JP2019529060A5 - - Google Patents

Download PDF

Info

Publication number
JP2019529060A5
JP2019529060A5 JP2019540292A JP2019540292A JP2019529060A5 JP 2019529060 A5 JP2019529060 A5 JP 2019529060A5 JP 2019540292 A JP2019540292 A JP 2019540292A JP 2019540292 A JP2019540292 A JP 2019540292A JP 2019529060 A5 JP2019529060 A5 JP 2019529060A5
Authority
JP
Japan
Prior art keywords
joint
patient
glenoid
implant
anatomical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019540292A
Other languages
Japanese (ja)
Other versions
JP2019529060A (en
JP7229926B2 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2017/055589 external-priority patent/WO2018067966A1/en
Publication of JP2019529060A publication Critical patent/JP2019529060A/en
Publication of JP2019529060A5 publication Critical patent/JP2019529060A5/ja
Application granted granted Critical
Publication of JP7229926B2 publication Critical patent/JP7229926B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (14)

コンピュータに実装された対話型患者特有の外科手術計画システムのための術前計画方法であって、
部分的又は全関節置き換えの術前計画を実施するステップと、
複数の関節インプラントの一つの最良適合サイズを決定するステップと、
前記関節の患者特有運動学的モデルにおいて査定中の前記複数の関節インプラントの各々を仮想的に位置付けることを含む可動域分析を実施するステップと、
仮想的に位置付けられた前記関節インプラントの前記患者特有運動学的モデルを用いて軟組織分析を実施するステップと、
日常生活の選択された活動に対する患者指定の術後運動のためにより高い可動域を優先するために、前記患者特有運動学的モデル内で前記複数の関節インプラントの各々の特徴を評価及び調整するステップと、
前記実施するステップに関する術前計画分析に基づいて選択された前記関節インプラントと共に使用する患者特有手術ガイドを選択するステップと、
を含む、コンピュータに実装された対話型患者特有の外科手術計画システムのための術前計画方法。
A preoperative planning method for a computer-implemented interactive patient-specific surgical planning system.
Steps to implement a preoperative plan for partial or total joint replacement,
Steps to determine the best fit size for one of multiple joint implants,
A step of performing a range of motion analysis, including virtually positioning each of the plurality of joint implants under assessment in a patient-specific kinematic model of the joint.
A step of performing a soft tissue analysis using the patient-specific kinematic model of the virtually positioned joint implant, and
Steps to evaluate and adjust the characteristics of each of the plurality of joint implants within the patient-specific kinematic model to prioritize higher range of motion for patient-designated postoperative exercise for selected activities in daily life. When,
A step of selecting a patient-specific surgical guide to be used with the joint implant selected based on a preoperative planning analysis of the steps to be performed, and
Preoperative planning methods for computer-implemented interactive patient-specific surgical planning systems, including.
前記術前計画を実施するステップが、
ジョイントラインを分析こと、
当初のジョイントラインと、当該当初のジョイントラインと実質的に類似する新しいジョイントラインとを比較すること、
肩胛骨と比較される上腕骨の結節の再配置の距離を測定するため、前記肩胛骨及び上腕頭を含む前記上腕骨での腱及び筋肉の挿入間の距離及び方向を表す3次元のベクトルを比較すること、
前記上腕頭の直径を決定すること、
前記上腕頭の高さを決定すること、
デジタル画像から上腕骨インプラントのサイズを決定すること、
の少なくとも1つを含む、請求項1に記載の方法。
The step of implementing the preoperative plan is
Analyzing joint lines,
Comparing the original joint line with a new joint line that is substantially similar to the original joint line,
To measure the repositioning distance of the humerus nodule compared to the scapula, compare three-dimensional vectors representing the distance and direction between tendon and muscle insertions in the humerus, including the scapula and humerus. thing,
Determining the diameter of the humeral head,
Determining the height of the humeral head,
Sizing the humerus implant from digital images,
The method of claim 1, comprising at least one of the above.
前記可動域分析を実施するステップが、極度の可動域を介して仮想的にインプラントされた関節の運動をシミュレーションして、衝突位置を測定し、必要な機能的可動域を補償することを含む、請求項1又は2に記載の方法。 The steps of performing the range of motion analysis include simulating the movement of a virtually implanted joint through the extreme range of motion, measuring the collision position, and compensating for the required functional range of motion. The method according to claim 1 or 2. 前記軟組織分析を実施するステップが更に、主要軟組織挿入点を決定し、術前状態と比較するため3次元距離を測定し、極度の可動域での長さを評価して、軟組織の長さ変化又は縮小が解剖学的範囲内に実質的に維持されて、日常生活の最も一般的な活動を実質的に得るようにすることを含む、請求項1〜3の何れか1項に記載の方法。 The step of performing the soft tissue analysis further determines the major soft tissue insertion point, measures the three-dimensional distance for comparison with the preoperative state, evaluates the length in the extreme range of motion, and changes the length of the soft tissue. Alternatively, the method of any one of claims 1 to 3, comprising ensuring that the reduction is substantially maintained within the anatomical range to substantially obtain the most common activity of daily life. .. 前記複数の関節インプラントの各々の特徴を評価及び調整するステップが、
関節窩インプラントの厚さ/高さを評価及び調整すること、
前記関節窩の深さを評価及び調整すること、
グラフトの厚さを評価及び調整すること、
を含む、請求項1〜4の何れか1項に記載の方法。
The step of evaluating and adjusting the characteristics of each of the plurality of joint implants
Evaluating and adjusting the thickness / height of the glenoid implant,
Evaluating and adjusting the depth of the glenoid,
Evaluating and adjusting the thickness of the graft,
The method according to any one of claims 1 to 4, wherein the method comprises.
解剖学的又はリバース型肩関節手術インプラント又はガイドの比較のための包括的術前全関節計画方法における指示を更に含む、請求項1〜5の何れか1項に記載の方法。 The method of any one of claims 1-5, further comprising instructions in a comprehensive preoperative total joint planning method for comparison of anatomical or reverse shoulder surgery implants or guides. 前記可動域分析を実施するステップが、極度の可動域を介してインプラントを仮想的に位置付けて、衝突位置を測定し必要な機能的可動域を補償することを含む、ある範囲の可動域の分析を実施することを更に含む、請求項1〜6の何れか1項に記載の方法。 Analysis of a range of motion, including the step of performing the range of motion analysis, imagining the implant through the extreme range of motion, measuring the collision position and compensating for the required functional range of motion. The method according to any one of claims 1 to 6, further comprising carrying out. 患者の骨と関心の当該骨の統計的形状モデルとの間の位置合わせを構築するステップと、
前記患者の骨を表す原理モードを抽出するステップと、
対応する前記原理モードに従って固定構成、位置、又は寸法を定義するステップと、
衝突検出を適用して、前記骨の固定構成を確認するステップと、
に従って、前記患者の3次元(3D)骨構造と、統計的形状ベースアトラスとの間の対応するマトリクスを用いて、関節窩インプラントの固定要素の寸法を最適化するステップを更に含む、請求項1〜7の何れか1項に記載の方法。
Steps to build alignment between the patient's bone and the statistical shape model of the bone of interest,
The step of extracting the principle mode representing the patient's bone and
Steps to define a fixed configuration, position, or dimension according to the corresponding principle mode,
The step of applying collision detection to confirm the bone fixation configuration and
According to claim 1, further comprising optimizing the dimensions of the fixation element of the glenoid implant using the corresponding matrix between the patient's three-dimensional (3D) bone structure and the statistical shape-based atlas. The method according to any one of 7 to 7.
前記部分的又は全関節手術置き換えは肩関節手術を含み、
関節窩面カバレージが最大化されたかどうか、前記関節窩面の突出が最小にされたかどうか、前記関節窩面上で除去された骨が最小限にされたかどうか、前記関節窩の後傾が約5〜約10度未満であるかどうか、関節窩インプラントの着座が、インプラントカバレージ区域の約80%よりも大きいかどうか、前記関節窩の皮質壁の前方へ貫通が最小化されているかどうか、前記関節窩の後方に約3mmよりも大きい骨厚さが存在するかどうか、生来の関節窩とインプラント上/下軸との間の配向オフセットが約5度未満であるかどうか、上方又は下方傾斜と生来の関節窩が5度未満であるかどうか、上腕骨の切断面又は調製面と比較した上腕頭の突出が欠如しているかどうか、解剖学的構造とインプラントの間の上腕頭直径の差異が約3mm未満であるかどうか、解剖学的構造とインプラントとの間の上腕頭高さの差異が約1mm未満であるかどうか、解剖学的構造と比較して正中頭縁部に対して約2mm未満大きい結束が存在するかどうか、を決定して、これにより処置リスクが識別されて、選択された肩関節手術においての補綴具インプラントの選択が、識別された前記処置リスクに部分的に基づくことによって、選択されたリバース型又は解剖学的肩関節処置との間の処置リスクを識別し比較するステップを更に含む、請求項25〜40の何れかに記載の方法。
The partial or total joint surgery replacement includes shoulder surgery.
Whether the glenoid coverage was maximized, the protrusion of the glenoid surface was minimized, the bone removed on the glenoid surface was minimized, the backward tilt of the glenoid was about. Whether it is less than 5 to about 10 degrees, whether the glenoid implant is seated greater than about 80% of the implant coverage area, whether the anterior penetration of the glenoid cortical wall is minimized, said. Whether there is bone thickness greater than about 3 mm behind the glenoid, whether the orientation offset between the natural glenoid and the above / inferior axis of the implant is less than about 5 degrees, with upward or downward tilt Whether the natural glenoid is less than 5 degrees, the lack of protrusion of the humerus compared to the cut or prepared surface of the humerus, the difference in humerus diameter between the anatomical structure and the implant Whether it is less than about 3 mm, whether the difference in humeral head height between the anatomical structure and the implant is less than about 1 mm, about 2 mm relative to the midline head margin compared to the anatomical structure Determining if less than greater cohesion is present, thereby identifying treatment risk, and the choice of prosthesis implant in the selected shoulder glenoid surgery is partially based on the identified treatment risk. The method of any of claims 25-40, further comprising the step of identifying and comparing the treatment risk with the reverse type or anatomical glenoid treatment selected by.
関節窩インプラントは、解剖学的又はリバース型肩関節処置の術前計画が実施された患者を適合させるように増強され、
前記増強の深さ、前記増強のサイズ、及び/又は前記増強の半径方向位置が、選択された前記解剖学的又はリバース型肩関節処置の術前計画に応じて変化する、請求項5又は9の何れか1項に記載の方法。
Glenoid implants are augmented to fit patients who have undergone preoperative planning for anatomical or reverse shoulder joint procedures.
Claim 5 or 9, wherein the depth of the augmentation, the size of the augmentation, and / or the radial position of the augmentation varies depending on the preoperative plan of the anatomical or reverse shoulder joint procedure selected. The method according to any one of the above.
前記部分的又は全関節手術置き換えは肩関節手術を含み、
選択された解剖学的又はリバース型外科手術法のステップに基づいて、患者特有肩関節手術ガイドを得るステップと、
肩関節手術ガイド又は選択された解剖学的又はリバース型肩関節処置をもたらすステップとを更に含み、前記肩関節手術ガイドをもたらすステップが、3Dプリンティングデバイスを用いることを含む、請求項1〜10の何れか1項に記載の方法。
The partial or total joint surgery replacement includes shoulder surgery.
Steps to obtain a patient-specific shoulder surgery guide based on selected anatomical or reverse surgical procedures, and
Claims 1-10, further comprising a shoulder joint surgery guide or a step that results in a selected anatomical or reverse shoulder joint procedure, wherein the step that results in the shoulder joint surgery guide comprises using a 3D printing device. The method according to any one item.
前記部分的又は全関節手術置き換えは肩関節手術を含み、
選択された解剖学的又はリバース型外科手術法のために、関節窩インプラントのサイズ、増強深さ、増強位置、6自由度における位置決め、固定タイプ、固定サイズ、リーミング深さ、リーミング直径、リーミング角度、及び/又はこれらの組み合わせにおける調整からなるグループから選択された補綴具肩インプラント及び配置位置を推奨するステップを更に含む、請求項1〜11の何れか1項に記載の方法。
The partial or total joint surgery replacement includes shoulder surgery.
For the selected anatomical or reverse surgical procedure, glenoid implant size, augmentation depth, augmentation position, positioning in 6 degrees of freedom, fixation type, fixation size, reaming depth, reaming diameter, reaming angle , And / or the method of any one of claims 1-11, further comprising a step of recommending a prosthetic shoulder implant and placement position selected from the group consisting of adjustments in combinations thereof.
前記軟組織分析を実施するステップは、患者適合エンジンを動作させて、1又は2以上の患者特有条件を含めるように前記関節特有の運動学的モデルを適合させることにより、関節特有の運動学的モデルにおける骨、軟組織又はランドマークのうちの少なくとも1つを修正して患者特有運動学的モデルをレンダリングすることを含み、
前記複数の関節インプラントの各々の特徴を評価及び調整するステップは、補綴具試験エンジンを動作させて、全関節又は部分関節手術を電子的に実施して、前記患者特有運動学的モデルにおいて選択されたインプラントを位置付け、日常生活活動を実施しながら、選択されたインプラントを有する前記患者の関節の運動をシミュレーションすることを含み、さらに、
前記患者に対して実施される計画された外科処置のための実際のインプラントを選択するステップを含む、請求項1〜12の何れか1項に記載の方法。
を含む。
The step of performing the soft tissue analysis is to run the patient-adapted engine to adapt the joint-specific kinematic model to include one or more patient-specific conditions. Including modifying at least one of the bones, soft tissues or landmarks in to render a patient-specific kinematic model.
The step of evaluating and adjusting the characteristics of each of the plurality of joint implants is selected in the patient-specific kinematic model by operating a prosthesis test engine and performing full or partial joint surgery electronically. Including simulating the joint movements of said patients with selected implants while positioning the implants and performing daily activities, and further
The method of any one of claims 1-12, comprising the step of selecting an actual implant for a planned surgical procedure performed on the patient.
including.
コンピュータのプロセッサによって実行されたときに、請求項1〜13の何れか1項に記載の方法を実行するよう制御する実行可能命令を格納したコンピュータ可読媒体。 A computer-readable medium containing an executable instruction that controls execution of the method according to any one of claims 1 to 13 when executed by a computer processor.
JP2019540292A 2016-10-07 2017-10-06 Patient-Specific 3D Interactive Total Joint Model and Surgical Planning System Active JP7229926B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662405814P 2016-10-07 2016-10-07
US62/405,814 2016-10-07
US201662426081P 2016-11-23 2016-11-23
US62/426,081 2016-11-23
PCT/US2017/055589 WO2018067966A1 (en) 2016-10-07 2017-10-06 Patient specific 3-d interactive total joint model and surgical planning system

Publications (3)

Publication Number Publication Date
JP2019529060A JP2019529060A (en) 2019-10-17
JP2019529060A5 true JP2019529060A5 (en) 2020-11-12
JP7229926B2 JP7229926B2 (en) 2023-02-28

Family

ID=61831300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019540292A Active JP7229926B2 (en) 2016-10-07 2017-10-06 Patient-Specific 3D Interactive Total Joint Model and Surgical Planning System

Country Status (6)

Country Link
US (2) US11419680B2 (en)
EP (1) EP3522832A4 (en)
JP (1) JP7229926B2 (en)
AU (2) AU2017341030A1 (en)
CA (1) CA3039654A1 (en)
WO (1) WO2018067966A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016007492A1 (en) * 2014-07-07 2016-01-14 Smith & Nephew, Inc. Alignment precision
CA3117086A1 (en) * 2017-10-20 2019-04-25 Societe De Commercialisation Des Produits De La Recherche Appliquee Socpra Sciences Et Genie S.E.C. System for simulating cervical spine motions
US10827971B2 (en) 2017-12-20 2020-11-10 Howmedica Osteonics Corp. Virtual ligament balancing
WO2019217764A1 (en) * 2018-05-09 2019-11-14 Orthofx, Llc Generating a 3d-printed medical appliance treatment plan and providing 3d-printed medical appliances in accordance therewith
GB2588001B (en) * 2018-06-13 2022-10-19 New York Soc For The Relief Of The Ruptured And Crippled Maintaining The Hospital For Special Surger Evaluation of instability using imaging and modeling following arthroplasty
US20220054195A1 (en) * 2018-12-12 2022-02-24 Howmedica Osteonics Corp. Soft tissue structure determination from ct images
AU2020279597B2 (en) * 2019-05-20 2022-10-27 Howmedica Osteonics Corp. Automated planning of shoulder stability enhancement surgeries
EP3989856A4 (en) * 2019-06-28 2022-08-24 Formus Labs Limited Orthopaedic pre-operative planning system
US20220249168A1 (en) * 2019-06-28 2022-08-11 Formus Labs Limited Orthopaedic pre-operative planning system
US20220241090A1 (en) * 2019-07-31 2022-08-04 Mayo Foundation For Medical Education And Research Muscle length measurement
WO2021067617A1 (en) * 2019-10-02 2021-04-08 Encore Medical, Lp Dba Djo Surgical Systems and methods for reconstruction and characterization of physiologically healthy and physiologically defective anatomical structures to facilitate preoperative surgical planning
US20230085093A1 (en) * 2020-02-18 2023-03-16 Howmedica Osteonics Corp. Computerized prediction of humeral prosthesis for shoulder surgery
US11816831B2 (en) * 2020-04-29 2023-11-14 Medtronic Navigation, Inc. System and method for navigating and illustrating a procedure
US11890060B2 (en) 2020-04-29 2024-02-06 Medtronic Navigation, Inc. System and method for navigating and illustrating a procedure
US20230200826A1 (en) * 2020-05-25 2023-06-29 Orthopaedic Innovations Pty Ltd A surgical method
WO2022147591A1 (en) * 2021-01-06 2022-07-14 Precision AI Pty Ltd Surgical system
US11890058B2 (en) 2021-01-21 2024-02-06 Arthrex, Inc. Orthopaedic planning systems and methods of repair
AU2022244007A1 (en) * 2021-03-26 2023-11-09 Formus Labs Limited Surgical system
US11759216B2 (en) 2021-09-22 2023-09-19 Arthrex, Inc. Orthopaedic fusion planning systems and methods of repair
AU2022356259A1 (en) * 2021-09-28 2024-04-04 New York Society For The Relief Of The Ruptured And Crippled, Maintaining The Hospital For Special Surgery System and method to assess mechanical outcomes following joint arthroplasty
US11571266B1 (en) * 2021-12-10 2023-02-07 Ix Innovation Llc Robotic surgical system for insertion of surgical implants
CN114431957B (en) * 2022-04-12 2022-07-29 北京长木谷医疗科技有限公司 Total knee joint replacement postoperative revision preoperative planning system based on deep learning
WO2023200562A1 (en) * 2022-04-12 2023-10-19 Zimmer, Inc. Patient-specific orthopedic implant evaluation
DE102022111284A1 (en) 2022-05-06 2023-11-09 Aesculap Ag Implant assistance procedure and implant assistance system for optimized use or joint replacement
CN115054390B (en) * 2022-07-20 2024-03-15 北京大学口腔医学院 Personalized preparation method for guiding planting holes by torque model based on machine learning
WO2024054584A1 (en) * 2022-09-09 2024-03-14 Smith & Nephew, Inc. Modeling tools for total shoulder arthroplasty pre-operative planning
CN116942312B (en) * 2023-09-20 2023-12-22 中南大学 Joint replacement operation auxiliary positioning method and system

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE259623T1 (en) * 1997-11-05 2004-03-15 Synthes Ag VIRTUAL REPRESENTATION OF A BONE OR A BONE JOINT
US7887544B2 (en) 2003-03-10 2011-02-15 Tornier Sas Ancillary tool for positioning a glenoid implant
US20050065617A1 (en) 2003-09-05 2005-03-24 Moctezuma De La Barrera Jose Luis System and method of performing ball and socket joint arthroscopy
US8007448B2 (en) 2004-10-08 2011-08-30 Stryker Leibinger Gmbh & Co. Kg. System and method for performing arthroplasty of a joint and tracking a plumb line plane
WO2007147235A1 (en) 2006-06-19 2007-12-27 Igo Technologies Inc. Joint placement methods and apparatuses
GB0700940D0 (en) 2007-01-18 2007-02-28 Univ Newcastle Reverse shoulder prosthesis
ITUD20070122A1 (en) 2007-07-03 2009-01-04 Lima Lto S P A HOMERAL PROSTHESIS
US8078440B2 (en) * 2008-09-19 2011-12-13 Smith & Nephew, Inc. Operatively tuning implants for increased performance
BR112012008058B1 (en) 2009-08-26 2020-01-14 Conformis Inc patient-specific orthopedic implants and models
FR2955250B1 (en) 2010-01-15 2012-02-03 Tornier Sa SURGICAL ASSISTANCE ASSEMBLY FOR THE IMPLANTATION OF A GLENOIDAL COMPONENT OF SHOULDER PROSTHESIS
GB201003921D0 (en) 2010-03-10 2010-04-21 Depuy Orthopaedie Gmbh Orthopaedic instrument
WO2012021241A2 (en) 2010-08-12 2012-02-16 Smith & Nephew, Inc. Methods and devices for installing standard and reverse shoulder implants
US9877735B2 (en) 2010-10-29 2018-01-30 The Cleveland Clinic Foundation System and method for assisting with attachment of a stock implant to a patient tissue
EP2632383B1 (en) 2010-10-29 2022-02-23 The Cleveland Clinic Foundation System for assisting with arrangement of a stock instrument with respect to a patient tissue
EP2632348B1 (en) 2010-10-29 2019-07-17 The Cleveland Clinic Foundation System and method for association of a guiding aid with a patient tissue
ES2776151T3 (en) 2011-02-25 2020-07-29 Corin Ltd A computer-implemented method of providing alignment information data for the alignment of an orthopedic implant for a patient's joint
US9554910B2 (en) 2011-10-27 2017-01-31 Biomet Manufacturing, Llc Patient-specific glenoid guide and implants
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
KR20130046337A (en) 2011-10-27 2013-05-07 삼성전자주식회사 Multi-view device and contol method thereof, display apparatus and contol method thereof, and display system
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
WO2013060851A1 (en) 2011-10-28 2013-05-02 Materialise N.V. Shoulder guides
US20150223941A1 (en) 2012-08-27 2015-08-13 Conformis, Inc. Methods, Devices and Techniques for Improved Placement and Fixation of Shoulder Implant Components
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US20160045317A1 (en) * 2013-03-15 2016-02-18 Conformis, Inc. Kinematic and Parameterized Modeling for Patient-Adapted Implants, Tools, and Surgical Procedures
WO2015048385A1 (en) 2013-09-26 2015-04-02 Matthew Hansen Prosthetic augments to improve muscle mechanics
EP3065671B1 (en) 2013-11-08 2019-09-25 Imascap Methods, systems and devices for pre-operatively planned adaptive glenoid implants
EP3417816B1 (en) 2013-11-13 2024-05-29 Tornier Patient specific glenoid guide for attachment to a scapula of a patient

Similar Documents

Publication Publication Date Title
JP2019529060A5 (en)
US20210228277A1 (en) Methods, systems and devices for pre-operatively planned shoulder surgery guides and implants
US20230048940A1 (en) Patient specific 3-d interactive total joint model and surgical planning system
US10660709B2 (en) Methods, systems and devices for pre-operatively planned adaptive glenoid implants
US20210085400A1 (en) Methods, systems and devices for pre-operatively planned glenoid placement guides and uses thereof
EP3481318B1 (en) Reverse shoulder pre-operative planning
US20160117817A1 (en) Method of planning, preparing, supporting, monitoring and/or subsequently checking a surgical intervention in the human or animal body, apparatus for carrying out such an intervention and use of the apparatus
Cabarcas et al. Novel 3-dimensionally printed patient-specific guide improves accuracy compared with standard total shoulder arthroplasty guide: a cadaveric study
Merema et al. Accuracy of fit analysis of the patient-specific Groningen temporomandibular joint prosthesis
US20240138917A1 (en) Apparatus for simulating medical procedure performing cervical artificial disc surgery and method thereof
WO2023200562A1 (en) Patient-specific orthopedic implant evaluation
CN118044881A (en) Evaluation method and device for implantation path of implanted nail and electronic equipment