JP2020003165A - Production method and production apparatus for organism-derived water-soluble polymer dried product - Google Patents

Production method and production apparatus for organism-derived water-soluble polymer dried product Download PDF

Info

Publication number
JP2020003165A
JP2020003165A JP2018124490A JP2018124490A JP2020003165A JP 2020003165 A JP2020003165 A JP 2020003165A JP 2018124490 A JP2018124490 A JP 2018124490A JP 2018124490 A JP2018124490 A JP 2018124490A JP 2020003165 A JP2020003165 A JP 2020003165A
Authority
JP
Japan
Prior art keywords
water
unsaturated solution
soluble polymer
dried
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018124490A
Other languages
Japanese (ja)
Other versions
JP7138336B2 (en
Inventor
隆治 鶴田
Takaharu Tsuruta
隆治 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2018124490A priority Critical patent/JP7138336B2/en
Priority to PCT/JP2019/025182 priority patent/WO2020004394A1/en
Publication of JP2020003165A publication Critical patent/JP2020003165A/en
Application granted granted Critical
Publication of JP7138336B2 publication Critical patent/JP7138336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/40Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by drying or kilning; Subsequent reconstitution
    • A23L3/54Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by drying or kilning; Subsequent reconstitution using irradiation or electrical treatment, e.g. ultrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/04Heat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/12Microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/10Temperature; Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/32Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
    • F26B3/34Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects
    • F26B3/347Electromagnetic heating, e.g. induction heating or heating using microwave energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L15/00Egg products; Preparation or treatment thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Electromagnetism (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Nutrition Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Drying Of Solid Materials (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Meat, Egg Or Seafood Products (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

To provide a production method and a production apparatus for an organism-derived water-soluble polymer, the method capable of shortening a drying time compared with a conventional method, and the dried product being excellent in solubility.SOLUTION: A method of producing an organism-derived water-soluble polymer dried product uses a production apparatus 10 comprising: a chamber 11 where an unsaturated solution containing water and organism-derived water-soluble polymer is arranged inside thereof; temperature detecting means 12 that detects a temperature of the unsaturated solution; pressure reducing means 13 that reduces a pressure inside the chamber 11 to a pressure-reduced state; microwave heating means 14 that radiates a microwave to heat the unsaturated solution; and controlling means 15 that controls the pressure reducing means 13 and the microwave heating means 14 on the basis of temperature data acquired by the temperature detecting means 12; the method including: radiating the microwave to the unsaturated solution under a pressure-reduced condition; causing the water to be boiled at a lower temperature than a denaturation temperature of the water-soluble polymer; and performing drying treatment to remove the water while causing the unsaturated solution to expand in a foamy state by means of vapor generated by boiling such that an apparent volume becomes 10 times or more of the original volume, thereby producing the product.SELECTED DRAWING: Figure 1

Description

本発明は、生体由来の水溶性高分子乾燥品の製造方法及びその製造装置に関する。   The present invention relates to a method for producing a dried water-soluble polymer derived from a living body and an apparatus for producing the same.

近年、バイオテクノロジーの進歩と共に、水溶性たんぱく質や水溶性多糖類などの生体由来の水溶性高分子(以下、単に水溶性高分子とも記載)を用いた医薬品が増えているが、溶液状態(水分と水溶性高分子を含有する不飽和溶液)での安定性の確保が困難なことが多く、保存可能な期間が短いため、多くの水溶性高分子は、凍結乾燥方法(以下、「FD」とも記載)により水分を除去し乾燥された状態で保存されている。
しかし、FDは、氷の昇華を伴う乾燥のため長時間(約1〜3日)かかり、また、大きなエネルギーを要する。更に、凍結濃縮による水和状態の変化や氷晶などからの物理的なダメージを受け、水溶性高分子が失活や凝集してしまうことがある。
In recent years, with the advance of biotechnology, pharmaceuticals using water-soluble polymers derived from living organisms such as water-soluble proteins and water-soluble polysaccharides (hereinafter simply referred to as water-soluble polymers) have been increasing. In many cases, it is difficult to ensure the stability in an unsaturated solution containing water and a water-soluble polymer, and the storage period is short. Therefore, many water-soluble polymers are freeze-dried (hereinafter referred to as “FD”). ) And stored in a dried state.
However, FD takes a long time (about 1 to 3 days) due to drying accompanied by sublimation of ice, and requires large energy. Further, the water-soluble polymer may be deactivated or aggregated due to a change in the hydration state due to freeze concentration or physical damage from ice crystals or the like.

そこで、FDに代わる新しい乾燥方法として、例えば、非特許文献1に記載のマイクロ波常温乾燥法(以下、「MVD」とも記載)が提案されている。このMVDは、特許文献1に記載のように、減圧条件下で水の沸点を下げて水の蒸発を促進させ、蒸発時に奪われる潜熱のみをマイクロ波により供給し、結果として常温で乾燥する方法である。
これにより、FDと比べて内部からの水分排出効果による乾燥時間の短縮や常温での乾燥が可能となるため、水溶性高分子の物理的なダメージを防ぐことが期待できる。
Therefore, as a new drying method replacing the FD, for example, a microwave room temperature drying method (hereinafter, also referred to as “MVD”) described in Non-Patent Document 1 has been proposed. As described in Patent Document 1, this MVD is a method of lowering the boiling point of water under reduced pressure conditions to promote the evaporation of water, supplying only latent heat taken off during evaporation by microwaves, and consequently drying at room temperature. It is.
This makes it possible to shorten the drying time due to the effect of draining moisture from the inside and to dry at room temperature as compared with the FD, so that physical damage of the water-soluble polymer can be expected to be prevented.

特許第4474506号公報Japanese Patent No. 4474506

鶴田隆治、他3名、「マイクロ波を用いたタンパク質製剤の乾燥保存に関する研究」、第53回日本伝熱シンポジウム講演論文集、2016年5月Ryuji Tsuruta and 3 others, "Study on Dry Storage of Protein Preparations Using Microwave", Proc. Of the 53rd Japan Heat Transfer Symposium, May 2016

MVDにより、水溶性高分子の乾燥時間は、FDと比較して短縮できるが、更なる大幅な短縮が求められていた。
また、水溶性高分子の使用にあっては、乾燥保存された水溶性高分子を液体(水)に溶解させる必要があるが、MVDで乾燥された水溶性高分子は厚い膜状物であるため、FDで乾燥された多孔質状の水溶性高分子と比較して、溶解速度が遅く、溶解時間もかかっていた。なお、MVDとFDを組み合わせることで、溶解性の改善を図ることもできるが、FDを用いるため、水溶性高分子の乾燥時間が、MVDのみの場合と比較して長くなるという問題がある。
Although the drying time of the water-soluble polymer can be shortened by MVD as compared with FD, a further drastic reduction has been required.
In addition, when using a water-soluble polymer, it is necessary to dissolve the dried and stored water-soluble polymer in a liquid (water), but the water-soluble polymer dried by MVD is a thick film. Therefore, the dissolution rate was slow and the dissolution time was long as compared with the porous water-soluble polymer dried by FD. The solubility can be improved by combining MVD and FD. However, since FD is used, there is a problem that the drying time of the water-soluble polymer is longer than that of MVD alone.

本発明はかかる事情に鑑みてなされたもので、従来よりも大幅な乾燥時間の短縮が図れ、溶解性も良好な生体由来の水溶性高分子乾燥品の製造方法及びその製造装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a method of manufacturing a water-soluble polymer-derived dried product derived from a living body, which can drastically reduce the drying time and has good solubility compared to the related art, and an apparatus for manufacturing the same. With the goal.

前記目的に沿う本発明に係る生体由来の水溶性高分子乾燥品の製造方法は、減圧条件下で、水分と生体由来の水溶性高分子を含有する不飽和溶液にマイクロ波を照射し、前記水溶性高分子の変性温度未満で前記不飽和溶液の水分を沸騰させ、該沸騰で生じる蒸気により、見掛けの体積を初期の体積に対して10倍以上になるように、前記不飽和溶液を泡状に膨らませながら水分を除去する乾燥処理を行う。   The method for producing a biologically-derived dried water-soluble polymer according to the present invention according to the present invention, which irradiates a microwave to an unsaturated solution containing water and a biologically-derived water-soluble polymer under reduced pressure conditions, The water in the unsaturated solution is boiled at a temperature lower than the denaturation temperature of the water-soluble polymer, and the unsaturated solution is bubbled by steam generated by the boiling so that the apparent volume becomes 10 times or more the initial volume. Drying is performed to remove water while swelling.

本発明に係る生体由来の水溶性高分子乾燥品の製造方法において、前記乾燥処理の際に、前記不飽和溶液に含まれる水分を予め設定した量まで減少させた後、圧力と前記不飽和溶液の温度を、前記不飽和溶液に含まれる水分が予め設定した量まで減少した際の圧力と前記不飽和溶液の温度よりも上昇させて、前記不飽和溶液に殺菌処理を行うことが好ましい。   In the method for producing a biologically-derived dried water-soluble polymer according to the present invention, in the drying treatment, after reducing the water contained in the unsaturated solution to a predetermined amount, the pressure and the unsaturated solution are reduced. It is preferred that the temperature of the unsaturated solution is raised above the pressure at which the water contained in the unsaturated solution has decreased to a preset amount and the temperature of the unsaturated solution, and the unsaturated solution is sterilized.

本発明に係る生体由来の水溶性高分子乾燥品の製造方法において、前記乾燥処理を行って得られた乾燥品を破砕し粉末化することが好ましい。   In the method for producing a dried water-soluble polymer derived from a living body according to the present invention, it is preferable that the dried product obtained by performing the drying treatment is crushed and powdered.

本発明に係る生体由来の水溶性高分子乾燥品の製造方法において、前記不飽和溶液は疎水性の容器に入れた状態で、前記乾燥処理が行われることが好ましい。   In the method for producing a dried biologically-derived water-soluble polymer according to the present invention, the drying treatment is preferably performed in a state where the unsaturated solution is contained in a hydrophobic container.

前記目的に沿う本発明に係る生体由来の水溶性高分子乾燥品の製造装置は、水分と生体由来の水溶性高分子を含有する不飽和溶液を内部に配置するチャンバと、
前記チャンバ内の前記不飽和溶液の温度を検知する温度検知手段と、
前記チャンバ内の圧力を減圧状態にする減圧手段と、
前記チャンバ内の前記不飽和溶液にマイクロ波を照射して加熱するマイクロ波加熱手段と、
前記温度検知手段で取得した温度データに基づいて、前記減圧手段を、前記不飽和溶液の水分が沸騰する温度が前記水溶性高分子の変性温度未満になるように制御すると共に、前記マイクロ波加熱手段を、前記不飽和溶液の水分を沸騰させ、該沸騰で生じる蒸気により、見掛けの体積を初期の体積の10倍以上に前記不飽和溶液が泡状に膨らむように制御する制御手段とを有する。
The apparatus for producing a dried biologically-derived water-soluble polymer according to the present invention according to the present invention includes a chamber in which an unsaturated solution containing water and a biologically-derived water-soluble polymer is disposed,
Temperature detection means for detecting the temperature of the unsaturated solution in the chamber,
Pressure reducing means for reducing the pressure in the chamber to a reduced pressure state;
Microwave heating means for irradiating the unsaturated solution in the chamber with microwaves for heating,
Based on the temperature data obtained by the temperature detecting means, the pressure reducing means controls the temperature at which the water in the unsaturated solution boils below the denaturation temperature of the water-soluble polymer and the microwave heating. Means for boiling the water of the unsaturated solution, and controlling the apparent volume to be at least 10 times the initial volume by the steam generated by the boiling so that the unsaturated solution expands in a bubble-like manner. .

本発明に係る生体由来の水溶性高分子乾燥品の製造装置において、前記制御手段は、前記減圧手段と前記マイクロ波加熱手段を、前記不飽和溶液に含まれる水分が予め設定した量まで減少したことを条件として、前記不飽和溶液の温度が該不飽和溶液を殺菌処理できる温度まで上昇するように制御することが好ましい。   In the apparatus for producing a dried water-soluble polymer derived from a living body according to the present invention, the control means reduces the pressure reduction means and the microwave heating means to a predetermined amount of water contained in the unsaturated solution. It is preferable that the temperature of the unsaturated solution is controlled so as to increase to a temperature at which the unsaturated solution can be sterilized.

本発明に係る生体由来の水溶性高分子乾燥品の製造装置において、更に、前記不飽和溶液を収容し前記チャンバ内に配置される疎水性の容器を有することが好ましい。   The apparatus for producing a dried water-soluble polymer derived from a living body according to the present invention preferably further includes a hydrophobic container that accommodates the unsaturated solution and is disposed in the chamber.

本発明に係る生体由来の水溶性高分子乾燥品の製造方法及びその製造装置は、減圧条件下で不飽和溶液にマイクロ波を照射し、水溶性高分子の変性温度未満で不飽和溶液の水分を沸騰させ、この沸騰で生じる蒸気により不飽和溶液を泡状に膨らませながら水分を除去するので、沸騰に伴って不飽和溶液の気液境界面積が広がり水分の揮発が促進され、従来のMVDと比較して、乾燥時間の短縮が図れる。また、これにより得られる生体由来の水溶性高分子乾燥品は、薄膜状の発泡片となるため、従来のMVDで乾燥された厚い膜状のものと比較して、液体(水)に接する面積を広くでき溶け易いため、溶解速度を速くでき、溶解時間を短縮できる。
従って、従来よりも乾燥時間の短縮が図れ(半分以下)、溶解性も良好な生体由来の水溶性高分子乾燥品を提供できる。
The method for producing a biologically-derived dried water-soluble polymer according to the present invention and the apparatus for irradiating the unsaturated solution with microwaves under reduced pressure conditions, the water content of the unsaturated solution is less than the denaturation temperature of the water-soluble polymer. Boil, and remove the moisture while swelling the unsaturated solution in a bubble by the steam generated by the boiling, so that the gas-liquid boundary area of the unsaturated solution expands with the boiling, and the evaporation of the moisture is promoted. In comparison, the drying time can be shortened. Further, the dried product of the water-soluble polymer derived from a living body obtained in this manner becomes a foamed thin film, so that the area in contact with the liquid (water) is larger than that of a conventional thick film dried by MVD. The dissolution rate can be increased, and the dissolution time can be shortened, because the dissolution rate can be increased and the dissolution can be facilitated.
Therefore, it is possible to shorten the drying time (less than half) and to provide a dried water-soluble polymer derived from a living body with good solubility as compared with the conventional case.

本発明の一実施の形態に係る生体由来の水溶性高分子乾燥品の製造装置の説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of the manufacturing apparatus of the water-soluble dried polymer derived from living body which concerns on one Embodiment of this invention. (A)は同生体由来の水溶性高分子乾燥品の製造装置を使用して製造した卵白の乾燥品を平面視した写真、(B)は同卵白の乾燥品を側面視した写真、(C)は同卵白の乾燥品をシャーレ上に載せた写真、(D)は従来例に係る卵白の乾燥品の写真である。(A) is a plan view of a dried egg white product produced using the apparatus for producing a water-soluble polymer dried product derived from the same organism, (B) is a side view of the dried egg white product, (C) () Is a photograph of the dried egg white on a petri dish, and (D) is a photograph of the dried egg white according to the conventional example. 卵白の分子構造解析を行った結果を示すグラフである。It is a graph which shows the result of having performed the molecular structure analysis of egg white. 乾燥時における卵白の含水率の時間変化を示すグラフである。It is a graph which shows the time change of the moisture content of egg white at the time of drying. 乾燥時における卵白の乾燥速度を示すグラフである。It is a graph which shows the drying speed of egg white at the time of drying. 卵白の乾燥品の溶解性を示すグラフである。It is a graph which shows the solubility of the dried egg white product.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、図1に示す本発明の一実施の形態に係る生体由来の水溶性高分子乾燥品の製造装置10を使用して製造される生体由来の水溶性高分子乾燥品(以下、単に水溶性高分子乾燥品又は乾燥品とも記載)について説明する。
生体由来の水溶性高分子乾燥品は、水分と生体由来の水溶性高分子(以下、単に水溶性高分子とも記載)を含有する不飽和溶液を乾燥処理することで得られるものである。この生体由来の水溶性高分子には、水溶性たんぱく質や水溶性多糖類等があり、特に、卵白蛋白質や卵黄蛋白質(卵白や卵黄)、アルブミン、リゾチーム、プラセンタエキス、コラーゲン(ゼラチン)、ヒアルロン酸、グルコサミノ グリカン、フコダイン、アルギン酸塩、ペクチン等がある(これらのいずれか2以上の混合物でもよい)。
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
First, a biologically-derived water-soluble polymer dried product (hereinafter simply referred to as “water-soluble Polymer dried product or dried product).
The dried biologically-derived water-soluble polymer is obtained by drying an unsaturated solution containing water and a biologically-derived water-soluble polymer (hereinafter, also simply referred to as a water-soluble polymer). The water-soluble polymers derived from living organisms include water-soluble proteins and water-soluble polysaccharides. Among them, egg white protein and egg yolk protein (egg white and egg yolk), albumin, lysozyme, placenta extract, collagen (gelatin), hyaluronic acid Glucosaminoglycan, fucodine, alginate, pectin and the like (a mixture of any two or more of these may be used).

この生体由来の水溶性高分子乾燥品の一例である卵白の乾燥品A(実施例)について、図2(A)〜(C)を参照しながら説明する。なお、図2(A)は製造直後のビーカー内の卵白の乾燥品(生体由来の水溶性高分子乾燥品の一例)を平面視した写真であり、(B)は同卵白の乾燥品を側面視した写真であり、(C)は製造直後のテフロン(登録商標、以下同様)製の容器内の卵白の乾燥品を、容器を逆さまにし衝撃を付与してシャーレ上に落とした卵白の乾燥品Aである。この図2(A)、(B)でガラス製のビーカーを用いているのは、卵白の乾燥品の発泡状況を確認し易くするためであり、図2(C)でテフロン製の容器を用いているのは、高い粘性を有する不飽和溶液から製造される卵白の乾燥品を容器から取り出し易くするためである。このように、卵白の乾燥品の製造に際し、ガラス製のビーカーとテフロン製の容器をそれぞれ用いているが、製造された乾燥品の品質は同じである。
不飽和溶液は高い粘性を有するため、製造直後の卵白の乾燥品は、その製造過程において不飽和溶液がシャボン玉状に大きく膨らみ(発泡状態になり)、図2(A)、(B)に示すように、径が数cmに及ぶ大きな泡を多数有し、見掛けの体積が、乾燥前の不飽和溶液の体積(初期の体積)に対して数十倍(10倍以上)になった状態で乾燥される。
A dried egg white product A (Example) which is an example of the dried water-soluble polymer derived from a living body will be described with reference to FIGS. 2 (A) to 2 (C). FIG. 2A is a plan view of a dried egg white product (an example of a biologically-derived dried water-soluble polymer) in a beaker immediately after production, and FIG. 2B is a side view of the dried egg white product. (C) shows a dried egg white product in a Teflon (registered trademark, the same applies hereinafter) container immediately after production, and the egg white dried product dropped on a petri dish by inverting the container to give an impact. A. The reason why the glass beaker is used in FIGS. 2A and 2B is to make it easier to confirm the foaming state of the dried egg white product. In FIG. 2C, a Teflon container is used. The reason for this is to make it easy to remove dried egg whites produced from unsaturated solutions having high viscosity from containers. As described above, a glass beaker and a Teflon container are used when producing a dried egg white product, but the quality of the produced dried product is the same.
Since the unsaturated solution has a high viscosity, the dried egg white product immediately after the production is such that the unsaturated solution swells greatly in the form of bubbles in the production process (becomes a foamed state), and as shown in FIGS. 2 (A) and 2 (B). As shown, a large number of large bubbles having a diameter of several centimeters are present, and the apparent volume is several tens times (10 times or more) the volume (initial volume) of the unsaturated solution before drying. And dried.

この卵白の乾燥品を使用する際には、上記した乾燥状態の泡等をそのままの状態で使用できるが、上記したように容器を逆さまにして落とした状態で使用することもでき、更には泡等を破砕し粉末化して使用することもできる(卵白の乾燥品の保存も、乾燥状態の泡等をそのままの状態で行ってもよく、容器を逆さまにして落とした状態で行ってもよく、更には粉末化した状態で行ってもよい。)。
上記した図2(C)に示す卵白の乾燥品Aは、薄膜状の発泡片(乾燥前の不飽和溶液の含水率(初期含水率)を1として、乾燥後の含水率(最終含水率)が0.05以下)となっている。ここで、薄膜の厚みは、例えば、500μm以下(更には300μm以下)程度である。なお、図2(A)、(B)に示すビーカー内の卵白の乾燥品も同様である。
また、前記した非特許文献1に記載のマイクロ波常温乾燥法(MVD)を用いて泡状に発泡させることなく乾燥して得られた卵白の乾燥品B(比較例)の写真を図2(D)に示す。卵白の乾燥品Bは、数mmの厚い膜状物となっている。
このように、卵白の乾燥品Aの形態は、卵白の乾燥品Bとは異なっている。
When using this dried egg white product, the above-mentioned dried foam and the like can be used as they are, but it can also be used in a state where the container is turned upside down and dropped as described above. It can also be used by crushing and pulverizing (eg, storage of dried egg white products may be performed in the state of dry foam etc. as it is, or may be performed in a state where the container is turned upside down and dropped, Further, it may be performed in a powdered state.)
The dried egg white product A shown in FIG. 2 (C) is a thin foamed piece (the moisture content of the unsaturated solution before drying (initial moisture content) is 1, and the moisture content after drying (final moisture content)). Is 0.05 or less). Here, the thickness of the thin film is, for example, about 500 μm or less (further, 300 μm or less). The same applies to the dried egg white product in the beaker shown in FIGS. 2 (A) and 2 (B).
FIG. 2 shows a photograph of a dried egg white product B (Comparative Example) obtained by drying without foaming using the microwave room temperature drying method (MVD) described in Non-Patent Document 1 described above. D). The dried egg white product B is a thick film of several mm.
Thus, the form of the dried egg white product A is different from that of the dried egg white product B.

次に、図1を参照しながら、本実施の形態に係る生体由来の水溶性高分子乾燥品の製造装置(以下、単に製造装置とも記載)10について説明する。
製造装置10は、減圧容器(チャンバの一例)11、光ファイバー温度計(温度検知手段の一例)12、減圧ポンプ(減圧手段の一例)13、マイクロ波加熱手段14、及び、制御手段15を有している。
Next, with reference to FIG. 1, a description will be given of a manufacturing apparatus (hereinafter, also simply referred to as a manufacturing apparatus) 10 for producing a dried biologically-derived water-soluble polymer according to the present embodiment.
The manufacturing apparatus 10 includes a decompression container (an example of a chamber) 11, an optical fiber thermometer (an example of a temperature detection unit) 12, a decompression pump (an example of a decompression unit) 13, a microwave heating unit 14, and a control unit 15. ing.

減圧容器11は、不飽和溶液を内部に配置するものであり、減圧容器11内を減圧することで密閉される。この減圧容器11には、外部の空気を減圧容器11内に供給する吸気用配管16が接続され、この吸気用配管16に流量計17と流量調整弁18が設けられている。
光ファイバー温度計12は、その温度検出部を不飽和溶液に浸漬(接触)させ、減圧容器11内の不飽和溶液の温度を検知するものである。
減圧ポンプ13(例えば、真空ポンプ)は、減圧容器11に接続され、減圧容器11内の圧力を減圧状態にするものである。なお、減圧ポンプ13には、油水分離器19が接続されている。
The decompression container 11 has an unsaturated solution disposed therein, and is closed by reducing the pressure in the decompression container 11. A suction pipe 16 for supplying external air into the pressure reducing vessel 11 is connected to the pressure reducing vessel 11, and a flow meter 17 and a flow regulating valve 18 are provided in the suction pipe 16.
The optical fiber thermometer 12 immerses (contacts) the temperature detecting section in the unsaturated solution, and detects the temperature of the unsaturated solution in the decompression vessel 11.
The depressurizing pump 13 (for example, a vacuum pump) is connected to the depressurizing container 11 and reduces the pressure in the depressurizing container 11 to a depressurized state. Note that an oil / water separator 19 is connected to the pressure reducing pump 13.

マイクロ波加熱手段14は、マグネトロン(マイクロ波発生素子)を備えたマイクロ波発信器20を有し、減圧容器11内の不飽和溶液に、例えば、周波数が2.45GHzのマイクロ波を照射して加熱するものである。マイクロ波は、例えば、波長の範囲が1〜30cm、周波数の範囲が1〜30GHzを指す電磁波の総称であって、金属によって反射されるが、水等には吸収され易い性質を有している。
このマイクロ波加熱手段14はアイソレータ21を有し、減圧容器11から戻ってくる反射波を吸収することで、マイクロ波発信器20内のマグネトロンを保護している。
The microwave heating means 14 has a microwave transmitter 20 provided with a magnetron (microwave generating element), and irradiates the unsaturated solution in the depressurized container 11 with, for example, a microwave having a frequency of 2.45 GHz. It is to be heated. Microwave is a general term of electromagnetic waves indicating a wavelength range of 1 to 30 cm and a frequency range of 1 to 30 GHz, for example, and has a property of being reflected by metal but easily absorbed by water and the like. .
The microwave heating means 14 has an isolator 21 and protects the magnetron in the microwave transmitter 20 by absorbing the reflected wave returning from the decompression vessel 11.

マイクロ波加熱手段14で加熱される不飽和溶液は、容器(図示しない)に入れた状態で、減圧容器11の内部に配置されている(製造装置10が容器を有している。)。
容器の材質は、マイクロ波加熱手段14の使用によって変形や変質しないものであれば、特に限定されるものではない。例えば、前記したガラス製のビーカーを使用できるが、製造した卵白等の水溶性高分子の乾燥品の容器からの離型性(剥離性)を考慮すれば疎水性の容器、具体的には、前記したテフロン(ポリテトラフルオロエチレン(PTFE))製の容器を使用することが好ましい。なお、他の材質としては、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)やテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)等のフッ素樹脂、あるいは、ポリエチレンテレフタレート(PET)やポリプロピレン(PP)等が挙げられる。
また、ガラス製の容器の内面に、上記した材質のシート材を配置してもよい。
The unsaturated solution heated by the microwave heating means 14 is placed inside a reduced-pressure container 11 in a state of being put in a container (not shown) (the manufacturing apparatus 10 has a container).
The material of the container is not particularly limited as long as it is not deformed or deteriorated by the use of the microwave heating means 14. For example, the glass beaker described above can be used, but in consideration of the releasability (peelability) of the manufactured water-soluble polymer such as egg white from the container, a hydrophobic container, specifically, It is preferable to use the container made of Teflon (polytetrafluoroethylene (PTFE)) described above. Other materials include fluororesins such as tetrafluoroethylene / hexafluoropropylene copolymer (FEP) and tetrafluoroethylene / perfluoroalkylvinyl ether copolymer (PFA), or polyethylene terephthalate (PET) or polypropylene. (PP) and the like.
Further, a sheet material of the above-described material may be disposed on the inner surface of the glass container.

制御手段15は、計測部22、操作部23、及び、コンピュータ24を有している。
計測部22には、光ファイバー温度計12で得られた温度データと、減圧容器11に設けられた圧力計(圧力センサ)25で得られた圧力データが送信される。
操作部23は、前記した減圧容器11、減圧ポンプ13、マイクロ波加熱手段14(マイクロ波発信器20とアイソレータ21のマイクロ波電源26)、及び、油水分離器19の各動作(例えば、オンオフや出力調整)を行うためのものである。
コンピュータ24は、計測部22が受信した温度データと圧力データに基づき、操作部23に指令を出すものである。
The control unit 15 includes a measuring unit 22, an operation unit 23, and a computer 24.
The temperature data obtained by the optical fiber thermometer 12 and the pressure data obtained by a pressure gauge (pressure sensor) 25 provided in the decompression container 11 are transmitted to the measurement unit 22.
The operation unit 23 performs each operation (for example, ON / OFF and / or Output adjustment).
The computer 24 issues a command to the operation unit 23 based on the temperature data and the pressure data received by the measurement unit 22.

上記した制御手段15は、光ファイバー温度計12から送信される温度データと、圧力計25から送信される圧力データに基づき、減圧ポンプ13の出力制御を行って減圧容器11内の圧力を調整すると共に、マイクロ波加熱手段14のマイクロ波発信器20の出力制御を行って不飽和溶液の温度を調整するものである。この減圧ポンプ13の出力は、光ファイバー温度計12からの温度データに基づいて制御できるが、この温度データ(光ファイバー温度計12)を用いることなく、圧力計25からの圧力データに基づいて制御することもできる。この場合、水の沸点は気圧条件によって決まるため、温度と圧力の関係を予めグラフ化しておき、このグラフから、沸点が水溶性高分子の変性温度未満になるように圧力条件を算出する。   The control means 15 controls the output of the decompression pump 13 based on the temperature data transmitted from the optical fiber thermometer 12 and the pressure data transmitted from the pressure gauge 25 to adjust the pressure in the decompression container 11 and The output of the microwave transmitter 20 of the microwave heating means 14 is controlled to adjust the temperature of the unsaturated solution. The output of the pressure reducing pump 13 can be controlled based on the temperature data from the optical fiber thermometer 12, but should be controlled based on the pressure data from the pressure gauge 25 without using this temperature data (optical fiber thermometer 12). You can also. In this case, since the boiling point of water is determined by the atmospheric pressure condition, the relationship between the temperature and the pressure is graphed in advance, and the pressure condition is calculated from this graph so that the boiling point is lower than the denaturation temperature of the water-soluble polymer.

減圧ポンプ13の出力制御は、減圧容器11内の圧力を低下させ(減圧状態にし)、不飽和溶液の水分が沸騰する温度(以下、沸点とも記載)が水溶性高分子の変性温度未満になるように行われる。
これは、不飽和溶液を加熱する場合に、熱の影響が大きくなると(変性温度以上になると)、水溶性高分子の分子構造が壊れて必要な機能が得られなくなることによる。
この水溶性高分子の変性温度は、予め分子構造解析(例えば、円二色性分散計を用いた解析)を行って確認することが好ましい。
The output control of the decompression pump 13 reduces the pressure in the decompression container 11 (to a reduced pressure state), and the temperature at which the moisture of the unsaturated solution boils (hereinafter also referred to as the boiling point) becomes lower than the denaturation temperature of the water-soluble polymer. Is done as follows.
This is because, when heating the unsaturated solution, if the influence of heat increases (if the temperature exceeds the denaturation temperature), the molecular structure of the water-soluble polymer is broken, and the required function cannot be obtained.
It is preferable to confirm the denaturation temperature of the water-soluble polymer by performing a molecular structure analysis (for example, an analysis using a circular dichroism dispersometer) in advance.

マイクロ波加熱手段14のマイクロ波発信器20の出力制御は、減圧容器11内の不飽和溶液を加熱し、不飽和溶液の水分を沸騰させ、この沸騰で局所的に生じる蒸気(気体)により、見掛けの体積を初期の体積に対して10倍以上になるように、不飽和溶液が泡状に大きく膨らむように行われる。この不飽和溶液を泡状にする温度は、上記したように、水溶性高分子の変性温度未満であるため、水溶性高分子の分子構造が壊れずに維持できる。
このように、不飽和溶液を泡状にしながら乾燥処理するに際し、径が数cmに及ぶ大きな泡を多数有し、見掛けの体積を、乾燥前の不飽和溶液の体積に対して10倍以上にすることで、得られる水溶性高分子乾燥品は、厚い膜状(図2(D)参照)になることなく、薄膜状(図2(A)〜(C)参照)になる。なお、見掛けの体積が大きくなるに伴い、発泡による泡の薄膜化で乾燥時間の更なる短縮が図れ、また、得られる水溶性高分子乾燥品の薄膜化で後述する液体への溶解性が良好になることから、乾燥前の不飽和溶液の体積に対する見掛けの体積を、30倍以上、更には50倍以上にすることが好ましい。一方、上限値は、上記した理由から特に限定されるものではないが、見掛けの体積の上昇に伴って効果の顕著な上昇が望めなくなることから、例えば、500倍程度である。
The output control of the microwave transmitter 20 of the microwave heating means 14 is performed by heating the unsaturated solution in the depressurized container 11 to boil the water of the unsaturated solution, and by using steam (gas) locally generated by the boiling. The unsaturated solution is foamed so as to have an apparent volume of 10 times or more the initial volume. As described above, since the temperature at which the unsaturated solution is foamed is lower than the denaturation temperature of the water-soluble polymer, the molecular structure of the water-soluble polymer can be maintained without breaking.
As described above, when the unsaturated solution is dried while being foamed, it has a large number of large bubbles having a diameter of several cm, and the apparent volume is at least 10 times the volume of the unsaturated solution before drying. By doing so, the obtained dried water-soluble polymer becomes a thin film (see FIGS. 2A to 2C) without becoming a thick film (see FIG. 2D). In addition, as the apparent volume increases, the drying time can be further shortened by reducing the thickness of the foam by foaming, and the solubility of the obtained water-soluble polymer in a liquid described below is improved by reducing the thickness of the obtained dried water-soluble polymer. Therefore, the apparent volume with respect to the volume of the unsaturated solution before drying is preferably 30 times or more, more preferably 50 times or more. On the other hand, the upper limit value is not particularly limited for the above-mentioned reason, but it is, for example, about 500 times since a remarkable increase in the effect cannot be expected with an increase in the apparent volume.

更に、制御手段15は、不飽和溶液を殺菌処理できるように、減圧ポンプ13とマイクロ波発信器20の出力制御を行うものであることが好ましい。この減圧ポンプ13とマイクロ波発信器20の出力制御は、不飽和溶液に含まれる水分(以下、水分含有量とも記載)が、予め設定した量まで減少したことを条件として行われる。
水分含有量が多い不飽和溶液を加熱した場合、上記したように、熱の影響によって水溶性高分子が変性し易くなる。このため、予め設定した不飽和溶液の水分含有量を、不飽和溶液の初期の水分含有量を100質量%として、60質量%以下、更には50質量%以下とすることが好ましい。このように、乾燥がある程度進んだ状態であれば(不飽和溶液の水分含有量が少なければ)、水溶性高分子は短時間高温に曝されても変性しない(変性しにくい)ため、下限値については規定していないが、殺菌処理を有効に行うには、不飽和溶液の水分含有量を20質量%、更には30質量%とすることが好ましい。
Further, the control means 15 preferably controls the output of the vacuum pump 13 and the microwave transmitter 20 so that the unsaturated solution can be sterilized. The output control of the pressure-reducing pump 13 and the microwave transmitter 20 is performed on the condition that the moisture contained in the unsaturated solution (hereinafter, also referred to as moisture content) decreases to a preset amount.
When an unsaturated solution having a high water content is heated, as described above, the water-soluble polymer is easily denatured by the influence of heat. For this reason, it is preferable that the preset water content of the unsaturated solution be 60% by mass or less, and more preferably 50% by mass or less, with the initial water content of the unsaturated solution being 100% by mass. As described above, if the drying is advanced to some extent (unless the water content of the unsaturated solution is small), the water-soluble polymer is not denatured even if exposed to high temperature for a short time (it is hardly denatured). Is not specified, but for effective sterilization, the water content of the unsaturated solution is preferably 20% by mass, more preferably 30% by mass.

減圧ポンプ13の出力制御は、減圧容器11内の圧力が現状(水分含有量が予め設定した量となった時点での圧力)よりも上昇するように(好ましくは、大気圧未満の範囲で)行われる。即ち、吸気用配管16から減圧容器11内に外気を供給して、圧力が安定するように減圧ポンプ13を動作させる。
この減圧容器11内の圧力は、マイクロ波発信器20の出力制御を行って(出力を上昇させて)不飽和溶液を加熱する際に、不飽和溶液の温度を現状(水分含有量が予め設定した量となった時点での温度)よりも上昇させて、不飽和溶液を殺菌処理できる温度(例えば、変性温度以上)となるように調整する。
このように、不飽和溶液の温度を上昇させた後は、再度、減圧ポンプ13の出力を不飽和溶液の沸点が水溶性高分子の変性温度未満になるように制御すると共に、マイクロ波発信器20の出力を、不飽和溶液を泡状にしながら水分を除去できるように制御する。
The output control of the decompression pump 13 is performed so that the pressure in the decompression vessel 11 becomes higher than the current pressure (the pressure at the time when the water content becomes a predetermined amount) (preferably, in a range below the atmospheric pressure). Done. That is, outside air is supplied from the intake pipe 16 into the decompression container 11, and the decompression pump 13 is operated so that the pressure is stabilized.
When controlling the output of the microwave transmitter 20 to increase the output and heating the unsaturated solution, the pressure in the depressurized container 11 sets the temperature of the unsaturated solution to the current value (the water content is set in advance). The temperature is adjusted to a temperature at which the unsaturated solution can be sterilized (for example, a denaturation temperature or higher).
After raising the temperature of the unsaturated solution in this way, the output of the vacuum pump 13 is again controlled so that the boiling point of the unsaturated solution is lower than the denaturation temperature of the water-soluble polymer, and the microwave transmitter is used. The output of 20 is controlled to remove moisture while foaming the unsaturated solution.

上記したように、不飽和溶液を泡状にしながら水分を除去するに際しては、膨出した不飽和溶液から発生した気体(水分)を、気流によって外部に排出することにより、不飽和溶液の乾燥を促進することが好ましい。以下に説明する。
減圧容器11内を減圧状態に保つため、減圧ポンプ13によって吸引される減圧容器11内の空気と、吸気用配管16から減圧容器11内に供給される外気をそれぞれ、圧力調整弁(図示しない)と流量調整弁18によって調整する。
マイクロ波の照射によって蒸発した減圧容器11内の水は、減圧ポンプ13(減圧容器11の気体排出口から減圧用パイプ)を介して、減圧容器11の外部に放出することができる。このように、減圧容器11内の水を除去することにより、減圧容器11内の湿度を下げることができ、乾燥を更に促進できる。
As described above, when removing moisture while foaming the unsaturated solution, the gas (moisture) generated from the swollen unsaturated solution is discharged to the outside by a gas stream to dry the unsaturated solution. It is preferred to promote. This will be described below.
In order to keep the inside of the decompression container 11 in a decompressed state, the air in the decompression container 11 sucked by the decompression pump 13 and the outside air supplied into the decompression container 11 from the intake pipe 16 are respectively pressure-regulated valves (not shown). And the flow is adjusted by the flow control valve 18.
The water in the decompression container 11 evaporated by the microwave irradiation can be discharged to the outside of the decompression container 11 via the decompression pump 13 (a gas discharge port of the decompression container 11 and a decompression pipe). As described above, by removing the water in the decompression container 11, the humidity in the decompression container 11 can be reduced, and the drying can be further promoted.

また、流量調整弁18を開くことにより、外気は吸気用配管16を介して減圧容器11内に供給される(例えば、数百cc/分程度)。このとき、上記したように、減圧容器11内は減圧ポンプ13によって減圧されているので、吸気用配管16を介して減圧容器11内に流入する外気と同程度の、減圧容器11内の気体と蒸気を、減圧容器11内から外部へ排出することで、減圧容器11内の真空度は保たれ、常温乾燥が維持される。
これにより、不飽和溶液の周囲に気流が発生するため、不飽和溶液の周囲に滞留し充満する蒸気が気流に乗って減圧容器11の外部へ排出されるため、不飽和溶液の乾燥が促進される。
In addition, by opening the flow control valve 18, outside air is supplied into the decompression container 11 through the intake pipe 16 (for example, about several hundred cc / min). At this time, as described above, since the inside of the decompression container 11 is depressurized by the decompression pump 13, the gas in the decompression container 11 is substantially equal to the outside air flowing into the decompression container 11 through the intake pipe 16. By discharging the steam from the inside of the depressurized container 11 to the outside, the degree of vacuum in the depressurized container 11 is maintained, and the room temperature drying is maintained.
As a result, an airflow is generated around the unsaturated solution, and the vapor that has accumulated and filled around the unsaturated solution is discharged to the outside of the depressurized container 11 in the airflow, thereby promoting the drying of the unsaturated solution. You.

なお、不飽和溶液を殺菌処理する場合は、減圧容器11内への外気の流入量を、減圧ポンプ13による減圧容器11内の空気の排出量より増やすことで、減圧容器11内の気圧を高めることができる。これにより、沸点を殺菌可能な温度まで上昇でき、不飽和溶液を殺菌処理できる。
上記した外気には、一般に空気を使用できるが、窒素ガスやアルゴンガス(希ガス)等の不活性ガスを用いることが好ましく、これにより、水溶性高分子が酸化され易い物質の場合に、空気に含まれる酸素による変質を防止できる。特に、外気に、水分が除去された乾燥状態(低湿度)の外気を使用することで、不飽和溶液の乾燥を更に促進できる。
When the unsaturated solution is sterilized, the amount of outside air flowing into the decompression container 11 is increased from the amount of air discharged from the decompression container 11 by the decompression pump 13 to increase the pressure in the decompression container 11. be able to. As a result, the boiling point can be raised to a sterilizable temperature, and the unsaturated solution can be sterilized.
As the above-mentioned outside air, air can be generally used, but it is preferable to use an inert gas such as nitrogen gas or argon gas (rare gas). Can be prevented from being altered by oxygen contained in the steel. In particular, by using outside air in a dry state (low humidity) from which water has been removed, drying of the unsaturated solution can be further promoted.

続いて、本発明の一実施の形態に係る生体由来の水溶性高分子乾燥品の製造方法について、図1を参照しながら説明する。
まず、乾燥処理する不飽和溶液について分子構造解析を行い、水溶性高分子の変性温度を確認する。この分子構造解析には、円二色性分散計(以下、円二色性をCDとも記載)を用いることができるが、これに限定されるものではない。
次に、容器に入れた不飽和溶液を減圧容器11内に装入する。このとき、光ファイバー温度計12の温度検出部を不飽和溶液に浸漬させる。
Next, a method for producing a dried biologically-derived water-soluble polymer according to an embodiment of the present invention will be described with reference to FIG.
First, the molecular structure of the unsaturated solution to be dried is analyzed to confirm the denaturation temperature of the water-soluble polymer. In this molecular structure analysis, a circular dichroism dispersometer (hereinafter, circular dichroism is also referred to as CD) can be used, but the present invention is not limited to this.
Next, the unsaturated solution contained in the container is charged into the reduced pressure container 11. At this time, the temperature detector of the optical fiber thermometer 12 is immersed in the unsaturated solution.

制御手段15により減圧ポンプ13を作動させ、減圧容器11内を、不飽和溶液の沸点が水溶性高分子の変性温度未満になるまで減圧する。この減圧容器11内の圧力は圧力計25によって検出できる。
ここで、減圧容器11内の圧力は、不飽和溶液の種類にもよるが、例えば、20kPa以下にする。なお、水分の沸点を下げることで発泡し易くなることを考慮すれば、10kPa以下にすることが好ましく、更には5kPa以下にすることが好ましい。一方、下限値については規定していないが、減圧ポンプの能力(減圧に要する時間)等を考慮すれば、真空状態まで低下させなくてもよい。
The pressure reducing pump 13 is operated by the control means 15 to reduce the pressure in the pressure reducing vessel 11 until the boiling point of the unsaturated solution becomes lower than the denaturation temperature of the water-soluble polymer. The pressure in the pressure reducing container 11 can be detected by the pressure gauge 25.
Here, the pressure in the decompression container 11 is, for example, 20 kPa or less, though it depends on the type of the unsaturated solution. In consideration of the fact that foaming is easily caused by lowering the boiling point of water, the pressure is preferably 10 kPa or less, more preferably 5 kPa or less. On the other hand, the lower limit is not specified, but it is not necessary to lower the pressure to a vacuum state in consideration of the capacity of the pressure reducing pump (the time required for pressure reduction) and the like.

上記したように、減圧容器11内を減圧状態にした後、制御手段15によりマイクロ波加熱手段14を作動させ、不飽和溶液にマイクロ波を照射し、水溶性高分子の変性温度未満で不飽和溶液の水分を沸騰させる。ここで、マイクロ波加熱手段14のマイクロ波発信器20の出力制御は、沸騰で生じる蒸気により、見掛けの体積を初期の体積の10倍以上(乾燥時間の更なる短縮や液体への溶解性を考慮すれば、好ましくは、下限を30倍、更には50倍、一方上限値は、効果の顕著な上昇が望めなくなることから、500倍程度)に不飽和溶液が泡状に膨らむように行う。
このように、減圧条件下で、不飽和溶液を泡状にしながら水分を除去する乾燥処理を、乾燥前の不飽和溶液の含水率(初期含水率)を1として乾燥後の含水率(最終含水率)が0.05以下となるまで行うことにより、薄膜状の発泡片である水溶性高分子乾燥品が得られる。
As described above, after the inside of the decompression vessel 11 is depressurized, the microwave heating means 14 is operated by the control means 15 to irradiate the unsaturated solution with microwaves, and the unsaturated solution is unsaturated at a temperature lower than the denaturation temperature of the water-soluble polymer. Bring the water of the solution to a boil. Here, the output of the microwave transmitter 20 of the microwave heating means 14 is controlled such that the apparent volume is at least 10 times the initial volume by steam generated by boiling (further shortening of the drying time and the solubility in liquids are reduced). Considering this, the lower limit is preferably set to 30 times, and more preferably 50 times, while the upper limit is set to about 500 times since the effect cannot be remarkably increased.
As described above, the drying treatment for removing moisture while foaming the unsaturated solution under reduced pressure conditions is performed by setting the moisture content (initial moisture content) of the unsaturated solution before drying to 1 and then the moisture content after drying (final moisture content). By doing so until the ratio becomes 0.05 or less, a water-soluble polymer dried product that is a thin-film foam piece is obtained.

また、上記した乾燥処理の過程において、不飽和溶液に殺菌処理を行うこともできる。
この殺菌処理は、不飽和溶液に含まれる水分を予め設定した量まで減少させた後、制御手段15により減圧ポンプ13とマイクロ波発信器20の出力制御を行う。
ここで、予め設定した不飽和溶液の水分含有量とは、前記したように、不飽和溶液の初期の水分含有量を100質量%として、60質量%以下、更には50質量%以下(下限値を、20質量%、更には30質量%)であることが好ましい。この乾燥処理の過程にある不飽和溶液の水分含有量は、例えば、時間経過に伴う不飽和溶液の質量変化を予め測定しておくことで推定できるが、水分含有量が分かれば特に限定されるものではない。
Further, in the course of the above-mentioned drying treatment, a sterilization treatment can be performed on the unsaturated solution.
In this sterilization process, the output of the pressure reducing pump 13 and the microwave transmitter 20 is controlled by the control means 15 after reducing the moisture contained in the unsaturated solution to a preset amount.
Here, the preset water content of the unsaturated solution is, as described above, 60% by mass or less, and further 50% by mass or less (lower limit value, with the initial water content of the unsaturated solution being 100% by mass). Is preferably 20% by mass, more preferably 30% by mass. The moisture content of the unsaturated solution in the course of this drying treatment can be estimated, for example, by previously measuring the change in mass of the unsaturated solution over time, but is particularly limited if the moisture content is known. Not something.

制御手段15による減圧ポンプ13とマイクロ波発信器20の出力制御は、圧力を現状(水分含有量が予め設定した量となった時点での圧力)よりも上昇させる(加圧する)と共に、不飽和溶液の温度を現状(水分含有量が予め設定した量となった時点での温度)よりも上昇させるように行う。
不飽和溶液を殺菌処理するには、マイクロ波発信器20の出力を上昇させ、不飽和溶液の温度を上昇させて、不飽和溶液を殺菌処理できる温度まで上昇させる必要がある。このため、吸気用配管16から減圧容器11内に外気を供給して、圧力が安定するように減圧ポンプ13を動作させる。
The output control of the decompression pump 13 and the microwave transmitter 20 by the control means 15 increases (pressurizes) the pressure from the current level (the pressure at the time when the water content reaches a predetermined amount), and is unsaturated. The temperature of the solution is set to be higher than the current temperature (the temperature at the time when the water content reaches a predetermined amount).
In order to sterilize the unsaturated solution, it is necessary to increase the output of the microwave transmitter 20 and raise the temperature of the unsaturated solution to a temperature at which the unsaturated solution can be sterilized. For this reason, outside air is supplied into the decompression container 11 from the intake pipe 16 and the decompression pump 13 is operated so that the pressure is stabilized.

不飽和溶液を殺菌処理するに際しては、水溶性高分子の変性を抑制、更には防止するため、短時間で高温殺菌を行うことが好ましい。以下、具体的に説明する。
減圧容器11内の圧力は、不飽和溶液の種類にもよるが、例えば、50kPa以上、好ましくは70kPa以上にする。一方、減圧容器11内の圧力を上昇できれば不飽和溶液の沸点も上昇できるため、上限値は特に規定されるものではないが、殺菌処理後に乾燥処理を減圧条件下で行うことを考慮すれば、例えば、200kPa、好ましくは100kPaにするのがよい。
上記した減圧容器11内の圧力に相当する不飽和溶液の沸点は、従来公知の水の蒸気圧曲線から得られ、50kPaでは80℃、70kPaでは90℃、200kPaでは120℃、100kPaでは100℃である。なお、減圧容器11内の圧力の調整は、不飽和溶液の沸点が水溶性高分子の変性温度以上になるように行ってもよい。
When sterilizing the unsaturated solution, it is preferable to perform high-temperature sterilization in a short time in order to suppress and further prevent denaturation of the water-soluble polymer. Hereinafter, a specific description will be given.
The pressure in the decompression vessel 11 is, for example, 50 kPa or more, preferably 70 kPa or more, although it depends on the type of the unsaturated solution. On the other hand, since the boiling point of the unsaturated solution can be increased if the pressure in the depressurized container 11 can be increased, the upper limit is not particularly limited, but considering that the drying treatment is performed under reduced pressure after the sterilization treatment, For example, the pressure is set to 200 kPa, preferably 100 kPa.
The boiling point of the unsaturated solution corresponding to the pressure in the pressure reducing vessel 11 is obtained from a conventionally known vapor pressure curve of water, and is 80 ° C. at 50 kPa, 90 ° C. at 70 kPa, 120 ° C. at 200 kPa, and 100 ° C. at 100 kPa. is there. The pressure in the decompression vessel 11 may be adjusted so that the boiling point of the unsaturated solution is equal to or higher than the denaturation temperature of the water-soluble polymer.

ここで、殺菌処理の時間は、不飽和溶液の温度が高くなるに伴って、殺菌時間が短くなるように、加熱時間(マイクロ波の照射時間)を制御する。なお、殺菌処理の時間は、不飽和溶液の種類にもよるが、例えば、90℃では10秒前後、120℃では数秒程度、150℃では1秒程度、でよい。
上記したように、乾燥がある程度進んだ状態であれば(不飽和溶液の水分含有量が少なければ)、短時間(数分未満、好ましくは数十秒程度、更に好ましくは数秒程度)高温に曝されても、加熱による影響はほとんどなく、水溶性高分子が変性しない(変性しにくい)。
このように、不飽和溶液の殺菌処理を行った後は、引き続き乾燥処理を行う。具体的には、制御手段15による減圧ポンプ13とマイクロ波発信器20の出力制御を、圧力を現状(殺菌処理の終了時点での圧力)よりも低下させる(減圧する)と共に、不飽和溶液の温度を現状(殺菌処理の終了時点での温度)よりも低下させ、水溶性高分子の変性温度未満で不飽和溶液の水分を沸騰させて泡状にしながら水分を除去できるように行う。
Here, as for the sterilization time, the heating time (microwave irradiation time) is controlled so that the sterilization time becomes shorter as the temperature of the unsaturated solution becomes higher. The sterilization time depends on the type of the unsaturated solution, but may be, for example, about 10 seconds at 90 ° C., about several seconds at 120 ° C., or about 1 second at 150 ° C.
As described above, if the drying has progressed to some extent (if the water content of the unsaturated solution is small), it is exposed to a high temperature for a short time (less than a few minutes, preferably about several tens of seconds, more preferably about several seconds). Even if it is carried out, there is almost no influence by heating, and the water-soluble polymer is not denatured (hardly denatured).
After the sterilizing treatment of the unsaturated solution is performed as described above, the drying treatment is subsequently performed. Specifically, the control of the output of the decompression pump 13 and the microwave transmitter 20 by the control means 15 is performed so that the pressure is reduced (reduced pressure) from the current state (the pressure at the end of the sterilization process) and the unsaturated solution is controlled. The temperature is lowered from the current level (the temperature at the end of the sterilization treatment) so that the water in the unsaturated solution is boiled and foamed at a temperature lower than the denaturation temperature of the water-soluble polymer so that the water can be removed.

これにより、殺菌処理がなされた水溶性高分子乾燥品(初期含水率を1として最終含水率が0.05以下である薄膜状の発泡片)が得られる。
この水溶性高分子乾燥品は、乾燥状態の泡等をそのままの状態で保存することができるが、前記したように容器を逆さまにして落とした状態で保存することもでき、更には泡等を破砕し粉末化して保存することもできる。
使用にあっては、乾燥保存された水溶性高分子乾燥品を、水や生理食塩水等の液体に溶解させる(保存することなく、製造した水溶性高分子乾燥品をそのまま液体に溶解させることもできる)。
As a result, a dried water-soluble polymer that has been subjected to a sterilization treatment (a thin film-like foam having an initial moisture content of 1 and a final moisture content of 0.05 or less) is obtained.
This water-soluble polymer dried product can store dry foam and the like as it is, but can also be stored in a state where the container is turned upside down and dropped as described above. It can be crushed, powdered and stored.
In use, dissolve the dried water-soluble polymer dried product in a liquid such as water or saline (dissolve the manufactured water-soluble polymer dried product in the liquid without storage You can also).

次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、卵白(水分と生体由来の水溶性高分子を含有する不飽和溶液の一例)を用いて、以下の試験を行った。
まず、前記した卵白を泡状に発泡させながら乾燥した乾燥品A(生体由来の水溶性高分子乾燥品)を評価するため、分子構造解析を行った結果について、図3を参照しながら説明する。この分子構造解析は、円二色性分散計(日本分光(株)製J−820)を用いて、波長:205〜240nm、測定温度:25℃(常温)の条件で行った。
Next, examples performed to confirm the operation and effect of the present invention will be described.
Here, the following tests were performed using egg white (an example of an unsaturated solution containing water and a water-soluble polymer derived from a living body).
First, the results of a molecular structure analysis performed to evaluate a dried product A (a dried product of a biologically-derived water-soluble polymer) obtained by drying the above-mentioned egg white while foaming it into a foam will be described with reference to FIG. . This molecular structure analysis was performed using a circular dichroism dispersometer (J-820, manufactured by JASCO Corporation) under the conditions of a wavelength of 205 to 240 nm and a measurement temperature of 25 ° C. (normal temperature).

試料には、卵白の乾燥品A(実施例:一点鎖線)以外に、前記した発泡させることなく乾燥した卵白の乾燥品B(比較例:細実線)、熱損傷を示す参照試料として98℃で10分加熱した後25℃で20分間静置させた卵白(点線)、未処理の卵白(太実線)、を用いた。
卵白の乾燥品Aと乾燥品Bの波形はともに、未処理の卵白の波形に対してやや変化しているが、乾燥による影響はほとんどなく、卵白の主成分であるアルブミンのへリックス構造が壊れずにほぼ維持できていることが分かった。一方、98℃で加熱処理した卵白は、未処理の卵白と比較して208〜230nmでCD強度が減少し、特に210nmと220nm付近のピークが減少かつ乖離しており、アルブミンのへリックス構造が解けてランダム構造に変化していることが分かった。
In addition to the dried egg white product A (Example: dashed line), the dried egg white dried product B (comparative example: thin solid line) dried without foaming was used at 98 ° C. as a reference sample showing heat damage. Egg white (dotted line) and untreated egg white (thick solid line) which were allowed to stand at 25 ° C. for 20 minutes after heating for 10 minutes were used.
The waveforms of the dried egg white products A and B are slightly different from the waveforms of the untreated egg white, but there is almost no effect of drying, and the helix structure of albumin, the main component of egg white, is broken. It was found that it could be maintained almost without any problem. On the other hand, the egg white that has been heat-treated at 98 ° C. has a reduced CD intensity at 208 to 230 nm as compared with the untreated egg white, and particularly the peaks around 210 nm and 220 nm are reduced and separated, and the helix structure of albumin is reduced. It turned out that it changed to a random structure.

次に、減圧条件下での卵白の発泡が乾燥時間に及ぼす影響を検討した結果を、図4を参照しながら説明する。
ここでは、原料として卵白5gを100ccのピーカーに入れ、減圧条件下(5kPa)で、マイクロ波発信器の出力を、50W(×印)、100W(◇印)、150W(□印)、及び、200W(○印)にそれぞれ調整して、最終含水率が0.05以下になるまで、卵白を乾燥させた。このマイクロ波発信器の出力が150Wと200Wでは、乾燥開始から終了まで卵白の発泡状態が維持され、出力50Wでは卵白は発泡せず(気泡は発生したが成長なし)、出力100Wでは、乾燥開始から中盤まで卵白の発泡状態が維持され、中盤から終了までは卵白は更なる発泡をしなかった(中盤までの卵白の発泡状態が継続)。
マイクロ波発信器の出力を50Wとすることで、従来法であるFDと比較して卵白の乾燥時間(約1〜3日)を大幅に短縮できるが(乾燥時間:85分程度)、更に出力を上昇させ発泡状態を維持することで含水率が短時間で急激に低下し、乾燥時間の更なる短縮が図れることが分かった。特に、卵白を乾燥開始から乾燥終了まで泡状に発泡させながら乾燥させた出力150Wと200Wでは、乾燥時間を20分未満(15分程度)まで短縮できた。
Next, the result of examining the effect of the foaming of egg white on the drying time under reduced pressure will be described with reference to FIG.
Here, 5 g of egg white was placed as a raw material in a 100 cc peaker, and under reduced pressure (5 kPa), the output of the microwave transmitter was changed to 50 W (x), 100 W (W), 150 W (□), and The egg white was dried until the final moisture content was adjusted to 200 W (marked with ○) and the final moisture content became 0.05 or less. When the output of the microwave transmitter is 150 W or 200 W, the foaming state of the egg white is maintained from the start to the end of drying. At the output of 50 W, the egg white does not foam (bubbles are generated but does not grow). From the middle to the middle, the foaming state of the egg white was maintained, and from the middle to the end, the egg white did not further foam (the foaming state of the albumen from the middle to the middle) continued.
By setting the output of the microwave transmitter to 50 W, the drying time of the egg white (about 1 to 3 days) can be greatly shortened (drying time: about 85 minutes) as compared with the conventional FD, but the output is further increased. It was found that the moisture content was rapidly reduced in a short time by increasing the temperature and maintaining the foaming state, and the drying time could be further shortened. In particular, at an output of 150 W and 200 W, in which egg white was dried while being foamed from the start of drying to the end of drying, the drying time could be reduced to less than 20 minutes (about 15 minutes).

ここで、上記したマイクロ波発信器の出力(50W、100W、150W、及び、200W)が卵白の乾燥処理に及ぼした影響について、更に詳細に説明する。
圧力条件が20kPaの場合、従来公知の水の蒸気圧曲線から、沸点は60℃となる。このとき、マイクロ波発信器の出力を100Wに設定すると、卵白の温度(卵白近傍の雰囲気温度、以下同様)は40℃以下であった(前記した非特許文献1に記載のマイクロ波常温乾燥法(MVD)に相当)。
この条件下で卵白を乾燥処理した場合、水の沸点(60℃)が高いため、供給エネルギーが100Wでも水分は沸騰することなく徐々に蒸発し、卵白は発泡しないまま乾燥処理され、内部に数ミリ程度の気泡を含有する、厚さ数mmのフィルム状の乾燥品(厚い膜状物)が得られた(図2(D)参照)。
Here, the effect of the output (50 W, 100 W, 150 W, and 200 W) of the microwave transmitter on the drying process of the egg white will be described in more detail.
When the pressure condition is 20 kPa, the boiling point is 60 ° C. from the conventionally known vapor pressure curve of water. At this time, when the output of the microwave transmitter was set to 100 W, the temperature of the egg white (atmospheric temperature near the egg white, the same applies hereinafter) was 40 ° C. or less (the microwave room temperature drying method described in Non-Patent Document 1 described above). (Equivalent to (MVD)).
When egg white is dried under these conditions, the water has a high boiling point (60 ° C.), so even if the supplied energy is 100 W, the water gradually evaporates without boiling. A film-shaped dried product (thick film-like material) having a thickness of several mm containing bubbles of about millimeters was obtained (see FIG. 2 (D)).

圧力条件が5kPaの場合、従来公知の水の蒸気圧曲線から、沸点は30℃となる。このとき、マイクロ波発信器の出力を50Wに設定すると、卵白の温度は40℃以下であった。
この条件下で卵白を乾燥処理した場合、水の沸点(30℃)が低いため、卵白中の水分は沸騰するが、供給エネルギーは50Wと少なく卵白の液状内部に気泡が発生する程度で大きな泡になることはなく、卵白は徐々に乾燥処理され、厚さ5ミリ程度の気泡緩衝材(エアーキャップ(登録商標))状の乾燥品が得られた。
圧力条件が5kPaの場合に、マイクロ波発信器の出力を100Wに設定すると、卵白の温度は40℃以下であった。
この条件下で卵白を乾燥処理した場合、水の沸点(30℃)が低いため、卵白中の水分は沸騰するが、供給エネルギーは100Wとやや少なく卵白は発泡するものの気泡の発生は継続せず、発泡部分と泡状のフィルム部分とが混在した乾燥品が得られた。
When the pressure condition is 5 kPa, the boiling point is 30 ° C. from the conventionally known vapor pressure curve of water. At this time, when the output of the microwave transmitter was set to 50 W, the temperature of the egg white was 40 ° C. or less.
When the egg white is dried under these conditions, the water in the egg white boils because the boiling point of water (30 ° C.) is low, but the supplied energy is as small as 50 W and large bubbles are generated in the egg white liquid. The egg white was gradually dried, and a dry product in the form of a bubble buffer (Air Cap (registered trademark)) having a thickness of about 5 mm was obtained.
When the output of the microwave transmitter was set to 100 W when the pressure condition was 5 kPa, the temperature of the egg white was 40 ° C. or less.
When the egg white is dried under these conditions, the water in the egg white boils because the boiling point of water (30 ° C.) is low, but the supplied energy is a little less than 100 W and the egg white foams, but the generation of bubbles does not continue. Thus, a dried product in which a foamed portion and a foamed film portion were mixed was obtained.

圧力条件が5kPaの場合に、マイクロ波発信器の出力を150Wに設定すると、卵白の温度は40℃以下であった。
この条件下で卵白を乾燥処理した場合、水の沸点(30℃)が低いため卵白中の水分は沸騰し、更に、供給エネルギーが150Wと高いため、卵白は発泡が継続したまま乾燥処理され、大きな泡状の乾燥品が得られた。
圧力条件が5kPaの場合に、マイクロ波発信器の出力を200Wに設定すると、卵白の温度は40℃以下であった。
この条件下で卵白を乾燥処理した場合、水の沸点(30℃)が低いため卵白中の水分は沸騰し、更に、供給エネルギーが200Wと高いため、卵白は発泡が継続したまま乾燥処理され、大きな泡状の乾燥品が得られた(図2(A)、(B)参照)。
When the output of the microwave transmitter was set to 150 W when the pressure condition was 5 kPa, the temperature of the egg white was 40 ° C. or less.
When the egg white is dried under these conditions, the water in the egg white boils due to the low boiling point of water (30 ° C.), and the supplied energy is as high as 150 W, so that the egg white is dried while foaming continues, A large foamy dried product was obtained.
When the pressure condition was 5 kPa and the output of the microwave transmitter was set to 200 W, the temperature of the egg white was 40 ° C. or less.
When the egg white is dried under these conditions, the water in the egg white boils due to the low boiling point of water (30 ° C.), and the supplied energy is as high as 200 W. Therefore, the egg white is dried while foaming continues, A large foam-like dried product was obtained (see FIGS. 2A and 2B).

続いて、減圧条件下での卵白の発泡が乾燥速度に及ぼす影響を検討した結果を、図5を参照しながら説明する。
図5には、卵白の乾燥品A(□印)と卵白の乾燥品B(○印)が得られるまでの含水率の推移を示している。卵白の乾燥品Aのように、卵白を泡状に発泡させながら乾燥させることで、卵白を泡状に発泡させることなく乾燥させた卵白の乾燥品Bと比較して、乾燥速度が大幅に速められることが分かった。
Next, the result of examining the effect of egg white foaming on the drying speed under reduced pressure will be described with reference to FIG.
FIG. 5 shows changes in the water content until a dried egg white product A (marked by □) and a dried egg white product B (marked by ○) are obtained. Like the dried egg white product A, the egg white is dried while foaming it in a foamy form, so that the drying speed is greatly increased as compared with the dried egg white product B which is dried without foaming the egg white. I knew it could be done.

最後に、前記した卵白の乾燥品Aの溶解性を評価するため、他の乾燥方法で得られた乾燥品と比較した結果について、図6を参照しながら説明する。
溶解性の試験は、卵白の乾燥品0.05gを5mLの超純水に溶かし、所定の時間ごとに溶液を濾過し濾液を撹拌して、卵白の成分の一つであるアルブミン(卵白のたんぱく質中の含有率:50〜60%)の濃度(力価=mg/mL)を測定した。
試料には、卵白の乾燥品A(実施例:▲印)以外に、卵白の乾燥品B(比較例:●印)、前記したFDで乾燥された凍結乾燥品(■印)、前記したMVD(1時間実施)とFDを組み合わせて乾燥された乾燥品(◆印)、を用いた。
Finally, the results of comparing the dried product A obtained by another drying method to evaluate the solubility of the dried product A of the above-mentioned egg white will be described with reference to FIG.
The solubility test was performed by dissolving 0.05 g of dried egg white in 5 mL of ultrapure water, filtering the solution at predetermined time intervals, and stirring the filtrate to obtain albumin (an egg white protein) which is one of the components of egg white. (Content: 50-60%) in the solution (titer = mg / mL).
The samples include dried egg white product A (Example: 印), dried egg white product B (Comparative Example: 印), freeze-dried product dried by FD (■), and MVD (Implemented for 1 hour) and a dried product (marked with ◆) dried by combining FD.

初期における溶解速度は、凍結乾燥品が最も速く、卵白の乾燥品Bが最も遅かった。これは、凍結乾燥品が多孔質状であるのに対し、卵白の乾燥品Bが厚い膜状であり、凍結乾燥品の方が卵白の乾燥品Bよりも溶解し易いことによるものと考えられる。
このため、MVDとFDを組み合わせて得られた乾燥品も、凍結乾燥品よりも僅かに劣るものの、溶解性が良好であることが分かった。
卵白の乾燥品Aは、卵白の乾燥品Bよりも初期における溶解速度が速く、その溶解性は凍結乾燥品よりも僅かに劣るものの、MVDとFDを組み合わせて得られた乾燥品とは略同等の結果が得られ、溶解性が良好であることが分かった。これは、卵白の乾燥品Aが薄膜状の発泡片であることによるものと考えられる。
In the initial stage, the freeze-dried product was the fastest, and the dried product B of egg white was the slowest. This is thought to be due to the fact that the freeze-dried product is porous, whereas the dried egg white product B is a thick film, and the freeze-dried product is more easily dissolved than the dried egg white product B. .
For this reason, it was found that the dried product obtained by combining MVD and FD had good solubility, though slightly inferior to the freeze-dried product.
The dried egg white product A has a higher initial dissolution rate than the dried egg white product B, and its solubility is slightly inferior to that of the freeze-dried product, but is substantially the same as the dried product obtained by combining MVD and FD. Was obtained, and it was found that the solubility was good. This is probably because the dried egg white product A is a thin foam.

以上のことから、本発明の生体由来の水溶性高分子乾燥品の製造方法及びその製造装置により、従来よりも大幅な乾燥時間の短縮が図れ、溶解性も良好な生体由来の水溶性高分子乾燥品が得られることを確認できた。   From the above, the method and the apparatus for producing a dried biologically-derived water-soluble polymer of the present invention can significantly reduce the drying time and improve the solubility of the biologically-derived water-soluble polymer. It was confirmed that a dried product was obtained.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合せて本発明の生体由来の水溶性高分子乾燥品の製造方法及びその製造装置を構成する場合も本発明の権利範囲に含まれる。   As described above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the configurations described in the above-described embodiments, and the matters described in the claims are not limited. Other embodiments and modifications that can be considered within the scope are also included. For example, the method of manufacturing a biologically-derived water-soluble polymer-dried product of the present invention and a device for manufacturing the same in combination with some or all of the above-described embodiments and modifications are also included in the scope of the present invention. included.

10:生体由来の水溶性高分子乾燥品の製造装置、11:減圧容器(チャンバ)、12:光ファイバー温度計(温度検知手段)、13:減圧ポンプ(減圧手段)、14:マイクロ波加熱手段、15:制御手段、16:吸気用配管、17:流量計、18:流量調整弁、19:油水分離器、20:マイクロ波発信器、21:アイソレータ、22:計測部、23:操作部、24:コンピュータ、25:圧力計、26:マイクロ波電源 10: an apparatus for producing a dried water-soluble polymer derived from a living body, 11: a reduced pressure vessel (chamber), 12: an optical fiber thermometer (temperature detecting means), 13: a reduced pressure pump (depressurized means), 14: a microwave heating means, 15: control means, 16: intake pipe, 17: flow meter, 18: flow control valve, 19: oil / water separator, 20: microwave transmitter, 21: isolator, 22: measuring section, 23: operating section, 24 : Computer, 25: Pressure gauge, 26: Microwave power supply

Claims (7)

減圧条件下で、水分と生体由来の水溶性高分子を含有する不飽和溶液にマイクロ波を照射し、前記水溶性高分子の変性温度未満で前記不飽和溶液の水分を沸騰させ、該沸騰で生じる蒸気により、見掛けの体積を初期の体積に対して10倍以上になるように、前記不飽和溶液を泡状に膨らませながら水分を除去する乾燥処理を行うことを特徴とする生体由来の水溶性高分子乾燥品の製造方法。   Under reduced pressure conditions, the unsaturated solution containing water and a water-soluble polymer derived from a living body is irradiated with microwaves to boil the water in the unsaturated solution at a temperature lower than the denaturation temperature of the water-soluble polymer, and the boiling is performed. Biologically-derived water-soluble, characterized by performing a drying treatment for removing water while expanding the unsaturated solution in a foamy manner so that the apparent volume becomes 10 times or more the initial volume by the generated steam. Method for producing dried polymer. 請求項1記載の生体由来の水溶性高分子乾燥品の製造方法において、前記乾燥処理の際に、前記不飽和溶液に含まれる水分を予め設定した量まで減少させた後、圧力と前記不飽和溶液の温度を、前記不飽和溶液に含まれる水分が予め設定した量まで減少した際の圧力と前記不飽和溶液の温度よりも上昇させて、前記不飽和溶液に殺菌処理を行うことを特徴とする生体由来の水溶性高分子乾燥品の製造方法。   The method for producing a water-soluble dried polymer derived from a living body according to claim 1, wherein, during the drying treatment, after the water contained in the unsaturated solution is reduced to a predetermined amount, the pressure and the unsaturated water are reduced. Raising the temperature of the solution to be higher than the pressure and the temperature of the unsaturated solution when the water contained in the unsaturated solution is reduced to a predetermined amount, and performing a sterilization treatment on the unsaturated solution. Of producing a dried water-soluble polymer derived from a living body. 請求項1又は2記載の生体由来の水溶性高分子乾燥品の製造方法において、前記乾燥処理を行って得られた乾燥品を破砕し粉末化することを特徴とする生体由来の水溶性高分子乾燥品の製造方法。   3. The method according to claim 1 or 2, wherein the dried product obtained by performing the drying treatment is crushed and powdered. Manufacturing method of dried products. 請求項1〜3のいずれか1項に記載の生体由来の水溶性高分子乾燥品の製造方法において、前記不飽和溶液は疎水性の容器に入れた状態で、前記乾燥処理が行われることを特徴とする生体由来の水溶性高分子乾燥品の製造方法。   The method for producing a water-soluble dried polymer derived from a living body according to any one of claims 1 to 3, wherein the drying treatment is performed in a state where the unsaturated solution is contained in a hydrophobic container. A method for producing a dried product of a water-soluble polymer derived from a living body. 水分と生体由来の水溶性高分子を含有する不飽和溶液を内部に配置するチャンバと、
前記チャンバ内の前記不飽和溶液の温度を検知する温度検知手段と、
前記チャンバ内の圧力を減圧状態にする減圧手段と、
前記チャンバ内の前記不飽和溶液にマイクロ波を照射して加熱するマイクロ波加熱手段と、
前記温度検知手段で取得した温度データに基づいて、前記減圧手段を、前記不飽和溶液の水分が沸騰する温度が前記水溶性高分子の変性温度未満になるように制御すると共に、前記マイクロ波加熱手段を、前記不飽和溶液の水分を沸騰させ、該沸騰で生じる蒸気により、見掛けの体積を初期の体積の10倍以上に前記不飽和溶液が泡状に膨らむように制御する制御手段とを有することを特徴とする生体由来の水溶性高分子乾燥品の製造装置。
A chamber in which an unsaturated solution containing water and a biologically-derived water-soluble polymer is placed,
Temperature detection means for detecting the temperature of the unsaturated solution in the chamber,
Pressure reducing means for reducing the pressure in the chamber to a reduced pressure state;
Microwave heating means for irradiating the unsaturated solution in the chamber with microwaves for heating,
Based on the temperature data obtained by the temperature detecting means, the pressure reducing means controls the temperature at which the water in the unsaturated solution boils below the denaturation temperature of the water-soluble polymer and the microwave heating. Means for boiling the water of the unsaturated solution, and controlling the apparent volume to be at least 10 times the initial volume by the steam generated by the boiling so that the unsaturated solution expands in a bubble-like manner. An apparatus for producing a dried biologically-derived water-soluble polymer.
請求項5記載の生体由来の水溶性高分子乾燥品の製造装置において、前記制御手段は、前記減圧手段と前記マイクロ波加熱手段を、前記不飽和溶液に含まれる水分が予め設定した量まで減少したことを条件として、前記不飽和溶液の温度が該不飽和溶液を殺菌処理できる温度まで上昇するように制御することを特徴とする生体由来の水溶性高分子乾燥品の製造装置。   6. The apparatus according to claim 5, wherein the control unit reduces the pressure in the decompression unit and the microwave heating unit to a predetermined amount of water contained in the unsaturated solution. An apparatus for producing a dried biologically-derived water-soluble polymer, wherein the temperature of the unsaturated solution is controlled to rise to a temperature at which the unsaturated solution can be sterilized, provided that the above conditions are satisfied. 請求項5又は6記載の生体由来の水溶性高分子乾燥品の製造装置において、更に、前記不飽和溶液を収容し前記チャンバ内に配置される疎水性の容器を有することを特徴とする生体由来の水溶性高分子乾燥品の製造装置。   7. The apparatus for producing a dried water-soluble polymer derived from a living body according to claim 5 or 6, further comprising a hydrophobic container containing the unsaturated solution and disposed in the chamber. Equipment for producing water-soluble polymer dried products.
JP2018124490A 2018-06-29 2018-06-29 METHOD FOR MANUFACTURING DRY PRODUCT OF BIOLOGICAL WATER-SOLUBLE POLYMER AND APPARATUS FOR MANUFACTURING THE SAME Active JP7138336B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018124490A JP7138336B2 (en) 2018-06-29 2018-06-29 METHOD FOR MANUFACTURING DRY PRODUCT OF BIOLOGICAL WATER-SOLUBLE POLYMER AND APPARATUS FOR MANUFACTURING THE SAME
PCT/JP2019/025182 WO2020004394A1 (en) 2018-06-29 2019-06-25 Method and apparatus for manufacturing dried product of biologically-derived water-soluble polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018124490A JP7138336B2 (en) 2018-06-29 2018-06-29 METHOD FOR MANUFACTURING DRY PRODUCT OF BIOLOGICAL WATER-SOLUBLE POLYMER AND APPARATUS FOR MANUFACTURING THE SAME

Publications (2)

Publication Number Publication Date
JP2020003165A true JP2020003165A (en) 2020-01-09
JP7138336B2 JP7138336B2 (en) 2022-09-16

Family

ID=68986214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018124490A Active JP7138336B2 (en) 2018-06-29 2018-06-29 METHOD FOR MANUFACTURING DRY PRODUCT OF BIOLOGICAL WATER-SOLUBLE POLYMER AND APPARATUS FOR MANUFACTURING THE SAME

Country Status (2)

Country Link
JP (1) JP7138336B2 (en)
WO (1) WO2020004394A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022234644A1 (en) * 2021-05-07 2022-11-10 株式会社アムノス Amnion drying device, amnion drying method, and dry amnion
WO2024025347A1 (en) * 2022-07-27 2024-02-01 (주)이니바이오 Decompression drying device and decompression drying method using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546332A (en) * 1978-09-26 1980-04-01 Sakurazawa Hatsuo Vacuum drier
JP2000515856A (en) * 1996-07-15 2000-11-28 ユニバーサル プリザーベーション テクノロジーズ,インコーポレイテッド Preservation by foam formation
JP2002534654A (en) * 1999-01-05 2002-10-15 ユニバーサル プリザーベーション テクノロジーズ インコーポレイテッド Vacuum control system for foam drying equipment
JP2002534079A (en) * 1999-01-05 2002-10-15 ユニバーサル プリザーベーション テクノロジーズ インコーポレイテッド Preservation of sensitive biological materials at ambient temperature by vitrification
US20080050793A1 (en) * 2004-07-30 2008-02-28 Durance Timothy D Method of drying biological material
WO2010013583A1 (en) * 2008-07-30 2010-02-04 国立大学法人九州工業大学 Method for producing dry article and apparatus therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546332A (en) * 1978-09-26 1980-04-01 Sakurazawa Hatsuo Vacuum drier
JP2000515856A (en) * 1996-07-15 2000-11-28 ユニバーサル プリザーベーション テクノロジーズ,インコーポレイテッド Preservation by foam formation
JP2002534654A (en) * 1999-01-05 2002-10-15 ユニバーサル プリザーベーション テクノロジーズ インコーポレイテッド Vacuum control system for foam drying equipment
JP2002534079A (en) * 1999-01-05 2002-10-15 ユニバーサル プリザーベーション テクノロジーズ インコーポレイテッド Preservation of sensitive biological materials at ambient temperature by vitrification
US20080050793A1 (en) * 2004-07-30 2008-02-28 Durance Timothy D Method of drying biological material
WO2010013583A1 (en) * 2008-07-30 2010-02-04 国立大学法人九州工業大学 Method for producing dry article and apparatus therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022234644A1 (en) * 2021-05-07 2022-11-10 株式会社アムノス Amnion drying device, amnion drying method, and dry amnion
WO2024025347A1 (en) * 2022-07-27 2024-02-01 (주)이니바이오 Decompression drying device and decompression drying method using same

Also Published As

Publication number Publication date
WO2020004394A1 (en) 2020-01-02
JP7138336B2 (en) 2022-09-16

Similar Documents

Publication Publication Date Title
WO2020004394A1 (en) Method and apparatus for manufacturing dried product of biologically-derived water-soluble polymer
US8722749B2 (en) Method for producing hydrocolloid foams
US3706631A (en) Sterilization of protein-containing fluids
US3579631A (en) Sterilization of materials containing protein
US3368911A (en) Collagen-carbonic acid surgical sponge
JP4563027B2 (en) Method and apparatus for high temperature processing of materials under controlled temperature conditions
CN104677057A (en) Method and equipment for adopting variable-frequency alternating current electric field for assisting freeze drying of drug liposome powder
CN110945253B (en) Drying process and apparatus
US20220281953A1 (en) Collagen powder
Wu et al. Recent advances in the improvement of freezing time and physicochemical quality of frozen fruits and vegetables by ultrasound application
JP5588465B2 (en) Chitin-derived sponge hemostatic material and method for producing the same
Perrenoud et al. Evaluation of blood compatibility of plasma deposited heparin-like films and SF6 plasma treated surfaces
JP2010220753A (en) Transplantation material for living tissue reproduction and method for manufacturing the same
JP4499855B2 (en) Microwave heating sterilization method and apparatus
WO2022234644A1 (en) Amnion drying device, amnion drying method, and dry amnion
Tsuruta et al. Ambient temperature drying of therapeutic protein solution with use of microwave
JP2019179649A (en) Microwave heating device, microwave heating method, and method of manufacturing packaged food
CN111298162A (en) Virus inactivation method and biological material
CN115403817A (en) Preparation method of silk fibroin frozen gel capable of resisting high temperature and high pressure sterilization
WO2021256508A1 (en) Method for producing aqueous polymer solution frozen body, and method for producing polymer porous body
Mardas et al. Time-dependent changes in dynamic mechanical properties of irradiated bone
JP2007236204A (en) Vacuum impregnation device and vacuum impregnation method
JP4159898B2 (en) Warm sterilization method of transplanted bone
KR20240032933A (en) Apparatus and method for drying vegetable and animal foods
JPH0723949A (en) Manufacture of ultrasonic coupler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220830

R150 Certificate of patent or registration of utility model

Ref document number: 7138336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350