JP2020002427A - Wear-resistant composite material and method of producing the same - Google Patents

Wear-resistant composite material and method of producing the same Download PDF

Info

Publication number
JP2020002427A
JP2020002427A JP2018122769A JP2018122769A JP2020002427A JP 2020002427 A JP2020002427 A JP 2020002427A JP 2018122769 A JP2018122769 A JP 2018122769A JP 2018122769 A JP2018122769 A JP 2018122769A JP 2020002427 A JP2020002427 A JP 2020002427A
Authority
JP
Japan
Prior art keywords
composite material
wear
base material
sintering
resistant composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018122769A
Other languages
Japanese (ja)
Other versions
JP7014420B2 (en
Inventor
伸碩 栗林
Nobuhiro Kuribayashi
伸碩 栗林
秀一 澁谷
Shuichi Shibuya
秀一 澁谷
忠 徳永
Tadashi Tokunaga
忠 徳永
和章 小松原
Kazuaki Komatsubara
和章 小松原
亮 窪田
Akira Kubota
亮 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tix Tsk Corp
Tix-Tsk Corp
Original Assignee
Tix Tsk Corp
Tix-Tsk Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tix Tsk Corp, Tix-Tsk Corp filed Critical Tix Tsk Corp
Priority to JP2018122769A priority Critical patent/JP7014420B2/en
Publication of JP2020002427A publication Critical patent/JP2020002427A/en
Application granted granted Critical
Publication of JP7014420B2 publication Critical patent/JP7014420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Earth Drilling (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide a wear-resistant composite material that is excellent in wear/corrosion resistance and can be made in broad sizes applicable also to hard armoring of a base material or into a near net of a desired shape, a member using the same, and a method of producing the same.SOLUTION: A wear-resistant composite material is made to be a near net by filling a self-fluxing alloy singly or a mixed powder 10 in which a super abrasive grain of a diamond or cBN grain is dispersed using a self-fluxing alloy as a base, in a gap between a ferrous base material 5 and a mold 9, temporarily sintering the mixed powder 10 at a temperature in a vacuum or non-oxidation atmosphere, diffusion-bonding a temporarily sintered body firmly to a surface of the ferrous base material, and removing the mold 9 and then performing main sintering in a non-oxidation atmosphere.SELECTED DRAWING: Figure 2A

Description

本発明は、掘削用ビット等に用いる耐摩耗性・耐食性部材用複合材料、及びその製造方法に関係する。   The present invention relates to a composite material for a wear-resistant and corrosion-resistant member used for a drill bit and the like, and a method for producing the same.

石油、天然ガス、地熱等のエネルギー開発に用いる掘削用ビットには、岩石を掘削するだけでなく、掘削した穴径を保持する特性が必要となる。図1Aは典型的な掘削用ビット(トリコンビット)の外見写真、図1Bはその部分的拡大写真である。掘削用トリコンビットのビットゲージ部2は、岩石から掘削荷重7及び抗壁圧力8を受け、岩石との摩擦で摩耗する事によって掘削穴の径が細径化する。これは次に使用するビットを短時間に損傷させて、掘削効率の低下を招く。また抗壁圧力8はビットカッターが抜け落ちる方向に作用するのでベアリング3及びシール4がダメージを受ける。その結果としてビットの取り換えを要する場合には膨大な費用を要し、それは掘削費用の高騰に繋がる。従ってビットの摩耗対策は最重要課題である。   A drill bit used for energy development of oil, natural gas, geothermal, and the like requires not only the ability to excavate rock but also the property of maintaining the excavated hole diameter. FIG. 1A is an appearance photograph of a typical drill bit (tricone bit), and FIG. 1B is a partially enlarged photograph thereof. The bit gauge portion 2 of the tricone bit for excavation receives the excavation load 7 and the anti-wall pressure 8 from the rock, and wears due to friction with the rock, thereby reducing the diameter of the excavation hole. This causes the bit to be used next to be damaged in a short time, resulting in a decrease in drilling efficiency. Also, the anti-wall pressure 8 acts in a direction in which the bit cutter comes off, so that the bearing 3 and the seal 4 are damaged. As a result, if the bit needs to be replaced, the cost is enormous, which leads to an increase in drilling cost. Therefore, countermeasures against bit wear are the most important issues.

ビットの耐摩耗性の向上のため、通常、超硬チップの埋め込みや超硬(溶融タングステンを含む)粒子の溶接肉盛が行われているが、それでは十分とは言えず、超高圧のダイヤモンド焼結体を用いる場合もある。本願の発明者等は、ダイヤモンド複合材料を開発して実用化した(特許文献1)。これは超硬合金中にダイヤモンド粒を分散させた耐摩耗に優れた複合材料である。しかし複合材料チップの耐摩耗性が優れていても、チップが埋め込まれた母材(鋼材)5が摩耗すると、チップは歯槽膿漏のように脱落するので、母材の耐摩耗性も同様に重要となる。   In order to improve the wear resistance of the bit, carbide chips are usually embedded or welded with carbide (including molten tungsten) particles. However, this is not sufficient, and ultra-high pressure diamond firing is not sufficient. In some cases, union is used. The inventors of the present application have developed and commercialized a diamond composite material (Patent Document 1). This is a composite material having excellent wear resistance in which diamond grains are dispersed in a cemented carbide. However, even if the wear resistance of the composite material tip is excellent, when the base material (steel material) 5 in which the chip is embedded wears, the chip falls off like alveolar pyorrhea, so that the wear resistance of the base material also increases. It becomes important.

母材の耐摩耗性を向上させるため、鋼材の表面を硬化することが行われ、通常、溶射、溶接の手法により1〜3mm厚程度の硬装施工が行われる。例えば特許文献2には、耐摩耗性に優れたれたWCサーメットのウォームスプレー法による溶射施工により、気孔率が1.5%以下、粒子径が5μm以下で、HV1050〜1150である溶射ロールを得ることが開示されている。しかし、10〜40%の金属炭化物(WC)を分散しているものの気孔も含むため、重荷重で衝撃のある耐摩耗用途には向いていない。特許文献3にはダイヤモンドと樹脂の複合材料について開示されているが、金属ベースではないので重荷重で衝撃のある耐摩耗用途には使用できない。また、特許文献1に記載されているように、超硬合金中にダイヤモンド粒子を分散し加圧焼結する方法もあるが、超高圧法による超砥粒チップは極めて高価で、形状の制約があり、サイズの大きな物は作製できないことから本用途には向いていない。また、メッキ処理によるダイヤ砥粒の貼り付けの例(ダイヤモンド電着被膜)もあるが、接合強度が弱く、多孔質であるため、主に砥石用として用いられ、重荷重で衝撃のある耐摩耗用途には向いていない。その他にも、表面に数μm程度の高硬度の薄膜コーティングを行う研究は多くされており、例えば特許文献4には、ダイヤモンド被膜の成型方法が開示されているが、得られる膜厚が薄いため、重荷重の衝撃のある耐摩耗硬装用途には向いていない。   In order to improve the abrasion resistance of the base material, the surface of the steel material is hardened, and usually, hardening is performed to a thickness of about 1 to 3 mm by a thermal spraying or welding technique. For example, in Patent Document 2, by spraying a WC cermet excellent in abrasion resistance by a warm spray method, a spray roll having a porosity of 1.5% or less, a particle diameter of 5 μm or less, and an HV of 1050 to 1150 is obtained. It is disclosed. However, although it contains 10 to 40% of metal carbide (WC) but contains pores, it is not suitable for abrasion-resistant applications with heavy loads and impact. Patent Literature 3 discloses a composite material of diamond and resin, but is not metal-based and cannot be used for abrasion resistance application under heavy load and impact. Also, as described in Patent Document 1, there is a method in which diamond particles are dispersed in a cemented carbide and pressure-sintered. However, a super-abrasive tip by an ultra-high pressure method is extremely expensive, and the shape is restricted. Yes, it is not suitable for this application because it cannot produce large-sized objects. There is also an example of applying diamond abrasive grains by plating (electrodeposited diamond coating). However, since the bonding strength is weak and porous, it is mainly used for grinding stones, and it has wear resistance with heavy load and impact. Not suitable for use. In addition, many studies have been conducted to apply a high-hardness thin film coating of about several μm to the surface. For example, Patent Document 4 discloses a method of forming a diamond film, but the obtained film thickness is small. It is not suitable for wear-resistant hard wearing applications with heavy load impact.

特許5076044号公報(米国特許第7637981号明細書)Japanese Patent No. 5076044 (US Pat. No. 7,637,981) 特許第5013364号公報Japanese Patent No. 5013364 特許第3490978号公報Japanese Patent No. 3490978 特許第4358509号公報Japanese Patent No. 4358509 国際公開第2017/130283号WO 2017/130283

本発明の目的は、耐摩耗性・耐食性に優れ、かつ母材の硬装施工にも適用可能な広いサイズで、あるいは任意の形状をニヤネットに作製できる複合材料、それを用いた部材、及びその製造方法を提供することにある。   An object of the present invention is a composite material which is excellent in abrasion resistance and corrosion resistance, and which can be formed into a near net with a wide size applicable to hard work of a base material, or an arbitrary shape, and a member using the composite material. It is to provide a manufacturing method.

通常、溶射、溶接の手法により厚さ1〜3mm程度の硬装施工が行われるが、この中に超砥粒を分散させることができれば、ビットの母材としても使用できる耐摩耗性材料を実現することが可能となる。しかしながら、発明者等の知る限り、溶射、溶接で超砥粒を分散させた事例はない。砥粒を溶射、硬装に用いるのが不可能であった理由として、施工(溶射、溶接)中に超砥粒が熱により炭素に変質する、または超砥粒の比重が軽く表面に浮き上るため半溶融にならない、さらに施工物に付着しない(濡れない)等が考えられる。このため、従来技術ではWCを主とする金属炭化物を自溶性合金中へ分散したものが主で、WCを40%程度まで溶融して緻密化処理が可能であったが、これ以上のWCを添加する場合は高速プラズマ等の溶射処理で行う必要があった。しかし溶射処理は微少な気泡が含まれるため緻密化処理はできず、耐衝撃性が得られなかった。   Normally, hard coating with a thickness of about 1 to 3 mm is performed by spraying and welding techniques, but if super abrasive grains can be dispersed in this, a wear-resistant material that can be used as a base material of bits is realized It is possible to do. However, as far as the inventors know, there is no case where super abrasive grains are dispersed by thermal spraying or welding. The reason why it was not possible to use abrasive grains for thermal spraying and hard coating is that superabrasive grains are transformed into carbon by heat during construction (spraying, welding) or the specific gravity of superabrasive grains rises to the surface lightly Therefore, it is considered that they do not become semi-molten and do not adhere to the construction object (do not wet). For this reason, in the prior art, a metal carbide mainly composed of WC was dispersed in a self-fluxing alloy, and it was possible to densify the WC by melting it to about 40%. In the case of addition, it was necessary to carry out thermal spraying treatment such as high-speed plasma. However, the thermal spraying treatment could not be densified because of containing fine bubbles, and could not obtain impact resistance.

そこで発明者等は、特許文献1に記載した超硬合金(WC−Co)とダイヤモンド粒子の焼結体であるダイヤモンド複合材料において、WCの一部または全部をCo または Niを含む自溶性合金に置き換え、ダイヤモンド及び/またはcBN(立方晶窒化ホウ素)を自溶性合金中に分散させることを目指し研究を行った。自溶性合金は高硬度、低融点で半溶融域が広く、本研究目的に適している。   In view of this, the present inventors have developed a self-fluxing alloy containing Co or Ni in part or all of WC in a diamond composite material which is a sintered body of a cemented carbide (WC-Co) and diamond particles described in Patent Document 1. Research was conducted with the aim of dispersing diamond and / or cBN (cubic boron nitride) in a self-fluxing alloy. The self-fluxing alloy has high hardness, low melting point and wide semi-melting range, and is suitable for this research purpose.

ダイヤモンドを自溶性合金のような金属材料に分散させるために必要な条件としては以下の条件が考えられる。
(1)ダイヤモンドが真空、雰囲気中の熱処理で変質しないこと。即ち短時間かつ1100℃以下であること。なおダイヤモンドの代わりにcBNを用いる場合には、短時間かつ1200℃以下であること。
(2)ダイヤモンドと硬質金属の混合粉末が偏析なく型に充填されること。
(3)ダイヤモンドが混合粉末中で移動(浮き上がり)しないこと。
(4)混合粉末が熱処理(焼結温度)条件で、施工物表面に強固に付着すること。 付着が不十分であると、混合物が焼結収縮して端面が捲れたり、亀裂が発生する。
(5)完全に焼結すること(気泡が含まれないこと)。この場合、厚み方向だけの収縮となる。
Conditions necessary for dispersing diamond in a metal material such as a self-fluxing alloy include the following conditions.
(1) The diamond does not deteriorate due to heat treatment in a vacuum or atmosphere. That is, the temperature must be short and 1100 ° C. or less. When cBN is used instead of diamond, the temperature must be shorter than 1200 ° C.
(2) The mixed powder of diamond and hard metal is filled in a mold without segregation.
(3) The diamond does not move (lift) in the mixed powder.
(4) The mixed powder adheres firmly to the surface of the work under heat treatment (sintering temperature) conditions. If the adhesion is insufficient, the mixture shrinks due to sintering, and the end face is turned up or cracks occur.
(5) Complete sintering (no air bubbles). In this case, contraction occurs only in the thickness direction.

本発明による硬装施工は、目的施工物の形状より少し大きい雌型のカーボン製の型9と、目的施工物の形状より少し小さい金属母材5を用いて作製する(図2A)。そしてカーボン型と金属母材との隙間にダイヤモンドまたはcBNの超砥粒と自溶性合金の混合粉末10を十分に充填し、これを自溶性合金が焼結収縮を始める温度の近傍下の温度で十分保持する。混合粉末にはダイヤモンドまたはcBNの他、金属炭化物等を超砥粒として加えてもよい。母材表面にNiロー等900℃程度の融点の低融点材料を微量塗布すればさらに好結果が得られる。また、自溶性合金は固相〜液相の半溶融域が広く、適度な粘性を有するのでこのような用途に好適である。充填した混合粉末は硬く固まり(仮焼結)、同時に鋼材の鉄との拡散結合により強く保持される。次にカーボン型枠9を外して仮焼結体と母材の鋼材を適正温度(1100℃以下。超砥粒がcBNの場合には1200℃以下)で焼結する。仮焼結を行わず一度に焼結温度まで加熱すると、型9と充填物10が付着して取出しができず破損する。また型9のリサイクルもできないので仮焼結の工程が必要となる。   The hard work according to the present invention is manufactured using a female carbon mold 9 slightly larger than the shape of the target work and the metal base material 5 slightly smaller than the shape of the target work (FIG. 2A). The gap between the carbon mold and the metal base material is sufficiently filled with a mixed powder 10 of diamond or cBN superabrasives and a self-fluxing alloy at a temperature near the temperature at which the self-fluxing alloy starts sintering shrinkage. Hold enough. In addition to diamond or cBN, metal carbide or the like may be added to the mixed powder as superabrasives. Even better results can be obtained by applying a small amount of a low melting point material having a melting point of about 900 ° C. such as Ni low on the surface of the base material. In addition, the self-fluxing alloy has a wide range of semi-solid state from solid phase to liquid phase and has an appropriate viscosity, so that it is suitable for such use. The filled mixed powder is hardened and hardened (temporarily sintered), and at the same time, is strongly held by diffusion bonding of steel with iron. Next, the carbon mold 9 is removed, and the pre-sintered body and the base steel are sintered at an appropriate temperature (1100 ° C. or less; 1200 ° C. or less when the superabrasive is cBN). If heating is performed to the sintering temperature at a time without performing preliminary sintering, the mold 9 and the filler 10 adhere to each other and cannot be taken out, resulting in breakage. Since the mold 9 cannot be recycled, a temporary sintering step is required.

前述の分散条件を満たすためには、カーボン型9と母材金属5の間に0.3mm以上の隙間(空間)を設けて、混合粉末10を充填する必要がある。隙間がこれ以上狭いと、粉末を充填することが難しくなる。また母材金属5の表面は清浄な状態に保つことが、強固に付着させるためには重要である。自溶性合金としてはコルモノイ(登録商標)、またはヘガネス社の1355を用いるのが好適である。型の材料は熱伝導が良いカーボンが最適である。また、カーボン型9は簡単に取り外しが可能である。図2Bはこのようにして試作した、母材金属の左端部に硬装を形成した試験片の外観写真(左)及び断面写真(右)を示す。   In order to satisfy the above-described dispersion condition, it is necessary to provide a gap (space) of 0.3 mm or more between the carbon mold 9 and the base metal 5 and fill the mixed powder 10. If the gap is smaller than this, it becomes difficult to fill the powder. It is important to keep the surface of the base metal 5 clean in order to adhere firmly. As the self-fluxing alloy, it is preferable to use Colmonoy (registered trademark) or 1355 manufactured by Höganäs. The best material for the mold is carbon, which has good thermal conductivity. Further, the carbon mold 9 can be easily removed. FIG. 2B shows a photograph of the appearance (left) and a photograph of a cross section (right) of a test piece having a hard coating formed on the left end of the base metal produced as described above.

母材金属と仮焼結体は拡散結合で強く保持されているので、焼結収縮は厚み方向に制限される。従って、通常の焼結に比べると厚み収縮率は大きくなるが、充填時の厚みに比例して焼結されるので、硬装の厚みは収縮率×充填厚みとなる。充填厚みは均等なため、焼結後の寸法のバラツキはプラスマイナス 0.1mm以下に収まり、ニヤネットの製作が可能となる。   Since the base metal and the pre-sintered body are strongly held by diffusion bonding, sintering shrinkage is restricted in the thickness direction. Therefore, although the thickness shrinkage ratio is larger than that of normal sintering, since the sintering is performed in proportion to the thickness at the time of filling, the thickness of the hard material is the shrinkage ratio × the thickness of the filling. Since the filling thickness is uniform, the dimensional variation after sintering is within plus or minus 0.1 mm or less, making it possible to manufacture a near net.

表1に従来の溶射施工と本発明による施工との比較を示す。
Table 1 shows a comparison between conventional thermal spraying and the present invention.

本発明による方法により、母材金属の表面に超砥粒(ダイヤモンドまたはcBN)−自溶性合金の複合材料による任意の形状の硬装を施工することが可能になった。この複合材料には各種の金属炭化物等の材料を高精度に複合添加することも可能である。このため、超砥粒の量、粒度等の調整を最適化すれば、多様な用途において優れた耐摩耗部材が提供できる。また施工に際しては、投入した原材料の粉末のほぼ100%が硬装となるため、溶射のような付着歩留まりロスが無く、材料歩留まりに特に優れている。   By the method according to the present invention, it has become possible to apply hardening of an arbitrary shape with a composite material of superabrasive grains (diamond or cBN) -self-fluxing alloy on the surface of the base metal. Various composite materials such as metal carbides can be added to the composite material with high precision. For this reason, by optimizing the adjustment of the amount and the particle size of the superabrasive grains, an excellent wear-resistant member can be provided in various applications. Also, since almost 100% of the input raw material powder is hardened during construction, there is no adhesion yield loss such as thermal spraying, and the material yield is particularly excellent.

本発明による硬装または施工物は、前述のダイヤモンド複合材料(特許文献1)に比べると、地が超硬合金から硬質金属になり靱性・耐衝撃が強化される効果がある。本発明によるダイヤモンドやcBNの超砥粒を含んだ硬装材料は画期的な材料であり、また広い面積に被覆出来るので、従来の硬装よりも耐摩耗性を強化することができる。本発明による硬装を掘削用ビットに適用した場合には、超砥粒、WC粒子を含んだ凸状の広い鑢面を形成するので、坑壁研削力を従来よりも強化することができる。それにより抗壁の面圧が低減され、ベアリング保護とシールの強化を図ることができる。   Compared with the above-described diamond composite material (Patent Document 1), the hard dress or construction according to the present invention has an effect that the ground becomes a hard metal from a hard metal and the toughness and impact resistance are enhanced. The hard material containing diamond or cBN super-abrasive particles according to the present invention is an epoch-making material and can cover a wide area, so that the wear resistance can be enhanced as compared with the conventional hard material. When the hardening according to the present invention is applied to an excavation bit, a wide convex file surface containing superabrasive grains and WC particles is formed, so that the wellhead grinding power can be strengthened as compared with the related art. Thereby, the surface pressure of the anti-wall is reduced, and the protection of the bearing and the strengthening of the seal can be achieved.

さらに、本発明によれば、型によって任意の形状、大きさの施工物が作製できる。また、製作後の寸法のバラツキはプラスマイナス 0.1mm以下に収まるため、ニヤネットの硬装施工が可能となる。これにより、施工物を作製するための加工費の大幅削減を図ることができる。この利点のため、耐摩耗性をそれほど必要としない用途の場合には、ダイヤモンドやcBNを粉末に混合せずに金属炭化物を超砥粒とした硬装として、多様な用途に用いることが可能である。   Further, according to the present invention, a construction object having an arbitrary shape and size can be manufactured depending on a mold. In addition, since the variation in the dimensions after manufacturing is within plus or minus 0.1 mm or less, it is possible to harden the near net. As a result, it is possible to significantly reduce the processing cost for manufacturing the construction. Due to this advantage, in applications that do not require much wear resistance, it can be used in various applications as a hard dress using metal carbide as super abrasive grains without mixing diamond or cBN into powder. is there.

掘削用ビットの全体外見写真(左)と拡大外見写真(右)である。A photo of the entire appearance of the drill bit (left) and an enlarged photo of the exterior (right). 掘削用ビットの模式的断面図である。It is a typical sectional view of an excavation bit. 本発明による施工物を作製するための方法を示す模式的断面図である。FIG. 3 is a schematic sectional view showing a method for producing a construction according to the present invention. 本発明により作製した試験的施工物の概観写真(左)と断面写真(右)である。It is an outline photograph (left) and a cross-sectional photograph (right) of a test construction manufactured according to the present invention. 本発明により作製したシャフト型の形状の施工物の模式的断面図(左)と焼結施工後の外見写真(中)、及びその後センタレス加工を行った外観写真(右)である。1 is a schematic cross-sectional view (left) of a shaft-shaped construction produced according to the present invention, a photograph of the appearance after sintering (middle), and a photograph of the appearance after centerless processing (right). 本発明により作製したスリーブ円筒型の形状の施工物の模式的断面図(左)と焼結施工後の外見写真(右)である。FIG. 2 is a schematic cross-sectional view (left) of a sleeve-cylindrical shaped object manufactured according to the present invention, and an appearance photograph after sintering (right). 本発明により作製した鼓型ロール形状の施工物の模式的断面図(左)と焼結施工後の外見写真(中)、(右)である。FIG. 2 is a schematic cross-sectional view (left) of a drum-shaped roll-shaped construction manufactured according to the present invention, and appearance photographs (middle) and (right) after sintering. 本発明により作製した掘削用ビット(中)と、作製前の母材(左)、及び施工物の断面写真(右)である。It is a drill bit (middle) produced by the present invention, a base material before production (left), and a cross-sectional photograph (right) of a construction. 60〜80μm径のダイヤモンド粒を含んだ複合材料の1mm厚の層を施工した試作品の断面の組織写真である。It is a structure | tissue photograph of the cross section of the prototype which applied the 1-mm-thick layer of the composite material containing the diamond particle of 60-80 micrometers diameter. 30〜40μm径のcBN粒を含んだ複合材料の1mm厚の層を施工した試作品の断面の組織写真である。It is a structure | tissue photograph of the cross section of the prototype which applied the 1-mm-thick layer of the composite material containing the cBN particle | grains of 30-40 micrometers diameter.

(実施例1)
本発明の方法による施工の予備試作として、種種の形状の回転体の母材の表面にダイヤモンド粒を含んだ硬装を形成した。図3A、3B、3Cはそれぞれ、シャフト型の形状、スリーブ円筒型の形状、鼓型ロール形状の母材上の施工物の模式的断面図(左)と焼結施工後の外見写真(中、右)である。シャフト型の例では硬装を形成後、センタレス加工も問題なく行えることが確認され、いずれの形状でも、均一な硬装が母材の表面に強固に形成されることが分かった。
(Example 1)
As a preliminary prototype of the construction according to the method of the present invention, a hard material containing diamond grains was formed on the surface of a base material of a rotating body having various shapes. 3A, 3B, and 3C are schematic cross-sectional views (left) of a workpiece on a base material having a shaft-type shape, a sleeve-cylindrical shape, and a drum-shaped roll shape, respectively, and appearance photographs after sintering. Right). In the case of the shaft type, it was confirmed that the centerless processing could be performed without any problem after the formation of the hard material, and it was found that a uniform hard material was firmly formed on the surface of the base material in any shape.

(実施例2)
本発明の方法によりビットカッターの模型を試作した。図4に示すように、ビットカッターの母材(鉄)のゲージ部に、深さ2mmの凹状スリットを放射状に加工形成し、その上にカーボンの型を被せた。その隙間の空間に平均径が30μmのダイヤモンドで超硬合金粒を包んだ複合粒子(特許文献5)40重量%と、残りが自溶性合金ヘガネス1355から成る混合物を充填した。そして、全体を加熱炉中で950℃で60分保持して仮焼きを行った。その後型を外し、1030℃で30分間焼結を行い、硬質層が形成された部材を得た(図4(中))。図4(右)の切断面写真が示すように、緻密な硬質層(上端部)が母材に固着して形成されていることが分かる。
(Example 2)
A prototype of a bit cutter was prototyped by the method of the present invention. As shown in FIG. 4, a concave slit having a depth of 2 mm was radially formed in a gauge portion of a base material (iron) of a bit cutter, and a carbon mold was placed thereon. The space between the gaps was filled with a mixture of 40% by weight of composite particles (Patent Document 5) in which the cemented carbide particles were wrapped with diamond having an average diameter of 30 μm, and a mixture consisting of the self-fluxing alloy Heganes 1355. And the whole was hold | maintained at 950 degreeC for 60 minutes in the heating furnace, and calcined. Thereafter, the mold was removed, and sintering was performed at 1030 ° C. for 30 minutes to obtain a member on which a hard layer was formed (FIG. 4 (middle)). As shown in the cross-sectional photograph of FIG. 4 (right), it can be seen that a dense hard layer (upper end) is formed by being fixed to the base material.

(実施例3)
図5は、φ25mmの鉄丸棒の外周に、60〜80μm径のダイヤモンド粒を含んだ複合材料の1mm厚の硬質層を施工した試作品の、表面硬装部の断面組織の拡大写真である。ダイヤモンド粒は複合材料中に10体積%含まれている。ダイヤモンド粒が比較的均一に分散していることが分かる。
(Example 3)
FIG. 5 is an enlarged photograph of a cross-sectional structure of a hardened surface portion of a prototype in which a 1 mm-thick hard layer of a composite material containing diamond grains having a diameter of 60 to 80 μm is applied to the outer periphery of a steel round bar having a diameter of 25 mm. . The diamond particles are contained in the composite material at 10% by volume. It can be seen that the diamond grains are relatively uniformly dispersed.

(実施例4)
図6は、同様なφ25mmの鉄丸棒の外周に、ダイヤモンド粒の代わりに30〜40μm径のcBN粒を含んだ複合材料の1mm厚の、硬質層を施工した試作品の表面硬装部の断面組織の拡大写真である。cBN粒は複合材料中に10体積%含まれている。この場合もcBN粒は比較的均一に分散していることが分かる。
(Example 4)
FIG. 6 shows a surface hardened portion of a prototype in which a 1 mm-thick hard layer of a composite material containing cBN particles having a diameter of 30 to 40 μm instead of diamond particles was applied to the outer periphery of a similar φ25 mm iron round bar. It is an enlarged photograph of a cross section structure. The cBN particles are contained at 10% by volume in the composite material. Also in this case, it can be seen that the cBN particles are relatively uniformly dispersed.

なお、上記記載は実施例についてなされたが、本発明はそれに限定されず、本発明の精神と添付の請求の範囲の範囲内で種々の変更、及び修正をすることができることは当業者に明らかである。   Although the above description has been made with reference to the embodiments, the present invention is not limited thereto, and it is apparent to those skilled in the art that various changes and modifications can be made within the spirit of the present invention and the scope of the appended claims. It is.

本発明による耐摩耗性・耐食性複合材料は、石油、天然ガス、地熱等のエネルギー開発に用いる掘削用ビット、その他の掘削用工具の耐摩耗部材として利用が可能である。また、母材の表面を広く覆うように形成して、母材の硬装施工へも応用が可能である。さらに、部材をニヤネットに作製できるので、従来よりも複雑な任意の形状の硬装施工物、例えば、内燃機関の各種弁、ロッカーアーム、あるいはバルブ装置用のボールバルブの球、ゲートバルブ等への応用が可能である。   The wear-resistant and corrosion-resistant composite material according to the present invention can be used as a wear-resistant member of a drill bit and other drill tools used for energy development of petroleum, natural gas, geothermal, and the like. Further, it can be formed to cover the surface of the base material widely, and can also be applied to hard work of the base material. Furthermore, since the member can be manufactured in a near net, a hard construction having an arbitrary shape more complicated than before, such as various valves of an internal combustion engine, a rocker arm, or a ball of a ball valve for a valve device, a gate valve, etc. Application is possible.

1 ビット、
2 ゲージ部
3 ベアリング
4 シール部
5 母材
7 掘削荷重
8 側壁からの面圧
9 型
10 混合粉末
1 bit,
2 Gauge part 3 Bearing 4 Seal part 5 Base material 7 Excavation load 8 Surface pressure from side wall 9 Type 10 Mixed powder

Claims (13)

自溶性合金単独の粉末または自溶性合金ベースの混合粉末の任意の形状の層が、鉄系金属の母材の表面にニヤネットに焼結接合された耐摩耗性複合材料。   A wear-resistant composite material in which a layer of any shape of a self-fluxing alloy alone powder or a self-fluxing alloy-based mixed powder is sintered and bonded to a near net on the surface of a ferrous metal base material. 前記混合粉末に、ダイヤモンド粒及び/またはcBN粒の超砥粒がさらに混合されている、請求項1に記載の耐摩耗性複合材料。   The wear-resistant composite material according to claim 1, wherein super-abrasive grains of diamond grains and / or cBN grains are further mixed with the mixed powder. 前記超砥粒が前記複合材料中に1〜30体積%含まれる請求項2に記載の耐摩耗性複合材料。   The wear-resistant composite material according to claim 2, wherein the superabrasive grains are contained in the composite material in an amount of 1 to 30% by volume. 前記粉末の層の厚さが0.2mm以上である請求項1〜3のいずれか1項に記載の耐摩耗性複合材料。   The wear-resistant composite material according to any one of claims 1 to 3, wherein a thickness of the powder layer is 0.2 mm or more. 請求項1〜4のいずれか1項に記載の耐摩耗性複合材料を用いた掘削用の部材または工具、バルブ装置用の部材、内燃機関用の部材。   A member or tool for excavation, a member for a valve device, or a member for an internal combustion engine using the wear-resistant composite material according to any one of claims 1 to 4. 鉄系金属の母材と該母材を覆うように配置された型との隙間に、自溶性合金単独の粉末または自溶性合金をベースとした混合粉末を充填する工程と、
前記粉末を、真空または非酸化性雰囲気中で焼結収縮を始める温度未満の温度に所定の時間保持して仮焼結させ、前記母材の表面に仮焼結体を強固に拡散接合させる工程と、
前記型を取りはずした後、非酸化性雰囲気中で本焼結を行う工程と
を含む耐摩耗性複合材料の製造方法。
A step of filling a gap between a base material of an iron-based metal and a mold arranged so as to cover the base material with a powder of a self-fluxing alloy alone or a mixed powder based on a self-fluxing alloy,
A step of temporarily sintering the powder at a temperature lower than a temperature at which sintering shrinkage starts in a vacuum or a non-oxidizing atmosphere for a predetermined time, and strongly diffusing a temporarily sintered body to the surface of the base material; When,
Performing a main sintering in a non-oxidizing atmosphere after removing the mold.
前記粉末に超砥粒をさらに混合させる、請求項6に記載の方法。   7. The method of claim 6, further comprising mixing superabrasives with the powder. 前記超砥粒がダイヤモンド粒であり、前記焼結温度が1100℃以下である、請求項6または7に記載の方法。   The method according to claim 6, wherein the superabrasive grains are diamond grains, and the sintering temperature is 1100 ° C. or less. 前記超砥粒がcBN粒であり、前記焼結温度が1200℃以下である、請求項6または7に記載の方法。   The method according to claim 6, wherein the superabrasive grains are cBN grains, and the sintering temperature is 1200 ° C. or less. 前記超砥粒が前記複合材料中に1〜30体積%含まれる請求項7〜9のいずれか1項に記載の方法。   The method according to any one of claims 7 to 9, wherein the superabrasive is contained in the composite material in an amount of 1 to 30% by volume. 前記型がカーボンである請求項6〜10のいずれか1項に記載の方法。   The method according to any one of claims 6 to 10, wherein the mold is carbon. 前記母材と前記型との隙間が0.3mm以上である請求項6〜11のいずれか1項に記載の方法。   The method according to any one of claims 6 to 11, wherein a gap between the base material and the mold is 0.3 mm or more. 前記本焼結後の前記耐摩耗性複合材料の形状の寸法のバラツキが±0.1mm以下のニヤネットである、請求項6〜12のいずれか1項に記載の方法。   The method according to any one of claims 6 to 12, wherein the size of the shape of the wear-resistant composite material after the main sintering has a variation of ± 0.1 mm or less.
JP2018122769A 2018-06-28 2018-06-28 Abrasion resistant composite material and its manufacturing method Active JP7014420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018122769A JP7014420B2 (en) 2018-06-28 2018-06-28 Abrasion resistant composite material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018122769A JP7014420B2 (en) 2018-06-28 2018-06-28 Abrasion resistant composite material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020002427A true JP2020002427A (en) 2020-01-09
JP7014420B2 JP7014420B2 (en) 2022-02-01

Family

ID=69098851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018122769A Active JP7014420B2 (en) 2018-06-28 2018-06-28 Abrasion resistant composite material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7014420B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202780A (en) * 1982-05-20 1983-11-26 Nippon Kogaku Kk <Nikon> Grindstone manufacturing method by frame spray coating
JPS6089503A (en) * 1983-10-21 1985-05-20 Toshiba Mach Co Ltd Coating method of wear resistant material
JPH0543911A (en) * 1991-08-07 1993-02-23 Mitsubishi Heavy Ind Ltd Manufacture of screw for split extruder and split screw
JPH10202538A (en) * 1997-01-22 1998-08-04 Tone Corp Porous diamond cutter for cutting pig-iron of casting or steel
JP2016035092A (en) * 2014-08-04 2016-03-17 第一高周波工業株式会社 Formation method of functional self-fluxing alloy coating layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202780A (en) * 1982-05-20 1983-11-26 Nippon Kogaku Kk <Nikon> Grindstone manufacturing method by frame spray coating
JPS6089503A (en) * 1983-10-21 1985-05-20 Toshiba Mach Co Ltd Coating method of wear resistant material
JPH0543911A (en) * 1991-08-07 1993-02-23 Mitsubishi Heavy Ind Ltd Manufacture of screw for split extruder and split screw
JPH10202538A (en) * 1997-01-22 1998-08-04 Tone Corp Porous diamond cutter for cutting pig-iron of casting or steel
JP2016035092A (en) * 2014-08-04 2016-03-17 第一高周波工業株式会社 Formation method of functional self-fluxing alloy coating layer

Also Published As

Publication number Publication date
JP7014420B2 (en) 2022-02-01

Similar Documents

Publication Publication Date Title
US7070635B2 (en) Self sharpening polycrystalline diamond compact with high impact resistance
US9567807B2 (en) Diamond impregnated cutting structures, earth-boring drill bits and other tools including diamond impregnated cutting structures, and related methods
US8517125B2 (en) Impregnated material with variable erosion properties for rock drilling
US7234550B2 (en) Bits and cutting structures
US8435626B2 (en) Thermal degradation and crack resistant functionally graded cemented tungsten carbide and polycrystalline diamond
US8069936B2 (en) Encapsulated diamond particles, materials and impregnated diamond earth-boring bits including such particles, and methods of forming such particles, materials, and bits
CN105392584B (en) Superhard constructions and methods of making same
US20100104874A1 (en) High pressure sintering with carbon additives
US20060237236A1 (en) Composite structure having a non-planar interface and method of making same
US9771497B2 (en) Methods of forming earth-boring tools
US9421671B2 (en) Infiltrated diamond wear resistant bodies and tools
JPH09194978A (en) Superhard composite member and its production
CN104612591B (en) A kind of diamond impregnated block body and preparation method thereof
US9528551B2 (en) Method for making a bearing component, a bearing component, a down hole device and a down hole bearing assembly
US10047567B2 (en) Cutting elements, related methods of forming a cutting element, and related earth-boring tools
US11292088B2 (en) Wear resistant coating
US20120301675A1 (en) Self-renewing cutting surface, tool and method for making same using powder metallurgy and densification techniques
JP2020002427A (en) Wear-resistant composite material and method of producing the same
CN109944551B (en) Manufacturing process and components of PDC steel body drill bit gauge protection wear-resistant block
US20160312542A1 (en) Polycrystalline super hard construction &amp; method of making
US9650836B2 (en) Cutting elements leached to different depths located in different regions of an earth-boring tool and related methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210421

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210528

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220113