JP2020007609A - Method for manufacturing tempered steel wire and apparatus for manufacturing the same - Google Patents

Method for manufacturing tempered steel wire and apparatus for manufacturing the same Download PDF

Info

Publication number
JP2020007609A
JP2020007609A JP2018129600A JP2018129600A JP2020007609A JP 2020007609 A JP2020007609 A JP 2020007609A JP 2018129600 A JP2018129600 A JP 2018129600A JP 2018129600 A JP2018129600 A JP 2018129600A JP 2020007609 A JP2020007609 A JP 2020007609A
Authority
JP
Japan
Prior art keywords
furnace
heating
steel wire
heat
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018129600A
Other languages
Japanese (ja)
Other versions
JP6533885B1 (en
Inventor
山田勝彦
Katsuhiko Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018129600A priority Critical patent/JP6533885B1/en
Application granted granted Critical
Publication of JP6533885B1 publication Critical patent/JP6533885B1/en
Publication of JP2020007609A publication Critical patent/JP2020007609A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

To provide a method for refining steel wire with high efficiency and high quality and an apparatus therefor.SOLUTION: A fluidized bed 8 is used for heating at about 1000°C, quenching at room temperature, and reheating at about 500°C. In order to stabilize surface quality of a steel wire and furnace conditions, both or one of the following processes are performed: 1) a pickling tank 2 is provided before a heating furnace 3, and residual slag on a steel wire 1 is preliminarily pickled and removed, and 2) the fluidized sand of the heating furnace is discharged and washed with acid. High temperature heating of the fluidized bed is made possible, and efficiency of five times or more than that of an atmospheric furnace is realized. In terms of the heat transfer, the heat transfer efficiency is improved and the inefficiency of the heat transfer is reduced as wire diameter is reduced with convection as a main body. The cooling capacity of the fluidized bed at room temperature is more freely adjustable than the oil quenching, and resources can be saved by using the fluidized bed. The heat exhaust gas through a heat resistance blower is used for the fluidization and cascade heat utilization.SELECTED DRAWING: Figure 1

Description

本発明は調質鋼線を効率的に製造する方法と該鋼線を製造する装置に関している。 The present invention relates to a method for efficiently producing a tempered steel wire and an apparatus for producing the steel wire.

調質鋼線とは炭素鋼・低合金鋼の線材を初回熱処理・伸線を経て所定径の素線とし、最終工程の焼入焼戻しによって金属組織を焼戻しマルテンサイトとした高強度の鋼線であって、ばね・ピン・ニードル・シャフト・軸等に供される。
高強度且つ耐疲労性が求められる高級製品である弁ばねやベアリング・ニードル等に対しては高度の材料、高度のプロセス、高度の品質管理を要する。品質が最優先される結果、各工程で省エネルギーや廃棄物削減等環境対策は遅れがちである。
本願発明は上記高級製品を対象に最終の調質工程において従来以上の品質を確保しつつ能率向上・省エネルギー・省資源(廃棄物削減)を図ることを目的とし、実施容易な処理方法及び装置を提供しようとする。
Tempered steel wire is a high-strength steel wire made of carbon steel or low-alloy steel wire that has been subjected to initial heat treatment and wire drawing to form a wire of a predetermined diameter, and the metal structure has been tempered to martensite by quenching and tempering in the final process. And provided to springs, pins, needles, shafts, shafts, etc.
High quality materials, advanced processes, and advanced quality control are required for valve springs, bearing needles, and the like, which are high-grade products that require high strength and fatigue resistance. As a result of the top priority on quality, environmental measures such as energy saving and waste reduction in each process tend to be delayed.
The present invention aims to improve efficiency, save energy, and save resources (reduce waste) while securing higher quality in the final refining process for the above-mentioned high-grade products. Try to offer.

鋼線の焼入焼戻しは直進させつつ加熱・冷却・再加熱の3段を通過して処理される。
生産能率(t/h)の律速は初段の加熱工程にある。約10mm径の太径線では1本でも強力な誘導加熱や直接通電加熱により十分な能率が容易に得られるが、5mm径以下の細径線では能率が著しく低下して該方法の設備費対効果が問題となる。そのため通常多数本通しの燃焼式加熱炉が使用される。約1000℃に加熱される加熱炉では鋼線表面の脱炭を防止するため通常雰囲気制御がなされる。該雰囲気加熱には以下の問題がある。
The quenching and tempering of the steel wire is processed while passing straight through three stages of heating, cooling and reheating.
The rate limiting of the production efficiency (t / h) is in the first heating step. With a large diameter wire having a diameter of about 10 mm, sufficient efficiency can be easily obtained by powerful induction heating or direct current heating, but with a thin wire having a diameter of 5 mm or less, the efficiency is remarkably reduced and the equipment cost of the method is reduced. The effect is a problem. For this reason, a multi-line combustion type heating furnace is usually used. In a heating furnace heated to about 1000 ° C., the atmosphere is usually controlled to prevent decarburization of the steel wire surface. The heating in the atmosphere has the following problems.

1) 燃焼式加熱炉は電気加熱や鉛浴・塩浴加熱と比較し原理的に伝熱能(kcal/m2h)が小さい。従って必要炉長が長くなってスペースと熱損に不利となる。
2) 上流工程の伸線において潤滑のための表面処理であるリン酸亜鉛被膜の付着残滓が分解還元され、溶融ZnやZn蒸気が発生し、これが鋼線表面に極めて有害な欠陥を形成する。その結果顧客から該表面処理が禁止され、能率・コスト面で極めて劣る石灰水処理やショットピーニング処理等が代用されている。
3) 雰囲気制御のコストが意外に高い。不活性ガスの消費だけでなく耐熱鋼材の耐久にも問題がある。
4) 鋼線は保護管内を通過するので伝熱は対流が無く放射のみとなる。多数本を纏めて貫通させるマッフル炉においても対流は実質生じない。熱伝達率は線径と無関係になり加熱冷却速度は単純に線径に反比例することになる。その結果炉内を通過する線速Vは線径Dに反比例して設定され、その結果生産能率は線径に比例することになり、細径では急速に低下する。通常該不都合は当然のことであるから問題とされていないが本発明では細径品増加時の能率低下をも問題とする。
1) Combustion furnaces have a small heat transfer capacity (kcal / m2h) in principle compared to electric heating and lead bath / salt bath heating. Therefore, the required furnace length becomes longer, which is disadvantageous for space and heat loss.
2) In the wire drawing in the upstream process, the adhesion residue of the zinc phosphate film, which is a surface treatment for lubrication, is decomposed and reduced to generate molten Zn or Zn vapor, which forms extremely harmful defects on the steel wire surface. As a result, the surface treatment is prohibited by customers, and lime water treatment, shot peening treatment, and the like, which are extremely inefficient in terms of efficiency and cost, are substituted.
3) The cost of atmosphere control is unexpectedly high. There is a problem not only in the consumption of the inert gas but also in the durability of the heat-resistant steel.
4) Since the steel wire passes through the protection tube, the heat transfer is radiative without convection. Convection does not substantially occur even in a muffle furnace in which a large number of tubes are penetrated. The heat transfer coefficient is independent of the wire diameter, and the heating / cooling rate is simply inversely proportional to the wire diameter. As a result, the linear velocity V passing through the furnace is set in inverse proportion to the wire diameter D, and as a result, the production efficiency is proportional to the wire diameter, and decreases rapidly at a small diameter. Usually, the inconvenience is naturally not taken as a problem, but in the present invention, a problem also arises in that the efficiency is reduced when the small-diameter product is increased.

かつて伝熱性の大きい鉛浴・塩浴も試行されたが両者とも約1000℃の加熱環境では作業トラブルが絶えず、しかも汚染問題がつきまとい廃れている。鋼線表面と異様なスラグとが反応して品質が低下する、耐熱鋼の容器と液面の酸化鉛が反応して腐食漏湯する、塩浴中に酸化鉄が混入して浴底で酸化反応して孔蝕漏湯が発生する等々が経験された。   In the past, lead baths and salt baths with high heat conductivity have been tried, but both have a trouble of working in a heating environment of about 1000 ° C., and have been abolished with pollution problems. The steel wire surface reacts with the strange slag to reduce the quality, the heat-resistant steel container reacts with the lead oxide on the liquid surface to cause corrosion and leakage, and the iron oxide is mixed in the salt bath and oxidized at the bottom of the bath Reactions caused pitting leaks and the like.

近年流動床炉が約650℃以下限定で急速加熱炉として普及している。該炉は炉内壁にバーナーを設け、炉床に砂層を数100mm堆積させ、炉床を通過して送風し該層を流動化させて熱媒体としたものである。
900℃以上の試験では、鋼の酸化に伴って生成した酸化鉄と流動砂とが反応して焼結し砂が団子状になる、伸線潤滑剤として多用されるステアリン酸Ca(金属石鹸)が炉内で分解し、有機分は燃焼するがアルカリ・アルカリ土はリン酸PO4と反応して焼結や付着が起こる、硼酸Naが使用された場合にはガラス状の低融点化合物が鋼線表面に付着し品質劣化を誘発する等々問題が多く未だ実用されていない。以上から1000℃に耐える急速加熱方法が期待される。
In recent years, fluidized bed furnaces have become widespread as rapid heating furnaces at a temperature of about 650 ° C. or lower. In this furnace, a burner is provided on the inner wall of the furnace, a sand layer of several hundred mm is deposited on the hearth, and is blown through the hearth to fluidize the layer and serve as a heat medium.
In the test at 900 ° C. or higher, iron oxide generated with the oxidation of steel reacts with fluidized sand and sinters to form a sand. Ca stearic acid (metal soap), which is frequently used as a wire drawing lubricant Decomposes in the furnace and organic components burn, but alkali and alkaline earth react with PO4 phosphate to cause sintering and adhesion. When Na borate is used, a glassy low melting point compound is used as a steel wire. There are many problems such as sticking to the surface and inducing quality deterioration, and it has not been put to practical use yet. From the above, a rapid heating method that can withstand 1000 ° C. is expected.

次段の室温までの冷却では、単線なら精密冷却装置を構成して水焼入が可能であり品質・コスト・汚染に有利である。多数本では煩雑であるため通常油焼入が適用される。
油焼入では沸騰現象が関係し、高温から約600℃までは膜沸騰により穏当に冷却され、600〜400℃では核沸騰によりかなりの急冷によってパーライト変態を避け、400℃以下では対流伝熱により緩冷却となってマルテンサイト変態時のワレ発生を抑制し、使い易いのが特徴である。
他方品質に問題が無くても火災・悪臭・床滑り・油質劣化等作業環境とコストに問題が多い。
In the next stage of cooling to room temperature, a single wire can constitute a precision cooling device and water quenching is possible, which is advantageous for quality, cost and contamination. Oil quenching is usually applied because many books are complicated.
In oil quenching, a boiling phenomenon is involved. From high temperature to about 600 ° C, it is moderately cooled by film boiling, and at 600 to 400 ° C, nucleate boiling avoids pearlite transformation by considerable quenching. It is characterized by slow cooling, suppressing cracking during martensitic transformation, and easy to use.
On the other hand, even if there is no problem in quality, there are many problems in work environment and cost such as fire, odor, floor slip, and oil quality deterioration.

特許文献1には常温流動床が油焼入の代替になることが開示されている。流動床の熱伝達率は温度依存性がなくほぼ一定であって、油よりも大きい水準にある。従って間欠接触を巧みに組み込めば自在の冷却過程を経ることができる。実施例は無いが省資源と安全の観点から活用したい冷却方法である。   Patent Document 1 discloses that an ordinary temperature fluidized bed is an alternative to oil quenching. The heat transfer coefficient of the fluidized bed is almost constant without temperature dependence and is at a level higher than that of oil. Therefore, if the intermittent contact is skillfully incorporated, a free cooling process can be performed. Although there is no embodiment, this is a cooling method that is desired to be utilized from the viewpoint of resource saving and safety.

第3段の約500℃への再加熱において、最近では炉長短縮と均熱性をねらって流動床炉が多用される。熱伝達率の値は約1000(kcal/m2h℃)が例示されかなり大きい。
実操業において上流側から変な異物が鋼線に付着して流入しない限り650℃以下では十分な耐久がある。
In the third stage of reheating to about 500 ° C., recently, a fluidized bed furnace is frequently used in order to shorten the furnace length and to maintain uniformity. The value of the heat transfer coefficient is, for example, about 1000 (kcal / m2h ° C.), which is considerably large.
In actual operation, there is sufficient durability at 650 ° C. or lower unless strange foreign matter adheres to the steel wire and flows in from the upstream side.

問題は流動化に使用する空気量が相当大きくて処理鋼線の質量の同桁になり、従って加熱効率(=理論必要熱量/消費熱量)が極めて小さい(通常の加熱炉の半減)ことである。熱排ガスを耐熱送風機により流動ガスに回帰させる案は古くからあるが価格と性能と耐久で便利なものがない。
特許文献2には自動車用ターボチャージャーを転用して熱風循環する方法が開示されている。大いに活用したい省エネルギー手段である。
The problem is that the amount of air used for fluidization is so large that it is on the same order of magnitude as the mass of the treated steel wire, and therefore the heating efficiency (= theoretical heat consumption / heat consumption) is extremely small (half the amount of a normal heating furnace). . There has been a plan for returning heat exhaust gas to flowing gas with a heat-resistant blower for a long time, but there is no price, performance, durability and convenience.
Patent Literature 2 discloses a method of circulating hot air by diverting an automotive turbocharger. This is an energy-saving measure that we want to make great use of.

多数本通しの熱処理炉では単一品種・単一線径のみの操業がやり易いが、通常製品構成は線径や鋼種が混在している。細径に集中すると能率低下、太径のみにしても負荷過剰で本来の能力は超えられない。全体の効率低下をもたらす。多品種小ロット生産を無理なく進めるためには異なった処理条件を併行処理するのが望ましい。
特許文献1にはパス毎に実効炉長を調節可能にして一つの炉温において異なる温度に加熱する方法が開示されている。総合コスト低減に活用したい手段である。
In a multi-through heat treatment furnace, it is easy to operate only a single product type and a single wire diameter, but the product configuration usually includes a mixture of wire diameters and steel types. Efficiency is reduced when concentrated on a small diameter, and even if only a large diameter is used, the original capacity cannot be exceeded due to excessive load. This leads to a decrease in overall efficiency. It is desirable to perform parallel processing under different processing conditions in order to advance multi-product small lot production without difficulty.
Patent Literature 1 discloses a method in which the effective furnace length is adjustable for each pass and heating is performed at different temperatures at one furnace temperature. This is a means that we want to use to reduce overall costs.

特許第6030801号Patent No. 6030801 特許第5580466号Patent No. 5580466

高品質の細径調質鋼線を多数本通し、多品種小ロット、且つコスト有利に製造する方法と装置において、初段の加熱工程では1)適切な高速加熱方法が無く通常バーナーを設けた加熱炉が使用され炉長と加熱効率に問題がある。2)脱炭防止のため雰囲気制御がなされるが、その際上流の伸線工程において最良の潤滑処理であるリン酸亜鉛被膜処理が当該工程では有害となって使用できない。3)生産能率が放射加熱故に細径ほど比例的に低下すると言う問題がある。
次段の冷却では油焼入は品質に良いが作業環境とコストに不利がある。代替策として常温流動床が提案されているが実績は無い。
第3段の再加熱では加熱速度の大きい流動床炉が使用されているが流動用送風が加熱効率を半減以下にしている。熱排ガスを送風に転用する策が提案されているが実績は無い。
In a method and an apparatus for producing a large number of high-quality fine-diameter refined steel wires through many kinds, small lots, and cost-effectively, in the first stage heating step, 1) heating without a suitable high-speed heating method and usually equipped with a burner A furnace is used and there is a problem with the furnace length and heating efficiency. 2) Atmosphere control is performed to prevent decarburization. At this time, the zinc phosphate coating treatment, which is the best lubrication treatment in the upstream drawing process, is harmful in this process and cannot be used. 3) There is a problem that the smaller the diameter, the lower the production efficiency is due to radiant heating.
In the next stage of cooling, oil quenching is good for quality but disadvantageous for work environment and cost. A room temperature fluidized bed has been proposed as an alternative, but there is no record.
In the third stage of reheating, a fluidized bed furnace having a high heating rate is used, but the blowing air reduces the heating efficiency to less than half. A measure to divert the heat exhaust gas to the blast has been proposed, but there is no record.

本願発明は、従来よりも省資源・省エネルギーに優れ、生産能率の高い調質鋼線の製造方法と製造装置を提供することを目的とし、流動床を加熱・冷却・再加熱に対して効果的に適用可能とすることを解決すべき課題とする。   An object of the present invention is to provide a method and an apparatus for producing a tempered steel wire which is more resource-saving and energy-saving than before and has a high production efficiency, and is effective for heating, cooling and reheating a fluidized bed. The problem to be solved is to make it applicable to

上記課題解決のため従来明解でなかった流動床炉における伝熱特性を理論と実験から明らかにして加熱・冷却の効率化を図り、従来成功していない高温流動床炉の作業問題を観察と知見から対策を講じて以下の発明をなした。   In order to solve the above-mentioned problems, the heat transfer characteristics of fluidized bed furnaces, which had not been clarified before, were clarified from theory and experiments to improve the efficiency of heating and cooling, and observation and knowledge of work problems with high-temperature fluidized bed furnaces, which had not been successful until now, were found. Invented the following invention by taking measures.

第1の発明は、鋼線を走行させて加熱・冷却・再加熱して調質鋼線を製造する方法において、流動床炉によって加熱する際、1)鋼線を該流動床炉の直前に設けた酸洗槽に通過させて該鋼線の表面付着物を除去する、2)該流動床炉を構成する熱媒体の砂を適宜炉外に排出して酸により洗浄した後炉内に回帰させるの両方又はどちらか一方の処理を施すことを特徴とする調質鋼線の製造方法である。   A first invention is a method for producing a tempered steel wire by running, heating, cooling, and reheating a steel wire, wherein when the steel wire is heated by a fluidized-bed furnace, 1) immediately before the fluidized-bed furnace, The steel wire is passed through an provided pickling tank to remove deposits on the surface of the steel wire. 2) Sand of a heating medium constituting the fluidized-bed furnace is appropriately discharged outside the furnace, washed with acid, and then returned to the furnace. And / or performing either one of the treatments.

第2の発明は、熱媒体を流動砂とする流動床を持つ加熱炉・冷却槽・再加熱炉とから成る平行多数本通しの調質鋼線の製造装置であって、加熱炉前には鋼線表面の付着物を除去する酸洗槽を設け、加熱炉には該炉を850℃以上に加熱する熱源と流動化送風源と実効炉長を調節する鋼線遮蔽管とを設け、さらに必要に応じて砂を排出し酸によって洗浄し炉内に回帰させる洗浄装置を附設し、冷却槽には流動床の温度を100℃以下に維持する冷却水配管と室温流動化送風源と熱伝達率を調節する流動化送風量調節弁とを設け、再加熱炉には前記加熱炉の熱排ガスを主熱源とする誘導管と補助熱源としてのバーナーもしくは抵抗発熱体と流動化送風源と実効炉長を調節する鋼線遮蔽管とを設け、熱排ガスを耐熱送風機を介して加熱炉・再加熱炉の流動化送風源としたことを特徴とする調質鋼線の製造装置である。   The second invention is an apparatus for producing a multi-pass heat treated steel wire comprising a heating furnace having a fluidized bed in which a heat medium is fluidized sand, a cooling tank, and a reheating furnace. A pickling tank for removing deposits on the surface of the steel wire is provided, and the heating furnace is provided with a heat source for heating the furnace to 850 ° C. or higher, a fluidizing blast source, and a steel wire shielding tube for adjusting the effective furnace length. A cleaning device for discharging sand, cleaning with acid, and returning to the furnace as necessary, is installed. The cooling tank is equipped with a cooling water pipe that keeps the temperature of the fluidized bed below 100 ° C, a room temperature fluidizing blast source, and heat transfer. A flow control valve for adjusting the air flow rate; a reheating furnace having an induction pipe having heat exhaust gas from the heating furnace as a main heat source, a burner or a resistance heating element as an auxiliary heat source, a fluidizing air supply source, and an effective furnace. With a steel wire shielding tube to adjust the length, heat exhaust gas is heated and reheated through a heat-resistant blower. It was fluidized blowing source is an apparatus for producing a microalloyed steel wire according to claim.

第3の発明は、鋼線の酸洗液が塩酸又は硫酸又は硝酸のどれか1種であり、熱媒体の砂の成分がアルミナ(Al23)又はジルコン(ZrO・SiO2)又は炭化珪素(SiC)のどれか単一種であることを特徴とする第2発明に記載した調質鋼線の製造装置である。 According to a third aspect of the present invention, the pickling solution for the steel wire is any one of hydrochloric acid, sulfuric acid and nitric acid, and the sand component of the heat medium is alumina (Al 2 O 3 ), zircon (ZrO.SiO 2 ) or carbonized. An apparatus for producing a tempered steel wire according to the second invention, wherein the apparatus is any one of silicon (SiC).

従来流動床炉では鋼線表面に付着している異物が約1000℃の流動床に持ち込まれると、該異物と鋼線・熱媒体の砂・炉体耐火物・炉体金属等とが反応し鋼線品質劣化や炉体に種々の故障や面倒を引き起こし耐用されていないが、本発明では加熱直前の鋼線の酸洗によって又は炉内の砂の酸洗浄によって該異物が除去され、流動床加熱炉が該高温へ適用することが可能になる。   In a conventional fluidized bed furnace, when foreign matter adhering to the steel wire surface is brought into the fluidized bed at about 1000 ° C., the foreign matter reacts with the steel wire, heat medium sand, furnace body refractory, furnace body metal, etc. Although the steel wire quality deteriorates and causes various troubles and troubles in the furnace body, it is not used. However, in the present invention, the foreign matter is removed by pickling the steel wire immediately before heating or by pickling the sand in the furnace, and the fluidized bed is removed. A heating furnace can be applied to the high temperature.

流動床の伝熱特性を理論及び実測から解明し、熱伝達率αの値が線径Dの0.4乗に反比例すること見い出し、本発明に応用した。
1) 通常の燃焼式加熱炉では伝熱の大部分が放射であり、その場合熱伝達率αは線径の影響を受けない。生産能率は線径Dに比例し、細径品ほど能率は比例的に低下する。流動床では対流が主体となってα値は線径Dの影響を受け細径で急速に増加する。能率の低下は線径の0.6乗に比例して軽減される。細径品の加熱には一層効果的である。
The heat transfer characteristics of the fluidized bed were clarified from theory and actual measurements, and it was found that the value of the heat transfer coefficient α was inversely proportional to the 0.4th power of the wire diameter D, and applied to the present invention.
1) In a normal combustion type heating furnace, most of the heat transfer is radiation, in which case the heat transfer coefficient α is not affected by the wire diameter. The production efficiency is proportional to the wire diameter D, and the smaller the diameter, the lower the efficiency in proportion. In a fluidized bed, convection is mainly involved, and the α value increases rapidly at a small diameter under the influence of the wire diameter D. The decrease in efficiency is reduced in proportion to the 0.6th power of the wire diameter. It is more effective for heating small diameter products.

2) 加熱速度は雰囲気炉の約5倍以上となって脱炭は加熱時間の短縮により発生しない。多少の酸化膜の形成はばね巻き等の加工に際して摩擦の安定に寄与して必ずしも不都合ではない。雰囲気制御を要しない。
3) 必要炉長が短縮されエネルギー効率も向上する。
4) 冷却槽の冷媒が油から砂に変更されるので作業環境の改善、省資源に寄与する。冷媒の劣化もなく品質管理が安定する。流動床故に冷却能は焼入油よりも上下に自在に調節可能である。
2) The heating rate is about 5 times or more that of the atmosphere furnace, and decarburization does not occur due to shortening of the heating time. The formation of a small amount of oxide film is not always inconvenient because it contributes to stabilization of friction during processing such as spring winding. No atmosphere control is required.
3) The required furnace length is shortened and energy efficiency is improved.
4) Since the refrigerant in the cooling tank is changed from oil to sand, it contributes to improvement of working environment and resource saving. Quality control is stable without deterioration of the refrigerant. Because of the fluidized bed, the cooling capacity can be adjusted up and down more freely than the quenching oil.

加熱炉の熱排ガスがカスケード式に再加熱炉に活用されると共に熱排ガスの一部を耐熱送風機により吸引加圧して加熱炉・再加熱炉の流動化送風源とされるので加熱効率が著しく向上し、省エネルギーに寄与する。総合してコスト低減が図られる。   The heat exhaust gas from the heating furnace is used in a reheating furnace in a cascade manner, and a part of the heat exhaust gas is suctioned and pressurized by a heat-resistant blower to be used as a fluidized air supply source for the heating furnace and reheating furnace, so the heating efficiency is significantly improved. And contribute to energy saving. Overall, cost reduction is achieved.

本発明の調質鋼線の製造装置の概略構造を示す。The schematic structure of the manufacturing apparatus of the tempered steel wire of the present invention is shown. 本発明における加熱・冷却・再加熱の処理条件を多様化させる方法を示す。The method for diversifying the processing conditions of heating, cooling and reheating in the present invention will be described. 本発明に使用される流動床の熱伝達率と線径の関係図である。FIG. 3 is a diagram showing the relationship between the heat transfer coefficient and the wire diameter of the fluidized bed used in the present invention. 本発明における鋼線の昇温線を示す。1 shows a heating wire of a steel wire in the present invention.

以下本発明の調質鋼線の製造方法を実施する装置を図1に従って説明する。該装置は主に酸洗槽2とそれぞれ流動床を保有する約1000℃の加熱炉3と室温の冷却槽4と約500℃の再加熱炉5とから成り、鋼線1は多数本が水平平行に上記順に通過して鋼線表面を清浄化した後焼入焼戻しがなされる。
流動床とは約100μm径の砂を炉床の通気板上に約300mm堆積させ、該通気板を通して空気を吹き込み、該堆積層を膨張・流動化させた外見液状の熱媒体であり、流動床を組み込んだ流動床炉は鉛浴・塩浴に準ずる伝熱性の大きな加熱炉として約650℃以下の加熱用、約500℃の冷却用(パテンティング)等に使用されている。
Hereinafter, an apparatus for implementing the method for producing a tempered steel wire of the present invention will be described with reference to FIG. The apparatus mainly comprises a pickling tank 2, a heating furnace 3 at about 1000 ° C. each having a fluidized bed, a cooling tank 4 at room temperature, and a reheating furnace 5 at about 500 ° C. After passing in parallel in the above order to clean the surface of the steel wire, quenching and tempering are performed.
The fluidized bed is an apparent liquid heat medium in which sand having a diameter of about 100 μm is deposited about 300 mm on a ventilation plate of a hearth, air is blown through the ventilation plate, and the deposited layer is expanded and fluidized. A fluidized-bed furnace in which is incorporated is used as a heating furnace having a high heat conductivity equivalent to that of a lead bath or a salt bath, for heating at about 650 ° C. or less, for cooling (patenting) at about 500 ° C., and the like.

前段の酸洗槽は以下の機能を持つ。既述のように鋼線の付着残滓はリン酸亜鉛、ステアリン酸Ca、硼酸Na等がある。加熱と熱分解によりPO4、ZnO、NaO・B2O3、CaO等の酸化物が生成する。雰囲気により前3者は容易に還元され製品表面を劣化させる。流動床炉では直上に火炎があるので雰囲気は酸化性である。線速が大きいので酸化膜厚は小さいが生成した一部は炉内に脱落して新たに酸化物FeOが加わる。流動砂を含め酸性・還元性の酸化物が約1000℃の高温故に種々に反応し、融点低下により凝結現象が発生、砂が固まる、炉体の一部や鋼線表面に付着して種々のトラブルのもととなる。これが高温流動床が実用化されていない理由である。前記化合物は酸により事前に容易に溶解分離することができる。うまくやれば数秒ないし10数秒の処理により付着残滓は除去される。   The former pickling tank has the following functions. As described above, the adhesion residue of the steel wire includes zinc phosphate, Ca stearate, and sodium borate. Oxides such as PO4, ZnO, NaO.B2O3, and CaO are generated by heating and thermal decomposition. The former three are easily reduced by the atmosphere and deteriorate the product surface. In a fluidized bed furnace, the atmosphere is oxidizing because there is a flame right above. Since the linear velocity is high, the oxide film thickness is small, but a part of the oxide film falls into the furnace and FeO is newly added. The acidic and reducing oxides, including fluidized sand, react variously due to the high temperature of about 1000 ° C, causing the coagulation phenomenon due to the lowering of the melting point, causing the sand to solidify, adhering to a part of the furnace body and the surface of the steel wire, and causing various reactions. It can be a source of trouble. This is why high temperature fluidized beds have not been put into practical use. The compound can be easily dissolved and separated in advance with an acid. If done well, the adhesion residue is removed by a process of several seconds to ten and several seconds.

初段の加熱炉3には底部に送風室6、該送風室6の天井に耐火性通気板7,該通気板7上に流動床8、炉の天井にバーナー9及び煙道10が設けられる。さらに炉の出口近傍に流動砂の排出孔11,入り口近傍に洗浄した流動砂の装入孔12が設けられる。排出した砂はフィルターと酸洗槽と脱水装置とから成る洗浄装置13により砂に混入した異物を分別し溶解して除去し、装入孔に回帰させる。排出と回帰は連続式でも間欠式でも良い。流動床加熱炉の特徴は鋼線との間の熱伝達率が極めて大きく高速加熱となることであるが本発明によりこれが作業上安定して得られることである。   The heating furnace 3 in the first stage is provided with a ventilation chamber 6 at the bottom, a refractory ventilation plate 7 on the ceiling of the ventilation chamber 6, a fluidized bed 8 on the ventilation plate 7, a burner 9 and a flue 10 on the ceiling of the furnace. Further, a discharge hole 11 for liquid sand is provided near the outlet of the furnace, and a charging hole 12 for washed liquid sand is provided near the entrance. The discharged sand is subjected to a cleaning device 13 including a filter, a pickling tank, and a dehydrator to separate, dissolve and remove foreign matter mixed in the sand, and return to a charging hole. Ejection and regression may be continuous or intermittent. The feature of the fluidized-bed heating furnace is that the heat transfer coefficient between the steel wire and the steel wire is extremely large, so that high-speed heating is achieved.

次段の冷却槽4は鋼板製の槽内に送風室14と流動床15と該流動床15を約100℃以下に維持する水冷配管16と圧力調整弁17を持つ室温送風機18とが設けられる。槽の上方は開放されていて容易に線温その他を点検することができる。
流動床冷却の特徴は焼入油と同等以上の冷却能を持つこと、該冷却能に変な温度依存性が無く安定していることである。従って冷却能を適宜抑制することによりいかようの冷却過程をも容易に設定することができる。
The cooling tank 4 in the next stage is provided with a blower chamber 14, a fluidized bed 15, a water cooling pipe 16 for maintaining the fluidized bed 15 at about 100 ° C. or less, and a room temperature blower 18 having a pressure regulating valve 17 in a steel plate tank. . The upper part of the tank is open so that the wire temperature and other information can be easily checked.
Characteristics of fluidized-bed cooling are that it has a cooling capacity equal to or higher than that of quenching oil, and that the cooling capacity is stable without strange temperature dependence. Therefore, any cooling process can be easily set by appropriately suppressing the cooling capacity.

第3段の再加熱炉5は加熱炉3とほぼ同様の構造であるが、砂の回収・洗浄・回帰装置は無い。天井には加熱炉3からの煙道10と補助バーナー19が、又は補助抵抗発熱体20が流動床内に設けられる。炉側には加熱炉3の煙道10から分岐して熱排ガスを吸引・加圧して加熱炉3及び再加熱炉5の送風室に熱風を供給する耐熱送風機0が設けられる。熱風送風により従来のような炉の冷却が避けられ加熱効率の約倍増が得られる。   The third-stage reheating furnace 5 has substantially the same structure as the heating furnace 3, but does not include a sand collecting / washing / returning device. On the ceiling, the flue 10 from the heating furnace 3 and the auxiliary burner 19 or the auxiliary resistance heating element 20 are provided in the fluidized bed. On the furnace side, a heat-resistant blower 0 that branches from a flue 10 of the heating furnace 3 and sucks and pressurizes hot exhaust gas to supply hot air to the blowing chambers of the heating furnace 3 and the reheating furnace 5 is provided. The hot air blowing avoids the conventional cooling of the furnace, and approximately doubles the heating efficiency.

図2は複数の鋼線が走行する際、鋼線の加熱温度と冷却速度を個別に調節する方法を説明する図である。
加熱温度の異なる鋼線を併行処理する場合、炉温は最高温度の品種に合わせ、低い方の鋼線は実効炉長を短縮して加熱時間を短くする。到達加熱温度が低下する。具体的には加熱炉3を通る鋼線1を耐熱保護管21の中に通し、該保護管21の炉内への侵入長さを適宜設定する。鋼線1は管内では炉温に等しい管壁からの放射加熱のみとなり低速加熱になる。管の出し入れは上流側から行う。
FIG. 2 is a diagram for explaining a method of individually adjusting the heating temperature and the cooling rate of the steel wires when the plurality of steel wires travel.
When steel wires with different heating temperatures are processed in parallel, the furnace temperature is adjusted to the type of the highest temperature, and the lower steel wire shortens the effective furnace length to shorten the heating time. The ultimate heating temperature decreases. Specifically, the steel wire 1 passing through the heating furnace 3 is passed through the heat-resistant protective tube 21, and the length of penetration of the protective tube 21 into the furnace is appropriately set. In the steel wire 1, only radiant heating from the tube wall equal to the furnace temperature occurs in the tube, resulting in slow heating. Pipes are taken in and out from the upstream side.

冷却条件が異なる場合には種々の方法で対処することができる。1)鋼線1周囲に適宜間欠遮蔽管22を上方から着脱し所定の冷却に誘導する。2)送風室・流動室に前後左右に隔壁を設け個別に送風量を設定する。
再加熱温度が異なる場合、加熱炉と同様に炉温を加熱温度最高の品種の温度に設定し、それよりも低い加熱温度の鋼線には耐熱保護管23を適当な長さに下流側から装着する。
When the cooling conditions are different, various methods can be used. 1) The intermittent shielding tube 22 is appropriately attached and detached from above from around the steel wire 1 to induce predetermined cooling. 2) Partition walls are provided in the front and rear and left and right sides of the blower chamber and the flow chamber, and the amount of blown air is individually set.
When the reheating temperature is different, the furnace temperature is set to the temperature of the type having the highest heating temperature as in the heating furnace, and the heat-resistant protective tube 23 is set to an appropriate length for the steel wire having a lower heating temperature from the downstream side. Installing.

鋼線の酸洗が無い場合でも砂を適切に洗浄して常時異物を除去しておけば有効な対策になる。両方を実施するのが望ましい。異物除去は流動床を高温で使用する場合の不可欠条件となる。
鋼線の酸洗及び流動砂の洗浄に使用する酸は塩酸・硫酸・硝酸のどれか単一酸が適切である。熱媒体となる砂には炉温約1000℃において反応しにくい物質を選択する。一般的なジルコン(ZrO・SiO2)の他にアルミナ(Al2O3)、炭化珪素(SiC)等を単体で使用する。炉体耐火物にも同様の注意を要する。
Even if there is no pickling of the steel wire, it is an effective measure if the sand is properly washed and foreign substances are constantly removed. It is desirable to do both. Debris removal is an essential condition when using fluidized beds at high temperatures.
As the acid used for pickling steel wire and cleaning fluidized sand, one of hydrochloric acid, sulfuric acid and nitric acid is appropriate. As the sand as the heat medium, a substance that is difficult to react at a furnace temperature of about 1000 ° C. is selected. In addition to general zircon (ZrO.SiO2), alumina (Al2O3), silicon carbide (SiC) or the like is used alone. Similar precautions are required for furnace body refractories.

吹込み空気量(空塔速度m3/分/m2)によって鋼線と流動床との間の熱伝達率は変動する。風量の増加につれ比例的に増加しある水準で平坦になり通常その水準で使用するが冷却の場合風量を下げて適切な冷却速度としても良い。
加熱の場合と冷却の場合とで適切な空塔速度はほぼ同等であるがガスの熱膨張が絡むので送風量は異なる。
The heat transfer coefficient between the steel wire and the fluidized bed varies depending on the amount of blowing air (superficial velocity m3 / min / m2). As the air flow increases, it increases proportionally, becomes flat at a certain level, and is usually used at that level. However, in the case of cooling, the air flow may be reduced to an appropriate cooling rate.
The appropriate superficial superficial velocity in the case of heating and in the case of cooling are almost the same, but the blowing amount is different because the thermal expansion of gas is involved.

流動床の伝熱性について解析する。下記文献に流動層(文献では『流動層』と記述されている)に関する伝熱性が多くの文献から引用されて詳述されているがはなはだ解りにくい。流体力学と伝熱工学の基礎式から実用式を誘導し、実測値から固める方法を採用した。
文献;吉田正彦、実用熱工学、P.1108~P.1113、栗田出版社
Analyze the heat conductivity of the fluidized bed. Although the heat transfer properties of a fluidized bed (described as "fluidized bed" in the literature) are cited and described in detail in many of the following documents, they are difficult to understand. Practical formulas were derived from the basic formulas of fluid mechanics and heat transfer engineering, and the method of solidifying from the measured values was adopted.
Literature: Masahiko Yoshida, Practical Thermal Engineering, P.1108-P.1113, Kurita Publishing Company

熱伝達率αは無次元熱伝達率であるヌセルト数Nuから誘導される。
Nu=α・D/λ, α=Nu・λ/D −−−−−(1)
ヌセルト数Nuは流動状態を示す無次元のレイノルズ数Re、流体の物性を表すプラントル数Prに関係する。
Nu=C・Rem・Prn(Pro/Prw)p −−−−−(2)
Re=V・D/(μ/ρ) −−−−−(3)
Pr=c・μ/λ −−−−−(4)
(1)、(2)式から次式が誘導される。
α=kD(m-1) −−−−−(5)
(5)式と下記定数からから熱伝達率αは線径Dの0.4乗に反比例する。即ち対流伝熱では放射と異なり線径が小さくなるほど急速に熱伝達率が大きくなる。
定数C、m、n、p はRe数に依存して以下の値になる。
Re数 C m n p
1 ~40 0.75 0.4 0.37 0.25
40 ~1000 0.51 0.5 0.37 0.25
1000~200000 0.26 0.6 0.37 0.25
D;線径 λ;熱伝導率 c;比熱 μ;粘性率 ρ;密度 Pro;主流Pr数
Prw;壁面Pr数 k;比例定数
The heat transfer coefficient α is derived from the Nusselt number Nu, which is a dimensionless heat transfer coefficient.
Nu = α · D / λ, α = Nu · λ / D (1)
The Nusselt number Nu is related to the dimensionless Reynolds number Re indicating the flow state and the Prandtl number Pr indicating the physical properties of the fluid.
Nu = C ・ Rem ・ Prn (Pro / Prw) p −−−−− (2)
Re = V · D / (μ / ρ) −−−−− (3)
Pr = c · μ / λ −−−−− (4)
The following equation is derived from equations (1) and (2).
α = kD (m-1) ----- (5)
From the equation (5) and the following constant, the heat transfer coefficient α is inversely proportional to the wire diameter D raised to the 0.4th power. That is, in convection heat transfer, unlike radiation, the heat transfer coefficient increases rapidly as the wire diameter decreases.
The constants C, m, n, and p have the following values depending on the Re number.
Re number C mnp
1 to 40 0.75 0.4 0.37 0.25
40 ~ 1000 0.51 0.5 0.37 0.25
1000 ~ 200000 0.26 0.6 0.37 0.25
D; wire diameter λ; thermal conductivity c; specific heat μ; viscosity ρ; density Pro; number of mainstream Pr
Prw; number of wall Pr k; proportional constant

計算に当たって流動床の物性値である比熱・熱伝導率・粘性率が不明であるが、砂層の膨張率から前二者の概算値を求めることができ、粘性は空気と同水準と見なされる。
図3は上記計算式によって得られた熱伝達率αと線径Dとの関係を示す。図中に描いた断片的な実測値は計算式と多少乖離しているが線径が小さいほどαが大きくなることは明解である。実際の熱伝達率αtの値には上記対流分αに高温砂からの放射分αrが加わる。放射分の平均値は約150(kcal/m2h℃)である。計算値は実測値に近似し本方法による解析はほぼ実用と見なすことができる。
αt=α+αr −−−−−(6)
αr≒150
ちなみに前記放射αrは雰囲気加熱炉の熱伝達率と同一である。流動床では熱伝達率は4〜9倍に増大することが解る。
In the calculation, the physical properties of the fluidized bed, that is, specific heat, thermal conductivity, and viscosity, are unknown, but the approximate values of the former can be obtained from the expansion coefficient of the sand layer, and the viscosity is considered to be the same level as air.
FIG. 3 shows the relationship between the heat transfer coefficient α and the wire diameter D obtained by the above equation. Although the fragmentary actual measurement values drawn in the figure slightly deviate from the calculation formula, it is clear that the smaller the wire diameter, the larger α becomes. The radiation value αr from the hot sand is added to the convection component α to the actual value of the heat transfer coefficient αt. The average value of the radiation is about 150 (kcal / m2h ° C). The calculated value approximates the measured value, and the analysis by this method can be regarded as practical.
αt = α + αr ------ (6)
αr ≒ 150
Incidentally, the radiation αr is the same as the heat transfer coefficient of the atmosphere heating furnace. It can be seen that in the fluidized bed the heat transfer coefficient increases 4 to 9 times.

熱伝達率の増大は加熱速度の増加、加熱時間の短縮を意味する。熱伝達率αの値が解れば鋼線の加熱・冷却速度は次式によって求められる。計算によって得られた加熱線図を図4に示す。
dθ/dt=4α(θ−θo)/cρD −−−−−(7)
線径5mm以下では必要加熱時間は数10秒以下である。このような短時間では多少の酸化は生じても脱炭が生成するだけの時間は無い。誘導加熱と同様雰囲気制御は不要になる。同様に炉長は大きく短縮され新規の酸洗槽を含めても従来よりも短縮される。
冷却曲線は図4の上下逆の形になり、両者とも初期温度から周辺温度(炉温又は冷媒温度)への指数漸近線となる。
An increase in the heat transfer rate means an increase in the heating rate and a reduction in the heating time. If the value of the heat transfer coefficient α is known, the heating / cooling rate of the steel wire can be obtained by the following equation. FIG. 4 shows the heating diagram obtained by the calculation.
dθ / dt = 4α (θ−θo) / cpD (7)
When the wire diameter is 5 mm or less, the required heating time is several tens seconds or less. In such a short time, there is not enough time for decarburization to occur even if some oxidation occurs. As in the case of induction heating, atmosphere control becomes unnecessary. Similarly, the furnace length is greatly reduced, and the length of the furnace is shortened even if a new pickling tank is included.
The cooling curve is upside down in FIG. 4, and both are exponential asymptote from the initial temperature to the ambient temperature (furnace temperature or refrigerant temperature).

熱伝達率αが鋼線の生産能率にどの様に作用するか説明する。
生産能率Pは次式によって示される。
P=πρD2V/4 −−−−−(8)
線速Vは炉長Lを通過時間t(=加熱時間)で除したものである。
V=L/t −−−−−(9)
加熱時間は加熱温度Θを平均加熱速度θ’で除したものである。
t=Θ/θ’ −−−−(10)
平均加熱速度θ’は最大加熱速度の半分である。
θ’=4αΘ/cρD/2 −−−−(11)
上記関係式から以下が導かれる。
P=πLDα/2c −−−−(12)
即ち通常生産能率は線径Dと熱伝達率αの積に比例する。
他方流動床では熱伝達率αは既述のように線径Dの影響を受け次式となる。
P=πLD0.6α/2c −−−−(13)
以上から細径線の生産能率は放射加熱では最大径に対して線径に比例して低下するのに対して、対流加熱では線径の0.6乗に比例して低下する。低下の度合いが小さい。即ち細径による能率低下はある程度緩和される。
How the heat transfer coefficient α affects the production efficiency of the steel wire will be described.
The production efficiency P is represented by the following equation.
P = πρD2V / 4 −−−−− (8)
The linear velocity V is obtained by dividing the furnace length L by the passage time t (= heating time).
V = L / t (9)
The heating time is obtained by dividing the heating temperature Θ by the average heating rate θ ′.
t = Θ / θ ′ −−−− (10)
The average heating rate θ ′ is half of the maximum heating rate.
θ ′ = 4αΘ / cρD / 2 (11)
The following is derived from the above relational expression.
P = πLDα / 2c −−−− (12)
That is, the production efficiency is usually proportional to the product of the wire diameter D and the heat transfer coefficient α.
On the other hand, in the fluidized bed, the heat transfer coefficient α is affected by the wire diameter D as described above, and is given by the following equation.
P = πLD0.6α / 2c (13)
From the above, the production efficiency of the thin wire decreases in proportion to the wire diameter with respect to the maximum diameter in the case of radiant heating, whereas it decreases in proportion to the 0.6th power of the wire diameter in the case of convection heating. The degree of decrease is small. That is, the efficiency reduction due to the small diameter is reduced to some extent.

本発明の特徴は流動床が高温加熱炉に適用可能となることである。鋼線又は流動砂の両方又は片方の酸洗が不可欠条件であるが当該部の実施は当業者には容易であるから省略し、新規の高温流動床の仕様を従来の加熱炉と比較して表1に整理する。
前提条件として、1)基準線径(=最大径)を5mm、設計設備能力を100kg/h/本、2)炉温は目標加熱温度の5%上位とした。比較例の雰囲気炉では線径が2mmでは能率は基準径の場合の40%に低下するが本発明では60%の低下に留まる。
A feature of the present invention is that the fluidized bed is applicable to a high temperature furnace. Pickling of both or one of the steel wire and fluidized sand is an essential condition, but the practice of this part is omitted because it is easy for those skilled in the art, and the specifications of the new high-temperature fluidized bed are compared with those of the conventional heating furnace. The results are summarized in Table 1.
As prerequisites, 1) the reference wire diameter (= maximum diameter) was 5 mm, the design facility capacity was 100 kg / h / piece, and 2) the furnace temperature was 5% higher than the target heating temperature. In the atmosphere furnace of the comparative example, when the wire diameter is 2 mm, the efficiency is reduced to 40% of that of the reference diameter, but in the present invention, the efficiency is reduced to 60%.

Figure 2020007609
Figure 2020007609

本発明の調質鋼線の製造方法・製造装置は既存の熱処理工場に容易に代替され、生産性の向上に役立つ。   The method and apparatus for manufacturing a tempered steel wire according to the present invention can be easily replaced by an existing heat treatment plant, and contribute to improving productivity.

1:鋼線 2:酸洗槽 3:加熱炉 4:冷却槽 5:再加熱炉 6:送風室 7;通気板 8;流動床 9;バーナー 10;煙道 11;排出孔 12;装入孔 13;洗浄装置 14;送風室 15;流動床 16;水冷配管 17;調整弁 18;室温送風機 19;補助バーナー 20;抵抗発熱体 21;耐熱保護管 22;間欠遮蔽管 23;耐熱保護管 0;耐熱送風機 1: steel wire 2: pickling tank 3: heating furnace 4: cooling tank 5: reheating furnace 6: ventilation chamber 7; ventilation plate 8; fluidized bed 9; burner 10; flue 11; discharge hole 12; 13; cleaning device 14; blower chamber 15; fluidized bed 16; water cooling pipe 17; regulating valve 18; room temperature blower 19; auxiliary burner 20; resistance heating element 21; heat-resistant protective tube 22; intermittent shielding tube 23; heat-resistant protective tube 0; Heat resistant blower

Claims (3)

鋼線を走行させて加熱・冷却・再加熱して調質鋼線を製造する方法において、流動床炉によって加熱する際、1)鋼線を該流動床炉の直前に設けた酸洗槽に通過させて該鋼線の表面付着物を除去する、2)該流動床炉を構成する熱媒体の砂を適宜炉外に排出して酸により洗浄した後炉内に回帰させるの両方又はどちらか一方の処理を施すことを特徴とする調質鋼線の製造方法。   In a method of manufacturing a tempered steel wire by running, heating, cooling and reheating a steel wire, when heating with a fluidized-bed furnace, 1) the steel wire is placed in a pickling tank provided immediately before the fluidized-bed furnace. 2) The sand of the heating medium constituting the fluidized bed furnace is discharged to the outside of the furnace as appropriate, washed with an acid, and then returned to the furnace. A method for producing a tempered steel wire, wherein one of the treatments is performed. 熱媒体を流動砂とする流動床を持つ加熱炉・冷却槽・再加熱炉とから成る平行多数本通しの調質鋼線の製造装置であって、加熱炉前には鋼線表面の付着物を除去する酸洗槽を設け、加熱炉には該炉を850℃以上に加熱する熱源と流動化送風源と実効炉長を調節する鋼線遮蔽管とを設け、さらに必要に応じて砂を排出し酸によって洗浄し炉内に回帰させる洗浄装置を附設し、冷却槽には流動床の温度を100℃以下に維持する冷却水配管と室温流動化送風源と熱伝達率を調節する流動化送風量調節弁とを設け、再加熱炉には前記加熱炉の熱排ガスを主熱源とする誘導管と補助熱源としてのバーナー又は抵抗発熱体と流動化送風源と実効炉長を調節する鋼線遮蔽管とを設け、熱排ガスを耐熱送風機を介して加熱炉・再加熱炉の流動化送風源としたことを特徴とする調質鋼線の製造装置。   This is a parallel multi-pass heat-treated steel wire production system consisting of a heating furnace with a fluidized bed using fluidized sand as the heating medium, a cooling tank, and a reheating furnace. Is provided, and the heating furnace is provided with a heat source for heating the furnace to 850 ° C. or higher, a fluidizing blast source, and a steel wire shielding tube for adjusting the effective furnace length. Equipped with a washing device that discharges and cleans with acid and returns to the furnace, the cooling tank has a cooling water pipe that keeps the temperature of the fluidized bed below 100 ° C, a room temperature fluidizing blast source and fluidization that regulates the heat transfer coefficient. A recirculation furnace having an air flow control valve, an induction pipe having a heat exhaust gas from the heating furnace as a main heat source, a burner or a resistance heating element as an auxiliary heat source, a fluidizing air supply source, and a steel wire for adjusting an effective furnace length. A shield tube is provided, and the heat exhaust gas is used as a fluidized air supply source for the heating furnace / reheating furnace through a heat-resistant blower. Apparatus for producing a heat-treated steel wire, characterized in that. 鋼線の酸洗液が塩酸又は硫酸又は硝酸のどれか1種であり、熱媒体の砂の成分がアルミナ(Al23)又はジルコン(ZrO・SiO2)又は炭化珪素(SiC)のどれか単一種であることを特徴とする請求項2に記載した調質鋼線の製造装置。 The pickling solution for the steel wire is any one of hydrochloric acid, sulfuric acid, or nitric acid, and the sand component of the heating medium is alumina (Al 2 O 3 ), zircon (ZrO.SiO 2 ), or silicon carbide (SiC). The apparatus for producing a tempered steel wire according to claim 2, wherein the apparatus is a single type.
JP2018129600A 2018-07-09 2018-07-09 Method of manufacturing heat treated steel wire and apparatus for manufacturing steel wire Active JP6533885B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018129600A JP6533885B1 (en) 2018-07-09 2018-07-09 Method of manufacturing heat treated steel wire and apparatus for manufacturing steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018129600A JP6533885B1 (en) 2018-07-09 2018-07-09 Method of manufacturing heat treated steel wire and apparatus for manufacturing steel wire

Publications (2)

Publication Number Publication Date
JP6533885B1 JP6533885B1 (en) 2019-06-19
JP2020007609A true JP2020007609A (en) 2020-01-16

Family

ID=66934365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018129600A Active JP6533885B1 (en) 2018-07-09 2018-07-09 Method of manufacturing heat treated steel wire and apparatus for manufacturing steel wire

Country Status (1)

Country Link
JP (1) JP6533885B1 (en)

Also Published As

Publication number Publication date
JP6533885B1 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
US2288980A (en) Method of cleaning metals
CN103934422B (en) A kind of casting technique of wear-resisting low pore shot blast machine blade
CN101432449B (en) Metal heat treating methods and devices
US3920382A (en) Method and apparatus for heat treating articles in a recirculating type furnace
JP2020007609A (en) Method for manufacturing tempered steel wire and apparatus for manufacturing the same
KR101486909B1 (en) Method for solution and surface-bright heat treatment of stainless casting
JP2018009221A (en) Multifunctional heat treatment device of steel wire capable of treatments in parallel
JP2007231412A (en) Patenting method of high-carbon steel wire
US2290551A (en) Heat treating furnace
US2177031A (en) Continuous heat treatment furance
CN2729616Y (en) Sealing box type multipurpose furnace
CN108034802A (en) The heat treatment method and its production equipment of a kind of steel wire
KR101486906B1 (en) Continuance-complex-equipment for solution and surface-bright heat treatment of stainless casting
US2254891A (en) Heat-treating furnace
CN101435018B (en) Hot dip galvanizing annealing process and high temperature annealing furnace
CN106222604A (en) A kind of controlled atmosphere pit carburizing furnace production line and production method thereof
JP2010065298A (en) Method for producing ferritic stainless steel sheet having excellent surface quality
CN108396118A (en) A kind of steel ball quenching finishing stove
RU2465333C2 (en) Preparation method of air tuyere of blast furnace for operation
CN203683593U (en) Tilted extra-thick steel plate quenching device
GB902674A (en) System for baking carbonaceous products or the like
JP6242247B2 (en) Manufacturing method of Si-added cold-rolled steel sheet
CN207066092U (en) A kind of anti-oxidation heating furnace of tubular type
CN107429972B (en) Heating device and heating method for steel product
RU2693969C1 (en) Method of nitriding articles from welding steels

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180823

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180823

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

R150 Certificate of patent or registration of utility model

Ref document number: 6533885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250