JP2019528395A - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP2019528395A
JP2019528395A JP2019506375A JP2019506375A JP2019528395A JP 2019528395 A JP2019528395 A JP 2019528395A JP 2019506375 A JP2019506375 A JP 2019506375A JP 2019506375 A JP2019506375 A JP 2019506375A JP 2019528395 A JP2019528395 A JP 2019528395A
Authority
JP
Japan
Prior art keywords
refrigerator
gas
refrigerant
cooling device
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019506375A
Other languages
Japanese (ja)
Inventor
フィッシャー,ベルンハルト
ヴィルヘルム ウォルター,ゲルハルト
ヴィルヘルム ウォルター,ゲルハルト
カーリッシュ,ダーク
アッシュクロフト,ジェニファー
Original Assignee
レイボルド ゲーエムベーハー
レイボルド ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レイボルド ゲーエムベーハー, レイボルド ゲーエムベーハー filed Critical レイボルド ゲーエムベーハー
Publication of JP2019528395A publication Critical patent/JP2019528395A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

【解決手段】本発明は、実質的にヘリウム及びオイルを含む冷媒を圧縮するための圧縮機(10)を備えた、真空を生成するための冷凍機、特にクライオポンプに関する。圧縮機と共に、オイル分離器(20, 22, 24, 26)が冷媒の送出方向の下流側に配置されている。本発明は、冷媒が膨張する冷却装置(30)に更に関する。有毒ガスを吸着するために、吸着装置(28)が送出方向の冷却装置(30)の上流側に配置されている。The present invention relates to a refrigerator, particularly a cryopump, for generating a vacuum, comprising a compressor (10) for compressing a refrigerant substantially containing helium and oil. Along with the compressor, oil separators (20, 22, 24, 26) are arranged downstream in the refrigerant delivery direction. The present invention further relates to a cooling device (30) in which the refrigerant expands. In order to adsorb toxic gas, the adsorption device (28) is arranged upstream of the cooling device (30) in the delivery direction.

Description

本発明は、冷凍機、特には真空を生成するためのクライオポンプに関する。   The present invention relates to a refrigerator, particularly a cryopump for generating a vacuum.

特にクライオポンプに適用される冷凍機を使用すると、10 K未満の非常に低い温度を得ることが可能である。そのため、例えば、閉じた真空室で最大10-10 mbarの非常に高い真空を生成することが可能である。冷凍システムは、例えばスクロールポンプのような圧縮ポンプを備えており、圧縮ポンプを用いて冷媒を圧縮する。冷媒としてヘリウムが使用される。冷媒は一般に、圧縮中のヘリウムの過度の加熱を防ぐために一定の割合のオイルを含んでいる。熱交換器が、冷媒の送出方向に見て圧縮機の下流側に最初に配置されているため、媒体の冷却を可能にする。その後、ヘリウム中のオイルを分離する。例えば、複数のオイル分離器、特に少なくとも1つのプレ分離器及び少なくとも1つの細分離器を設けて、オイルの分離を行う。更に、オイル分離器は典型的に、オイル蒸気などを濾過するために吸着器を有している。吸着器の後では、冷媒が非常に高い程度までヘリウムのみから構成されているように、冷媒は実質的にクリーンである。オイルの割合はppb 範囲内である。 In particular, when using a refrigerator applied to a cryopump, it is possible to obtain a very low temperature of less than 10 K. Thus, for example, it is possible to generate a very high vacuum of up to 10 −10 mbar in a closed vacuum chamber. The refrigeration system includes a compression pump such as a scroll pump, and compresses the refrigerant using the compression pump. Helium is used as the refrigerant. The refrigerant typically contains a proportion of oil to prevent excessive heating of the helium during compression. Since the heat exchanger is initially arranged downstream of the compressor as viewed in the refrigerant delivery direction, it allows cooling of the medium. Thereafter, the oil in the helium is separated. For example, a plurality of oil separators, in particular at least one pre-separator and at least one fine separator, are provided for oil separation. In addition, oil separators typically have an adsorber for filtering oil vapor and the like. After the adsorber, the refrigerant is substantially clean so that the refrigerant is made up of only helium to a very high degree. The proportion of oil is in the ppb range.

時々、比較的短い作動期間の後すぐに冷凍機に問題が生じる。コールドヘッドのような冷却装置の最低温度への冷却が、短い作動期間後すぐに不可能になる場合がある。従って、所望の低温を生成することができるようにコールドヘッドを定期的に保守して清浄化することが必要である。このため、高いコストを伴う。   Sometimes problems occur with the refrigerator immediately after a relatively short operating period. Cooling to a minimum temperature of a cooling device such as a cold head may not be possible immediately after a short operating period. Therefore, it is necessary to periodically maintain and clean the cold head so that the desired low temperature can be generated. This entails high costs.

本発明は、保守間隔を延ばすことができる冷凍機を提供することを目的とする。   An object of this invention is to provide the refrigerator which can extend a maintenance space | interval.

この目的は、本発明によれば請求項1の特徴により達成される。   This object is achieved according to the invention by the features of claim 1.

本発明の冷凍機は、特に10 K未満の低温を冷却装置に生成する役目を果たす。この目的に適した冷凍機は、例えば、本出願人のCoolpower シリーズの機械である。冷凍機は、冷媒を圧縮する圧縮機を備えている。場合によっては複数の特に連続するオイル分離器を有してもよいオイル分離器が、冷媒の送出方向の圧縮機の下流側に配置されている。特に、オイル分離器は、粗分離器及び/又はプレ分離器及び特に複数の細分離器を有してもよい。オイル分離器が、冷媒を清浄化するためのオイル吸着器を有していることが更に好ましい。更に、熱交換器が圧縮機とオイル分離器との間に設けられてもよい。更に、冷凍機は、コールドヘッドのような冷却装置を備えている。冷媒は冷却装置で膨張する。   The refrigerator of the present invention serves to generate a low temperature of less than 10 K in the cooling device. A refrigerator suitable for this purpose is, for example, the applicant's Coolpower series of machines. The refrigerator includes a compressor that compresses the refrigerant. In some cases, an oil separator, which may have a plurality of particularly continuous oil separators, is arranged downstream of the compressor in the refrigerant delivery direction. In particular, the oil separator may comprise a coarse separator and / or a pre-separator and in particular a plurality of fine separators. More preferably, the oil separator has an oil adsorber for cleaning the refrigerant. Furthermore, a heat exchanger may be provided between the compressor and the oil separator. Furthermore, the refrigerator includes a cooling device such as a cold head. The refrigerant expands in the cooling device.

研究により、クライオポンプがなぜ所望の低温に冷却することができないかについての現在の仮説が完全には正確ではないことが示されている。現在まで、清浄化の後であっても冷媒に依然として存在する微量のオイル及び/又は水が夫々、冷却装置及びコールドヘッドの頻繁な保守作業の必要性の原因であると仮定されていた。研究により、冷却装置の損傷が特に窒素及び酸素の存在によるものであることが現在示されている。ネオン、アルゴン、二酸化炭素などの他のガスが生じる場合、これらのガスも悪影響を及ぼす場合がある。   Studies have shown that the current hypothesis about why the cryopump cannot cool to the desired low temperature is not completely accurate. To date, it has been assumed that trace amounts of oil and / or water still present in the refrigerant even after cleaning are responsible for the need for frequent maintenance work of the cooling system and cold head, respectively. Research currently indicates that damage to the cooling device is due in particular to the presence of nitrogen and oxygen. If other gases such as neon, argon, carbon dioxide are produced, these gases may also have an adverse effect.

従って、本発明によれば、ガス吸着装置が、送出方向の冷却装置の上流側に配置されている。ガス吸着装置によって有毒ガスの少なくとも一部を冷媒から濾過する。その結果、冷却装置で凍結するこのようなガスが存在しなくなり、ひいては所要の保守間隔を延ばすことが可能になる。   Therefore, according to the present invention, the gas adsorption device is arranged on the upstream side of the cooling device in the delivery direction. At least a part of the toxic gas is filtered from the refrigerant by the gas adsorption device. As a result, there is no such gas freezing in the cooling device, and as a result, the required maintenance interval can be extended.

ガス吸着装置は、特に150 K 未満の温度、特に好ましくは120 K 未満の温度、特には70 K未満の温度で凍結する有毒ガスを吸着するように構成されていることが好ましい。言うまでもなく、ヘリウムは吸着されない。   The gas adsorbing device is preferably configured to adsorb toxic gases that freeze, in particular at temperatures below 150 K, particularly preferably at temperatures below 120 K, in particular at temperatures below 70 K. Needless to say, helium is not adsorbed.

ガス吸着装置は、好ましくは窒素及び/又は酸素を濾過及び/又は吸着する。ネオン、アルゴン又は二酸化炭素のようなコールドヘッドで凍結し得る他のガスも夫々濾過又は吸着することが好ましい。   The gas adsorber preferably filters and / or adsorbs nitrogen and / or oxygen. Other gases that can be frozen in a cold head such as neon, argon or carbon dioxide are also preferably filtered or adsorbed, respectively.

特に好ましい実施形態では、ガス吸着装置は、対応する有毒ガスの凍結が生じ得ない範囲に配置されている。従って、ガス吸着装置は、150 K を超える範囲、好ましくは150 K と300 K との間の範囲に配置されていることが好ましい。本明細書では、ガス吸着装置は、冷却装置の外側であって冷却装置の上流側に配置されてもよい。同様にガス吸着装置を、例えば冷却装置の入口に配置することが可能である。   In a particularly preferred embodiment, the gas adsorption device is arranged in a range where freezing of the corresponding toxic gas cannot occur. Accordingly, the gas adsorption device is preferably arranged in a range exceeding 150 K, preferably in a range between 150 K and 300 K. In the present specification, the gas adsorption device may be disposed outside the cooling device and upstream of the cooling device. Similarly, a gas adsorbing device can be placed at the inlet of the cooling device, for example.

ガス吸着装置が冷媒の流れ方向のオイル分離器の下流側に配置されていることが特に好ましい。特に、オイルによるガス吸着装置の汚染が生じ得ないように、ガス吸着装置は、オイル分離器のオイル吸着器の下流側に配置されている。   It is particularly preferable that the gas adsorbing device is arranged downstream of the oil separator in the refrigerant flow direction. In particular, the gas adsorbing device is arranged on the downstream side of the oil adsorber of the oil separator so that the oil does not contaminate the gas adsorbing device.

このガス吸着装置は、吸着層及び/又は吸着粉末及び/又は吸着繊維及び/又は吸着障壁として構成されてもよい。適切な吸着材料は、例えばゼオライトである。これは、例えば独国特許発明第69606117号明細書に記載されている。   The gas adsorption device may be configured as an adsorption layer and / or adsorption powder and / or adsorption fiber and / or adsorption barrier. A suitable adsorbing material is, for example, zeolite. This is described, for example, in German Patent 69606117.

更に本発明は、冷凍機の冷却材回路にガス吸着装置を使用する方法に関する。本明細書では、ガス吸着装置、特にガス吸着装置の上述された好ましい実施形態が使用される。具体的には、使用されるガス吸着装置は、クライオポンプを参照して上述された特徴を有している。   The invention further relates to a method of using a gas adsorber in a refrigerator coolant circuit. In the present description, the above-described preferred embodiments of the gas adsorption device, in particular the gas adsorption device, are used. Specifically, the gas adsorption device used has the characteristics described above with reference to a cryopump.

本発明を、好ましい実施形態及び添付図面を参照して以下により詳細に説明する。   The invention will be described in more detail below with reference to preferred embodiments and the accompanying drawings.

クライオポンプの概略的な構造を示す図である。It is a figure which shows the schematic structure of a cryopump.

クライオポンプは、図示された実施形態ではスクロールポンプである圧縮機10を備えている。圧縮機10に、ライン12を介してヘリウムが供給され、ライン14を介してオイルが供給される。冷媒としての機能を果たすヘリウム及びオイルのこの圧縮された混合物は、ライン16を介して熱交換器18に運ばれる。熱交換器18で、圧縮によって加熱された冷媒を冷却する。その後、冷媒からオイルが濾過される。このためにオイル分離器が設けられている。図示された実施形態では、オイル分離器は、プレ分離器20、第1の細分離器22、第2の細分離器24及び吸着器26を有している。   The cryopump includes a compressor 10 that is a scroll pump in the illustrated embodiment. Helium is supplied to the compressor 10 via a line 12 and oil is supplied via a line 14. This compressed mixture of helium and oil serving as a refrigerant is conveyed via line 16 to heat exchanger 18. In the heat exchanger 18, the refrigerant heated by the compression is cooled. Thereafter, oil is filtered from the refrigerant. For this purpose, an oil separator is provided. In the illustrated embodiment, the oil separator has a pre-separator 20, a first fine separator 22, a second fine separator 24 and an adsorber 26.

圧力逃し弁27が、高圧及び低圧間に第2の細分離器24と吸着器26との間に配置されている。   A pressure relief valve 27 is disposed between the second fine separator 24 and the adsorber 26 between the high pressure and the low pressure.

図示された実施形態では、ガス吸着装置28が、送出方向の吸着器26の下流側に配置されている。従って、ガス吸着装置28は、流れ方向の冷却装置30又はコールドヘッドの上流側に配置されている。   In the illustrated embodiment, a gas adsorber 28 is arranged downstream of the adsorber 26 in the delivery direction. Accordingly, the gas adsorbing device 28 is disposed upstream of the cooling device 30 or the cold head in the flow direction.

ガス吸着装置28は冷却装置30の上流側の領域に配置されており、この領域の温度は、吸着されるガスが凍結する温度より高い。   The gas adsorbing device 28 is disposed in the upstream region of the cooling device 30, and the temperature of this region is higher than the temperature at which the adsorbed gas is frozen.

冷却装置で膨張した冷媒は、ライン32及びライン12を介して圧縮機10に戻る。同様に、分離したオイルはライン34、ライン36及びライン38を介して戻る。   The refrigerant expanded in the cooling device returns to the compressor 10 via the line 32 and the line 12. Similarly, the separated oil returns via line 34, line 36 and line 38.

Claims (8)

真空を生成するための冷凍機、特にはクライオポンプであって、
実質的にヘリウム及びオイルを含む冷媒を圧縮するための圧縮機(10)と、
前記冷媒の送出方向の前記圧縮機(10)の下流側に配置されたオイル分離器(20, 22, 24, 26)と、
前記冷媒が膨張する冷却装置(30)と
を備えており、
ガス吸着装置(28)が、前記送出方向の前記冷却装置(30)の上流側に配置されていることを特徴とする冷凍機。
A refrigerator for generating a vacuum, in particular a cryopump,
A compressor (10) for compressing a refrigerant substantially comprising helium and oil;
An oil separator (20, 22, 24, 26) disposed downstream of the compressor (10) in the refrigerant delivery direction;
A cooling device (30) for expanding the refrigerant,
A refrigerator having a gas adsorbing device (28) disposed upstream of the cooling device (30) in the delivery direction.
前記ガス吸着装置(28)は、特に150 K 未満の温度、特に好ましくは120 K 未満の温度、特には70 K未満の温度で凍結する有毒ガスを吸着することを特徴とする請求項1に記載の冷凍機。   2. The gas adsorber (28) adsorbs toxic gases that freeze, in particular at temperatures below 150 K, particularly preferably at temperatures below 120 K, in particular at temperatures below 70 K. Refrigerator. 前記ガス吸着装置(28)は、窒素及び/又は酸素を濾過するように構成されていることを特徴とする請求項1又は2に記載の冷凍機。   The refrigerator according to claim 1 or 2, wherein the gas adsorption device (28) is configured to filter nitrogen and / or oxygen. 前記ガス吸着装置(28)は前記冷却装置(30)の上流側の領域に配置されており、前記領域の温度は、吸着されるガスが凍結する温度より高いことを特徴とする請求項1〜3のいずれか1つに記載の冷凍機。   The gas adsorption device (28) is disposed in a region upstream of the cooling device (30), and the temperature of the region is higher than the temperature at which the adsorbed gas freezes. The refrigerator as described in any one of 3. 前記ガス吸着装置(28)は、前記送出方向の前記オイル分離器(20, 22, 24, 26)の下流側に配置されていることを特徴とする請求項1〜4のいずれか1つに記載の冷凍機。   The gas adsorber (28) is arranged downstream of the oil separator (20, 22, 24, 26) in the delivery direction, according to any one of claims 1 to 4. The refrigerator as described. 前記ガス吸着装置(28)は、前記冷却装置(30)、特に前記冷却装置(30)の入口領域に配置されていることを特徴とする請求項1〜5のいずれか1つに記載の冷凍機。   The refrigeration according to any one of claims 1 to 5, wherein the gas adsorption device (28) is arranged in an inlet region of the cooling device (30), particularly the cooling device (30). Machine. 前記ガス吸着装置(28)は、吸着層及び/又は吸着粉末及び/又は吸着繊維及び/又は吸着障壁として構成されていることを特徴とする請求項1〜6のいずれか1つに記載の冷凍機。   The refrigeration according to any one of claims 1 to 6, wherein the gas adsorption device (28) is configured as an adsorption layer and / or adsorption powder and / or adsorption fiber and / or adsorption barrier. Machine. 冷凍機、特に請求項1〜7のいずれか1つに記載の冷凍機の冷却材回路にガス吸着装置(28)を使用する方法。   A method of using a gas adsorber (28) in a refrigerant circuit of a refrigerator, in particular a refrigerator circuit according to any one of claims 1-7.
JP2019506375A 2016-08-25 2017-08-08 refrigerator Pending JP2019528395A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016215985.2 2016-08-25
DE102016215985.2A DE102016215985A1 (en) 2016-08-25 2016-08-25 refrigeration machine
PCT/EP2017/070032 WO2018036807A1 (en) 2016-08-25 2017-08-08 Refrigeration machine

Publications (1)

Publication Number Publication Date
JP2019528395A true JP2019528395A (en) 2019-10-10

Family

ID=59631756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019506375A Pending JP2019528395A (en) 2016-08-25 2017-08-08 refrigerator

Country Status (7)

Country Link
US (1) US20200386455A1 (en)
EP (1) EP3504487A1 (en)
JP (1) JP2019528395A (en)
KR (1) KR20190040214A (en)
CN (1) CN109661545A (en)
DE (1) DE102016215985A1 (en)
WO (1) WO2018036807A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187776A (en) * 1982-04-27 1983-11-02 日本酸素株式会社 Manufacture of argon
JPS61240061A (en) * 1985-04-15 1986-10-25 ダイキン工業株式会社 Helium refrigerator
JPH0436552A (en) * 1990-06-01 1992-02-06 Hitachi Ltd Refrigerator with cryogenic adsorption cylinder
JPH09169506A (en) * 1995-08-11 1997-06-30 Boc Group Inc:The Method for adsorbing and separating nitrogen from gas mixture
JPH09225246A (en) * 1996-02-26 1997-09-02 Mitsubishi Heavy Ind Ltd Gas separator
JP2000249414A (en) * 1999-03-02 2000-09-14 Iwatani Internatl Corp Purity holding method of working refrigerant gas in pulse tube refrigerating machine
JP2001517751A (en) * 1997-09-22 2001-10-09 フェルミン ヴィテリ, Clean air engine for transportation and other power uses

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4100933A1 (en) 1991-01-15 1992-07-16 Achenbach Cryotechnik Gmbh Helium purificn. plant using inert diatomaceous earth adsorber filters - for safer operation in presence of liquid oxygen@ residues
FR2735990B1 (en) * 1995-06-30 1997-08-14 Air Liquide PROCESS AND DEVICE FOR THE PREPARATION OF A SUBSTANTIALLY PURE FLOW IN AT LEAST ONE OF THE OXYGEN AND CARBON MONOXIDE IMPURITIES
JPH10132402A (en) * 1996-10-30 1998-05-22 Daikin Ind Ltd Helium compressor
CN201110673Y (en) * 2007-09-19 2008-09-03 中国科学院金属研究所 Low temperature voltage transformation adsorption apparatus
JPWO2009157325A1 (en) 2008-06-24 2011-12-08 三菱電機株式会社 Refrigeration cycle apparatus and air conditioner
US8978400B2 (en) * 2009-11-09 2015-03-17 Sumitomo (Shi) Cryogenics Of America Inc. Air cooled helium compressor
CN102252128A (en) * 2011-06-28 2011-11-23 浙江盾安人工环境股份有限公司 Temperature-sensing element
CN102718199B (en) * 2012-03-14 2014-01-29 上海启元空分技术发展股份有限公司 Method and apparatus for purifying helium through crystallization process
CN103386238B (en) * 2012-05-11 2015-07-22 中国科学院理化技术研究所 Oil removing device for purifying gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187776A (en) * 1982-04-27 1983-11-02 日本酸素株式会社 Manufacture of argon
JPS61240061A (en) * 1985-04-15 1986-10-25 ダイキン工業株式会社 Helium refrigerator
JPH0436552A (en) * 1990-06-01 1992-02-06 Hitachi Ltd Refrigerator with cryogenic adsorption cylinder
JPH09169506A (en) * 1995-08-11 1997-06-30 Boc Group Inc:The Method for adsorbing and separating nitrogen from gas mixture
JPH09225246A (en) * 1996-02-26 1997-09-02 Mitsubishi Heavy Ind Ltd Gas separator
JP2001517751A (en) * 1997-09-22 2001-10-09 フェルミン ヴィテリ, Clean air engine for transportation and other power uses
JP2000249414A (en) * 1999-03-02 2000-09-14 Iwatani Internatl Corp Purity holding method of working refrigerant gas in pulse tube refrigerating machine

Also Published As

Publication number Publication date
WO2018036807A1 (en) 2018-03-01
EP3504487A1 (en) 2019-07-03
KR20190040214A (en) 2019-04-17
DE102016215985A1 (en) 2018-03-01
CN109661545A (en) 2019-04-19
US20200386455A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
CA2870071C (en) Air compression system and method
US5062273A (en) Method and apparatus for removal of gas from refrigeration system
JP3726965B2 (en) Oxygen production method and apparatus
EP3671087A1 (en) A method and apparatus for eliminating heat bumps following regeneration of adsorbers in an air separation unit
US20100281917A1 (en) Apparatus and Method for Condensing Contaminants for a Cryogenic System
US6463744B1 (en) Method and device for producing cold
CN112334720A (en) Enhanced refrigeration purification system
KR101456598B1 (en) Cryo pump system
KR100869518B1 (en) Method and apparatus for Cryogenic Helium Purification
JP2019528395A (en) refrigerator
US6925818B1 (en) Air cycle pre-cooling system for air separation unit
KR20100077745A (en) Device for drying a compressed pure air
JP7078344B2 (en) Methods, devices, computer programs and storage media for separating condensate-removable foreign matter from gas mixtures.
JP2003062419A (en) Method for separating gas mixture and apparatus for the same
WO2019163762A1 (en) Cryopump
KR102125321B1 (en) An air-compressor that is using liquid-oxygen for cooling and dehumidification
JP6432087B2 (en) Dilution refrigerator
JP2017500527A (en) Cooling and / or cryogenic liquefaction apparatus and method
FR3035195B1 (en) INSTALLATION AND PROCESS FOR PRODUCTION OF LIQUID HELIUM
JP6982408B2 (en) Cold air generator and cold air generation method
KR101352052B1 (en) Joule-Thomson Cryocooler
JPH0436552A (en) Refrigerator with cryogenic adsorption cylinder
JPS6353470B2 (en)
JP6758080B2 (en) Refrigeration cycle equipment
JPH08152211A (en) Helium refrigerating machine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220510