JP2019510728A - Reuse method of lithium manganate dust - Google Patents

Reuse method of lithium manganate dust Download PDF

Info

Publication number
JP2019510728A
JP2019510728A JP2018566625A JP2018566625A JP2019510728A JP 2019510728 A JP2019510728 A JP 2019510728A JP 2018566625 A JP2018566625 A JP 2018566625A JP 2018566625 A JP2018566625 A JP 2018566625A JP 2019510728 A JP2019510728 A JP 2019510728A
Authority
JP
Japan
Prior art keywords
dust
lithium manganate
improved
lithium
mass ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018566625A
Other languages
Japanese (ja)
Other versions
JP6700438B2 (en
Inventor
岩華 馬
岩華 馬
益平 陳
益平 陳
朝輝 唐
朝輝 唐
春陽 趙
春陽 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Jewel Power & Materials Co ltd
Original Assignee
Wuxi Jewel Power & Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Jewel Power & Materials Co ltd filed Critical Wuxi Jewel Power & Materials Co ltd
Publication of JP2019510728A publication Critical patent/JP2019510728A/en
Application granted granted Critical
Publication of JP6700438B2 publication Critical patent/JP6700438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

マンガン酸リチウム粉塵、焼結助剤、酸素雰囲気改善剤を脱イオン水に分散させた後、ポリビニルアルコール溶液を加え、次いで噴霧造粒し、焼成して製品を得るマンガン酸リチウム粉塵の再利用方法を提供する。マンガン酸リチウム粉塵に酸素雰囲気改善剤を添加することにより、高温反応時のマンガン酸リチウム材料の酸素空孔の発生が効果的に抑制され、一部の構造的欠陥が修復され、電気化学的性能が改善及び向上される。また、造粒プロセスにより、結晶粒子の成長程度が制御可能となり、結晶凝集体又は二次粒子の形態が球状になる傾向があり、処理された製品のタップ密度が大幅に向上し、加工特性が改善される。  After dispersing lithium manganate dust, sintering aid, and oxygen atmosphere improver in deionized water, add polyvinyl alcohol solution, spray granulate, and calcinate to obtain a product. I will provide a. By adding an oxygen atmosphere improver to lithium manganate dust, the generation of oxygen vacancies in the lithium manganate material at the time of high temperature reaction is effectively suppressed, and some structural defects are repaired, and the electrochemical performance is improved. Is improved and improved. In addition, the granulation process makes it possible to control the degree of growth of crystal particles, the shape of crystal aggregates or secondary particles tends to be spherical, the tap density of the treated product is significantly improved, and the processing characteristics are improved. Be improved.

Description

本発明は、新エネルギー材料製造の技術分野に属し、特にマンガン酸リチウム粉塵の再利用方法に関する。   The present invention belongs to the technical field of new energy material production, and in particular relates to a method for recycling lithium manganate dust.

リチウムイオン電池用正極材料であるマンガン・リチウムの生産過程において、使用の需要を満たすために、高温で焼成反応した後に材料粒子を加工する必要があるので、一般的には気流粉砕又は機械的破砕が用いられている。しかし、このような過程において、多くのマンガン酸リチウム粉塵が発生する。また、この粉塵は、サイズが小さく且つほとんど表面又は構造が損傷した粒子であるので、リチウム電池の充放電時に電解質と反応を起こしやすく、電池特性に悪影響をもたらすので、廃棄される場合が多い。このような粉塵は、特性に対する要求が低い分野に使用されても、製品の粒子径が小さいので、スラリー調製・塗布の作業を行うのが困難であり、実際には市場がない。このような問題により、材料の総合的な利用率が低下するだけでなく、生産コスト、在庫コスト及び処理コストが増加している。   In the production process of manganese and lithium which are positive electrode materials for lithium ion batteries, in order to meet the demand for use, it is necessary to process the material particles after firing reaction at high temperature, so generally it is necessary to use air flow grinding or mechanical crushing. Is used. However, in such a process, a large amount of lithium manganate dust is generated. In addition, since the dust is a particle having a small size and most of the surface or structure is damaged, it tends to react with the electrolyte during charge and discharge of the lithium battery, which adversely affects the battery characteristics and is often discarded. Even if such dust is used in fields where the requirements for properties are low, it is difficult to carry out the task of slurry preparation and application because the particle size of the product is small, and there is practically no market. These problems not only reduce the overall utilization of the material, but also increase production costs, inventory costs and processing costs.

マンガン酸リチウム粉塵の利用率を高めるために、通常、これらの粉塵粒子を再焼結し、焼結助剤を添加することで粒子を結晶凝集体に成長させることにより粒度指標を満足する。しかし、処理する時に依然として多くの問題が存在する。即ち、(1)成長時に粒度が制御されにくく、タップ密度が低すぎ、加工特性が劣り;(2)高温反応により材料の分子構造に「酸素空孔」が発生し、電気化学的特性が劣化し;(3)処理された材料が低価格デジタル製品のみに用いられることができ、付加価値が低い。   In order to increase the utilization rate of lithium manganate dust, usually, these dust particles are re-sintered, and a sintering aid is added to grow the particles into crystal aggregates, thereby satisfying the particle size index. However, there are still many problems in processing. That is, (1) the particle size is difficult to control during growth, the tap density is too low, and the processing characteristics are inferior; (2) "oxygen vacancies" are generated in the molecular structure of the material due to high temperature reaction, and the electrochemical characteristics deteriorate (3) The processed material can be used only for low cost digital products and has low added value.

上記の問題を鑑みて、本発明者は、産業上の利用価値をより有するマンガン酸リチウム粉塵の再利用方法を開発するために、積極的に研究を行っていた。   In view of the above problems, the present inventor has been actively conducting research to develop a method of reusing lithium manganate dust having more industrial utility value.

上記問題を解決するために、本発明は、マンガン酸リチウム粉塵の再利用方法を提供することにより、高温反応によるマンガン酸リチウム材料の酸素空孔の発生を効果的に抑制し、電気化学的特性を向上できるとともに、結晶粒子の成長程度を制御し、処理された製品のタップ密度を増大させ、加工特性を向上できることを目的とする。   In order to solve the above problems, the present invention provides a method for recycling lithium manganate dust to effectively suppress the generation of oxygen vacancies in lithium manganate materials due to high temperature reaction, thereby achieving electrochemical characteristics. It is an object of the present invention to improve the processing characteristics by controlling the growth degree of crystal grains, increasing the tap density of the processed product, and improving the processing characteristics.

本発明が提供するマンガン酸リチウム粉塵の再利用方法は、以下のステップS1〜S4を含み、
ステップS1において、脱イオン水に、マンガン酸リチウム粉塵と、焼結助剤と、酸素雰囲気改善剤とを質量比250:1:25で加え、十分に均一に分散させ、ここで、脱イオン水とマンガン酸リチウム粉塵との質量比は1:2であり、焼結助剤はホウ酸であり、酸素雰囲気改善剤は炭酸リチウムと電解二酸化マンガンとを混合してなるものであり、
ステップS2において、ステップS1で得られた分散液に、固形分含有量が10%のポリビニルアルコール溶液を加え、均一に撹拌し、ここで、ポリビニルアルコール溶液とマンガン酸リチウム粉塵との質量比は1:10であり、
ステップS3において、ステップS2で得られた混合液を噴霧乾燥装置で噴霧乾燥を行うことにより、平均粒子が100〜200μmの粒子を作製し、
ステップS4において、ステップS3で得られた粒子を焼成装置に入れ、750℃〜850℃の焼成温度で6時間焼成することにより製品を得る。
The method for recycling lithium manganate dust provided by the present invention includes the following steps S1 to S4,
In step S1, lithium manganese oxide dust, a sintering aid, and an oxygen atmosphere improving agent are added to deionized water at a mass ratio of 250: 1: 25, and dispersed sufficiently uniformly, where deionized water is added. The mass ratio of the powder to lithium manganate dust is 1: 2, the sintering aid is boric acid, and the oxygen atmosphere improving agent is a mixture of lithium carbonate and electrolytic manganese dioxide,
In step S2, a polyvinyl alcohol solution having a solid content of 10% is added to the dispersion obtained in step S1, and the solution is uniformly stirred, where the mass ratio of polyvinyl alcohol solution to lithium manganate dust is 1 : 10,
In step S3, the mixed solution obtained in step S2 is spray-dried with a spray dryer to produce particles having an average particle size of 100 to 200 μm,
In step S4, the particles obtained in step S3 are placed in a calcining apparatus and calcined at a calcination temperature of 750 ° C. to 850 ° C. for 6 hours to obtain a product.

さらに、ステップS1において、炭酸リチウムと電解二酸化マンガンとの質量比は1.1:4であり、高温下での化学反応式はLiCO+4MnO−−−2LiMn+CO↑+0.5O↑である。
さらに、マンガン酸リチウム粉塵の粒子径は0.1〜10μmである。
Furthermore, in step S1, the mass ratio of lithium carbonate to electrolytic manganese dioxide is 1.1: 4, and the chemical reaction formula at high temperature is Li 2 CO 3 +4 MnO 2 −−2 LiMn 2 O 4 + CO 2 ++ 0 .5 O 2 ↑.
Furthermore, the particle size of lithium manganate dust is 0.1 to 10 μm.

上記の実施形態によれば、本発明は、少なくとも以下の利点を有する。本発明は、マンガン酸リチウム粉塵に酸素雰囲気改善剤を添加することにより、高温反応時のマンガン酸リチウム材料の酸素空孔の発生が効果的に抑制され、一部の構造的欠陥が修復され、電気化学的性能が改善及び向上される。また、造粒プロセスにより、結晶粒子の成長程度が制御可能となり、結晶凝集体又は二次粒子の形態が球状になる傾向があり、処理された製品のタップ密度が大幅に向上し、加工特性が改善される。   According to the above embodiments, the present invention has at least the following advantages. According to the present invention, by adding an oxygen atmosphere improving agent to lithium manganate dust, the generation of oxygen vacancies in the lithium manganate material during high temperature reaction is effectively suppressed, and some structural defects are repaired. Electrochemical performance is improved and enhanced. In addition, the granulation process makes it possible to control the degree of growth of crystal particles, the shape of crystal aggregates or secondary particles tends to be spherical, the tap density of the treated product is significantly improved, and the processing characteristics are improved. Be improved.

上記の説明は、本発明の技術解決策の概要であり、本発明の技術手段を理解しやすくするためのものであり、明細書の内容に従って実施されることができる。以下、図面を参照しながら本発明の好ましい実施例を詳しく説明する。   The above description is an outline of the technical solution of the present invention, for the purpose of making the technical means of the present invention easy to understand, and can be implemented in accordance with the contents of the specification. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

本発明の実施例1におけるマンガン酸リチウム粉塵及び処理された製品、実施例2における処理された製品の粒度分布の比較図である。FIG. 2 is a comparison of the particle size distribution of the lithium manganate dust and treated product in Example 1 of the present invention, and the treated product in Example 2. 本発明の実施例1におけるマンガン酸リチウム粉塵の走査型電子顕微鏡の写真である。It is a photograph of the scanning electron microscope of lithium manganate dust in Example 1 of this invention. 本発明の実施例1における製品の走査型電子顕微鏡の写真である。It is a photograph of the scanning electron microscope of the product in Example 1 of this invention. 本発明の実施例2における製品の走査型電子顕微鏡の写真である。It is a photograph of the scanning electron microscope of the product in Example 2 of this invention. 本発明の実施例1におけるマンガン酸リチウム粉塵及び処理された製品、実施例2における処理された製品のサイクル寿命試験データの比較図である。FIG. 5 is a comparison diagram of cycle life test data of lithium manganate dust and treated product in Example 1 of the present invention, and treated product in Example 2.

以下、図面及び実施例を利用して本発明の具体的な実施形態をさらに詳しく説明する。以下の実施例は、本発明を説明するものであり、本発明の範囲を制限しない。   Hereinafter, specific embodiments of the present invention will be described in more detail using the drawings and examples. The following examples illustrate the invention and do not limit the scope of the invention.

実施例1
マンガン酸リチウム粉塵100gを取り出しホウ酸0.4gを加え、さらに、質量比1.1:4である炭酸リチウムと電解二酸化マンガンとを混合してなる酸素雰囲気改善剤10gを加え、脱イオン水50gの存在下で十分に均一に分散させた後、固形分含有量が10%のPVA(ポリビニルアルコール)溶液10gを加え、均一に撹拌した。
Example 1
100 g of lithium manganate dust is taken out, 0.4 g of boric acid is added, and 10 g of an oxygen atmosphere improver formed by mixing lithium carbonate having a mass ratio of 1.1: 4 and electrolytic manganese dioxide is further added, and 50 g of deionized water After sufficiently dispersing uniformly in the presence of 10 g of a PVA (polyvinyl alcohol) solution having a solid content of 10% was added and uniformly stirred.

上記混合溶液を噴霧乾燥装置で噴霧乾燥することにより、平均粒子が100〜200μmの粒子を作製した。上記粒子を焼成装置に入れ、焼成温度750℃で6時間焼成して製品を得た。   By spray-drying the above mixed solution with a spray dryer, particles having an average particle size of 100 to 200 μm were produced. The particles were placed in a firing apparatus and fired at a firing temperature of 750 ° C. for 6 hours to obtain a product.

炭酸リチウムと電解二酸化マンガンとの高温下での化学反応式は、LiCO+4MnO−−−2LiMn+CO↑+0.5O↑である。
ここで、COが高温反応の前段に放出され、Oが高温反応の後段に放出されることにより、焼結過程における酸素雰囲気を改善し、酸素空孔の発生を回避できる。
The chemical reaction formula of lithium carbonate and electrolytic manganese dioxide at high temperature is Li 2 CO 3 +4 MnO 2 -−2 LiMn 2 O 4 + CO 2 ++ 0.5 O 2 ↑.
Here, CO 2 is released to the front stage of the high-temperature reaction and O 2 is released to the rear stage of the high-temperature reaction, so that the oxygen atmosphere in the sintering process can be improved and generation of oxygen vacancies can be avoided.

本実施例におけるマンガン酸リチウム粉塵、処理された製品の関連する特性データを図1、2、3、5に示す。   The relevant characterization data of the lithium manganate dust, treated product in this example are shown in FIGS.

実施例2
酸素雰囲気改善剤を加えない以外、実施例1と同様にして製品を得た。製品の関連する特性データを図1、4、5に示す。
Example 2
A product was obtained in the same manner as Example 1 except that the oxygen atmosphere improving agent was not added. The relevant property data of the product are shown in FIGS.

上記の説明及び図5のサイクル寿命試験データの比較図から明らかになるように、本発明は、マンガン酸リチウム粉塵に酸素雰囲気改善剤を添加することにより、高温反応時のマンガン酸リチウム材料の酸素空孔の発生が効果的に抑制され、一部の構造的欠陥が修復され、電気化学的性能が改善及び向上される。また、造粒プロセスにより、結晶粒子の成長程度が制御可能となり、結晶凝集体又は二次粒子の形態が球状になる傾向があり、処理された製品のタップ密度が大幅に向上し、加工特性が改善される。   As will become apparent from the above description and the comparison of cycle life test data in FIG. 5, the present invention relates to the oxygen of lithium manganate material during high temperature reaction by adding an oxygen atmosphere improver to lithium manganate dust The generation of vacancies is effectively suppressed, some structural defects are repaired, and electrochemical performance is improved and enhanced. In addition, the granulation process makes it possible to control the degree of growth of crystal particles, the shape of crystal aggregates or secondary particles tends to be spherical, the tap density of the treated product is significantly improved, and the processing characteristics are improved. Be improved.

上記の内容は、本発明の好ましい実施形態に過ぎず、本発明を制限するものではない。当業者であれば、本発明の技術原則を逸脱しない限り、いくつかの改良及び変形を加えることができ、これらの改良及び変形も本発明の保護範囲に含まれると理解されるべきである。   The above contents are only preferred embodiments of the present invention and do not limit the present invention. It should be understood by those skilled in the art that some modifications and variations can be made without departing from the technical principle of the present invention, and these modifications and variations are also included in the protection scope of the present invention.

Claims (3)

ステップS1〜S4を含むマンガン酸リチウム粉塵の再利用方法であって、
ステップS1において、脱イオン水にマンガン酸リチウム粉塵と、焼結助剤と、酸素雰囲気改善剤とを質量比250:1:25で加え、十分に均一に分散させ、ここで、脱イオン水とマンガン酸リチウム粉塵との質量比は1:2であり、焼結助剤はホウ酸であり、酸素雰囲気改善剤は炭酸リチウムと電解二酸化マンガンとを混合しなるものであり、
ステップS2において、ステップS1で得られた分散液に、固形分含有量が10%のポリビニルアルコール溶液を加え、均一に撹拌し、ここで、ポリビニルアルコール溶液とマンガン酸リチウム粉塵との質量比は1:10であり、
ステップS3において、ステップS2で得られた混合液を噴霧乾燥装置で噴霧乾燥を行うことにより、造成平均粒子が100〜200μmの粒子を作製し、
ステップS4において、ステップS3で得られた粒子を焼成装置に入れ、750℃〜850℃の焼成温度で6時間焼成することにより製品を得ることを特徴とするマンガン酸リチウム粉塵の再利用方法。
A method for reusing lithium manganate dust including steps S1 to S4, comprising
In step S1, lithium manganese oxide dust, a sintering aid, and an oxygen atmosphere improving agent are added to deionized water at a mass ratio of 250: 1: 25, and dispersed sufficiently uniformly, where deionized water and The mass ratio to lithium manganate dust is 1: 2, the sintering aid is boric acid, and the oxygen atmosphere improving agent is a mixture of lithium carbonate and electrolytic manganese dioxide,
In step S2, a polyvinyl alcohol solution having a solid content of 10% is added to the dispersion obtained in step S1, and the solution is uniformly stirred, where the mass ratio of polyvinyl alcohol solution to lithium manganate dust is 1 : 10,
In step S3, the mixed liquid obtained in step S2 is spray-dried with a spray dryer to produce particles having a formation average particle size of 100 to 200 μm,
In step S4, the particles obtained in step S3 are put in a calcining apparatus and calcined at a calcining temperature of 750 ° C. to 850 ° C. for 6 hours to obtain a product, thereby obtaining a product using lithium manganate dust.
ステップS1において、炭酸リチウムと電解二酸化マンガンとの質量比は1.1:4であり、高温下での化学反応式はLiCO+4MnO−−−2LiMn+CO↑+0.5O↑であることを特徴とする請求項1に記載のマンガン酸リチウム粉塵の再利用方法。 In step S1, the mass ratio of lithium carbonate to electrolytic manganese dioxide is 1.1: 4, and the chemical reaction formula at high temperature is Li 2 CO 3 +4 MnO 2 −−2 LiMn 2 O 4 + CO 2 ++ 0.5 O The method for recycling lithium manganate dust according to claim 1, wherein 2 2 . マンガン酸リチウム粉塵の粒子径は0.1〜10μmであることを特徴とする請求項1に記載のマンガン酸リチウム粉塵の再利用方法。   The particle size of lithium manganate dust is 0.1 to 10 μm, The method for recycling lithium manganate dust according to claim 1.
JP2018566625A 2016-12-16 2017-12-10 Reuse method of lithium manganate dust Active JP6700438B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201611173707.8 2016-12-16
CN201611173707.8A CN106532169A (en) 2016-12-16 2016-12-16 Method of recycling lithium manganate dust
PCT/CN2017/115364 WO2018108043A1 (en) 2016-12-16 2017-12-10 Method for recycling lithium manganate dust

Publications (2)

Publication Number Publication Date
JP2019510728A true JP2019510728A (en) 2019-04-18
JP6700438B2 JP6700438B2 (en) 2020-05-27

Family

ID=58340312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018566625A Active JP6700438B2 (en) 2016-12-16 2017-12-10 Reuse method of lithium manganate dust

Country Status (3)

Country Link
JP (1) JP6700438B2 (en)
CN (1) CN106532169A (en)
WO (1) WO2018108043A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106532169A (en) * 2016-12-16 2017-03-22 无锡晶石新型能源有限公司 Method of recycling lithium manganate dust

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150050A (en) * 1998-03-09 2000-11-21 Valence Technology, Inc Method for recovering particulate material from electrical components
JP2004349210A (en) * 2003-05-26 2004-12-09 Toyota Motor Corp Regenerating method of anode active material for lithium secondary battery
JP5535716B2 (en) * 2009-09-30 2014-07-02 Dowaエコシステム株式会社 Lithium recovery method
CN102709542B (en) * 2012-05-25 2014-11-05 青岛乾运高科新材料股份有限公司 Method for repairing oxygen defect in preparation process of spinel lithium manganate as lithium-ion cathode material
CN104183839A (en) * 2013-05-22 2014-12-03 无锡晶石新型能源有限公司 Lithium manganate fine particle processing method
CN104425814B (en) * 2013-09-09 2017-03-29 北京国能电池科技有限公司 The preparation method of LiMn2O4, lithium manganate material, anode material for lithium-ion batteries
PT2975686T (en) * 2014-07-15 2019-03-22 Lars Walch Gmbh & Co Kg Recycling method
CN104466164B (en) * 2014-12-02 2018-04-17 赵县强能电源有限公司 A kind of processing method of LiMn2O4 fine powder
CN104577104B (en) * 2015-01-15 2017-01-11 兰州理工大学 Regeneration method of positive material lithium manganate waste of lithium ion battery
CN106058353B (en) * 2016-08-11 2018-05-25 荆门市格林美新材料有限公司 The reparative regeneration method of old and useless battery positive electrode
CN106532169A (en) * 2016-12-16 2017-03-22 无锡晶石新型能源有限公司 Method of recycling lithium manganate dust

Also Published As

Publication number Publication date
WO2018108043A1 (en) 2018-06-21
CN106532169A (en) 2017-03-22
JP6700438B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP6574222B2 (en) Lithium nickel cobalt manganese composite oxide positive electrode material having a spherical or similar spherical layer structure, manufacturing method, positive electrode, lithium ion battery, energy storage power plant or portable memory equipment, and use
CN105355911B (en) A kind of preparation method of alumina-coated nickel-cobalt lithium manganate cathode material
KR20190009323A (en) Cathode Active Material for High-Reactor Lithium Secondary Batteries
CN104953107A (en) Preparation method of lithium titanate cathode material with high tap density
CN110880593B (en) Solid electrolyte modified lithium titanate negative electrode material and preparation method thereof
CN108987681B (en) Ternary composite positive electrode material, preparation method thereof and lithium battery applying ternary composite positive electrode material
JP2016185903A (en) Manufacturing method of lithium manganese composite oxide
CN106711443B (en) A kind of shuttle shape cobalt acid manganese material and its preparation and application
KR20160075404A (en) Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
CN112824327A (en) Recovery method of ternary electrode material
CN107978744B (en) Positive electrode material for high-capacity lithium secondary battery and preparation method thereof
JP6700438B2 (en) Reuse method of lithium manganate dust
CN105355887B (en) A kind of preparation method of magnesia cladding nickel-cobalt lithium manganate cathode material
JP4179075B2 (en) Method for producing lithium manganese composite oxide granules
CN103427076B (en) A kind of solid state reaction prepares TiO2the method of-B nano material
JP2021516208A (en) Lithium-titanium composite oxide containing primary particles coated with aluminum and its manufacturing method
CN105870420B (en) A kind of lithium-ion-power cell manganese-lithium phosphate anode material and preparation method thereof
CN112678878A (en) Phosphorus and sulfur double-doped lithium cobaltate cathode material and preparation method thereof
CN109659517B (en) Preparation method of high-performance lithium titanate composite material
CN114196829A (en) Method for recovering nickel-cobalt-manganese cathode material of retired lithium ion battery
CN113896253A (en) Ternary cathode material and preparation method and application thereof
CN108832121B (en) High-nickel positive electrode material and preparation method thereof
KR20160043862A (en) Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
CN108574094A (en) Negative material and preparation method thereof for lithium ion battery
CN111354942A (en) Micron-sized rod-shaped lithium manganate and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200430

R150 Certificate of patent or registration of utility model

Ref document number: 6700438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250