液の糖濃度と血中の糖濃度が近似していることを利用して 皮膚表面の 反射率の変化から皮膚内の間質液の糖濃度を計測して 血中の糖濃度を算定する非侵襲血糖測定装置である。
Conventional non-invasive blood glucose meters using light have focused on transmitted light or diffuse reflected light where transmitted light that has entered the skin returns to the air space again. That is, α · d expressed by the equation (1) is large, and as a result, the signal level of It is small, and there is a problem in measurement accuracy.
On the other hand, the present invention does not focus on the transmitted light or the diffusely reflected light in which the transmitted light that has entered the skin returns to the air region, and does not focus on the interface between the air region and the medium (skin). Attention is paid to the reflectance change and the sugar concentration of the interstitial fluid of the human body.
The present invention utilizes the fact that the sugar concentration in the interstitial fluid of the human body and the sugar concentration in the blood are close to each other, and measures the sugar concentration of the interstitial fluid in the skin from the change in the reflectance of the skin surface. This is a non-invasive blood glucose measuring device for calculating the glucose concentration of the blood sugar.

人体の皮膚表面に光が入射し 反射し 反射率測定の様子は例えば 図6に示す。指に必要な光が入射し、正反射角で光を受光素子Dで受け 電気信号により 人体の間質液の糖濃度を反映した複素数屈折率の境界面の反射率測定を行い 血中糖濃度を非侵襲でMで表示する。
次に反射率測定が 糖濃度にいかに関係するか説明する。
人体の間質液の糖濃度は 血中糖濃度と近似しており、間質液の糖濃度が反射率測定で求め得ることを示す。
透過率計測ではないことがポイントである。
図5は air空気とa-b面で接している 複素数屈折率Nの人体の間質液媒体を模式的に示したものである。
図5のように 入射角:Ψ0、反射角:Ψ0。反射率は次式で表される。
例えば インターネットHP
home.sato-gallery.com/hikaribussei/chap3.html
より
Light is incident on the skin surface of the human body and is reflected. The state of the reflectance measurement is shown in FIG. 6, for example. The required light is incident on the finger, the light is received by the light receiving element D at the specular reflection angle, and the reflectance of the complex refractive index interface reflecting the sugar concentration of the interstitial fluid of the human body is measured by an electrical signal. Is displayed in M non-invasively.
Next, we explain how reflectance measurement relates to sugar concentration.
The sugar concentration in the interstitial fluid of the human body is close to the blood sugar concentration, indicating that the sugar concentration in the interstitial fluid can be determined by reflectance measurement.
The point is that it is not transmittance measurement.
FIG. 5 schematically shows a human interstitial liquid medium having a complex refractive index N in contact with air at the ab plane.
As shown in FIG. 5, the incident angle: Ψ0 and the reflection angle: Ψ0. The reflectance is represented by the following equation.
For example, Internet HP
home.sato-gallery.com/hikaribussei/chap3.html
Than

Figure 2020010880
Figure 2020010880

ここで
N=n+iK
N:複素数屈折率
n:実部屈折率
K:K消衰係数:α=4πK/λ:波長依存の吸収係数:濃度に比例
このKが求めたい血中糖濃度である。
Rp:入射光線、反射光線に垂直(図5の紙面上)の電界強度の反射率、
Rs:入射光線、反射光線に垂直(図5の紙面垂直)の電界強度の反射率
定性的に(3.11)を理解するために
Ψ0=0
垂直入射、垂直反射の場合をかんがえる。
すると(3.11) は
here
N = n + iK
N: complex number refractive index
n: Real part refractive index
K: K extinction coefficient: α = 4πK / λ: wavelength-dependent absorption coefficient: proportional to concentration K is the blood glucose concentration to be determined.
Rp: reflectivity of electric field strength perpendicular to the incident light and reflected light (on the paper of Fig. 5),
Rs: reflectivity of electric field intensity perpendicular to the incident light and reflected light (perpendicular to the plane of FIG. 5) 50 = 0 to understand qualitatively (3.11)
Consider the case of normal incidence and normal reflection.
Then (3.11) is

Figure 2020010880
Figure 2020010880

Rp=Rsとなり、Rと置き直すと

Rp = Rs, and replace it with R

Figure 2020010880
Figure 2020010880

K消衰係数:α=4πk/λ:波長依存の吸収係数:濃度に比例:間質液糖度に比例:血中糖度に比例 K extinction coefficient: α = 4πk / λ: wavelength-dependent absorption coefficient: proportional to concentration: proportional to interstitial liquid sugar: proportional to blood sugar

Figure 2020010880
Figure 2020010880

(2)は Rの計測からnをパラメーターにして Kが分かることをしめしている。nは人種、性別、年齢、職種、食物などによって変わることもあり得る。
そこで 実用上は 血中糖濃度の計測範囲を前もって網羅する必要があり、実用上問題ない 条件に従った生体区分によるRとKの対応表を用意し、計測したRから Kを求めることができる。
或は 表ではなく RとKの関係を 属性に従って関数近似でも問題ない。
事前の計測で 採血方式により 血糖値とKの関係が値付けされる。
次に nの値によらず RとKの関係が成り立つことを示す。
(2) shows that K is known from the measurement of R using n as a parameter. n can vary depending on race, gender, age, occupation, food, etc.
Therefore, in practice, it is necessary to cover the measurement range of blood glucose concentration in advance, and it is possible to prepare a correspondence table of R and K by biological classification according to conditions that are not practically problematic, and obtain K from the measured R. .
Or there is no problem with function approximation based on the attribute of R and K instead of the table.
Prior measurement determines the relationship between blood glucose and K by blood sampling method.
Next, we show that the relationship between R and K holds regardless of the value of n.

Figure 2020010880
Figure 2020010880

(7)の示唆するところはR0を前もって計測し (2)の複素数Nの実数部nによらず計測時にはRから血中糖濃度Kを求めることができることをしめしている。
R0の意味するところは 血中糖度(吸収係数)の波長依存性がゼロの場合の実数部屈折率に対応する反射率であり、糖分子を含めた他分子の総合実数部屈折率に対応する。
吸収波長域Kが糖分子のみとすると 吸収域近傍のR0は吸収域の総合実数屈折に対応している。
ここではnの波長に対する変化はKより小さいことを応用している。
また (2)からnを消去する別方法は 波長をパラメーターにしてRとKの独立式を実験的に複数求めることでも得られる。
血中糖の吸光係数(消衰係数)の波長依存性は8.5μ〜10.0μ(Frontiers Med.Biol.Enbng,Vol.9,No.2,pp.137−153(1999))と示されている。
これにより Rの計測には8.5μ〜10.0μの波長を R0の計測には8.5μ未満か10.0より長い波長を用いる。重要なことはR0が分かれば Rから総合実数率屈折率を消去した Kを求め得るということである。
(5によるR0とnの関係は厳密には 人種、性別、年齢、職種、食物などによって変わることもあり得る。
そこで 実用上は 血中糖濃度の計測範囲を前もって網羅する必要があり、実用上問題ない nの生体区分によるRとKの対応表を用意し、計測したRから Kを求めることもきる。或は 表ではなく RとKの関係を関数近似でも問題ない。
事前の計測で 採血方式により 血糖値とKの関係が値付けされる。
The suggestion of (7) indicates that R0 is measured in advance, and the blood glucose concentration K can be obtained from R at the time of measurement regardless of the real part n of the complex number N in (2).
The meaning of R0 is the reflectance corresponding to the real part refractive index when the wavelength dependence of blood sugar content (absorption coefficient) is zero, and corresponds to the total real part refractive index of other molecules including sugar molecules. .
If the absorption wavelength region K is only sugar molecules, R0 near the absorption region corresponds to the total real number refraction of the absorption region.
Here, it is applied that the change with respect to the wavelength of n is smaller than K.
Another method for eliminating n from (2) can also be obtained by experimentally obtaining a plurality of independent equations for R and K using the wavelength as a parameter.
The wavelength dependence of the extinction coefficient (extinction coefficient) of blood sugar is indicated as 8.5 μ to 10.0 μ (Frontiers Med. Biol. Enbng, Vol. 9, No. 2, pp. 137-153 (1999)). I have.
Thus, a wavelength of 8.5μ to 10.0μ is used for measuring R, and a wavelength of less than 8.5μ or longer than 10.0 is used for measuring R0. The important thing is that if R0 is known, K can be obtained from R by eliminating the total real index.
(Strictly speaking, the relationship between R0 and n according to 5 can vary depending on race, gender, age, occupation, food, etc.)
Therefore, in practice, it is necessary to cover the measurement range of blood glucose concentration in advance, and it is possible to prepare a correspondence table of R and K according to n biological categories, which is not a problem in practical use, and obtain K from the measured R. Or it is not a problem to use a function approximation for the relationship between R and K instead of a table.
Prior measurement determines the relationship between blood glucose and K by blood sampling method.

Figure 2020010880
Figure 2020010880

以上が基本的な本発明の理論骨子である。
しかし 実際にはRは RsとRsとは厳密には異なるRpの混在であり 境界面の微細構造も反射率に影響を与えるので 反射率Rと血中糖度(K比例)の対応データは 必要十分な実験による実用上問題ない領域(年齢分布、人種分布、男女差、食物などを考慮した)、の R、R0 、K データ或はR、n、Kデータでないといけない。
さらに被測定表面に等価的に透過フィルターに相当する、例えば 汚れとかが カバーされている場合を考慮する。このフィルターの透過因子をXとする。入射と反射の2重に因子がかかる。
すると(2)、(5)は
The above is the basic theory of the present invention.
However, in fact, R is a mixture of Rs and Rp, which is strictly different from Rs, and the fine structure of the boundary surface also affects the reflectance. Therefore, the corresponding data of the reflectance R and the blood sugar content (K proportional) are necessary and sufficient. It must be R, R0, K data or R, n, K data in a practically acceptable region (considering age distribution, race distribution, gender difference, food, etc.) by a simple experiment.
In addition, consider the case where the surface to be measured is covered with a filter equivalent to a transmission filter, for example, dirt. Let X be the transmission factor of this filter. There is a factor in the double of incident and reflected.
Then (2) and (5)

Figure 2020010880
Figure 2020010880

R’はXを踏まえた吸収波長域の反射 であり、R0’は吸収波長域外の反射率である。
(9)からXも性別、年齢、職種、人種、食物などによる区分けして使用することも可能であり、予め測定して生体のR’、X、n、K区分表をつくり R‘からK値を対応表により求めることも可能である。
(9)(10)は未知数X、nの2個であり、独立式が2個であり(Kの値は独立に選ぶことができ 2個以上の独立式が得られる)、X、nを求めることができる。
Xが求まれば(9)(10)からR,R0がもとまり(2)、(5)の展開が可能である。
この場合の生体区分にはXのデータを加味した生体区分表からR0’、R’からKを求めることも可能である。また光入射角はゼロが理想であるが 35度未満の入射角であれば実用に供すると考える。
R 'is the reflection in the absorption wavelength range based on X, and R0' is the reflectance outside the absorption wavelength range.
From (9), it is also possible to use X by classifying it by gender, age, occupation, race, food, etc., and measure it in advance to create a R ', X, n, K classification table for the living body, and from R' It is also possible to determine the K value from a correspondence table.
(9) and (10) are two unknowns X and n, and there are two independent equations (the value of K can be independently selected and two or more independent equations are obtained). You can ask.
If X is obtained, R and R0 can be obtained from (9) and (10), and (2) and (5) can be expanded.
In this case, R0 'and K from R' can be obtained from the biological classification table in which the data of X is added to the biological classification. Although the ideal light incident angle is zero, it is considered that the light incident angle is practical if the incident angle is less than 35 degrees.

本発明例として (2) 或は(9)を応用した 血中糖の吸収波長8.5μ〜10.0μのいずれかの波長を用いて反射率を計測しCO2ガスレーザーを使用し光入射角ゼロ近傍の35度未満
の入射角を持つ 生体区分表をもつ血中糖濃度を計測する非侵襲血糖計である。
As an example of the present invention, applying (2) or (9), the reflectance is measured using any one of the absorption wavelengths of blood sugar of 8.5 to 10.0 μm, and a CO2 gas laser is used, and the light incident angle is near zero. This is a non-invasive blood glucose meter that measures blood glucose concentration with a biological classification table having an incident angle of less than 35 degrees.

本発明の別例として (5)或は(10)を応用した 血中糖の吸収波長8.5μ〜10.0μのいずれかの波長を用いて反射率を計測し、血中 糖の吸収無しの波長として8.5μに近い
8.5μより短波長の波長を用いるか 10.0μに近い 10.0μより長波長を用いて CO2ガスレーザーを使用し入射角ゼロ近傍の35度未満の入射角を持つ 血中糖濃度を計測する非侵襲血糖計である。
図6は 本発明の別例の主要な構成ブロック図の例である。
LはCO2ガスレーザー光源であり、波長9.2〜10.8μmの複数輝線状の光束径が数mm程度の発振周波数1KHZ〜100KHZで射出される。出射光のレベルはMsの分岐ミラーにより受光素子Mrにより監視する。LはCO2レーザー光源に限定するものではない。
別途光パラメトリック発振器であってもよい。FはLから必要な波長を取り出す装置である。
血中糖の吸光係数(消衰係数)の波長依存性は8.5μ〜10.0μ(Frontiers ed.Biol.Enbng,Vol.9,No.2,pp.137−153(1999))と示されている。
必要な波長は 例えば、図7に示すように 9.6μ、10.2μ、bl遮光の3種を選ぶ。
rtb回転板に光通過窓をもたせ9.6μの回折フィルター、10.2μの回折フィルター、遮光の各選択が巡回する構成にする。
rtb回転のサイクルは受光素子のレスポンにあわせる。熱電対の場合は概1Hzにする。これらの回折フィルターは光量レベルの調整もNDフィルターなどで行う。
これら回折フィルターは干渉フィルターであってもよい。あるいは回転板は 横スライドの往復機構を持つ手段であってもよい。
あるいは 電磁気か音響による回折格子の定数を変化さす 不動型の光学フィルターであってもよい。或は9.6μと遮光の2種であってもよい。
図7のLaserはレーザー光である。図6のM1、M2、M3 は 光路を変更するためのミラーで1枚〜複数枚使う。
FXは被測定物、例えば図8に示すような指の固定装置であり 測定時間内固定される。FXは被測定物、例えば図8に示すような指の固定装置であり 測定時間内固定される。例えば親指の第一関節から指先までの肉厚表皮を使う場合、図8に示すように 入射光穴に 抑え板で 第一関節から指先が動かないように 固定する。抑え板は バネ性の金属で方側は固定されており 親指を挿入して他の側に 例えば 図のように回転ネジで圧迫固
定する。
親指を 固定し易くするため 固定板に 指肉厚の堀の形状を設け、略中央に入射光穴をあける。この抑え板は くりかえし使用が可能なテープで少なくとも片側で例えばマジック固定であってもよい。あるいは洗濯バサミ状の 指抑えであってもよい。
また この固定装置は反射光Irが最大になるように 自動的或は手動により機構が3次元的に動かし得る。メカニズムは図示していないが 組み立てロボットなどの公知手段を使う。
自動化のメカニズムの原理は 例えば図9にしめす。
少なくともnn法線方向に動くstm直進手段(第一手段)と入射点を中心に紙面垂直の回転軸(rt1回転1)を有する手段(第二手段)と入射点を中心に 紙面上の法線直角の回転軸(rt2回転2)を有する手段(第三手段)をもち、これら手段を用いて 自動 あるいは手動で最適位置にfxb固定治具とD受光素子を固定する。
最適化の方法は 例えば第一手段の微小変動でIr反射光の増減をみながら局部最大値をもとめ、次に第二手段の微小変動でIrの増減をみながら局部最大値をもとめ、次に第三手段の微小変動でIrの増減をみながら局部最大値をもとめ て位置を固定する。これらを自動
あるいは手動でおこなう。
pbは圧着板である。
Dは受光素子である。
入射角と反射角が出来るだけ0度になるようにし かつ 受光量を多くする。そのために受光素子の縁近くを入射光が通り、受光部と被測定部を近接さす。
受光素子は9.2μ〜10.8μに感度があり、高感度のものほどよい。
強制冷却型素子でもいいし あるいは 常温タイプの熱電対でもよい。
Mは必要な表示を例えば 血糖濃度 時刻 時間などを 算出 表示するもので、又 予め必要な 生体区分ごとのRとKの対応表とか 測定ごとの記憶とか、測定ごとの出力などをする装置である。
9.6μ波長については
Ir=反射率R×I9・・・・・(11)
I9入射光 はMrで計測し、IrはDで測定する。
(11)によりRが計測される。
遮光については遮光によりノイズレベルを測定する。
夫々の計測値から ノイズレベルを引いた値をIr、I9とする。
10.2μについては 糖吸収外の近傍波長である。
As another example of the present invention, the reflectivity is measured using any one of the absorption wavelengths of blood sugar of 8.5 μ to 10.0 μ to which (5) or (10) is applied, and the wavelength without absorption of blood sugar is measured. Close to 8.5μ
Use a wavelength shorter than 8.5μ or a wavelength close to 10.0μ and a wavelength longer than 10.0μ and use a CO2 gas laser to measure the blood glucose concentration with an incident angle of less than 35 ° near zero incident angle using a CO2 gas laser It is a blood glucose meter.
FIG. 6 is an example of a main configuration block diagram of another example of the present invention.
L is a CO2 gas laser light source, which is emitted at an oscillation frequency of 1 KHZ to 100 KHZ with a luminous flux diameter of a plurality of bright lines having a wavelength of 9.2 to 10.8 μm of about several mm. The level of the emitted light is monitored by the light receiving element Mr using the Ms branch mirror. L is not limited to a CO2 laser light source.
An optical parametric oscillator may be separately provided. F is a device for extracting a required wavelength from L.
The wavelength dependence of the extinction coefficient (extinction coefficient) of blood sugar is indicated as 8.5 μ to 10.0 μ (Frontiers ed. Biol. Enbng, Vol. 9, No. 2, pp. 137-153 (1999)). I have.
As the required wavelength, for example, as shown in FIG. 7, three kinds of 9.6 μm, 10.2 μm, and bl light shielding are selected.
The rtb rotating plate is provided with a light passing window, and the configuration is such that the selection of a 9.6 μ diffraction filter, a 10.2 μ diffraction filter, and light shielding is repeated.
The cycle of the rtb rotation is adjusted to the response of the light receiving element. In the case of a thermocouple, the frequency is approximately 1 Hz. These diffraction filters also adjust the light amount level using an ND filter or the like.
These diffraction filters may be interference filters. Alternatively, the rotating plate may be a means having a reciprocating mechanism of a horizontal slide.
Alternatively, it may be an immovable optical filter that changes the constant of the diffraction grating by electromagnetic or acoustic. Alternatively, two types, 9.6 μ and light shielding, may be used.
Laser in FIG. 7 is a laser beam. M1, M2, and M3 in FIG. 6 are mirrors for changing the optical path, and one or more mirrors are used.
FX is a device for fixing an object to be measured, for example, a finger as shown in FIG. 8, and is fixed within the measurement time. FX is a device for fixing an object to be measured, for example, a finger as shown in FIG. 8, and is fixed within the measurement time. For example, when using a thick skin from the first joint of the thumb to the fingertip, as shown in Fig. 8, fix the fingertip from the first joint with a holding plate in the incident light hole. The holding plate is fixed with spring metal on one side, and the thumb is inserted and the other side is pressed and fixed with a rotating screw as shown in the figure.
In order to make it easier to fix the thumb, a thick moat is formed on the fixing plate, and an incident light hole is made at the approximate center. This holding plate may be a tape that can be used repeatedly, for example, magically fixed on at least one side. Alternatively, it may be a finger clamp shaped like a clothespin.
In addition, the fixing device can automatically or manually move the mechanism three-dimensionally so that the reflected light Ir is maximized. Although the mechanism is not shown, a known means such as an assembly robot is used.
The principle of the automation mechanism is shown in Fig. 9, for example.
A stm linear moving means (first means) moving at least in the nn normal direction, a means (second means) having a rotation axis (rt1 rotation 1) perpendicular to the paper centering on the incident point, and a normal on the paper surface centering on the incident point It has means (third means) having a right-angle rotation axis (rt2 rotation 2), and automatically or manually fixes the fxb fixing jig and the D light receiving element at the optimum position using these means.
The optimization method is, for example, to obtain the local maximum value while observing the increase and decrease of the Ir reflected light by the minute fluctuation of the first means, and then to obtain the local maximum value while observing the increase and decrease of Ir by the minute fluctuation of the second means, The position is fixed by obtaining the local maximum value while observing the increase and decrease of Ir with the slight fluctuation of the third means. Perform these automatically or manually.
pb is a crimp plate.
D is a light receiving element.
The incident angle and the reflection angle are set to 0 ° as much as possible, and the amount of received light is increased. For this purpose, the incident light passes near the edge of the light receiving element, and the light receiving section and the measured section are brought close to each other.
The light receiving element has a sensitivity of 9.2 μ to 10.8 μ, and the higher the sensitivity, the better.
A forced cooling type element or a room temperature type thermocouple may be used.
M is a device for calculating and displaying necessary displays, for example, blood glucose concentration, time, time, and the like, and for performing a necessary correspondence table of R and K for each living body division, storing for each measurement, and outputting for each measurement. .
For 9.6μ wavelength
Ir = reflectance R × I9 (11)
I9 incident light is measured by Mr, and Ir is measured by D.
R is measured by (11).
As for the light shielding, the noise level is measured by the light shielding.
The values obtained by subtracting the noise level from the respective measured values are Ir and I9.
For 10.2μ, it is a near wavelength outside the sugar absorption.

K=0
Ir0 =R0×I0 ・・・・・(12)
I0はMrで計測し、Ir0はDで測定する。
(12)によりR0が計測される。
K = 0
Ir0 = R0 × I0 (12)
I0 is measured by Mr, and Ir0 is measured by D.
R0 is measured by (12).

この場合も遮光時のノイズレベルを計測する。
このノイズ値を 夫々の入射値、反射値 から引く。
その値がIr0、I0であり(12)からR0を求める。
更に(3.11)は人体の血中糖度だけに適用され得るものではなく、同様の応用は植物の果物などの生体糖度計測にも適用できる。
被計測体を植物の生体に変えればよい。
本発明は 具体例として糖分子に注目したものであるが、非糖分子であっても(3.11)で示唆される分子が吸収波長をもち液中に混在する場合の分子量計測にも適用され得る。
Also in this case, the noise level at the time of shading is measured.
This noise value is subtracted from each incident value and reflection value.
The values are Ir0 and I0, and R0 is obtained from (12).
Furthermore, (3.11) cannot be applied only to the sugar content in the blood of the human body, and the same application can be applied to the measurement of the sugar content of a living body such as a fruit of a plant.
What is necessary is just to change an object to be measured to a living body of a plant.
Although the present invention focuses on sugar molecules as a specific example, even non-sugar molecules can be applied to measurement of molecular weight when molecules suggested in (3.11) have an absorption wavelength and are mixed in a liquid. .

透過光の血中糖度計測の代わり 境界面の反射率を計測して非侵襲血中糖度計測をする。
Non-invasive blood glucose measurement is performed by measuring the reflectance of the interface instead of measuring the transmitted light blood glucose.

透過率計測の概念図Conceptual diagram of transmittance measurement 近赤外光を利用する従来例Conventional example using near-infrared light 表皮の透過光を利用する概念図Conceptual diagram using transmitted light of the epidermis 斜入射光を利用する従来例Conventional example using obliquely incident light 境界面の反射率の説明図Illustration of the reflectance at the interface 本発明の主ブロック図Main block diagram of the present invention 本発明の選択波長の説明図Explanatory drawing of the selected wavelength of the present invention 本発明の指固定説明図Explanatory drawing of finger fixation of the present invention 本発明の指固定の調整説明図FIG. 3 is an explanatory diagram of adjustment of a finger fixing according to the present invention

図6に示す必要な手段から成る。 It consists of the necessary means shown in FIG.

I0:入射光、It:透過光、air:空気、N:複素数屈折率、n:実部屈折率
K:虚数部屈折率=消耗係数(∝血中糖濃度)、Ms:分岐ミラー
L:レーザー光源、F:フィルター、Mr:受光部、M1:ミラー
M2:ミラー、M3:ミラー、Fx:固定装置、D:受光部、M:表示演算装置
Laser:レーザー光、rtb:回転板、bl:遮光板、9.6μ:9.6μレーザー
10.2μ:10.2μレーザー、rt:回転、rta:回転軸、stm:直進移動、
fxb:固定板、rt1:回転1、rt2:回転2、pb:圧着板、D:受光部、
I9:入射光、nn:法線、Ir:反射光
I0: incident light, It: transmitted light, air: air, N: complex number refractive index, n: real part refractive index
K: Imaginary part refractive index = consumption coefficient (∝blood sugar concentration), Ms: branching mirror
L: Laser light source, F: Filter, Mr: Receiver, M1: Mirror
M2: Mirror, M3: Mirror, Fx: Fixed device, D: Light receiving unit, M: Display operation device
Laser: Laser light, rtb: Rotating plate, bl: Light shielding plate, 9.6μ: 9.6μ laser
10.2μ: 10.2μ laser, rt: rotation, rta: rotation axis, stm: linear movement,
fxb: fixed plate, rt1: rotation 1, rt2: rotation 2, pb: crimping plate, D: light receiving unit,
I9: incident light, nn: normal, Ir: reflected light

Claims (19)

光の入射角にほぼ対応する正反射角度で計測する、人体の間質液の糖濃度を反映した複素数屈折率の境界面の反射率測定により血中糖濃度を計測する非侵襲血糖計。     A non-invasive blood glucose meter that measures the blood glucose concentration by measuring the reflectance at the interface of the complex refractive index that reflects the glucose concentration of the interstitial fluid of the human body, which is measured at the specular reflection angle substantially corresponding to the incident angle of light. 血中糖の吸収波長8.5μ〜10.0μのいずれかの波長を用いて反射率を計測しCO2ガスレーザーを使用する入射角35度未満の請求項1の血中糖濃度を計測する非侵襲血糖計。     The non-invasive blood sugar for measuring blood sugar concentration according to claim 1, wherein the reflectance is measured using any one of the absorption wavelengths of blood sugar of 8.5μ to 10.0μ and the incident angle is less than 35 ° using a CO2 gas laser. Total. 予め 血中糖の吸収波長による反射率と糖濃度の対応表を測定対象生体の区分により作り、反射率から血糖値を算出する請求項2の血中糖濃度を計測する非侵襲血糖計。       3. The non-invasive blood glucose meter for measuring blood glucose concentration according to claim 2, wherein a correspondence table of reflectance and glucose concentration according to the absorption wavelength of blood glucose is prepared in advance for each living body to be measured and a blood glucose level is calculated from the reflectance. 血中糖の吸収波長8.5μ〜10.0μのいずれかの波長を用いて反射率を計測し、血中 糖の吸収無しの波長として8.5μに近い8.5μより短波長の波長を使うか 10.0μに近い
10.0μより長波長を使用するCO2ガスレーザーを使用する請求項2の血中糖濃度を計測する非侵襲血糖計。
Measure the reflectance using any of the absorption wavelengths of blood sugar 8.5μ to 10.0μ, and use a wavelength shorter than 8.5μ close to 8.5μ as the wavelength without absorption of blood sugar 10.0μ Close to
3. The noninvasive blood glucose meter for measuring blood glucose concentration according to claim 2, wherein a CO2 gas laser using a wavelength longer than 10.0 μm is used.
被計測部位を固定板に圧着板などで固定する手段を有する請求項2の血中糖濃度を計測する非侵襲血糖計。     3. The non-invasive blood glucose meter for measuring blood glucose concentration according to claim 2, further comprising means for fixing a measurement site to a fixing plate with a pressure plate or the like. 被計測部位を固定板に圧着板などで固定する手段を有する請求項4の血中糖濃度を計測する非侵襲血糖計。     5. The non-invasive blood glucose meter for measuring blood glucose concentration according to claim 4, further comprising means for fixing a measurement site to a fixing plate with a pressure plate or the like. 被計測部位と入射光と反射光と受光素子の関係を正反射光が受光素子で受けられるように調整機能を有する上記請求項6の血中糖濃度を計測する非侵襲血糖計。     7. The non-invasive blood glucose meter for measuring blood glucose concentration according to claim 6, which has a function of adjusting the relationship between the measurement site, the incident light, the reflected light, and the light receiving element so that the regular reflected light can be received by the light receiving element. 血中糖の吸収波長9.3μ、9.4μ、9.5μ或は9.6μいずれかの波長を用いて反射率を計測し、夫々の回折フィルターと遮光板を回転板に取り付けた請求項7の血中糖濃度を計
測する非侵襲血糖計。
8. The blood according to claim 7, wherein the reflectance is measured by using any one of 9.3 μ, 9.4 μ, 9.5 μ, and 9.6 μ of the absorption wavelength of blood sugar, and each diffraction filter and a light shielding plate are attached to the rotating plate. A non-invasive blood glucose meter that measures glucose concentration.
血中糖の吸収無しの波長として10.2μを用いる手段として、夫々の回折フィルターと遮光板を回転板に取り付けた請求項8の血中糖濃度を計測する非侵襲血糖計。       9. The non-invasive blood glucose meter for measuring blood glucose concentration according to claim 8, wherein each diffraction filter and a light-shielding plate are attached to a rotating plate as means for using 10.2 μ as a wavelength without absorption of blood glucose. 予め血中糖の吸収波長による反射率と糖濃度の対応表を測定対象生体の区分により作り、反射率から血糖値を算出する請求項9の血中糖濃度を計測する非侵襲血糖計。       10. The non-invasive blood glucose meter for measuring blood glucose concentration according to claim 9, wherein a correspondence table between the reflectance and the glucose concentration based on the absorption wavelength of the blood glucose is prepared in advance for each living body to be measured, and the blood glucose level is calculated from the reflectance. 予め血中糖の吸収波長による反射率と糖濃度の対応表を測定対象生体の区分により作り、反射率から血糖値を算出する請求項7の血中糖濃度を計測する非侵襲血糖計。       8. The noninvasive blood glucose meter for measuring blood glucose concentration according to claim 7, wherein a correspondence table of reflectance and glucose concentration according to the absorption wavelength of blood glucose is prepared in advance for each living body to be measured and a blood glucose level is calculated from the reflectance. 予め血中糖の吸収波長による反射率と糖濃度の対応表を測定対象生体の区分により作り、反射率から血糖値を算出する請求項8の血中糖濃度を計測する非侵襲血糖計。       9. The non-invasive blood glucose meter for measuring blood glucose concentration according to claim 8, wherein a correspondence table between the reflectance and the glucose concentration according to the absorption wavelength of blood glucose is prepared in advance for each living body to be measured, and the blood glucose level is calculated from the reflectance. 被計測部位と入射光と反射光と受光素子の関係を正反射光が受光素子で受けられるように調整機能を有する請求項4の血中糖濃度を計測する非侵襲血糖計。     5. The non-invasive blood glucose meter for measuring blood glucose concentration according to claim 4, further comprising an adjusting function for adjusting the relationship between the measured portion, the incident light, the reflected light, and the light receiving element so that the regular reflected light is received by the light receiving element. 血中糖の吸収波長9.3μ、9.4μ、9.5μ或は9.6μいずれかの波長を用いて反射率を計測し、夫々の回折フィルターと遮光板を回転板に取り付けた請求項13の血中糖濃度を計
測する非侵襲血糖計。
The blood glucose according to claim 13, wherein the reflectance is measured using any one of 9.3 μ, 9.4 μ, 9.5 μ or 9.6 μ of the absorption wavelength of blood sugar, and each diffraction filter and light shielding plate are attached to the rotating plate. A non-invasive blood glucose meter that measures glucose concentration.
予め血中糖の吸収波長による反射率と糖濃度の対応表を対象生体区分により作り、反射率から血糖値を算出する請求項14の血中糖濃度を計測する非侵襲血糖計。       15. The noninvasive blood glucose meter for measuring blood glucose concentration according to claim 14, wherein a correspondence table of reflectance and glucose concentration based on the absorption wavelength of blood glucose is created in advance for each living body, and a blood glucose level is calculated from the reflectance. 35度以内の入射角にほぼ対応する正反射角度で計測する、人体を除いた生体の間質液の糖濃度を反映した複素数屈折率の境界面の反射率測定により間質液中糖濃度を計測する
非侵襲糖度計。
The sugar concentration in the interstitial fluid is measured by the reflectance measurement at the interface of the complex refractive index that reflects the sugar concentration of the interstitial fluid of the living body excluding the human body, which is measured at the specular reflection angle almost corresponding to the incident angle within 35 degrees. Non-invasive refractometer to measure.
糖の吸収波長8.5μ〜10.0μのいずれかの波長を用いて反射率を計測しCO2ガスレーザーを使用する請求項16の糖濃度を計測する非侵襲糖度計。       The non-invasive saccharimeter according to claim 16, wherein the CO2 gas laser is used to measure the reflectance by using any one of the absorption wavelengths of sugars of 8.5 to 10.0 µm. 糖の吸収波長8.5μ〜10.0μのいずれかの波長を用いて反射率を計測し、糖の吸収無しの波長として8.5μに近い8.5μより短波長の波長を使うか10.0μに近い10.0μより長
波長を使用するCO2ガスレーザーを使用する請求項17の糖濃度を計測する非侵襲糖度計。
Measure the reflectance using any of the sugar absorption wavelengths 8.5μ to 10.0μ, and use a wavelength shorter than 8.5μ close to 8.5μ as the wavelength without sugar absorption or 10.0μ close to 10.0μ 18. The noninvasive saccharimeter for measuring a sugar concentration according to claim 17, wherein a CO2 gas laser using a longer wavelength is used.
予め糖の吸収波長による反射率と糖濃度の対応表を測定対象生体の区分により作り、反射率から糖値を算出する請求項18の糖濃度を計測する非侵襲糖度計。       19. The noninvasive saccharimeter for measuring a sugar concentration according to claim 18, wherein a correspondence table between the reflectance and the sugar concentration according to the absorption wavelength of the sugar is prepared in advance according to the classification of the living body to be measured, and the sugar value is calculated from the reflectance.
JP2018135768A 2018-07-19 2018-07-19 Non-invasive blood sugar meter Active JP7080480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018135768A JP7080480B2 (en) 2018-07-19 2018-07-19 Non-invasive blood sugar meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018135768A JP7080480B2 (en) 2018-07-19 2018-07-19 Non-invasive blood sugar meter

Publications (3)

Publication Number Publication Date
JP2020010880A true JP2020010880A (en) 2020-01-23
JP2020010880A5 JP2020010880A5 (en) 2021-09-09
JP7080480B2 JP7080480B2 (en) 2022-06-06

Family

ID=69170568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018135768A Active JP7080480B2 (en) 2018-07-19 2018-07-19 Non-invasive blood sugar meter

Country Status (1)

Country Link
JP (1) JP7080480B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220159767A (en) * 2021-05-26 2022-12-05 건국대학교 글로컬산학협력단 Non-invasive biomaterial sugar concentration measurement system and method using optical module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215679A (en) * 1996-02-09 1997-08-19 Matsushita Electric Works Ltd Concentration measuring apparatus for humor component
JP2008175794A (en) * 2007-01-17 2008-07-31 Tohoku Univ Reflection measuring apparatus and method
JP2009201852A (en) * 2008-02-29 2009-09-10 Panasonic Corp Living body composition concentration measuring instrument
JP2012191969A (en) * 2011-03-14 2012-10-11 Shinshu Univ Biological information measuring apparatus
US20130155410A1 (en) * 2010-07-07 2013-06-20 Melys Diagnostics Ltd Optical Assembly and Method for Determining Analyte Concentration
JPWO2016117520A1 (en) * 2015-01-21 2017-10-26 国立研究開発法人量子科学技術研究開発機構 Blood substance concentration measuring device and blood substance concentration measuring method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6600135B2 (en) 2014-12-22 2019-10-30 リンテック株式会社 Sheet feeding apparatus and feeding method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215679A (en) * 1996-02-09 1997-08-19 Matsushita Electric Works Ltd Concentration measuring apparatus for humor component
JP2008175794A (en) * 2007-01-17 2008-07-31 Tohoku Univ Reflection measuring apparatus and method
JP2009201852A (en) * 2008-02-29 2009-09-10 Panasonic Corp Living body composition concentration measuring instrument
US20130155410A1 (en) * 2010-07-07 2013-06-20 Melys Diagnostics Ltd Optical Assembly and Method for Determining Analyte Concentration
JP2012191969A (en) * 2011-03-14 2012-10-11 Shinshu Univ Biological information measuring apparatus
JPWO2016117520A1 (en) * 2015-01-21 2017-10-26 国立研究開発法人量子科学技術研究開発機構 Blood substance concentration measuring device and blood substance concentration measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220159767A (en) * 2021-05-26 2022-12-05 건국대학교 글로컬산학협력단 Non-invasive biomaterial sugar concentration measurement system and method using optical module
KR102511907B1 (en) 2021-05-26 2023-03-20 건국대학교 글로컬산학협력단 Non-invasive biomaterial sugar concentration measurement system and method using optical module

Also Published As

Publication number Publication date
JP7080480B2 (en) 2022-06-06

Similar Documents

Publication Publication Date Title
CA1247397A (en) Spectrophotometric method and apparatus for the non- invasive determination of glucose in body tissues
CN101557752B (en) Method for the glucose concentration in pulsational blood
Pan et al. Low-coherence optical tomography in turbid tissue: theoretical analysis
US5666956A (en) Instrument and method for non-invasive monitoring of human tissue analyte by measuring the body's infrared radiation
US6611339B1 (en) Phase dispersive tomography
JPH11510602A (en) An improved diffuse reflection monitor.
JP2005513491A (en) Method and apparatus for the determination of light transport parameters and analytes in biological matrices
KR20010090791A (en) Methods and apparatus for tailoring spectorscopic calibration models
KR20010100907A (en) Method for non-invasive blood analyte measurement with improved optical interface
JP6936144B2 (en) Particle characterization method and equipment
WO2015136956A1 (en) Measurement device and measurement method
WO2001075421A1 (en) Method and apparatus for detecting mastitis by using visible light and/or near infrared light
Ullah et al. Can temporal analysis of optical coherence tomography statistics report on dextrorotatory-glucose levels in blood?
JP7080480B2 (en) Non-invasive blood sugar meter
Davenport et al. Method for producing angled optical fiber tips in the laboratory
CN104395732A (en) Noninvasive measurement of analyte concentration using a fiberless transflectance probe
CN201026212Y (en) Blood sugar nondestructive testing apparatus with photics coherent chromatography technique eyeground imaging
JP2020010880A5 (en)
Zimnyakov et al. Polarization-sensitive speckle spectroscopy of scattering media beyond the diffusion limit
JP2013088138A (en) Refraction factor measuring device, concentration measuring device and method thereof
Goldschmidt et al. Total internal reflection photoacoustic spectroscopy for the detection of β-hematin
WO2015167417A1 (en) Optical measurement system having an integrated internal reflection element and array detector
EP1972926A1 (en) Assessment of parameters by optical measurement
JP2023015889A (en) measuring device
Kong Clinical feasibility of Raman spectroscopy for quantitative blood glucose measurement

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180802

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210716

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220518

R150 Certificate of patent or registration of utility model

Ref document number: 7080480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150