JP2020001249A - Porous film, separator for secondary battery and secondary battery - Google Patents

Porous film, separator for secondary battery and secondary battery Download PDF

Info

Publication number
JP2020001249A
JP2020001249A JP2018121991A JP2018121991A JP2020001249A JP 2020001249 A JP2020001249 A JP 2020001249A JP 2018121991 A JP2018121991 A JP 2018121991A JP 2018121991 A JP2018121991 A JP 2018121991A JP 2020001249 A JP2020001249 A JP 2020001249A
Authority
JP
Japan
Prior art keywords
porous
porous film
air permeability
porous layer
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018121991A
Other languages
Japanese (ja)
Other versions
JP7176249B2 (en
Inventor
信康 甲斐
Nobuyasu Kai
信康 甲斐
慶一 加門
Keiichi Kamon
慶一 加門
佃 明光
Akimitsu Tsukuda
佃  明光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2018121991A priority Critical patent/JP7176249B2/en
Publication of JP2020001249A publication Critical patent/JP2020001249A/en
Application granted granted Critical
Publication of JP7176249B2 publication Critical patent/JP7176249B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Laminated Bodies (AREA)
  • Cell Separators (AREA)

Abstract

To provide a porous film high in adhesiveness with an electrode, having excellent battery, used for a separator for secondary battery.SOLUTION: There is provided a porous film by laminating a porous layer A on at least a single surface of a porous substrate, in which (1) gas permeability is 50 to 1000 sec/100 cm, (2) gas permeability after a heat treatment at 60°C for 30 min. is 1.05 times or more of that before the heat treatment, and (3) gas permeability after impregnation into a solvent constituted by at least one kind of dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate at 25°C for 24 hr. after the heat treatment of the (2) is conducted is 0.95 times or less of that before impregnation.SELECTED DRAWING: None

Description

本発明は、多孔性フィルム、二次電池用セパレータおよび二次電池に関するものである。   The present invention relates to a porous film, a separator for a secondary battery, and a secondary battery.

リチウムイオン電池のような二次電池は、スマートフォン、タブレット、携帯電話、ノートパソコン、デジタルカメラ、デジタルビデオカメラ、携帯ゲーム機などのポータブルデジタル機器、電動工具、電動バイク、電動アシスト補助自転車などのポータブル機器、および電気自動車、ハイブリッド車、プラグインハイブリッド車などの自動車用途など、幅広く使用されている。   Secondary batteries such as lithium-ion batteries are used in portable digital devices such as smartphones, tablets, mobile phones, laptops, digital cameras, digital video cameras, portable game machines, portable tools such as electric tools, electric motorcycles, and electric assist bicycles. It is widely used in equipment and automotive applications such as electric vehicles, hybrid vehicles and plug-in hybrid vehicles.

リチウムイオン電池は、一般的に、正極活物質を正極集電体に積層した正極と、負極活物質を負極集電体に積層した負極との間に、二次電池用セパレータと電解質が介在した構成を有している。   Lithium ion batteries generally have a secondary battery separator and an electrolyte interposed between a positive electrode in which a positive electrode active material is laminated on a positive electrode current collector and a negative electrode in which a negative electrode active material is laminated on a negative electrode current collector. It has a configuration.

二次電池用セパレータとしては、ポリオレフィン系多孔質基材が用いられている。二次電池用セパレータに求められる特性としては、多孔構造中に電解液を含み、イオン移動を可能にする特性と、リチウムイオン電池が異常発熱した場合に、熱で溶融することで多孔構造が閉鎖され、イオン移動を停止させることで、発電を停止させるシャットダウン特性が挙げられる。   A polyolefin porous substrate is used as a secondary battery separator. The characteristics required for a secondary battery separator include the ability to contain an electrolyte in the porous structure and enable ion transfer, and the ability to close the porous structure by melting with heat when the lithium ion battery generates abnormal heat. In addition, there is a shutdown characteristic in which power generation is stopped by stopping ion movement.

さらに、二次電池の製造工程において、正極、セパレータ、負極を積層した積層体を運搬する際に、積層体を維持するため、または、捲回した正極、セパレータ、負極の積層体を円筒型、角型などの缶に挿入する場合、積層体を熱プレスしてから挿入するが、その際に形が崩れないようにするため、もしくは、積層体を熱プレスすることで、より多くの積層体を缶の中に入れ、エネルギー密度を上げるため、さらにはラミネート型において、外装材に挿入した後に形状が変形しないようにするために、電解液を含浸する前のセパレータと電極との接着性が求められている。   Furthermore, in the manufacturing process of the secondary battery, the positive electrode, the separator, when transporting the laminated body of the negative electrode, in order to maintain the laminated body, or rolled positive electrode, separator, the laminated body of the negative electrode cylindrical, When inserting into a can, such as a square shape, insert the laminate by hot pressing, but in order to prevent the shape from collapsing at that time, or by hot pressing the laminate, more laminates In a can to increase the energy density, and in a laminate type, in order to prevent the shape from being deformed after being inserted into the exterior material, the adhesiveness between the separator and the electrode before impregnation with the electrolyte is It has been demanded.

また一方では、リチウムイオン電池には、高出力化、長寿命化といった優れた電池特性も求められており、電池特性を低下させることなく、良好な電池特性を発現することが求められている。   On the other hand, lithium-ion batteries are also required to have excellent battery characteristics such as high output and long life, and are required to exhibit good battery characteristics without deteriorating the battery characteristics.

これらの要求に対して、特許文献1では、粒子状の有機バインダーおよび無機フィラーを含む耐熱性多孔質層を積層することで、イオン透過性と電極との接着性の両立を図っている。特許文献2では、耐熱層上に形成された接着層を積層することで電極との接着性と耐ブロッキング性との両立を図っている。また、特許文献3では、原子間力顕微鏡(AFM)を用い、押し付け力に基づくフォースカーブを作成したときに、前記フォースカーブから算出されたカンチレバーのたわみ量を規定した熱可塑性層を積層することで、電極との接着性、高温保存特性が向上するとされている。   In response to these requirements, Patent Literature 1 attempts to achieve both ion permeability and adhesiveness with an electrode by laminating a heat-resistant porous layer containing a particulate organic binder and an inorganic filler. In Patent Literature 2, an adhesive layer formed on a heat-resistant layer is laminated to achieve both the adhesion to an electrode and the blocking resistance. Also, in Patent Document 3, when a force curve based on a pressing force is created using an atomic force microscope (AFM), a thermoplastic layer that defines the amount of deflection of the cantilever calculated from the force curve is laminated. It is said that the adhesiveness to electrodes and high-temperature storage characteristics are improved.

特許第564378号公報Japanese Patent No. 564378 特許第6191597号公報Japanese Patent No. 6191597 特開2017−147050号公報JP 2017-147050 A

前述のとおり、二次電池の製造工程における熱プレス工程によって電極とセパレータの接着性が求められる。また優れた電池特性も求められており、接着性と電池特性の両立が必要である。   As described above, the adhesiveness between the electrode and the separator is required by the hot pressing process in the manufacturing process of the secondary battery. In addition, excellent battery characteristics are also required, and it is necessary to achieve both adhesion and battery characteristics.

本発明の目的は、上記問題に鑑み、電極との接着性を有し、かつ優れた電池特性を有する多孔性フィルムを提供することである。   In view of the above problems, an object of the present invention is to provide a porous film having adhesiveness to an electrode and having excellent battery characteristics.

そこで、本発明者らは、電極との接着性を有し、かつ優れた電池特性を有する多孔性フィルムを提供するために、鋭意検討を重ねた。その結果、特許文献1〜3のような従来技術では、接着層を設けることで、電極活物質との接着性は有しているが、熱プレスを行うことで接着層が膨潤し、電極活物質やセパレータの空隙を埋めることで空隙率が低下し、イオン輸送率が下がるために電池特性も低下してしまうことを見出し、本発明に想到した。   Therefore, the present inventors have conducted intensive studies in order to provide a porous film having adhesiveness to an electrode and excellent battery characteristics. As a result, in the prior arts such as Patent Documents 1 to 3, the adhesive layer has an adhesive property to the electrode active material by providing the adhesive layer. The present inventors have found that filling the voids of the substance and the separator lowers the porosity and lowers the ion transport rate, so that the battery characteristics are also reduced.

上記課題を解決するため本発明の多孔性フィルムは次の構成を有する。   In order to solve the above problems, the porous film of the present invention has the following configuration.

[1]多孔質基材の少なくとも片面に、多孔質層Aが積層された多孔性フィルムであって、下記(1)〜(3)を満たす多孔性フィルム。
(1)多孔性フィルムの透気度が50sec/100cm以上1000sec/100cm以下、
(2)多孔性フィルムの60℃30分での熱処理後の透気度が熱処理前の透気度の1.05倍以上、
(3)前記(2)の熱処理を施した多孔性フィルムを、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、プロピレンカーボネートの少なくとも1種から構成された溶媒に25℃24時間浸漬した後の透気度が浸漬前の0.95倍以下。
[1] A porous film in which a porous layer A is laminated on at least one surface of a porous substrate, and which satisfies the following (1) to (3).
(1) air permeability of the porous film is 50 sec / 100 cm 3 or more and 1000 sec / 100 cm 3 or less;
(2) The air permeability of the porous film after heat treatment at 60 ° C. for 30 minutes is at least 1.05 times the air permeability before heat treatment;
(3) After immersing the porous film subjected to the heat treatment of the above (2) in a solvent composed of at least one of ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and propylene carbonate at 25 ° C. for 24 hours. Air permeability is 0.95 times or less before immersion.

[2]前記(3)の溶媒への浸漬後の多孔性フィルムの透気度が1000sec/100cm以下である、[1]に記載の多孔性フィルム。 [2] The porous film according to [1], wherein the porous film after immersion in the solvent of the above (3) has an air permeability of 1000 sec / 100 cm 3 or less.

[3]前記多孔質層Aがアクリル樹脂、スチレン樹脂、フッ素樹脂、およびオレフィン樹脂からなる群より選択される少なくとも1種の樹脂を含有する、[1]または[2]に記載の多孔性フィルム。   [3] The porous film according to [1] or [2], wherein the porous layer A contains at least one resin selected from the group consisting of an acrylic resin, a styrene resin, a fluororesin, and an olefin resin. .

[4]前記多孔質層Aの膜厚が0.05μm以上5μm以下である、[1]から[3]のいずれかに記載の多孔性フィルム。   [4] The porous film according to any one of [1] to [3], wherein the thickness of the porous layer A is 0.05 μm or more and 5 μm or less.

[5]前記多孔質層Aが無機粒子を含む、[1]から[4]のいずれかに記載の多孔性フィルム。   [5] The porous film according to any one of [1] to [4], wherein the porous layer A contains inorganic particles.

[6]前記多孔質基材と前記多孔質層Aの間に、無機粒子を含む多孔質層Bが積層された、[1]から[5]のいずれかに記載の多孔性フィルム。   [6] The porous film according to any one of [1] to [5], wherein a porous layer B containing inorganic particles is laminated between the porous substrate and the porous layer A.

[7]前記多孔質層Aが前記多孔質基材の両面に積層されている[1]から[6]のいずれかに記載の多孔性フィルム。   [7] The porous film according to any one of [1] to [6], wherein the porous layer A is laminated on both surfaces of the porous substrate.

[8][1]から[7]のいずれかに記載の多孔性フィルムを用いてなる二次電池用セパレータ。   [8] A separator for a secondary battery using the porous film according to any one of [1] to [7].

[9][8]に記載の二次電池用セパレータを用いてなる二次電池。   [9] A secondary battery using the secondary battery separator according to [8].

本発明によれば、多孔質基材の少なくとも片面に、多孔質層Aが積層された多孔性フィルムであって、下記(1)〜(3)を満たす多孔性フィルムにすることで、電極との接着性を有し、かつ優れた電池特性を有する多孔性フィルムにすることで、電極との接着性を有し、かつ優れた電池特性を有する多孔性フィルムを提供することができる。本発明の多孔性フィルムを用いることで、高生産性、高容量、高出力、長寿命の二次電池を提供することが可能となる。
(1)多孔性フィルムの透気度が50sec/100cm以上1000sec/100cm以下、
(2)多孔性フィルムの60℃30分での熱処理後の透気度が熱処理前の透気度の1.05倍以上、
(3)前記(2)の熱処理を施した多孔性フィルムを、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートの少なくとも1種から構成された溶媒に25℃24時間浸漬した後の透気度が浸漬前の0.95倍以下。
According to the present invention, a porous film in which a porous layer A is laminated on at least one surface of a porous substrate, and a porous film satisfying the following (1) to (3) is obtained, By forming a porous film having the above-mentioned adhesiveness and excellent battery characteristics, it is possible to provide a porous film having an adhesiveness to an electrode and having excellent battery characteristics. By using the porous film of the present invention, a secondary battery having high productivity, high capacity, high output, and long life can be provided.
(1) air permeability of the porous film is 50 sec / 100 cm 3 or more and 1000 sec / 100 cm 3 or less;
(2) The air permeability of the porous film after heat treatment at 60 ° C. for 30 minutes is at least 1.05 times the air permeability before heat treatment;
(3) The air permeability after immersing the porous film subjected to the heat treatment of the above (2) in a solvent composed of at least one of dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate at 25 ° C. for 24 hours before the immersion 0.95 times or less.

多孔質基材の少なくとも片面に、多孔質層Aが積層された多孔性フィルムであって、下記(1)〜(3)を満たす多孔性フィルムにすることで、電極との接着性を有し、かつ優れた電池特性を有する多孔性フィルムにすることで、電極との接着性を有し、かつ優れた電池特性を有する多孔性フィルムである。
(1).多孔性フィルムの透気度が50sec/100cm以上、1000sec/100cm以下、
(2).多孔性フィルムの60℃30分での熱処理後の透気度が熱処理前の透気度の1.05倍以上、
(3).(2)の熱処理を施した多孔性フィルムを、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、の少なくとも1種から構成された溶媒に25℃24時間浸漬した後の透気度が浸漬前の0.95倍以下。
A porous film in which a porous layer A is laminated on at least one surface of a porous base material, and having a porous film satisfying the following (1) to (3), has an adhesive property to an electrode. By forming a porous film having excellent battery characteristics, the porous film has an adhesive property to an electrode and has excellent battery characteristics.
(1). The air permeability of the porous film is 50 sec / 100 cm 3 or more, 1000 sec / 100 cm 3 or less,
(2). The air permeability of the porous film after heat treatment at 60 ° C. for 30 minutes is 1.05 times or more the air permeability before heat treatment,
(3). The air permeability after immersing the porous film subjected to the heat treatment of (2) in a solvent composed of at least one of dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate at 25 ° C. for 24 hours is 0.1% before immersion. 95 times or less.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

[多孔性フィルム]
(透気度)
本発明の多孔性フィルムは、透気度が50sec/100cm以上1000sec/100cm以下である。好ましくは80sec/100cm以上800sec/100cm以下、より好ましくは100sec/100cm以上500sec/100cm以下、さらに好ましくは100sec/100cm以上300sec/100cm以下である。透気度が50sec/100cm以上であると、十分な力学特性を得得ることができる。また、1000sec/100cm以下であると、電解液の含浸性を低下させないようにすることができる。透気度が50sec/100cmより小さい場合、十分な力学特性が得られない場合がある。また、1000sec/100cmより大きい場合、電解液の含浸性が低下する場合がある。
[Porous film]
(Air permeability)
The porous film of the present invention has an air permeability of 50 sec / 100 cm 3 or more and 1000 sec / 100 cm 3 or less. Preferably of 80 sec / 100 cm 3 or more 800 sec / 100 cm 3 or less, more preferably 100 sec / 100 cm 3 or more 500 sec / 100 cm 3, more preferably not more than 100 sec / 100 cm 3 or more 300 sec / 100 cm 3. When the air permeability is 50 sec / 100 cm 3 or more, sufficient mechanical properties can be obtained. When the time is 1000 sec / 100 cm 3 or less, it is possible to prevent the impregnating property of the electrolytic solution from being reduced. If the air permeability is less than 50 sec / 100 cm 3 , sufficient mechanical properties may not be obtained. On the other hand, if it is more than 1000 sec / 100 cm 3 , the impregnation of the electrolytic solution may decrease.

上記多孔性フィルムを60℃30分で熱処理した後の透気度が熱処理前の透気度の1.05倍以上である。好ましくは1.1倍以上、より好ましくは1.2倍以上、さらに好ましくは1.5倍以上、最も好ましくは2.0倍以上である。熱処理により透気度が上昇することは、多孔質層Aに含有される樹脂が加熱により軟化し、造膜が促進されていることを示し、多孔性フィルムを60℃30分で熱処理した後の透気度が熱処理前の透気度の1.05倍以上であると、電極との接着性が十分となる。1.05倍未満の場合、電極との接着性が十分ではない場合がある。   The air permeability after heat treatment of the porous film at 60 ° C. for 30 minutes is 1.05 times or more the air permeability before heat treatment. It is preferably 1.1 times or more, more preferably 1.2 times or more, further preferably 1.5 times or more, and most preferably 2.0 times or more. The increase in the air permeability due to the heat treatment indicates that the resin contained in the porous layer A is softened by heating and the film formation is promoted, and after the porous film is heat-treated at 60 ° C. for 30 minutes. When the air permeability is at least 1.05 times the air permeability before the heat treatment, the adhesiveness to the electrode is sufficient. If the ratio is less than 1.05 times, the adhesion to the electrode may not be sufficient.

熱処理を施した上記多孔性フィルムを、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートの少なくとも1種から構成された溶媒に25℃24時間浸漬した後の透気度が浸漬前の0.95倍以下である。好ましくは0.9倍以下、より好ましくは0.7倍以下、さらに好ましくは0.5倍以下である。0.95倍以下であるとジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートの少なくとも1種から構成された溶媒の浸漬による多孔化がし易くなり、十分なイオン移動性を得ることができ、電池特性を向上させることができる。0.95倍より大きいと、溶媒の浸漬による多孔化が不十分であり、十分なイオン移動性が得られず、電池特性が低下してしまう場合がある。また、上記溶媒に浸漬後の多孔性フィルムの透気度は1000sec/100cm以下が好ましい。より好ましくは500sec/100cm以下、さらに好ましくは300sec/100cm以下である。1000sec/100cm以下であると、十分なイオン移動性が得られるとともに、電池特性を向上させることができる。1000sec/100cmよりも大きい場合、十分なイオン移動性が得られず、電池特性が低下してしまう場合がある。 Air permeability after immersing the heat-treated porous film in a solvent composed of at least one of dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate at 25 ° C. for 24 hours is 0.95 times or less that before immersion. is there. Preferably it is 0.9 times or less, more preferably 0.7 times or less, further preferably 0.5 times or less. When it is 0.95 times or less, porosity by immersion of a solvent composed of at least one of dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate is easily caused, sufficient ion mobility can be obtained, and battery characteristics can be improved. Can be improved. If it is more than 0.95 times, porosity due to immersion in the solvent is insufficient, sufficient ion mobility cannot be obtained, and battery characteristics may be deteriorated. Further, the air permeability of the porous film after being immersed in the above solvent is preferably 1000 sec / 100 cm 3 or less. More preferably, it is 500 sec / 100 cm 3 or less, even more preferably, 300 sec / 100 cm 3 or less. When it is 1000 sec / 100 cm 3 or less, sufficient ion mobility can be obtained and battery characteristics can be improved. When it is larger than 1000 sec / 100 cm 3 , sufficient ion mobility cannot be obtained, and battery characteristics may be deteriorated.

[多孔質層A]
(有機樹脂)
本発明における多孔質層Aは有機樹脂を主成分とする。本発明における有機樹脂とは、熱処理によって有機樹脂自体を造膜させる造膜樹脂であることが好ましい。ここでいう造膜樹脂とは、最低造膜温度が20℃以上100℃以下、かつガラス転移温度が15℃以上100℃以下である樹脂をいう。ここで最低造膜温度とは、例えば「JIS K6828−2 白化温度及び最低造膜温度の求め方」の規定に準じ、樹脂エマルジョンを乾燥させたとき、き裂のない均一皮膜が形成される最低温度とする。
[Porous layer A]
(Organic resin)
The porous layer A in the present invention contains an organic resin as a main component. The organic resin in the present invention is preferably a film forming resin that forms a film of the organic resin itself by heat treatment. The term "film-forming resin" as used herein means a resin having a minimum film-forming temperature of 20 ° C to 100 ° C and a glass transition temperature of 15 ° C to 100 ° C. Here, the minimum film forming temperature is, for example, the minimum value at which a uniform film without cracks is formed when the resin emulsion is dried in accordance with the provisions of “JIS K6828-2 Determination of whitening temperature and minimum film forming temperature”. Temperature.

最低造膜温度が15℃以上100℃以下、かつガラス転移温度が15℃以上100℃以下である樹脂であることで、電極との高い接着性が得られるため好ましい。電極と多孔性フィルムとを接着させる工程は熱プレス工程が用いられることが多いが、その際、最低造膜温度が15℃以上100℃以下、かつガラス転移温度が15℃以上100℃以下である樹脂、熱またはプレスにより多孔質層の一部が電極の活物質間の隙間に入り込み、アンカー効果を発現することで電極との接着が可能となるため好ましい。100℃より高い温度に最低造膜温度を有する樹脂の場合、十分な電極との接着性が得られない場合がある。   It is preferable that the resin has a minimum film forming temperature of 15 ° C. or more and 100 ° C. or less and a glass transition temperature of 15 ° C. or more and 100 ° C. or less, since high adhesiveness to an electrode can be obtained. The step of bonding the electrode and the porous film is often performed by a hot pressing step, in which case the minimum film forming temperature is 15 ° C or higher and 100 ° C or lower, and the glass transition temperature is 15 ° C or higher and 100 ° C or lower. Part of the porous layer enters the gap between the active materials of the electrode by resin, heat, or press, and it is preferable because an anchor effect is exhibited to enable adhesion to the electrode. In the case of a resin having a minimum film forming temperature at a temperature higher than 100 ° C., sufficient adhesiveness to an electrode may not be obtained.

本発明の多孔質層を構成する有機樹脂としては、アクリル樹脂、ポリエチレン、ポリプロピレンなどのオレフィン樹脂、スチレン樹脂、架橋ポリスチレン、メチルメタクリレート−スチレン共重合体、ポリイミド、フッ素樹脂、メラミン樹脂、フェノール樹脂、ポリアクリロニトリル、シリコン樹脂、ウレタン樹脂、ポリカーボネート、カルボキシメチルセルロース樹脂などが挙げられ、これらのうち1種類だけを用いてもよく、複数組み合わせて用いてもよい。これらのうち、電極との接着性の点から、例えば、アクリル樹脂、オレフィン樹脂、スチレン樹脂、フッ素樹脂、およびウレタン樹脂、ポリアクリロニトリルを用いることが好ましく、アクリル樹脂、スチレン樹脂、フッ素樹脂がさらに好ましい。これらの有機樹脂Aは、1種または必要に応じ2種以上を混合して用いてもよい。   As the organic resin constituting the porous layer of the present invention, acrylic resin, olefin resin such as polyethylene and polypropylene, styrene resin, cross-linked polystyrene, methyl methacrylate-styrene copolymer, polyimide, fluorine resin, melamine resin, phenol resin, Examples thereof include polyacrylonitrile, silicone resin, urethane resin, polycarbonate, carboxymethyl cellulose resin, and the like. One of these may be used alone, or a plurality of them may be used in combination. Among these, from the viewpoint of adhesiveness to the electrode, for example, it is preferable to use an acrylic resin, an olefin resin, a styrene resin, a fluororesin, and a urethane resin, polyacrylonitrile, and an acrylic resin, a styrene resin, and a fluororesin are more preferable. . These organic resins A may be used alone or as a mixture of two or more as necessary.

本発明の多孔質層を構成する有機樹脂の形状は特に制限されるものではないが、多孔化による電池性能向上の観点より粒子形状であると好ましい。その粒子の形状は、特に制限されず、球状、多角形状、扁平状、繊維状等のいずれであっても良いが、本発明では表面修飾性、分散性、塗工性の観点より、球状が好ましく、特に真球に近いほど好ましい。粒子形状である場合、粒子の平均粒径は0.01μm以上5μm以下が好ましく、より好ましくは0.05μm以上3μm以下、さらに好ましくは0.1μm以上1μm以下である。平均粒径が0.01μm以上であると、多孔質構造が緻密な構造になることを防ぎ、電池特性を向上させることができる。また、5μm以下であると、多孔性フィルム全体の膜厚が厚くなるのを防ぎ、電池特性を向上せることができる。平均粒径が0.01μmより小さい場合、多孔質構造が緻密な構造になり電池特性が低下する場合がある。また、5μmより大きい場合、多孔性フィルム全体の膜厚が厚くなり、電池特性が低下する場合がある。   The shape of the organic resin constituting the porous layer of the present invention is not particularly limited, but is preferably in the form of particles from the viewpoint of improving battery performance by making porous. The shape of the particles is not particularly limited, and may be spherical, polygonal, flat, fibrous, or the like, but in the present invention, from the viewpoint of surface modification, dispersibility, and coatability, spherical is preferred. It is particularly preferable that the shape is closer to a true sphere. In the case of a particle shape, the average particle size of the particles is preferably 0.01 μm or more and 5 μm or less, more preferably 0.05 μm or more and 3 μm or less, and even more preferably 0.1 μm or more and 1 μm or less. When the average particle size is 0.01 μm or more, the porous structure can be prevented from becoming a dense structure, and the battery characteristics can be improved. Further, when the thickness is 5 μm or less, the thickness of the entire porous film can be prevented from being increased, and the battery characteristics can be improved. If the average particle size is smaller than 0.01 μm, the porous structure may be dense and the battery characteristics may be reduced. On the other hand, when it is larger than 5 μm, the thickness of the entire porous film becomes large, and the battery characteristics may be reduced.

なお、粒子の平均粒径は、多孔質層表面の顕微鏡観察により観察された粒子を完全に囲む面積が最も小さい正方形または長方形を描き、すなわち、正方形または長方形の4辺に粒子の端部が接している正方形または長方形を描き、正方形の場合は1辺の長さ、長方形の場合は長辺の長さ(長軸径)として、無作為に抽出した100個の粒子についてそれぞれの粒径を測定し、その平均値を平均粒径とした。   The average particle size of the particles is such that a square or rectangle with the smallest area completely surrounding the particles observed by microscopic observation of the surface of the porous layer is drawn, that is, the edges of the particles are in contact with the four sides of the square or rectangle. Draw a square or rectangle, and measure the particle size of 100 randomly selected particles as the length of one side for a square or the length of the long side (major axis diameter) for a rectangle The average value was defined as the average particle size.

(無機粒子)
本発明の多孔質層Aは無機粒子を含有してもよい。多孔質層が無機粒子を含むことで熱寸法安定性および異物による短絡の抑制を付与することができる。
(Inorganic particles)
The porous layer A of the present invention may contain inorganic particles. When the porous layer contains inorganic particles, thermal dimensional stability and suppression of short circuit due to foreign matter can be imparted.

具体的に無機粒子としては、酸化アルミニウム、ベーマイト、シリカ、酸化チタン、酸化ジルコニウム、酸化鉄、酸化マグネシウムなどの無機酸化物粒子、窒化アルミニウム、窒化硅素などの無機窒化物粒子、フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶粒子などが挙げられる。これらの粒子を1種類で用いてもよく、2種類以上を混合して用いてもよい。   Specifically, the inorganic particles include inorganic oxide particles such as aluminum oxide, boehmite, silica, titanium oxide, zirconium oxide, iron oxide, and magnesium oxide; inorganic nitride particles such as aluminum nitride and silicon nitride; calcium fluoride; Examples include hardly soluble ionic crystal particles such as barium chloride and barium sulfate. One type of these particles may be used, or two or more types may be mixed and used.

用いる無機粒子の平均粒径は、0.05μm以上5.0μm以下であることが好ましい。より好ましくは、0.10μm以上3.0μm以下、さらに好ましくは0.20μm以上1.0μm以下である。0.05μm以上であると、多孔質層が緻密になることを防ぎ、透気度を低くすることができる。また、空孔径が大きくなることから電解液の含浸性の低下を防ぎ、生産性を向上させることができる。5.0μm以下であると、十分な寸法安定性が得られ、また多孔質層の膜厚を薄くでき、電池特性を向上させることができる。0.05μmより小さいと、多孔質層が緻密になることで透気度が高くなる場合がある。また、空孔径が小さくなることから電解液の含浸性が低下し生産性に影響を与える場合がある。5.0μmより大きくなると、十分な寸法安定性が得られない場合があり、また多孔質層の膜厚が増大し、電池特性の低下をもたらす場合がある。   The average particle diameter of the inorganic particles used is preferably 0.05 μm or more and 5.0 μm or less. More preferably, it is 0.10 μm or more and 3.0 μm or less, and further preferably 0.20 μm or more and 1.0 μm or less. When the thickness is 0.05 μm or more, the porous layer can be prevented from becoming dense, and the air permeability can be reduced. In addition, since the pore diameter is increased, a decrease in the impregnation property of the electrolytic solution can be prevented, and the productivity can be improved. When the thickness is 5.0 μm or less, sufficient dimensional stability can be obtained, the thickness of the porous layer can be reduced, and battery characteristics can be improved. If it is smaller than 0.05 μm, the porous layer may be dense and the air permeability may be high. Further, since the pore diameter becomes small, the impregnation property of the electrolytic solution is reduced, which may affect the productivity. If it is larger than 5.0 μm, sufficient dimensional stability may not be obtained, and the thickness of the porous layer may increase, resulting in a decrease in battery characteristics.

なお、粒子の平均粒径は、多孔質層表面の顕微鏡観察により観察された粒子を完全に囲む面積が最も小さい正方形または長方形を描き、すなわち、正方形または長方形の4辺に粒子の端部が接している正方形または長方形を描き、正方形の場合は1辺の長さ、長方形の場合は長辺の長さ(長軸径)として、無作為に抽出した100個の粒子についてそれぞれの粒径を測定し、その平均値を平均粒径とした。   The average particle size of the particles is such that a square or rectangle with the smallest area completely surrounding the particles observed by microscopic observation of the surface of the porous layer is drawn, that is, the edges of the particles are in contact with the four sides of the square or rectangle. Draw a square or rectangle, and measure the particle size of 100 randomly selected particles as the length of one side for a square or the length of the long side (major axis diameter) for a rectangle The average value was defined as the average particle size.

用いる粒子の形状としては、球状、板状、針状、棒状、楕円状などが挙げられ、いずれの形状であってもよい。その中でも、表面修飾性、分散性、塗工性の観点から球状であることが好ましい。   Examples of the shape of the particles used include a spherical shape, a plate shape, a needle shape, a rod shape, and an elliptic shape, and any shape may be used. Among them, a spherical shape is preferable from the viewpoint of surface modification, dispersibility, and coatability.

無機粒子を含有する場合、多孔質層A全体に対する含有量が50質量%以上が好ましく、より好ましくは70質量%以上、さらに好ましくは80質量%以上である。無機粒子の孔質層A全体に対する含有量が50質量%以上であると、熱寸法安定性および異物による短絡の抑制が十分となる。   When inorganic particles are contained, the content relative to the entire porous layer A is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more. When the content of the inorganic particles with respect to the entire porous layer A is 50% by mass or more, thermal dimensional stability and suppression of short circuit due to foreign matter are sufficient.

(バインダー)
本発明の多孔質層Aは多孔質層Aを構成する有機樹脂および無機粒子を結着させるために、バインダー樹脂を含有してもよい。バインダー樹脂としては、電池の電解液に不溶であり、またその電池の使用範囲で電気化学的に安定である樹脂が好ましい。
(binder)
The porous layer A of the present invention may contain a binder resin in order to bind the organic resin and the inorganic particles constituting the porous layer A. As the binder resin, a resin that is insoluble in the electrolyte of the battery and that is electrochemically stable within the range of use of the battery is preferable.

例えば、ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレン、ポリスルホン、ポリケトン、ポリエーテルケトン、ポリカーボネート、ポリアセタール、ポリビニルアルコール、ポリエチレングリコール、セルロースエーテル、アルギン酸ナトリウム、アクリル酸、アクリルアミド、メタクリル酸などの樹脂が挙げられる。これらのバインダー樹脂は、1種または必要に応じ2種以上を混合して用いてもよい。   For example, polyamide, polyamideimide, polyimide, polyetherimide, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polytetrafluoroethylene, polysulfone, polyketone, polyetherketone, polycarbonate, polyacetal, polyvinyl alcohol, polyethylene glycol , Cellulose ether, sodium alginate, acrylic acid, acrylamide, methacrylic acid and the like. These binder resins may be used alone or as a mixture of two or more as necessary.

(多孔質層Aの形成)
本発明の多孔性フィルムは、多孔質基材の少なくとも片面に、多孔質層Aが積層された多孔性フィルムであって、下記(1)〜(3)を満たす多孔性フィルムにすることで、電極との接着性を有し、かつ優れた電池特性を有する多孔性フィルムにすることで、電極との接着性を有し、かつ優れた電池特性を有する多孔性フィルムの製造方法で得られるが、その方法について以下に説明する。
(1)多孔性フィルムの透気度が50sec/100cm以上1000sec/100cm以下、
(2)多孔性フィルムの60℃30分での熱処理後の透気度が熱処理前の透気度の1.05倍以上、
(3)前記(2)の熱処理を施した多孔性フィルムを、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートの少なくとも1種から構成された溶媒に25℃24時間浸漬した後の透気度が浸漬前の0.95倍以下。
(Formation of porous layer A)
The porous film of the present invention is a porous film in which a porous layer A is laminated on at least one surface of a porous substrate, and the porous film satisfies the following (1) to (3). By forming a porous film having an adhesive property with an electrode and having excellent battery characteristics, it is possible to obtain a porous film having an adhesive property with an electrode and having excellent battery properties by a method for producing the porous film. The method will be described below.
(1) air permeability of the porous film is 50 sec / 100 cm 3 or more and 1000 sec / 100 cm 3 or less;
(2) The air permeability of the porous film after heat treatment at 60 ° C. for 30 minutes is at least 1.05 times the air permeability before heat treatment;
(3) The air permeability after immersing the porous film subjected to the heat treatment of the above (2) in a solvent composed of at least one of dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate at 25 ° C. for 24 hours before the immersion 0.95 times or less.

多孔質層Aを構成する有機樹脂は、所定の濃度に分散させることで水系分散塗工液を調整する。水系分散塗工液は、有機樹脂を、溶媒に分散、懸濁、又は乳化することで調製される。水系分散塗工液の溶媒としては、少なくとも水が用いられ、さらに、水以外の溶媒を加えてもよい。水以外の溶媒としては、有機樹脂を溶解せず、固体状態で、分散、懸濁又は乳化し得る溶媒であれば特に限定されるものではない。例えば、メタノール、エタノール、2−プロパノール、アセトン、テトラヒドロフラン、メチルエチルケトン、酢酸エチル、N−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルホルムアミド等の有機溶剤が挙げられる。環境への負荷の低さ、安全性及び経済的な観点からは、水、又は、水とアルコールとの混合液に、有機樹脂を乳化した水系エマルションが好ましい。   The organic resin constituting the porous layer A is dispersed at a predetermined concentration to prepare an aqueous dispersion coating liquid. The aqueous dispersion coating liquid is prepared by dispersing, suspending, or emulsifying an organic resin in a solvent. At least water is used as a solvent of the aqueous dispersion coating liquid, and a solvent other than water may be added. The solvent other than water is not particularly limited as long as the solvent does not dissolve the organic resin and can be dispersed, suspended or emulsified in a solid state. For example, organic solvents such as methanol, ethanol, 2-propanol, acetone, tetrahydrofuran, methyl ethyl ketone, ethyl acetate, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and dimethylformamide are exemplified. From the viewpoint of low environmental load, safety and economical viewpoint, an aqueous emulsion obtained by emulsifying an organic resin in water or a mixture of water and alcohol is preferable.

また、塗工液には、必要に応じて、バインダー、造膜助剤、分散剤、増粘剤、安定化剤、消泡剤、レベリング剤等を添加してもよい。造膜助剤は、有機樹脂の造膜性を調整し、多孔質基材との密着性を向上させるために添加され、具体的には、プロピレングリコール、ジエチレングリコール、エチレングリコール、ブチルセロソルブアセテート、ブチルセロソルブ、セロソルブアセテート、テキサノールなどが挙げられる。これらの造膜助剤は、1種または必要に応じ2種以上を混合して用いてもよい。造膜助剤の添加量は、塗工液全量に対して0.1質量%以上10質量%以下が好ましく、より好ましくは1質量%以上8質量%以下、さらに好ましくは2質量%以上6質量%以下である。0.1質量以上とすることで、十分な造膜性を得ることができ、10質量%以下とすることで、塗工液を多孔質基材に塗工する際に、塗工液が多孔質基材へ含浸されることを防ぎ、生産性を向上させることができる。0.1質量%未満の場合、十分な造膜性が得られない場合があり、10質量%より多い場合、塗工液を多孔質基材に塗工する際に、塗工液が多孔質基材へ含浸され、生産性が低下する場合がある。   Further, a binder, a film-forming auxiliary, a dispersant, a thickener, a stabilizer, a defoaming agent, a leveling agent, and the like may be added to the coating liquid as needed. The film-forming aid is added to adjust the film-forming property of the organic resin and improve the adhesion to the porous substrate.Specifically, propylene glycol, diethylene glycol, ethylene glycol, butyl cellosolve acetate, butyl cellosolve, Cellosolve acetate, Texanol and the like. These film-forming aids may be used alone or in combination of two or more as necessary. The addition amount of the film-forming aid is preferably 0.1% by mass or more and 10% by mass or less, more preferably 1% by mass or more and 8% by mass or less, and further preferably 2% by mass or more and 6% by mass based on the total amount of the coating solution. % Or less. When the coating liquid is applied to the porous base material, sufficient coating property can be obtained by setting the coating liquid to 0.1 mass or more, and when the coating liquid is applied to the porous substrate, the coating liquid becomes porous when the coating liquid is set to 10 mass% or less. Impregnation of the porous substrate can be prevented, and the productivity can be improved. When the amount is less than 0.1% by mass, sufficient film-forming properties may not be obtained. When the amount is more than 10% by mass, the coating liquid is The substrate may be impregnated and productivity may be reduced.

塗工液の分散方法としては、公知の手法を用いればよい。ボールミル、ビーズミル、サンドミル、ロールミル、ホモジナイザー、超音波ホモジナイザー、高圧ホモジナイザー、超音波装置、ペイントシェーカーなどが挙げられる。これら複数の混合分散機を組み合わせて段階的に分散を行ってもよい。   As a method of dispersing the coating liquid, a known method may be used. Examples include a ball mill, a bead mill, a sand mill, a roll mill, a homogenizer, an ultrasonic homogenizer, a high-pressure homogenizer, an ultrasonic device, and a paint shaker. Dispersion may be performed stepwise by combining these plural mixing and dispersing machines.

次に、得られた塗工液を多孔質基材上に塗工し、乾燥を行い、多孔質層を積層する。塗工方法としては、公知の方法で塗工すればよい。例えば、ディップコーティング、グラビアコーティング、スリットダイコーティング、ナイフコーティング、コンマコーティング、キスコーティング、ロールコーティング、バーコーティング、吹き付け塗装、浸漬コーティング、スピンコーティング、スクリーン印刷、インクジェット印刷、パット印刷、他の種類の印刷などが利用できる。これらに限定されることはなく、用いる有機樹脂、バインダー、分散剤、レベリング剤、使用する溶媒、基材などの好ましい条件に合わせて塗工方法を選択すればよい。また、塗工性を向上させるために、例えば、多孔質基材にコロナ処理、プラズマ処理などの塗工面の表面処理を行ってもよい。   Next, the obtained coating liquid is applied on a porous substrate, dried, and a porous layer is laminated. As a coating method, a known method may be used. For example, dip coating, gravure coating, slit die coating, knife coating, comma coating, kiss coating, roll coating, bar coating, spray coating, dip coating, spin coating, screen printing, inkjet printing, pad printing, other types of printing Etc. are available. The coating method is not limited to these, and the coating method may be selected according to preferable conditions such as an organic resin to be used, a binder, a dispersant, a leveling agent, a solvent to be used, and a substrate. Further, in order to improve the coating property, for example, the porous substrate may be subjected to a surface treatment of a coating surface such as a corona treatment or a plasma treatment.

多孔質層Aにおける有機樹脂Aの含有量は、多孔質層全体100質量%中、1質量%以上100質量%以下であることが好ましく、より好ましくは5質量%以上100質量%以下である。さらに好ましくは、10質量%以上100質量%以下である。多孔質層Aにおける有機樹脂Aの含有量が1質量%以上であると、十分な電極との接着性が得られる。多孔質層Aにおける有機樹脂Aの含有量が1質量%未満の場合、十分な電極との接着性が得られない場合がある。   The content of the organic resin A in the porous layer A is preferably from 1% by mass to 100% by mass, more preferably from 5% by mass to 100% by mass, based on 100% by mass of the entire porous layer. More preferably, the content is 10% by mass or more and 100% by mass or less. When the content of the organic resin A in the porous layer A is 1% by mass or more, sufficient adhesiveness to an electrode is obtained. When the content of the organic resin A in the porous layer A is less than 1% by mass, sufficient adhesiveness to an electrode may not be obtained.

多孔質層Aの膜厚は、0.05μm以上5μm以下であることが好ましい。より好ましくは、0.10μm以上3μm以下である。さらに好ましくは0.2μm以上1μm以下である。ここでいう多孔質層Aの膜厚とは、多孔質基材の片面に多孔質層Aを有する多孔性フィルムの場合は、当該多孔質層Aの膜厚をいい、多孔質基材の両面に多孔質層Aを有する多孔性フィルムの場合は、当該両方の多孔質層Aの膜厚の合計をいう。多孔質層Aの膜厚が0.05μm以上であることにより、十分な電極との接着性が得られる。また、5μm以下であることにより、十分な多孔質構造が得られるとともに、電池特性を向上させることができる。また、コスト面でも有利となる。多孔質層Aの膜厚が0.05μmよりも薄い場合、十分な電極との接着性が得られない場合がある。また、5μmより厚い場合、十分な多孔質構造が得られず、電池特性が低下する場合がある。また、コスト面でも不利となる場合がある。   The thickness of the porous layer A is preferably 0.05 μm or more and 5 μm or less. More preferably, it is 0.10 μm or more and 3 μm or less. More preferably, it is 0.2 μm or more and 1 μm or less. In the case of a porous film having the porous layer A on one surface of the porous substrate, the film thickness of the porous layer A as referred to herein means the film thickness of the porous layer A. In the case of a porous film having a porous layer A, the total thickness of both porous layers A is referred to. When the thickness of the porous layer A is 0.05 μm or more, sufficient adhesiveness to the electrode can be obtained. When the thickness is 5 μm or less, a sufficient porous structure can be obtained, and battery characteristics can be improved. It is also advantageous in terms of cost. When the thickness of the porous layer A is smaller than 0.05 μm, sufficient adhesiveness to an electrode may not be obtained. On the other hand, if the thickness is more than 5 μm, a sufficient porous structure cannot be obtained, and battery characteristics may be deteriorated. In addition, there may be a disadvantage in cost.

[多孔質層B]
本発明の多孔性フィルムは、多孔質基材と多孔質層Aの間に、無機粒子を含む多孔質層Bが積層されていてもよい。多孔質層Bには、多孔質層Aと同様の無機粒子、バインダーおよびその他の添加剤を用いればよい。また、多孔質層Bは片面でもよく両面でもよい。
[Porous layer B]
In the porous film of the present invention, a porous layer B containing inorganic particles may be laminated between a porous substrate and a porous layer A. For the porous layer B, the same inorganic particles, binder, and other additives as those of the porous layer A may be used. Further, the porous layer B may be one side or both sides.

多孔質層Bに含まれる無機粒子は50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上である。多孔質層Bに含まれる無機粒子が50質量%以上であると、十分な熱寸法安定性が得られるとともに、異物による短絡の抑制が可能となる。多孔質層Bに含まれる無機粒子が50質量%未満の場合、十分な熱寸法安定性および異物による短絡の抑制ができない場合がある。   The amount of the inorganic particles contained in the porous layer B is 50% by mass or more, preferably 60% by mass or more, and more preferably 70% by mass or more. When the amount of the inorganic particles contained in the porous layer B is 50% by mass or more, sufficient thermal dimensional stability can be obtained and short-circuiting due to foreign matter can be suppressed. If the amount of the inorganic particles contained in the porous layer B is less than 50% by mass, sufficient thermal dimensional stability and short-circuiting due to foreign matter may not be able to be suppressed.

上記多孔質層Bの積層方法は、特に限定されず、無機粒子、バインダー樹脂、その他添加剤および溶媒を含む塗工液を多孔質基材の上に直接塗工し溶媒を除去する方法;塗工液中に多孔質基材を浸漬し、ディップコーディングを行った後に溶媒を除去する方法;等が挙げられる。   The method for laminating the porous layer B is not particularly limited, and a method of directly applying a coating liquid containing inorganic particles, a binder resin, other additives and a solvent on a porous substrate and removing the solvent; A method in which a porous substrate is immersed in a working solution, dip coding is performed, and then the solvent is removed.

多孔質基材と多孔質層Aの間に多孔質層Bを積層する場合、多孔質基材の上に多孔質層Bを積層した後に多孔質層Aを積層してもよく、また、多孔質層Bの塗工液を塗工した後に、さらに多孔質層Aの塗工液を塗工して乾燥することで積層してもよく、また、多層ダイコートなどで多孔質基材の上に多孔質層Bと多孔質層Aを同時に塗工して、積層してもよい。   When the porous layer B is laminated between the porous substrate and the porous layer A, the porous layer A may be laminated after the porous layer B is laminated on the porous substrate. After applying the coating liquid for the porous layer B, the coating liquid for the porous layer A may be further applied and dried for lamination. The porous layer B and the porous layer A may be simultaneously coated and laminated.

多孔質層Bの膜厚は0.5μm以上、好ましくは1μm以上、より好ましくは2μm以上である。多孔質層Bの膜厚が0.5μm以上であると、十分な熱寸法安定性が得られるとともに、異物による短絡の抑制が可能となる。多孔質層Bの膜厚が0.5μm未満の場合、十分な熱寸法安定性および異物による短絡の抑制ができない場合がある。   The thickness of the porous layer B is 0.5 μm or more, preferably 1 μm or more, more preferably 2 μm or more. When the thickness of the porous layer B is 0.5 μm or more, sufficient thermal dimensional stability can be obtained, and short-circuiting due to foreign matter can be suppressed. If the thickness of the porous layer B is less than 0.5 μm, sufficient thermal dimensional stability and short-circuiting due to foreign matter may not be able to be suppressed.

なお、多孔質層Bの膜厚は、断面を顕微鏡観察し、その観察領域内において多孔質基材と多孔質層Bとの界面から多孔質層Aと多孔質層Bとの界面までの垂直距離として測定し、無作為に抽出した5ヶ所についてそれぞれ観察、測定し、その平均値を多孔質Bの膜厚とした。   The thickness of the porous layer B is determined by observing the cross section with a microscope, and in the observation region, the vertical direction from the interface between the porous substrate and the porous layer B to the interface between the porous layer A and the porous layer B. The distance was measured and observed and measured at each of five randomly extracted locations, and the average value was taken as the thickness of the porous B.

[多孔質基材]
本発明において多孔質基材とは、内部に空孔を有する基材をいう。また、本発明において、多孔質基材としては、例えば内部に空孔を有する多孔膜、不織布、または繊維状物からなる多孔膜シートなどが挙げられる。多孔質基材を構成する材料としては、電気絶縁性であり、電気的に安定で、電解液にも安定である樹脂から構成されていることが好ましい。また、シャットダウン機能を付与する観点から用いる樹脂は融点が200℃以下の熱可塑性樹脂が好ましい。ここでのシャットダウン機能とは、リチウムイオン電池が異常発熱した場合に、熱で溶融することで多孔構造を閉鎖し、イオン移動を停止させて、発電を停止させる機能のことである。
[Porous substrate]
In the present invention, the porous substrate refers to a substrate having pores therein. In the present invention, examples of the porous substrate include a porous membrane having pores therein, a nonwoven fabric, and a porous membrane sheet made of a fibrous material. The material constituting the porous substrate is preferably made of a resin that is electrically insulating, electrically stable, and stable to an electrolyte. From the viewpoint of providing a shutdown function, the resin used is preferably a thermoplastic resin having a melting point of 200 ° C. or less. Here, the shutdown function is a function in which when the lithium-ion battery generates abnormal heat, the porous structure is closed by melting with heat, ion transfer is stopped, and power generation is stopped.

熱可塑性樹脂としては、例えばポリオレフィン系樹脂が挙げられ、前記多孔質基材はポリオレフィン系多孔質基材であることが好ましい。また、前記ポリオレフィン系多孔質基材は融点が200℃以下であるポリオレフィン系多孔質基材であることがより好ましい。ポリオレフィン系樹脂としては、具体的にはポリエチレン、ポリプロピレン、その共重合体、およびこれらを組み合わせた混合物などが挙げられ、例えばポリエチレンを90質量%以上含有する単層の多孔質基材、ポリエチレンとポリプロピレンからなる多層の多孔質基材などが挙げられる。   Examples of the thermoplastic resin include a polyolefin-based resin, and the porous substrate is preferably a polyolefin-based porous substrate. Further, the polyolefin-based porous substrate is more preferably a polyolefin-based porous substrate having a melting point of 200 ° C. or less. Specific examples of the polyolefin-based resin include polyethylene, polypropylene, a copolymer thereof, and a mixture thereof. For example, a single-layer porous substrate containing 90% by mass or more of polyethylene, polyethylene and polypropylene And a multi-layered porous substrate composed of

多孔質基材の製造方法としては、ポリオレフィン系樹脂をシートにした後に延伸することで多孔質化する方法やポリオレフィン系樹脂を流動パラフィンなどの溶剤に溶解させてシートにした後に溶剤を抽出することで多孔質化する方法が挙げられる。   As a method for producing a porous base material, a method of forming a sheet by forming a polyolefin-based resin and then stretching the sheet, or dissolving the polyolefin-based resin in a solvent such as liquid paraffin to form a sheet and extracting the solvent is used. And a method of making it porous.

多孔質基材の厚みは、3μm以上50μm以下が好ましく、より好ましくは5μm以上、また30μm以下である。多孔質基材の厚みが50μm以上であると、多孔質基材の内部抵抗を低くすることができる。また、多孔質基材の厚みが3μm以上であると、製造が容易になり、また十分な力学特性を得ることができる。多孔質基材の厚みが50μmより厚くなると多孔質基材の内部抵抗が高くなる場合がある。また、多孔質基材の厚みが3μmより薄くなると製造が困難になり、また十分な力学特性が得られない場合がある。   The thickness of the porous substrate is preferably 3 μm or more and 50 μm or less, more preferably 5 μm or more and 30 μm or less. When the thickness of the porous substrate is 50 μm or more, the internal resistance of the porous substrate can be reduced. Further, when the thickness of the porous substrate is 3 μm or more, the production becomes easy, and sufficient mechanical properties can be obtained. When the thickness of the porous substrate is larger than 50 μm, the internal resistance of the porous substrate may increase. If the thickness of the porous substrate is less than 3 μm, production becomes difficult, and sufficient mechanical characteristics may not be obtained.

なお、多孔質基材の厚みは、断面を顕微鏡観察し、測定することができる。多孔質層が積層されている場合は、多孔質基材と多孔質層との界面間の垂直距離を多孔質基材の厚みとして測定する。無作為に抽出した5ヶ所についてそれぞれ観察、測定し、その平均値を多孔質基材の厚みとした。   The thickness of the porous substrate can be measured by observing the cross section with a microscope. When the porous layer is laminated, the vertical distance between the interface between the porous substrate and the porous layer is measured as the thickness of the porous substrate. Observation and measurement were performed on each of the five randomly extracted locations, and the average value was defined as the thickness of the porous substrate.

多孔質基材の透気度は、50秒/100cm以上1,000秒/100cm以下であることが好ましい。より好ましくは50秒/100cm以上500秒/100cm以下である透気度が1,000秒/100cm以下であると、十分なイオン移動性が得られるとともに、電池特性を向上させることができる。50秒/100cm以上であると、十分な力学特性得ることができる。透気度が1,000秒/100cmよりも大きいと、十分なイオン移動性が得られず、電池特性が低下してしまう場合がある。 The air permeability of the porous substrate is preferably 50 seconds / 100 cm 3 or more and 1,000 seconds / 100 cm 3 or less. More preferably, when the air permeability is 50 seconds / 100 cm 3 or more and 500 seconds / 100 cm 3 or less, and the air permeability is 1,000 seconds / 100 cm 3 or less, sufficient ion mobility can be obtained and battery characteristics can be improved. it can. If it is 50 seconds / 100 cm 3 or more, sufficient mechanical properties can be obtained. If the air permeability is larger than 1,000 seconds / 100 cm 3 , sufficient ion mobility cannot be obtained, and the battery characteristics may be deteriorated.

[二次電池]
本発明の多孔性フィルムは、リチウムイオン電池等の二次電池用セパレータに好適に用いることができる。リチウムイオン電池は、正極活物質を正極集電体に積層した正極と、負極活物質を負極集電体に積層した負極との間に、二次電池用セパレータと電解質が介在した構成となっている。
[Secondary battery]
The porous film of the present invention can be suitably used for a separator for a secondary battery such as a lithium ion battery. Lithium ion batteries have a configuration in which a secondary battery separator and an electrolyte are interposed between a positive electrode in which a positive electrode active material is laminated on a positive electrode current collector and a negative electrode in which a negative electrode active material is laminated on a negative electrode current collector. I have.

正極は、活物質、バインダー樹脂、および導電助剤からなる正極材が集電体上に積層されたものであり、活物質としては、LiCoO、LiNiO、Li(NiCoMn)O、などの層状構造のリチウム含有遷移金属酸化物、LiMnなどのスピネル型マンガン酸化物、およびLiFePOなどの鉄系化合物などが挙げられる。バインダー樹脂としては、耐酸化性が高い樹脂を使用すればよい。具体的にはフッ素樹脂、アクリル樹脂、スチレン−ブタジエン樹脂などが挙げられる。導電助剤としては、カーボンブラック、黒鉛などの炭素材料が用いられている。集電体としては、金属箔が好適であり、特にアルミニウムが用いられることが多い。 The positive electrode is obtained by laminating a positive electrode material composed of an active material, a binder resin, and a conductive additive on a current collector. Examples of the active material include LiCoO 2 , LiNiO 2 , and Li (NiCoMn) O 2 . Examples thereof include a lithium-containing transition metal oxide having a layered structure, a spinel-type manganese oxide such as LiMn 2 O 4 , and an iron-based compound such as LiFePO 4 . As the binder resin, a resin having high oxidation resistance may be used. Specific examples include a fluorine resin, an acrylic resin, and a styrene-butadiene resin. Carbon materials such as carbon black and graphite are used as the conductive assistant. As the current collector, a metal foil is preferable, and particularly, aluminum is often used.

負極は、活物質およびバインダー樹脂からなる負極材が集電体上に積層されたものであり、活物質としては、人造黒鉛、天然黒鉛、ハードカーボン、ソフトカーボンなどの炭素材料、スズやシリコンなどのリチウム合金系材料、Liなどの金属材料、およびチタン酸リチウム(LiTi12)などが挙げられる。バインダー樹脂としては、フッ素樹脂、アクリル樹脂、スチレン−ブタジエン樹脂などが用いられる。集電体としては、金属箔が好適であり、特に銅箔が用いられることが多い。 The negative electrode is a negative electrode material composed of an active material and a binder resin laminated on a current collector. And a metal material such as Li, and lithium titanate (Li 4 Ti 5 O 12 ). As the binder resin, a fluorine resin, an acrylic resin, a styrene-butadiene resin, or the like is used. As the current collector, a metal foil is suitable, and in particular, a copper foil is often used.

電解液は、二次電池の中で正極と負極との間でイオンを移動させる場となっており、電解質を有機溶媒にて溶解させた構成をしている。電解質としては、LiPF、LiBF、およびLiClOなどが挙げられるが、有機溶媒への溶解性、イオン電導度の観点からLiPFが好適に用いられている。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどが挙げられ、これらの有機溶媒を2種類以上混合して使用してもよい。 The electrolyte serves as a place for moving ions between the positive electrode and the negative electrode in the secondary battery, and has a configuration in which the electrolyte is dissolved in an organic solvent. As the electrolyte, LiPF 6, LiBF 4, and the like LiClO 4 and the like, solubility in organic solvents, LiPF 6 is preferably used in view of ion conductivity. Examples of the organic solvent include ethylene carbonate, propylene carbonate, fluoroethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and the like. Two or more of these organic solvents may be used in combination.

二次電池の作製方法としては、まず活物質と導電助剤をバインダー溶液中に分散して電極用塗布液を調製し、この塗布液を集電体上に塗工して、溶媒を乾燥させることで正極、負極がそれぞれ得られる。乾燥後の塗工膜の膜厚は50μm以上500μm以下とすることが好ましい。得られた正極と負極の間に二次電池用セパレータを、それぞれの電極の活物質層と接するように配置し、アルミラミネートフィルム等の外装材に封入し、電解液を注入後、負極リードや安全弁を設置し、外装材を封止する。このようにして得られた二次電池は、電極との接着性が高く、かつ優れた電池特性を有し、また、低コストでの製造が可能となる。   As a method for manufacturing a secondary battery, first, an active material and a conductive auxiliary are dispersed in a binder solution to prepare a coating solution for an electrode, and the coating solution is applied on a current collector, and the solvent is dried. Thus, a positive electrode and a negative electrode are obtained. It is preferable that the thickness of the coating film after drying is 50 μm or more and 500 μm or less. A secondary battery separator is arranged between the obtained positive electrode and negative electrode so as to be in contact with the active material layer of each electrode, sealed in a packaging material such as an aluminum laminate film, and injected with an electrolytic solution. Install a safety valve and seal the exterior material. The secondary battery thus obtained has high adhesiveness to the electrode, has excellent battery characteristics, and can be manufactured at low cost.

以下、本発明を実施例により具体的に説明するが、本発明はこれにより何ら制限されるものではない。本実施例で用いた測定法を以下に示す。   Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. The measuring method used in this example is shown below.

[測定方法]
(1)初期透気度
100mm×100mmサイズの試料3枚からそれぞれ無作為に抽出した一箇所を選び、王研式透気度測定装置(旭精工(株)社製EG01−5−1MR)を用いて、JIS P 8117(2009)に準拠して測定し、その平均値を透気度(秒/100cm)とした。
[Measuring method]
(1) Initial air permeability One spot randomly extracted from each of three samples of 100 mm × 100 mm size was selected, and an Oken-type air permeability measuring device (EG01-5-1MR manufactured by Asahi Seiko Co., Ltd.) was used. It was measured according to JIS P 8117 (2009) and the average value was defined as the air permeability (sec / 100 cm 3 ).

(2)熱処理後の透気度変化率
100mm×100mmサイズの試料3枚をそれぞれ60℃で30分間、熱処理を実施し、各サンプルを無作為に抽出した一箇所を選び、王研式透気度測定装置(旭精工(株)社製EG01−5−1MR)を用いて、JIS P 8117(2009)に準拠して測定し、その平均値を透気度(秒/100cm)とした。得られた透気度と初期透気度を用いて、以下の式から熱処理後の透気度変化率を算出した。
熱処理後の透気度変化率=熱処理後の透気度/初期透気度
(3)溶媒浸漬後の透気度変化率
前記(2)の熱処理後の試料を、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートの少なくとも1種から構成された溶媒に、試料が完全に浸漬した状態で25℃24時間浸漬した。その後、試料を取り出し、乾燥させた後に、各サンプルを無作為に抽出した一箇所を選び、王研式透気度測定装置(旭精工(株)社製EG01−5−1MR)を用いて、JIS P 8117(2009)に準拠して測定し、その平均値を透気度(秒/100cm)とした。得られた透気度と熱処理後の透気度を用いて、以下の式から溶媒浸漬後の透気度変化率を算出した。
(2) Rate of change in air permeability after heat treatment Three samples of 100 mm x 100 mm size were each heat-treated at 60 ° C for 30 minutes, and one sample was extracted at random to select one location. Using a degree measuring device (EG01-5-1MR, manufactured by Asahi Seiko Co., Ltd.), the measurement was performed in accordance with JIS P 8117 (2009), and the average value was defined as the air permeability (sec / 100 cm 3 ). Using the obtained air permeability and the initial air permeability, the air permeability change rate after the heat treatment was calculated from the following equation.
Air permeability change rate after heat treatment = air permeability rate after heat treatment / initial air permeability (3) Air permeability change rate after solvent immersion The sample after the heat treatment of the above (2) was subjected to dimethyl carbonate, ethyl methyl carbonate, The sample was immersed in a solvent composed of at least one of diethyl carbonate at 25 ° C. for 24 hours with the sample completely immersed. After that, after taking out the sample and drying, one place where each sample was extracted at random was selected, and using an Oken type air permeability measuring device (EG01-5-1MR manufactured by Asahi Seiko Co., Ltd.), measured in accordance with JIS P 8117 (2009), and the average value was air permeability and (seconds / 100cm 3). Using the obtained air permeability and the air permeability after the heat treatment, the air permeability change rate after immersion in the solvent was calculated from the following equation.

溶媒浸漬後の透気度変化率=溶媒浸漬後の透気度/熱処理後の透気度
(4)多孔質層Aの膜厚
ミクロトームにてサンプル断面を切り出し、その断面を電解放射型走査電子顕微鏡((株)日立製作所製S−800、加速電圧26kV)にて観察して、多孔質基材との界面から最も高いところを厚みとし、片面の場合は片面のみ、両面の場合は両面ともに計測し、その合計を多孔質層Aの膜厚とした。100mm×100mmサイズのサンプルから無作為に抽出した5箇所についてそれぞれ計測し平均した。
Air permeability change rate after solvent immersion = Air permeability after solvent immersion / Air permeability after heat treatment (4) Film thickness of porous layer A A cross section of the sample is cut out with a microtome, and the cross section is subjected to electrolytic radiation scanning electron. Observed with a microscope (S-800, manufactured by Hitachi, Ltd., acceleration voltage: 26 kV), the highest point from the interface with the porous substrate was taken as the thickness. For one side, only one side, and for both sides, both sides The thickness was measured and the total was defined as the thickness of the porous layer A. Five locations randomly extracted from a 100 mm × 100 mm size sample were measured and averaged.

(5)電極との接着性
活物質がLi(Ni5/10Mn2/10Co3/10)O、バインダーがフッ化ビニリデン樹脂、導電助剤がアセチレンブラックとグラファイトの正極15mm×100mmと多孔性フィルムを、活物質と多孔質層が接触するように設置し、熱ロールプレス機にて0.5MPa、80℃、0.2m/分で熱プレスを行い、ピンセットを用いて手動で剥離させ、接着強度を下記4段階にて評価を行った。同様に、活物質が黒鉛、バインダーがフッ化ビニリデン樹脂、導電助剤がカーボンブラックの負極と多孔性フィルムとの接着強度も測定し、正極および負極のそれぞれの評価を行い、接着強度とした。
・接着強度◎: 強い力で電極と多孔性フィルム側が剥離した
・接着強度○: やや強い力で電極と多孔性フィルムが剥離した
・接着強度△: 弱い力で電極と多孔性フィルムが剥離した
・接着強度×: 極弱い力で電極と多孔性フィルムが剥離した。
(5) Adhesiveness to Electrode The active material is Li (Ni 5/10 Mn 2/10 Co 3/10 ) O 2 , the binder is vinylidene fluoride resin, and the conductive assistant is a positive electrode of acetylene black and graphite of 15 mm × 100 mm. The porous film is placed so that the active material and the porous layer are in contact with each other, hot-pressed with a hot roll press at 0.5 MPa, 80 ° C., 0.2 m / min, and manually peeled off using tweezers. The adhesive strength was evaluated in the following four stages. Similarly, the adhesive strength between the negative electrode and the porous film, which were made of graphite as the active material, vinylidene fluoride resin as the binder, and carbon black as the conductive assistant, was also measured, and each of the positive electrode and the negative electrode was evaluated.
・ Adhesive strength ◎: The electrode and the porous film side peeled off with a strong force. ・ Adhesive strength ○: The electrode and the porous film peeled off with a relatively strong force. ・ Adhesive strength △: The electrode and the porous film peeled off with a weak force. Adhesive strength ×: The electrode and the porous film were peeled off by an extremely weak force.

(6)電池作製
正極シートは、正極活物質としてLi(Ni5/10Mn2/10Co3/10)Oを92質量部、正極導電助剤としてアセチレンブラックとグラファイトを2.5質量部ずつ、正極結着剤としてポリフッ化ビニリデン3質量部を、プラネタリーミキサーを用いてN−メチル−2−ピロリドン中に分散させた正極スラリーを、アルミ箔上に塗布、乾燥、圧延して作製した(塗布目付:9.5mg/cm)。
(6) Battery Production The positive electrode sheet was composed of 92 parts by mass of Li (Ni 5/10 Mn 2/10 Co 3/10 ) O 2 as a positive electrode active material and 2.5 parts by mass of acetylene black and graphite as positive electrode conduction aids. Each was prepared by applying, drying and rolling a positive electrode slurry obtained by dispersing 3 parts by mass of polyvinylidene fluoride as a positive electrode binder in N-methyl-2-pyrrolidone using a planetary mixer on an aluminum foil. (Coating weight: 9.5 mg / cm 2 ).

この正極シートを40mm×40mmに切り出した。この時、活物質層の付いていない集電用のタブ接着部が、前記活物質面の外側に5mm×5mmの大きさになるように切り出した。幅5mm、厚み0.1mmのアルミ製のタブをタブ接着部に超音波溶接した。   This positive electrode sheet was cut into 40 mm × 40 mm. At this time, the current-collecting tab bonding portion without the active material layer was cut out so as to have a size of 5 mm × 5 mm outside the active material surface. An aluminum tab having a width of 5 mm and a thickness of 0.1 mm was ultrasonically welded to the tab bonding portion.

負極シートは、負極活物質として天然黒鉛98質量部、増粘剤としてカルボキシメチルセルロースを1質量部、負極結着剤としてスチレン−ブタジエン共重合体1質量部を、プラネタリーミキサーを用いて水中に分散させた負極スラリーを、銅箔上に塗布、乾燥、圧延して作製した(塗布目付:5.5mg/cm)。 In the negative electrode sheet, 98 parts by weight of natural graphite as a negative electrode active material, 1 part by weight of carboxymethyl cellulose as a thickener, and 1 part by weight of a styrene-butadiene copolymer as a negative electrode binder were dispersed in water using a planetary mixer. The prepared negative electrode slurry was applied onto a copper foil, dried, and rolled to produce a coating (applied weight: 5.5 mg / cm 2 ).

この負極シートを45mm×45mmに切り出した。この時、活物質層の付いていない集電用のタブ接着部が、前記活物質面の外側に5mm×5mmの大きさになるように切り出した。正極タブと同サイズの銅製のタブをタブ接着部に超音波溶接した。   This negative electrode sheet was cut out to 45 mm × 45 mm. At this time, the current-collecting tab bonding portion without the active material layer was cut out so as to have a size of 5 mm × 5 mm outside the active material surface. A copper tab of the same size as the positive electrode tab was ultrasonically welded to the tab bonding portion.

次に、多孔性フィルムを55mm×55mmに切り出し、多孔性フィルムの両面に上記正極と負極を活物質層が多孔性フィルムを隔てるように重ね、正極塗布部が全て負極塗布部と対向するように配置して電極群を得た。1枚の90mm×200mmのアルミラミネートフィルムに上記正極・負極・多孔性フィルムを挟み込み、アルミラミネートフィルムの長辺を折り、アルミラミネートフィルムの長辺2辺を熱融着し、袋状とした。   Next, the porous film was cut into 55 mm × 55 mm, and the positive electrode and the negative electrode were overlapped on both surfaces of the porous film so that the active material layer separated the porous film, so that all the positive electrode application portions faced the negative electrode application portion. It was arranged to obtain an electrode group. The positive electrode, the negative electrode, and the porous film were sandwiched between a single 90 mm × 200 mm aluminum laminated film, the long sides of the aluminum laminated film were folded, and the two long sides of the aluminum laminated film were heat-sealed to form a bag.

エチレンカーボネート:ジエチルカーボネート=1:1(体積比)の混合溶媒に、溶質としてLiPFを濃度1モル/リットルとなるように溶解させ、作製した電解液を用いた。袋状にしたアルミラミネートフィルムに電解液1.5gを注入し、減圧含浸させながらアルミラミネートフィルムの短辺部を熱融着させてラミネート型電池とした。 An electrolytic solution prepared by dissolving LiPF 6 as a solute in a mixed solvent of ethylene carbonate: diethyl carbonate = 1: 1 (volume ratio) to a concentration of 1 mol / liter was used. 1.5 g of the electrolytic solution was poured into the bag-shaped aluminum laminated film, and the short side of the aluminum laminated film was heat-sealed while impregnating under reduced pressure to obtain a laminated battery.

(7)放電負荷特性
放電負荷特性を下記手順にて試験を行い、放電容量維持率にて評価した。
(7) Discharge load characteristics The discharge load characteristics were tested according to the following procedure, and evaluated by the discharge capacity retention ratio.

上記ラミネート型電池を用いて、25℃下、0.5Cで放電したときの放電容量と、10Cで放電したときの放電容量とを測定し、(10Cでの放電容量)/(0.5Cでの放電容量)×100で放電容量維持率を算出した。ここで、充電条件は0.5C、4.3Vの定電流充電とし、放電条件は2.7Vの定電流放電とした。上記ラミネート型電池を5個作製し、放電容量維持率が最大、最小となる結果を除去した3個の測定結果の平均を容量維持率とした。放電容量維持率が55%未満を×、55%以上65%未満を○、65%以上の場合を◎とした。   Using the above laminated battery, the discharge capacity when discharged at 0.5 C and the discharge capacity when discharged at 10 C at 25 ° C. were measured, and (discharge capacity at 10 C) / (at 0.5 C) The discharge capacity retention rate was calculated by (discharge capacity) × 100. Here, the charging condition was a constant current charge of 0.5 C and 4.3 V, and the discharge condition was a constant current discharge of 2.7 V. Five laminated batteries were manufactured, and the average of three measurement results excluding the results in which the discharge capacity retention ratio was maximum and minimum was defined as the capacity retention ratio. When the discharge capacity retention ratio was less than 55%, it was evaluated as x;

(8)充放電サイクル特性
充放電サイクル特性を下記手順にて試験を行い、放電容量維持率にて評価した。
(8) Charge / discharge cycle characteristics The charge / discharge cycle characteristics were tested according to the following procedure, and evaluated by the discharge capacity retention ratio.

〈1〜300サイクル目〉
充電、放電を1サイクルとし、充電条件を2C、4.3Vの定電流充電、放電条件を2C、2.7Vの定電流放電とし、25℃下で充放電を300回繰り返し行った。
<1st to 300th cycles>
The charge and discharge were defined as one cycle, the charge conditions were 2C and a constant current charge of 4.3V, and the discharge conditions were a constant current discharge of 2C and 2.7V and charge and discharge were repeated 300 times at 25 ° C.

〈放電容量維持率の算出〉
(300サイクル目の放電容量)/(1サイクル目の放電容量)×100で放電容量維持率を算出した。上記ラミネート型電池を5個作製し、放電容量維持率が最大、最小となる結果を除去した3個の測定結果の平均を容量維持率とした。放電容量維持率が60%未満を×、60%以上70%未満を○、70%以上の場合を◎とした。
<Calculation of discharge capacity retention ratio>
The discharge capacity retention ratio was calculated by (discharge capacity at the 300th cycle) / (discharge capacity at the first cycle) × 100. Five laminated batteries were manufactured, and the average of three measurement results excluding the results in which the discharge capacity retention ratio was maximum and minimum was defined as the capacity retention ratio. The case where the discharge capacity retention ratio was less than 60% was evaluated as x, the case of 60% or more and less than 70% as ○, and the case of 70% or more as ◎.

(実施例1)
乳化重合により、主成分がメタクリル酸・アクリル酸エステル、最低造膜温度が40℃、ガラス転移温度が50℃、平均粒径が0.15μmである造膜粒子が分散された水系エマルジョン塗工液を調整した。この塗工液を、ワイヤーバーを用いてポリエチレン多孔質基材(厚み7μm、透気度110秒/100cm)上へ両面塗工し、熱風オーブン(乾燥設定温度50℃)内で、含有される溶媒が揮発するまで乾燥し、多孔質層Aを形成し、本発明の多孔性フィルムを得た。得られた多孔性フィルムについて、初期透気度、熱処理後の透気度変化率、溶媒浸漬後の透気度変化率、多孔質層Aの膜厚、電極との接着性、放電負荷特性およびサイクル特性の測定結果を表1に示す。
(Example 1)
Aqueous emulsion coating liquid in which film-forming particles whose main components are methacrylic acid / acrylate, the minimum film-forming temperature is 40 ° C., the glass transition temperature is 50 ° C., and the average particle size is 0.15 μm are dispersed by emulsion polymerization. Was adjusted. This coating solution was coated on both sides of a polyethylene porous substrate (thickness: 7 μm, air permeability: 110 seconds / 100 cm 3 ) using a wire bar, and contained in a hot air oven (drying set temperature: 50 ° C.). The solvent was dried until the solvent volatilized to form a porous layer A, and a porous film of the present invention was obtained. About the obtained porous film, the initial air permeability, the rate of change in air permeability after heat treatment, the rate of change in air permeability after immersion in a solvent, the thickness of the porous layer A, the adhesion to the electrode, the discharge load characteristics and Table 1 shows the measurement results of the cycle characteristics.

(実施例2)
最低造膜温度が45℃、ガラス転移温度が70℃である造膜粒子を用いた以外は、実施例1と同様にして、本発明の多孔性フィルムを得た。
(Example 2)
A porous film of the present invention was obtained in the same manner as in Example 1 except that film forming particles having a minimum film forming temperature of 45 ° C and a glass transition temperature of 70 ° C were used.

(実施例3)
最低造膜温度が60℃、ガラス転移温度が85℃である造膜粒子を用いた以外は、実施例1と同様にして、本発明の多孔性フィルムを得た。
(Example 3)
A porous film of the present invention was obtained in the same manner as in Example 1 except that film forming particles having a minimum film forming temperature of 60 ° C and a glass transition temperature of 85 ° C were used.

(実施例4)
多孔質層Aの膜厚が5.0μmとなるように塗工した以外は、実施例1と同様にして、本発明の多孔性フィルムを得た。
(Example 4)
A porous film of the present invention was obtained in the same manner as in Example 1, except that the coating was performed so that the thickness of the porous layer A was 5.0 μm.

(実施例5)
多孔質層Aの膜厚が2.0μmとなるように塗工した以外は、実施例1と同様にして、本発明の多孔性フィルムを得た。
(Example 5)
A porous film of the present invention was obtained in the same manner as in Example 1, except that the coating was performed so that the thickness of the porous layer A was 2.0 μm.

(実施例6)
多孔質層Aの膜厚が0.05μmとなるように塗工した以外は、実施例1と同様にして、本発明の多孔性フィルムを得た。
(Example 6)
A porous film of the present invention was obtained in the same manner as in Example 1, except that the coating was performed so that the thickness of the porous layer A was 0.05 μm.

(実施例7)
無機粒子としてアルミナ粒子(平均粒径0.4μm)を95質量%、バインダーとしてアクリル樹脂を5質量%、水中に分散させて塗工液Bを調整した。この塗工液をワイヤーバーを用いてポリエチレン多孔質基材(厚み7μm、透気度110秒/100cm)上へ塗工し、熱風オーブン(乾燥設定温度50℃)内で、含有される溶媒が揮発するまで乾燥し、多孔質層Bを形成した。その後、実施例1で調整した塗工液を多孔質層B上へ塗工し、熱風オーブン(乾燥設定温度50℃)内で、含有される溶媒が揮発するまで乾燥し、多孔質層Aを形成し、本発明の多孔性フィルムを得た。
(Example 7)
A coating liquid B was prepared by dispersing 95% by mass of alumina particles (average particle diameter: 0.4 μm) as inorganic particles and 5% by mass of an acrylic resin as a binder in water. This coating liquid is applied onto a polyethylene porous substrate (thickness: 7 μm, air permeability: 110 seconds / 100 cm 3 ) using a wire bar, and a solvent contained in a hot-air oven (dry setting temperature: 50 ° C.) Was dried until volatilized to form a porous layer B. Thereafter, the coating liquid prepared in Example 1 was applied onto the porous layer B, and dried in a hot air oven (drying setting temperature: 50 ° C.) until the contained solvent was volatilized. Thus, a porous film of the present invention was obtained.

(比較例1)
最低造膜温度が35℃、ガラス転移温度が45℃である、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートの少なくとも1種から構成された溶媒に対して膨潤性の高い造膜粒子を用いた以外は、実施例1と同様にして、多孔性フィルムを得た。
(Comparative Example 1)
The minimum film forming temperature is 35 ° C., the glass transition temperature is 45 ° C., except that dimethyl carbonate, ethyl methyl carbonate, and a solvent composed of at least one of diethyl carbonate and having high swelling properties with respect to a solvent formed of a solvent composed of at least one kind. In the same manner as in Example 1, a porous film was obtained.

(比較例2)
実施例7で用いた塗工液Bをワイヤーバーを用いてポリエチレン多孔質基材(厚み7μm、透気度110秒/100cm)上へ塗工し、熱風オーブン(乾燥設定温度50℃)内で、含有される溶媒が揮発するまで乾燥し、多孔質層Bを形成し、多孔性フィルムを得た。
(Comparative Example 2)
The coating liquid B used in Example 7 was coated on a polyethylene porous substrate (thickness: 7 μm, air permeability: 110 seconds / 100 cm 3 ) using a wire bar, and placed in a hot-air oven (dry setting temperature: 50 ° C.). Then, the mixture was dried until the contained solvent was volatilized to form a porous layer B, thereby obtaining a porous film.

(比較例3)
最低造膜温度が5℃、ガラス転移温度が10℃である造膜粒子を用いた以外は、実施例1と同様にして、多孔性フィルムを得た。
(Comparative Example 3)
A porous film was obtained in the same manner as in Example 1, except that film forming particles having a minimum film forming temperature of 5 ° C and a glass transition temperature of 10 ° C were used.

(比較例4)
最低造膜温度が80℃、ガラス転移温度が95℃である造膜粒子を用いた以外は、実施例1と同様にして、多孔性フィルムを得た。
(Comparative Example 4)
A porous film was obtained in the same manner as in Example 1, except that film forming particles having a minimum film forming temperature of 80 ° C and a glass transition temperature of 95 ° C were used.

Figure 2020001249
Figure 2020001249

表1から、実施例1〜7は、いずれも、多孔質基材の少なくとも片面に、多孔質層Aが積層された多孔性フィルムであって、下記(1)〜(3)を満たす多孔性フィルムであるため、十分な電極接着性、および良好な電池特性が得られる。
(1)多孔性フィルムの透気度が50sec/100cm以上1000sec/100cm以下、
(2)多孔性フィルムの60℃30分での熱処理後の透気度が熱処理前の透気度の1.05倍以上、
(3)前記(2)の熱処理を施した多孔性フィルムを、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートの少なくとも1種から構成された溶媒に25℃24時間浸漬した後の透気度が浸漬前の0.95倍以下。
From Table 1, Examples 1 to 7 are all porous films in which the porous layer A is laminated on at least one surface of the porous substrate, and satisfy the following (1) to (3). Since it is a film, sufficient electrode adhesion and good battery characteristics can be obtained.
(1) air permeability of the porous film is 50 sec / 100 cm 3 or more and 1000 sec / 100 cm 3 or less;
(2) The air permeability of the porous film after heat treatment at 60 ° C. for 30 minutes is at least 1.05 times the air permeability before heat treatment;
(3) The air permeability after immersing the porous film subjected to the heat treatment of the above (2) in a solvent composed of at least one of dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate at 25 ° C. for 24 hours before the immersion 0.95 times or less.

一方、比較例1は、溶媒浸漬後の透気度変化率が上昇しており、ジエチルカーボネートを多孔性フィルムが含んで膨潤したと想定される。そのため、多孔性フィルムの透過性が悪化し、良好な電池特性が得られない。比較例2は、電池特性は良好であるが、十分な電極との接着性が得られない。比較例3は、初期透気度が高いため、溶媒浸漬後の透気度が高くなってしまい、良好な電池特性が得られない。また、比較例4は、熱処理後の透気度変化率が低いため、十分な電極との接着性が得られない。   On the other hand, in Comparative Example 1, the rate of change in air permeability after immersion in the solvent increased, and it is assumed that the porous film contained diethyl carbonate and swelled. Therefore, the permeability of the porous film deteriorates, and good battery characteristics cannot be obtained. In Comparative Example 2, the battery characteristics were good, but sufficient adhesion to the electrode was not obtained. In Comparative Example 3, since the initial air permeability is high, the air permeability after immersion in the solvent is high, and good battery characteristics cannot be obtained. In Comparative Example 4, since the rate of change in air permeability after the heat treatment was low, sufficient adhesion to the electrode could not be obtained.

Claims (9)

多孔質基材の少なくとも片面に、多孔質層Aが積層された多孔性フィルムであって、下記(1)〜(3)を満たす多孔性フィルム。
(1)多孔性フィルムの透気度が50sec/100cm以上、1000sec/100cm以下、
(2)多孔性フィルムの60℃30分での熱処理後の透気度が熱処理前の透気度の1.05倍以上、
(3)前記(2)の熱処理を施した多孔性フィルムを、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートの少なくとも1種から構成された溶媒に25℃24時間浸漬した後の透気度が浸漬前の0.95倍以下。
A porous film in which a porous layer A is laminated on at least one surface of a porous substrate, wherein the porous film satisfies the following (1) to (3).
(1) Air permeability of the porous film is 50 sec / 100 cm 3 or more, 1000 sec / 100 cm 3 or less,
(2) The air permeability of the porous film after heat treatment at 60 ° C. for 30 minutes is at least 1.05 times the air permeability before heat treatment;
(3) The air permeability after immersing the porous film subjected to the heat treatment of the above (2) in a solvent composed of at least one of dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate at 25 ° C. for 24 hours before the immersion 0.95 times or less.
前記(3)の溶媒への浸漬後の多孔性フィルムの透気度が1000sec/100cm以下である、請求項1に記載の多孔性フィルム。 The air permeability of the porous film after immersion in a solvent (3) is of 1,000 sec / 100 cm 3 or less, the porous film according to claim 1. 前記多孔質層Aがアクリル樹脂、スチレン樹脂、フッ素樹脂、およびオレフィン樹脂からなる群より選択される少なくとも1種の樹脂を含有する、請求項1または2に記載の多孔性フィルム。 3. The porous film according to claim 1, wherein the porous layer A contains at least one resin selected from the group consisting of an acrylic resin, a styrene resin, a fluororesin, and an olefin resin. 4. 前記多孔質層Aの膜厚が0.05μm以上5μm以下である、請求項1から3のいずれかに記載の多孔性フィルム。 4. The porous film according to claim 1, wherein the thickness of the porous layer A is 0.05 μm or more and 5 μm or less. 5. 前記多孔質層Aが無機粒子を含む、請求項1から4のいずれかに記載の多孔性フィルム。 The porous film according to any one of claims 1 to 4, wherein the porous layer A contains inorganic particles. 前記多孔質基材と前記多孔質層Aの間に、無機粒子を含む多孔質層Bが積層された、請求項1から5のいずれかに記載の多孔性フィルム。 The porous film according to any one of claims 1 to 5, wherein a porous layer (B) containing inorganic particles is laminated between the porous substrate and the porous layer (A). 前記多孔質層Aが前記多孔質基材の両面に積層されている請求項1から6のいずれかに記載の多孔性フィルム。 The porous film according to any one of claims 1 to 6, wherein the porous layer (A) is laminated on both surfaces of the porous substrate. 請求項1から7のいずれかに記載の多孔性フィルムを用いてなる二次電池用セパレータ。 A separator for a secondary battery, comprising the porous film according to claim 1. 請求項8に記載の二次電池用セパレータを用いてなる二次電池。 A secondary battery comprising the secondary battery separator according to claim 8.
JP2018121991A 2018-06-27 2018-06-27 Porous film, secondary battery separator and secondary battery Active JP7176249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018121991A JP7176249B2 (en) 2018-06-27 2018-06-27 Porous film, secondary battery separator and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018121991A JP7176249B2 (en) 2018-06-27 2018-06-27 Porous film, secondary battery separator and secondary battery

Publications (2)

Publication Number Publication Date
JP2020001249A true JP2020001249A (en) 2020-01-09
JP7176249B2 JP7176249B2 (en) 2022-11-22

Family

ID=69098119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018121991A Active JP7176249B2 (en) 2018-06-27 2018-06-27 Porous film, secondary battery separator and secondary battery

Country Status (1)

Country Link
JP (1) JP7176249B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024192602A1 (en) * 2023-03-17 2024-09-26 宁德时代新能源科技股份有限公司 Separator and preparation method therefor, secondary battery, and electric device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133074A1 (en) * 2012-03-09 2013-09-12 帝人株式会社 Non-aqueous secondary battery separator, method for manufacturing same, and non-aqueous secondary battery
WO2013146811A1 (en) * 2012-03-27 2013-10-03 東レ株式会社 Laminated porous film and separator for electrical energy storage device
WO2013151144A1 (en) * 2012-04-05 2013-10-10 日本ゼオン株式会社 Separator for secondary cell
WO2016047165A1 (en) * 2014-09-26 2016-03-31 旭化成イーマテリアルズ株式会社 Separator for electricity storage device
JP2016072197A (en) * 2014-10-02 2016-05-09 旭化成イーマテリアルズ株式会社 Separator for power storage device, and electrochemical element
JP2018056142A (en) * 2012-11-26 2018-04-05 日本ゼオン株式会社 Manufacturing method of electrode/separator laminate and lithium ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133074A1 (en) * 2012-03-09 2013-09-12 帝人株式会社 Non-aqueous secondary battery separator, method for manufacturing same, and non-aqueous secondary battery
WO2013146811A1 (en) * 2012-03-27 2013-10-03 東レ株式会社 Laminated porous film and separator for electrical energy storage device
WO2013151144A1 (en) * 2012-04-05 2013-10-10 日本ゼオン株式会社 Separator for secondary cell
JP2018056142A (en) * 2012-11-26 2018-04-05 日本ゼオン株式会社 Manufacturing method of electrode/separator laminate and lithium ion secondary battery
WO2016047165A1 (en) * 2014-09-26 2016-03-31 旭化成イーマテリアルズ株式会社 Separator for electricity storage device
JP2016072197A (en) * 2014-10-02 2016-05-09 旭化成イーマテリアルズ株式会社 Separator for power storage device, and electrochemical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024192602A1 (en) * 2023-03-17 2024-09-26 宁德时代新能源科技股份有限公司 Separator and preparation method therefor, secondary battery, and electric device

Also Published As

Publication number Publication date
JP7176249B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
JP6171117B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP6143992B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP5355823B1 (en) Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
EP3745492B1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP6193333B2 (en) Separator and manufacturing method thereof
JP6094805B2 (en) Secondary battery
JP5873605B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
WO2014083988A1 (en) Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
KR20160101895A (en) Non-aqueous secondary cell separator and non-aqueous secondary cell
JPWO2015178351A1 (en) Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JP2019216033A (en) Separator for nonaqueous secondary battery and the nonaqueous secondary battery
JPWO2015046126A1 (en) Nonaqueous battery porous layer, nonaqueous battery separator, nonaqueous battery electrode and nonaqueous battery
JPWO2017082260A1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
CN113678313B (en) Separator for nonaqueous secondary battery, method for producing same, and nonaqueous secondary battery
JP2014182875A (en) Secondary battery separator and secondary battery
JP7327044B2 (en) Porous film, secondary battery separator and secondary battery
EP3920263B1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
CN113574732B (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
JP7176249B2 (en) Porous film, secondary battery separator and secondary battery
JP7331692B2 (en) Porous film, secondary battery separator and secondary battery
JPWO2019022063A1 (en) Electrode, storage element, and method for manufacturing electrode
JP7483154B2 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP7482935B2 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
WO2023210785A1 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2015170448A (en) Separator for nonaqueous secondary battery, method of manufacturing the same, and nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220826

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220826

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220905

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221024

R151 Written notification of patent or utility model registration

Ref document number: 7176249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151