詳細な説明
本開示の複数の側面は、一部では、患者の食道領域に人工の足場を挿入することによって、その患者において、新しい食道組織(例えば完全で機能的な食道)の再生を、その再生された組織内に足場が完全に取り込まれることなく、促進または増進できるという、注目すべき発見に関する。従って、いくつかの実施形態において、本開示は、胃腸(例えば食道)組織の成長を促進または増進するための方法を提供し、その方法は、患者の胃腸(例えば食道)領域への人工の足場の搬送を含み、人工の足場の搬送の結果、患者のその領域における新しい胃腸(例えば食道)組織の成長がもたらされる。
ここに記載された方法を使用して再生された組織は、例えば、食道、胃、腸、結腸、直腸等の組織である胃腸組織、または他の中空の胃腸組織でありうる。他のいくつかの側面において、一部で、本開示は、ここで記載される方法が、筋肉組織、神経系組織、または、筋肉組織および神経系組織を含む胃腸組織の再生をもたらす結果となるという驚くべき発見に基づいている。
いくつかの実施形態において、人工の足場は、生理的条件下(例えば、組織の再生に必要な時間に概ね相当する期間内)で、再吸収可能または溶ける。いくつかの実施形態において、人工の足場の少なくとも一部は、適切な生理的条件下で、再生吸収可能または溶ける。
いくつかの実施形態では、人工の足場は、再生された機能的組織(例えば、食道またはその一部)の形成後、患者から除去される。
いくつかの実施形態では、足場は、例えば、組織再生後にまわりの組織(例えば食道)から足場を外すのに役立つ、縫合よりも容易に除去できる1つ以上のa)元に戻せるアタッチメント、および/または、例えば、足場がまわりの組織(例えば隣接する食道組織)から外された後に、足場を回収するのに役立つよう使用できるb)1つ以上の特徴を有することによって、容易に回収されるよう設計される。元に戻せるアタッチメントの限定されない例は、機械的機構(例えば、面ファスナー、ステント等のコネクタ、または、取り外し可能な他の機械的アタッチメント)、および/または、化学的機構(例えば、生分解性または吸収性のアタッチメント、および/または、化学的または酵素的な手段によって選択的に除去可能なアタッチメント)を、備える。いくつかの実施形態では、吸収性のステープルが使用されうる。いくつかの実施形態では、吸収性のステープルは、例えばポリラクチド−ポリグリコライドの共重合体、または、なんらかの他の材料の吸収性の混合物を含む。
いくつかの実施形態では、足場の外科的移植および/または回収は、胸腔鏡の助けを借りて行われる。
足場を(例えばまわりの胃腸組織から外された後に)回収または除去するのに役立ちうる構造的特徴の限定されない例は、穴、くぼみ、突起、もしくは、他の構造的特徴を備える、または、それら構造的特徴のいずれかの組み合わせは、足場の外面にだけ配置される。それらの1つ以上の特徴は、足場を回収するのに使用される器具(例えば捕捉器具)を掴むまたは保持するのに役立つよう使用されうる。いくつかの実施形態では、それらの1つ以上の特徴は、足場の一端(例えば患者の口に近い一端)にだけ配置されうる。いくつかの実施形態では、1つ以上のそれら構造的特徴は、両端、または足場の長さ全体に配置されうる。いくつかの実施形態では、1つ以上のそれら構造的特徴は、足場の外面にだけ配置される。いくつかの実施形態では、1つ以上のそれら構造的特徴は、足場の内面にだけ配置される。いくつかの実施形態では、1つ以上のそれら構造的特徴は、足場の外面および内面の両方に配置される。いくつかの実施形態では、足場は、足場を回収するのに使用される1つ以上の構造的特徴の箇所またはそのまわりで、補強される(例えば、より厚い、および/または強い材料を備える)。
いくつかの実施形態では、取り外された足場は、食道に通じる気道の内腔を通して内視鏡的に除去されうる。いくつかの実施形態では、取り外された足場は、外科的に除去されうる。
いくつかの実施形態では、患者は、取り替えを要する罹患したまたは傷ついた胃腸組織を有する。いくつかの実施形態では、患者は、人間(例えばヒト患者)である。
いくつかの実施形態において、本開示は、食道またはその一部を取り替えるまたは治療するのに使用されうる人工的足場を提供する。いくつかの実施形態において、ここで記載される食道の足場は、組織の再生(例えば再生された食道またはその一部)を促進して、患者(例えば人間)における組織を取り替えるために使用されてもよい。例えば、なんらかの癌(例えば食道癌)を有する患者(例えば人間)は、癌の影響を受けた組織または器官を取り替えることによって、その恩恵を受けるであろう。なんらかの特定の理論に拘束されることを知ることなく、ここで記載される人工の足場は、患者における新しい組織(例えば食道組織)の成長を促進し、従って、患者への治療的有用性を提供する。
いくつかの実施形態では、新しい食道組織の成長は、患者における機能的な食道の形成をもたらす。いくつかの実施形態では、新しい食道組織は、足場を食道組織の壁に取り込まない。いくつかの実施形態では、足場は、食道組織が再生された後に吸収可能におよび/または容易に回収可能に、設計および作製される。いくつかの実施形態では、足場は、少なくとも部分的に吸収可能に設計される。
いくつかの実施形態では、胃長管における他の場所での新しい胃腸組織の成長は、問題になっている場所に特効がある機能的な胃腸組織の形成をもたらす。いくつかの実施形態では、新しい胃腸組織は、再生された胃腸の壁に足場を取り込まない。いくつかの実施形態では、足場は、胃腸組織が再生された後に吸収可能におよび/または容易に回収可能に、設計および作製される。いくつかの実施形態では、足場は、少なくとも部分的に吸収可能に設計される。
いくつかの実施形態では、人工の足場は、取り替えられる罹患したまたは傷ついた胃腸(例えば食道)の領域のサイズおよび形状に近似したサイズおよび形状を有する。
いくつかの実施形態では、足場は、少なくとも2つの層を有するであろう。その足場は、特定の実施形態では略管状の構造を有しうる。図1Aは、内向き面14および外向き面16を有する略管状の本体12を有する、限定されない実施形態である足場10を示す。いくつかの実施形態では、足場10の横断面は、略円形である。いくつかの実施形態では、横断面は、略D字状である。しかし、他の断面形状を有する足場10を使用可能である。足場10は、再生される対応した組織のサイズに基づき、適切な長さおよび直径を有しうる。いくつかの実施形態において、足場10は、特定の実施形態では、およそ1−10cmの長さ(例えば3−6cmで、およそ4cm)からでありえ、他の実施形態では、10−20cmの長さである。しかしながら、より短い、またはより長い足場10が、用途、患者のニーズ、および/または、治療が必要な胃長管における位置に基づき、使用できると考えられる。いくつかの実施形態において、足場10は、0.5から5cmの内径を有しうる。しかしながら、より小さい、またはより大きい内径の足場が、用途、患者のニーズ、および/または、治療が必要な胃長管における位置に基づき、使用できる。
いくつかの実施形態では、略管状の足場の各端部(例えば、患者の口に近い端部、および患者の口から遠い端部)の内径は、同じではない。例えば、いくつかの実施形態では、略管状の足場の内径は、足場の長さに沿って増加し(例えば、拡大された直径を有し拡大された端部とも称される一端を有し)、その結果、「ベル形状」または「トランペット形状」の足場となる。しかしながら、拡大された直径を有する略管状の足場の端部は、円筒形状、楕円形、錐体、直方体、ベル形状、および、トランペット形状を備えるが、それらに限定されない、なんらかの形状でありうることが理解されるであろう。図4は、足場の長さに沿って拡大する略管状の足場の限定されない例を提供する。足場のいずれか一方の(例えば患者の口に対して近いまたは遠い)端部は、拡大された直径を有してもよい。
いくつかの実施形態では、管状の足場の拡大された端部の内径は、その足場の拡大されていない端部よりも大きく、約0.1cmから2cmの間である。いくつかの実施形態では、管状の足場の拡大された端部の内径は、およそ、0.1cm、0.2cm、0.3cm、0.4cm、0.5cm、0.6cm、0.7cm、0.8cm、0.9cm、1.0cm、1.1cm、1.2cm、1.3cm、1.4cm、1.5cm、1.6cm、1.7cm、1.8cm、1.9cm、または2.0cmで、その足場の拡大されていない端部よりも大きい。いくつかの実施形態では、管状の足場の拡大された端部の内径は、約2cmから5cmの範囲である。いくつかの実施形態では、足場の内径は、約2cm、約2.5cm、約3.0cm、約3.5cm、約4.0cm、約4.5cm、または、約5cmである。拡大された端部は、人工の足場と同時に作製できる(例えば、人工の足場の一部としての電界紡糸される)、または、別々に作製され、予め作られている人工の足場と一体にされうる。
いくつかの実施形態では、拡大された直径を有する足場の端部は、再生された組織(例えば再生された食道組織)を、吻合によって、狙いの組織(例えば胃の組織)へ取り付けるのを容易にするよう、構成される。
図15Aおよび図15Bに記載されているような人工の足場200の実施形態は、例えば胃等の胃腸器官に近接する管状の器官の再生成長を支援する足場を提供するのに有利に用いられうることが、全く思いがけなく見出されている。
いくつかの実施形態では、足場10、200の全長は、取り替えられる胃腸(例えば食道)の領域の長さよりも短くすることができる。いくつかの実施形態では、足場10は、取り替えられる組織の長さの50−95%(例えば、およそ、50−60%、60−70%、70−80%、80−90%、約80%、約85%、約90%、または約95%)の長さを有する。なんらかの理論に拘束されることなく、関連する胃腸の領域の特定の領域は、関連する器官の組織に作用するけん引力に良好に反応することができ、組織の成長および分化を開始または促進させる特定の生物有機的に媒介する信号の生成をもたらすことが、通説となっている。
特定の実施形態では、足場10、200の長さは、取り替えられる胃腸(例えば食道)の領域の長さよりも長くすることができる。いくつかの実施形態では、足場10は、取り替えられる長さの100%から150%の間(およそ、100−110%、110−120%、120−130%、130−140%、約100%、約105%、約110%、または、約115%)である。足場の長さは、変化のもたらされる領域を効果的に取り替えるのに必要になるであろうと考えられる。特定の状況では、足場10は、足場を効果的に配置し、変化のもたらされるまたは関連する領域において、外傷および局所貧血を低減または最小限に抑えるため、取り替えられる胃腸の領域よりも長い長さを有するであろうと考えられる。
いくつかの実施形態では、足場10は、人工の材料の単一の層から構成されうる。しかし、足場10が人工の材料の1つより多い層を備えうることも、本開示の範囲内である。
従って、いくつかの実施形態では、人工の足場10は、複数の層(例えば、2以上、例えば、2、3、4、5、または、それより多い層)から構成されうる。いくつかの実施形態では、1つ以上の層が、同じ材料から形成される。いくつかの実施形態では、異なる層が、異なる材料(例えば、異なるポリマーおよび/または異なるポリマーの配列)から形成される。ここで開示される人工の足場10、200は、例えば細胞化および/または移植に先立って存在するような足場を形成するように組み合わされた2つ以上の異なる構成要素を備えてもよい。いくつかの実施形態では、人工の足場10は、例えば足場10を作製するのに用いられる合成的手法によって互いに接触させられる2つ以上の層を備える。いくつかの実施形態では、足場10は、一体にされた2つ以上の層をもたらすいくつかのステップをともなう手法を用いて、合成されてもよい(例えば、エレクトロスプレーされた材料の予め用意された層、電界紡糸された材料の予め用意された層、足場に組み込まれた異なる構成要素(例えば、編まれた管またはメッシュ)の表面、または、それらの2つ以上の組み合わせ等、予め作製された足場の一部へ、電界紡糸された材料の層が適用される)。
図1Aに示されるような実施形態において、足場10は、足場本体12の外面14を規定する少なくとも1つの外層18を備える。足場10、200は、少なくとも1つの追加の内側層20を備える。図に示されるような実施形態において、少なくとも1つの追加の内側層20は、外層18の内向きの面と直接接する。望みのまたは必要とされる箇所で、少なくとも1つの内側層20は、結合する足場本体12に対し、構造的な支持を提供するように構成されうる。図に示される実施形態において、図1Aでは、少なくとも1つの内側層20は、足場本体12の長手方向の長さの少なくとも一部のまわりに周方向に配置された、適切なメッシュまたは編物として構成されうる。他の実施形態では、少なくとも1つの内側層20が、適切なポリマー層から構成されうると考えられる。図1Aに示されるような実施形態において、足場10の本体12は、そのメッシュまたは編物の層20に対し内側に配置された少なくとも1つの層22を備える。
望みのまたは必要とされる箇所で、足場10は、略均一な壁厚を有しうる。しかしながら、いくつかの実施形態では、その壁厚は、本体12の特定の領域で変化しうる。いくつかの実施形態において、足場10の本体12の一方または両方の端部24、26における壁厚は、足場10の中央部28の壁と異なる(例えばより厚い)(不図示)。いくつかの実施形態において、より厚い壁の領域は、より強く、足場がまわりの胃腸組織に結合されたとき、足場10の一方または両方の端部24、26に結び付けられる縫合糸のためのより強い支持を提供する。より厚い壁の領域は、また、縫合を容易にする個別の構造を備えうる。このような構造の限定されない例は、管、統一体等を備える。
特定の実施形態では、外側層18に規定される少なくとも1つの外側面14が、電界紡糸されたポリマー材料から構成されうる。特定の実施形態では、外側層18は、電界紡糸されたポリマー材料から構成されうると考えられる。特定の実施形態では、電界紡糸された外側層は、適切な編物材料層20と直接接しうる。
いくつかの実施形態では、足場の一方または両方の端部における壁厚は、足場の中央部の壁と異なる(例えばより厚い)。いくつかの実施形態では、より厚い壁の領域は、より強く、足場の端部で縫合糸のためのより強い支持を提供する。
いくつかの実施形態では、人工の足場は、逆流防止システムを含む。ここで用いられる「逆流防止システム」は、逆流を防止する(例えば、流れを一方向に制限する)ためのシステムを指す。例えば、狙いの組織(例えば胃の組織)に吻合される再生された胃腸組織(例えば食道組織)に関連して、いくつかの実施形態では、再生された食道組織に向かう胃の内容物の流れを制限することによって、逆流を防ぐことが望ましい。いくつかの実施形態では、逆流防止システムは、胃から出て例えば食道へ向かう胃液の流れまたは酸の流れを最小限に抑える、または防ぐように構成された弁(例えば、一方弁、逆止弁、フラッパー弁、カスプ弁、半月カスプ弁)を含む。
いくつかの実施形態では、逆流防止システムは、拡大された直径を有する端部を越えて延びる管腔構造である。いくつかの実施形態では、その管腔構造は、人工の足場の内腔と隣接する内腔を有する(例えば、足場を通じ、吻合された組織、例えば胃の内腔へと向かう内容物の通路を提供する)。その管腔構造は、円筒形状、楕円形、直方体、錐体、ベル形状、および、トランペット形状を備えるが、それらに限定されない、なんらかの適切な形状でありうる。いくつかの実施形態では、逆流防止システムの内径は、足場の拡大されていない端部よりも、およそ、0cm(例えば同じサイズ)、0.1cm、0.2cm、0.3cm、0.4cm、0.5cm、0.6cm、0.7cm、0.8cm、0.9cm、1.0cm、1.1cm、1.2cm、1.3cm、1.4cm、1.5cm、1.6cm、1.7cm、1.8cm、1.9cm、または2.0cm、大きい。いくつかの実施形態では、逆流防止システムの内径は、足場の拡大されていない端部よりも、およそ、0cm(例えば同じサイズ)、0.1cm、0.2cm、0.3cm、0.4cm、0.5cm、0.6cm、0.7cm、0.8cm、0.9cm、1.0cm、1.1cm、1.2cm、1.3cm、1.4cm、1.5cm、1.6cm、1.7cm、1.8cm、1.9cm、または2.0cm、小さい。
拡大された端部を含む人工の足場は、拡大された端部を狙いの組織の頂点に置くようにして、狙いの組織(例えば胃)の上にフィットし、管腔構造(例えば逆流防止システム)が、拡大された端部の縁を越えて、狙いの組織(例えば胃)の内腔へと、実質的に狙いの組織の壁に接することなく、延びる。いくつかの実施形態では、逆流防止システムは、柔らかいプラスチックまたは他のポリマー等、圧縮可能な、または変形可能な(例えば展性のある)材料から形成される。
図15AおよびBに示される実施形態では、足場200が、本体部210を有する。本体部210は、第1端部212、および、第1端部と反対側の第2端部214を有する。本体部210は、さらに、管状部材216として構成された少なくとも一部、および、拡大部材218として構成された少なくとも一部を有する。拡大部材218は、管状部材216に隣接して接続しており、本体部210の第1端部212または第2端部214のいずれかに近接して配置されている。特定の実施形態では、本体部210は、外向き面220を含む。外向き面210は、紡糸されたポリマー繊維から構成された少なくとも1つの領域を有する。特定の実施形態において、紡糸されたポリマー繊維は、15nm以上10ミクロン以下の平均繊維直径を有し、少なくとも一部の紡糸されたポリマー繊維が、互いに繋ぎ合わさり、50ミクロンより小さい平均直径を有する孔を形成する。
特定の実施形態において、人工の足場200は、さらに、拡大部材218によって規定される内側領域から外側に延びる管状部材領域222を含む。特定の実施形態では、管状部材領域222は、管状部材216に対し、同軸上に配置されうる。いくつかの実施形態では、管状部材領域222は、拡大部材218によって規定される内側領域の範囲内で延びうる。
望みのまたは必要とされる箇所で、紡糸されるポリマー繊維は、電界紡糸される。ポリマー繊維は、互いに繋がれることができ、本外部の外層を形成しうる。特定の実施形態では、本体部は、少なくとも1つの内層を含みうる。特定の実施形態において、内層は、ポリマーメッシュ、ポリマーで編まれた支持部材、編目のない連続したポリマー部材、電界紡糸された層のうちの少なくとも1つから構成されることができ、外層は、覆うように内層に接する。電界紡糸された材料は、3以上10ミクロン以下の平均繊維直径を有することができ、次のポリマー材料:ポリフッ化ビニリデン、シンジオタクチックポリスチレン、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、ポリビニルアルコール、ポリ酢酸ビニル、ポリ(アクリロニトリル)、ポリアクリロニトリルとアクリル酸との共重合体、ポリアクリロニトリルとメタクリル酸塩との共重合体、ポリスチレン、ポリ(塩化ビニル)、ポリ(塩化ビニル)の共重合体、ポリ(メチルメタクリレート)、ポリ(メチルメタクリレート)の共重合体、ポリエチレンテレフタレート、ポリウレタン、のうちの少なくとも1つから構成される。
特定の実施形態において、少なくとも1つの層は、ポリエチレンテレフタレート、ポリウレタン、ポリエチレンテレフタレートとポリウレタンとの混合物を含有するポリマー材料である。特定の実施形態では、編物またはメッシュの層が存在しうる。特定の実施形態では、編物またはメッシュの層は、ポリエチレンテレフタレート、ポリウレタン、ニチノール、およびそれらの混合物のうちの少なくとも1つから構成されうる。
人工の足場210は、輸送可能でありうるとともに、少なくとも1つのシース層から構成されることができ、シース層は、細胞材料から構成され、細胞材料は、1以上100以下の細胞の厚さの明らかな層に存在する間葉細胞および幹細胞から構成される。細胞材料のシース層は、外表面にある電界紡糸された繊維を、その外表面に細胞材料が含有され、そこで規定されている孔にかかるように、覆いうる。
人工の足場210は、また、患者における移植部位で足場のまわりに組織の再生が生じた後の患者からの足場の回収、または、患者の体における場所での人工の足場の移植のうちの少なくとも一方に役立つように適応され、第1端部または第2端部のうちの少なくとも一方に近接して規定された、少なくとも1つの、穴、くぼみ、突起、またはそれらの組み合わせを備えうる。
繊維配向
電界紡糸された繊維は、等方性または異方性でありうる。いくつかの実施形態において、異なる層における繊維は、異なる相対配向を有しうる。いくつかの実施形態では、異なる層における繊維は、実質的に同じ配向を有しうる。繊維配向は、さらに、複合のまたはサンドイッチ状の足場の各層において、変えることができる。
いくつかの実施形態では、異なる空隙率を有する足場が使用されうる。いくつかの実施形態では、足場の1つ以上の層が、ほぼ完全な細胞透過および均一な播種を可能にする。いくつかの実施形態では、足場の1つ以上の層は、例えば繊維を密に詰めることによって、1つ以上の細胞のタイプの侵入を防ぐように構成されてもよい。繊維の直径を調整することによって、空隙率が繊維の直径に対応するよう、足場の空隙率を変えることができる。別の方法として、異なるポリマーの混合物が、一緒に電界紡糸され、1つのポリマーが選択的に溶解されて足場の空隙率を増加させてもよい。繊維の特性は、形状を丸からリボン状に変えて、繊維の直径、繊維の間隔または空隙率、繊維の空隙率またはアスペクト比のような各繊維の形態を最適化するよう、調整できる。いくつかの実施形態では、各繊維の機械的特性は、例えば、繊維の構成、および/または分解速度を変えることによって、調整または最適化されてもよい。
特定の実施形態では、電界紡糸された繊維材料は、図1Bに示されるような外形面を提供しうる。特定の実施形態では、足場10における少なくとも1つの電界紡糸された層は、ポリカーボネートポリウレタン等のポリマー繊維材料でありえ、紡糸され乾燥されるヘキサフルオロイソプロパノール(HFIP)のような適切な溶媒にポリカーボネートポリウレタンを溶解することによって、製造されうる。電界紡糸された繊維材料の間隔および空隙率は、足場の表面に播種された細胞が、各繊維の間に吊り下がって覆うような関係性で接着でき、番種された細胞物質が、そこに、図4Aおよび4Bで示されるようなシートを形成するのを可能にするようなものでありうる。
人工の足場の積層化
本開示の複数の側面は、人工の足場を製造するための方法に関する。いくつかの実施形態では、管状の人工の足場(例えば人工の食道の足場)は、マンドレル上に(例えば、エレクトロスプレーおよび/または電界紡糸によって材料を堆積することによって)製造される。
いくつかの実施形態では、人工の足場の1つ以上の層は、足場に構造的な支持を提供し、足場に望ましい機械的特性をもたらす。いくつかの実施形態では、編まれた材料(例えば編まれた管、例えば、ニチノールの編物、PETの編物、または、他の金属製もしくは非金属製の編物)が、足場の2つの異なる層の間に挿入でき、構造的な支持を提供する。編まれた材料の圧縮力(例えば、編物が、次の材料層、例えば外側の電界紡糸された材料層に作用させうる力)は、その編物の糸の番手を調整することによって、調整されうる。いくつかの実施形態では、編物は、それを足場10の1つ以上の他の層に取り付けるのを手助けするため、有機溶媒において、(例えば、ディッピング法、または他の手法によって)被覆されうる。いくつかの実施形態では、編物20の長さは、足場本体12の端部まで及ばない。いくつかの実施形態では、足場10の一方または両方の端部が、編まれた層のない2つ以上の材料層からなり、その一方で、足場本体12の中央部28が、追加の編まれた層を備える。
いくつかの実施形態では、人工の足場の1つ以上の層は、足場に隔壁を提供し、内側の空間(例えば内腔の空間)と外側の空間との間に、隔たり(例えば、相対的に不浸透性の隔たり)を作り出す。いくつかの実施形態では、隔壁は、エレクトロスプレーされたポリウレタン層でありうる。
いくつかの実施形態では、足場10の異なる層は、1つ以上のポリマー(例えば、ポリエチレンテレフタレート(PET)、PU、または、それらの混合物)を備えうる。いくつかの実施形態では、足場10は、(例えばマンドレル上にエレクトロスプレーまたは電界紡糸された)内側PU層と、(例えば編まれた材料の上にエレクトロスプレーされた)外側PU層との間に挟まれた、ニチノールの編物を備えうる。
特定の実施形態では、足場10は、足場支持体またはマンドレルを用いて形成されうる。いくつかの実施形態では、足場支持体またはマンドレルは、PU、PET、またはそれらの組み合わせを堆積する前に、材料(例えばPLGAまたは他のポリマー)によって被覆されてもよい。
特定の実施形態では、編物またはメッシュ層における材料は、吸収性のポリマー材料から構成されうる。
足場の製造
いくつかの実施形態では、管状の足場(例えば、人工の食道の足場)は、ナノ繊維アセンブリ、キャスティング法、印刷(例えば3D印刷)、物理的スプレー(例えばポンプおよびシリンジの使用)、押出成形、電界紡糸、または、エレクトロスプレーによって、製造される。他の適切な方法が用いられてもよい。
足場の製造−繊維材料
いくつかの実施形態では、足場の1つ以上の層が、繊維状の材料から構成されてもよい。いくつかの実施形態では、足場が、1つ以上の種類の繊維(例えばナノ繊維)を含む。いくつかの実施形態では、足場が、1つ以上のナノ繊維、1つ以上の天然繊維、1つ以上の人工繊維、1つ以上のポリマー、または、それらのいずれかの組み合わせを含む。ここで記載される方法および構成において、異なる材料(例えば異なる繊維)が用いられうることが理解されるであろう。いくつかの実施形態では、材料は、細胞の成長を手助けするよう、生体適合性である。いくつかの実施形態では、材料は、永続的、半永続的(例えば、宿主への移植後、数年、存続する)、または、速やかに分解可能(例えば、宿主への移植後、数週間または数ヶ月以内に再吸収される)である。
いくつかの実施形態では、足場は、電界紡糸された材料(例えばマイクロまたはナノ繊維)を含むまたはからなる。いくつかの実施形態では、電界紡糸された材料は、PET(ポリエチレンテレフタレート(時にポリ(エチレンテレフタレート)と記載される)を含有するまたはからなる。いくつかの実施形態では、電界紡糸された材料は、ポリウレタン(PU)を含有するまたはからなる。いくつかの実施形態では、電界紡糸された材料は、PETおよびPUを含有するまたはからなる。
いくつかの実施形態では、人工の足場は、以下の材料、弾性を有するポリマー(例えば1つ以上のポリウレタン(PU)、例えば、ポリカーボネート、および/または、ポリエステル)、アクリルアミド重合体、ナイロン(登録商標)、再吸収可能な材料(例えば、PLGA、PLA、PGA、PCL)、人工のもしくは天然の材料(例えば、シルク、エラスチン、コラーゲン、カーボン、ゼラチン、キトサン、ヒアルロン酸等)、または、それらのいずれかの組み合わせのいずれか1つ以上、からなるまたは備えてもよい。いくつかの実施形態では、足場は、例えば、ポリオレフィン、ポリアセタール、ポリアミド、ポリエステル、セルロース・エーテルおよびエステル、ポリアルキレンスルフィド、ポリアリーレンオキシド、ポリスルホン、変性ポリスルホンポリマー、および、それらの混合物等の、付加重合体および/または縮合重合体、からなるまたは備えてもよい。いくつかの実施形態では、足場は、ポリエチレン、ポリプロピレン、ポリ(塩化ビニル)、ポリメチルメタクリレート(および他のアクリル樹脂)、ポリスチレン、およびその共重合体(ABAタイプのブロック共重合体を備える)、ポリ(フッ化ビニリデン)、ポリ(塩化ビニリデン)、ポリビニルアルコールを、様々な範囲の加水分解(例えば87%〜99.5%)で、架橋または非架橋の形態で、備えても、または、からなってもよい。特定の実施形態では、高分子化合物は、また、ポリマーの親水性を増加させる化合物またはプロセスを備えうる。特定の実施形態では、これは、例えばエチレンオキシドおよび酸化プロピレンに基づくブロック共重合体等の化合物の組み込みをともないうる。また、ポリマーの親水性は、望まれるまたは必要とされれば、適切なプラズマ処理によって、増加されうることも考えられる。
いくつかの実施形態では、足場は、ブロック共重合体からなるまたは備えてもよい。いくつかの実施形態では、ポリフッ化ビニリデン、シンジオタクチックポリスチレン、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、ポリビニルアルコール、ポリ酢酸ビニル、のような、付加重合体、例えば、ポリ(アクリロニトリル)およびアクリル酸とメタクリル樹脂とのその共重合体、ポリスチレン、ポリ塩化ビニルおよびその様々な共重合体、ポリ(メチルメタクリレート)およびその様々な共重合体、およびPET(ポリエチレンテレフタレート(時にポリ(エチレンテレフタレート)と記載される)等の、アモルファス付加重合体が、溶液紡糸または電界紡糸され、ここに開示されたいずれかの他の材料と組み合わされて、足場が製造されうる。いくつかの実施形態では、ポリエチレンおよびポリプロピレンのような高結晶性ポリマーが、溶液紡糸される、または、ここで開示されたいずれかの他の材料と組み合わされて、足場が製造されてもよい。
いくつかの実施形態では、1つ以上のポリマーが、それらの疎水性を低減し、かつ/または、それらの親水性を増加させるように、足場の合成後、しかし細胞化および/または移植の前に、変性される。
電界紡糸された繊維は、特定の実施形態で、10ミクロンより小さい直径を有しうる。特定の実施形態で、電界紡糸された繊維は、3から10ミクロンの間の直径を有しうる。電界紡糸された繊維は、特定の実施形態で、3から5ミクロンの間の直径を有しうる。
特定の実施形態では、編物の層における材料は、全部または一部が、例えばPLGA等のような生体吸収性材料から作製されうると考えられる。また、特定の形態では、編物の材料は、組織の成長および再生を促進および/手助けする積み込まれた材料または化合物でありうると考えられる。このような化合物および材料の限定されない例は、1つ以上の次のもの:抗生物質、成長因子等を備える。
電界紡糸
いくつかの実施形態では、足場は、電界紡糸によって製造された(例えばPUおよび/またはPETの)1つ以上の層を備えるように製造される。電界紡糸された材料は、様々な用途に使用されることができ、再生医療用の足場として備えうる。ポリマーを電界紡糸する適切な方法は、DoshiおよびRenekerに記載されたものを備えてもよい。Electrospinning process and application of electrospun fibers. J Electrostat. 1995;35:151-60.; Reneker DH, Chun I. Nanometer diameter fibers of polymer produced by electrospinning. Nanotechnology. 1996;7:216-23; Dzenis Y. Spinning continuous fibers for nanotechnology. Science. 2004;304:1917-19; or Vasita and Katti. Nanofibers and their applications in tissue engineering. Int J. Nanomedicine. 2006; 1(1): 15−30、電界紡糸に関連するこれらの内容は、参照によって、本明細書に組み込まれる。電界紡糸は、本質的になんらかの化学的性質を備えるとともに、nmスケール(例えばおよそ15nm)からミクロンスケール(例えばおよそ10ミクロン)である、ランダムに配向した、あるいは整列したいずれかの繊維を製造するのに使用されうる多目的手法である。
いくつかの実施形態において、ここで使用される電界紡糸およびエレクトロスプレーの手法は、(例えば、ポリマー溶液のジェットとして)ノズルを通じて送り出されるとともに、ターゲット表面に堆積されるポリマー溶液(または融液)を帯電させるため、高圧電場の使用をともなう。ターゲット表面は、帯電されたポリマー溶液がその表面に向かって引き寄せられるように、導電性で、かつ電気的に接地された、固定されたプレート、回転ドラム(例えばマンドレル)、または、他の形態のコレクタにおける、表面でありうる。
いくつかの実施形態では、適用される電場は、典型的には数kVのオーダーであり、ノズルとターゲット表面との間の距離は、通常、数cm以上である。ポリマー溶液の溶媒は、ノズルを離れてターゲット表面に達するまでの間に、(少なくとも部分的に)蒸発する。これによって、その表面へのポリマー繊維の堆積がもたらされる。典型的な繊維直径は、数ナノメータから数ミクロンの範囲である。繊維の相対的な配向は、ノズルに対するターゲット表面の動きによって影響を受けうる。例えば、ターゲット表面が回転マンドレルの表面であると、繊維は、(少なくとも部分的に)その表面で回転方向に整列するであろう。いくつかのケースでは、ノズルは、回転マンドレルの両端の間で往復して走査されうる。
いくつかの実施形態では、ポリマー繊維のサイズおよび密度、繊維の並びの程度、ならびに、電界紡糸された材料の他の物理的特徴は、ポリマー溶液の性質、ノズルのサイズ、電場、ノズルとターゲット表面との間の距離、ターゲット表面の特性、ノズルとターゲット表面との間の相対的な動き(例えば、距離および/または速度)、ならびに、溶媒の蒸発およびポリマーの堆積に影響を与えうる他の要因を備えるが、それらに限定されない要因によって、影響を与えられうる。
電界紡糸およびエレクトロスプレーのプロセスは、つなぎ合わされたポリマー繊維の足場(例えば中空の人工の足場)をマンドレル上に製造するのに使用されてもよい。
支持体/マンドレル
いくつかの実施形態では、足場10(例えば2つ以上の層を有する足場)は、支持体(例えば中実または中空の支持体)を使用して製造されることができ、足場は、支持体の上に形成されうる。例えば、支持体は、電界紡糸のコレクタでありえ、例えば、マンドレル、管、または、他の形状をした支持体である。支持体は、どのようなサイズまたは形状も有しうることが理解されるであろう。しかしながら、いくつかの実施形態では、支持体のサイズおよび形状は、宿主において取り替えられるまたは補完される胃腸組織(またはその一部)と同じまたは類似のサイズの人工の組織を支持する足場を製造するように設計される。電界紡糸のためのマンドレルは導電性の表面を有すべきであることが、理解されるであろう。いくつかの実施形態では、電界紡糸のマンドレルは、(例えば1つ以上の金属を備える)導電性の材料から作製される。しかしながら、いくつかの実施形態では、電界紡糸のマンドレルは、非導電性の中央の支持体を覆う(例えば1つ以上の金属を備える)導電性のコーティングを備える。
マンドレルの表面に近接した位置にもたらされる足場10と一体にされる適切な編物の材料を適切に配置することは、もたらされた足場10をマンドレルとの接触から外すのを容易にするのを助けるのに役立ちうることが、全く思いがけなく見出されている。
足場の特性
本開示の複数の側面は、いずれかの足場、例えば電界紡糸および/またはエレクトロスプレーされた繊維に基づく足場の物理的および機能的特性を高めるのに有益であることが理解されるであろう。いくつかの実施形態において、1つ以上の足場の構成要素は、薄いシート、円筒、厚いリブ、中実のブロック、枝分かれした網等、または、異なる大きさを有するそれらの組み合わせでありうる。いくつかの実施形態において、完成したおよび/または組み立てられた足場の大きさは、取り替えられる組織または器官の大きさと類似または同じである。いくつかの実施形態において、足場の個々の構成要素または層は、より小さな大きさを有する。例えば、ナノ繊維の層の厚みは、数nm〜100nmから、1〜1000ミクロン、または数mmでありうる。しかしながら、いくつかの実施形態では、1つ以上の足場の構成要素の大きさは、およそ1mm〜50cmでありうる。しかしながら、より大きい、より小さい、または、中間のサイズの構造が、ここで記載されたように作製されてもよい。
いくつかの実施形態では、足場は、管状の組織の領域(例えば、食道、または他の管状の領域)を形成するよう、細胞が播種されうる管状の構造として形成される。管状の領域は、均一の直径を有する円筒でありうることが理解できるであろう。しかしながら、いくつかの実施形態では、管状の領域は、(例えば、管状の領域の長さに沿って異なる直径を有する領域を備える)なんらかの適切な管形状を有しうる。管状の領域は、また、枝、または一連の枝を備えうる。いくつかの実施形態では、管状の足場は、一方の端部、両端部、または(例えば枝分かれした足場の場合)複数の端部に、開口部を有するよう作製される。しかしながら、管状の足場は、本発明の側面がこの点に限定されないように、一方、両方、または全ての端部で、閉じられていてもよい。また、本発明の複数の側面は、中空および中実の器官を備えるなんらかのタイプまたは器官のための足場を製造するのに用いられてもよいことも、本発明がこのことに限定されないことと同様、理解されるであろう。いくつかの実施形態において、本発明の複数の側面は、物理的につなぎ合わされていない繊維(例えば電界紡糸されたナノ繊維)の2つ以上の領域または層を備える、足場または他の構造の安定性を高めるのに有益である。
いくつかの実施形態では、足場は、細胞化を促進させうる、直径が約10nmから約100ミクロンの範囲である孔を有する多孔質表面を有するよう設計される。いくつかの実施形態では、孔は、50ミクロンより小さい、40ミクロンより小さい、30ミクロンより小さい、20ミクロンより小さい、または、10ミクロンより小さい(例えば、およそ5、およそ10、またはおよそ15ミクロンの)、平均直径を有する。いくつかの実施形態では、孔は、20〜40ミクロンの平均直径を有する。いくつかの実施形態では、孔のサイズは、免疫反応、または、患者における他の望まざる宿主の反応を防止する、または低減させるように選択される。孔のサイズは、コンピュータによるおよび/または実験的な手法(例えばポロシメトリー)を使用して、見積もることができる。しかしながら、孔の他のサイズも備えられうることが理解されるであろう。
いくつかの実施形態では、足場の表層は、合成の間または後に(例えば、溶媒、水溶液、例えば水または緩衝液へ、さらすことによって)溶けうる1つ以上の溶解可能な粒子を備える繊維を用いて、合成されてもよく、溶解可能な粒子のサイズの孔が残る。いくつかの実施形態では、その粒子は、電界紡糸装置のノズルへポンプで送り込まれるポリマー混合物に備えられる。結果として、粒子が繊維に沿って配置される。いくつかの実施形態では、電界紡糸の手順は、(例えば、数ミクロン、およそ10ミクロン、およびそれより大きい平均直径を有する)太い繊維を堆積するよう構成される。いくつかの実施形態では、繊維が高密度のパターンに堆積されると、1つ以上の繊維が、硬化前に混合し、(例えば10〜100ミクロンの厚さ、またはそれより厚い)より大きなマクロ構造を形成する。いくつかの実施形態では、これらのマクロ構造は、2つ以上の層の繊維、およびまたは、足場の2つ以上の異なる構成要素からの一部(例えば繊維)を、からませることができ、従って、足場の機械的な完全性が増す。いくつかの実施形態では、そのようなマクロ構造が、足場の合成の間に、1つ以上のステージで(例えばここで記載した電界紡糸によって)形成されたとき、マクロ構造の表面は、細胞化に適した表面を提供するため、(例えば、エッチング、または、ここで記載した溶解可能な粒子を使用して多孔質にすることによって)処理されうる。
いくつかの実施形態では、2つ以上の構造的な構成要素(例えばリング)の間、単一の連続した構造的な構成要素および/または編まれた支持材料の構造的部材(例えばアーチ形の部材)の間における、柔軟な足場材料(例えばたるみ)の量は、人工の足場の機械的特性(例えば、引っ張り強度、伸び、回転、圧縮、可動域、曲げ、抵抗、コンプライアンス、自由度、弾性、もしくは他の機械的特性、または、それらの組み合わせ)を決めるのに使用されうる。
特定の実施形態では、足場10は、また、培養の間に足場の外表面に播種された細胞から生じる細胞シースを備えうる。細胞シースは、足場の外表面に対し、接着するとともに、覆うような関係性となる。細胞シースに存在する大部分の細胞は、外表面の最外表に結合し、そこに規定されている孔にかかって連続的なまたはほぼ連続的な表面を形成すると考えられる。
特定の実施形態では、細胞シースは、シース層に構造的な完全性を与えるのに十分な厚みを有しうる。特定の実施形態では、細胞シースは、シースに接する再生される細胞を案内して、シースを覆うがそれとは一体にならない組織の壁を作り出すのに十分な、足場の外表面に接する複数の細胞から構成される。特定の実施形態では、シースは、平均で1から100の間の細胞厚さの裏張りから構成されうる。特定の実施形態は、10から100の間、10から30の間、20から30の間、20から40の間、20から50の間、10から20の間、30から50の間、30から60の間、40から60の間、40から70の間、70から90の間の、細胞厚さを有しうる。
結びついた細胞シースを備える足場10は、適切な胃腸の切除部位に配置されうる、動かすことができ挿入可能なデバイスを提供する。足場10と接する結びついた細胞シースを備える足場10は、移植のために所望の切除部位へ搬送されうる。特定の実施形態では、足場10は、切除された器官の適切な再生後、移植部位から取り除くことができるように構成される。特定の実施形態では、取り除かれた足場は、そこに結合している細胞シースのいくつかまたは全てを備えるであろう。
また、胃腸器官のような管状の器官の再生方法の様々な実施形態も開示される。特定の実施形態では、その方法100は、符号110のように、患者における管状の器官の一部の切除を含む切除ステップを備える。切除されるべき器官は、病害、外傷、または先天性症状によって損傷したまたは易感染性である、胃腸管の管状の器官でありうる。特定の実施形態では、適切な器官の限定されない例は、食道、直腸等のうちの1つを備える。特定の実施形態では、適切な器官は、食道、小腸、結腸、直腸のうちの少なくとも1つを備える。
切除は、なんらかの適切な外科的処置によって成し遂げることができ、胃腸管とつながったままで切除後に患者の中に留まる切除された器官の部分を生み出す。切除手術は、特定の実施形態では、適切な切除端を生み出しうる。
切除が完了した後、符号120のように、切徐部位で人工の足場が移植される。特定の実施形態では、移植は、患者の中に留まっている器官の各端部を、人工の足場の各端部へ、人工の足場と切除された器官とが各要素間で適切な接続を実現しうるように、接続するステップを備える。これは、1つ以上の縫合、生物有機組織の接着等によって達成されうる。
特定の実施形態では、移植された人工の足場は、外側のポリマー表面、および、外側のポリマー表面の少なくとも一部を覆う細胞化されたシースを有する管状の部材でありうる。人工の足場の様々な実施形態が、議論され、ここで開示される方法で採用されて利用される。特定の実施形態では、人工の足場は、第1端部および第1端部と反対側の第2端部、第1端部と第2端部との間に位置する外側のポリマー表面、ならびに、外側のポリマー表面の少なくとも一部を覆う細胞化されたシース層を備えるであろう。特定の実施形態では、移植ステップは、細胞化されたシース層の少なくとも一部を、切除された器官の部分の切除端の少なくとも一部へ、隣接面接触させる。
特定の実施形態では、ここで開示されたような方法は、また、符号130のように、人工の足場に沿った案内された組織の成長が成し遂げられるのに十分な期間、切除部位で人工の足場を保持するステップを備える。特定の実施形態では、案内された組織の成長は、患者の中に留まっている切除された器官の部分に存在する組織から生じるとともにそれと接する。特定の実施形態では、案内された組織の成長は、切除された器官の関連する領域に隣接するであろう。特定の実施形態では、案内された組織の成長は、分化した組織を示すであろう。特定の実施形態では、案内された組織の成長は、細胞化されたシース層の外表面と、その外側の位置で、平行である。特定の実施形態では、案内された組織の成長は、患者の中に留まっている切除された器官の部分に存在する組織から生じるとともにそれと接し、切除された器官の関連する領域に隣接するであろう。案内された組織の成長は、分化した組織を示し、細胞化されたシース層の外表面と、その外側の位置で、平行でありうる。
案内された組織の成長が成し遂げられた後、ここに記載されたプロセス100は、符号140のように、人工の足場を除去するステップを備えうる。特定の実施形態では、その除去ステップは、案内された組織の成長が、患者の中に留まっている器官の切除された部分と接したまま維持されるように、行われる。特定の実施形態では、除去プロセスは、案内された組織の成長の内側から、人工の足場を、内視鏡的に除去することを備えうる。
特定の実施形態では、人工の足場は、全部または一部が、生体吸収性ポリマー材料から構成されうる。このような状況では、ここで開示される方法は、人工の足場に沿って案内された組織の成長が成し遂げられるのに十分な期間内に、人工の足場の少なくとも一部が切除部位で吸収されるように、人工の足場に沿って案内された組織の成長が成し遂げられるのに十分なインターバルで、人工の足場と切除端との間の接触を保持するステップを備えうる。足場が完全に生体吸収性材料から構成される特定の実施形態では、足場は、案内された組織の成長の間に構造的な完全性を維持するように構成されるであろう。人工の足場が選択された領域で生体吸収性材料によって構成される特定の実施形態では、案内された組織の成長が成し遂げられた後に、足場の残りが、適切な処置によって除去されうると考えられる。
案内された組織の成長は、適切な手段によって観察されうる。特定の実施形態では、組織の成長は、内視鏡的に観察されうる。
ここで開示される方法の特定の実施形態では、その方法は、人工の足場のポリマー表面に細胞材料を付与するとともに、細胞材料を成長させて細胞シース層を形成するステップを備え、その付与および成長させるステップは、切除ステップの前に、行われる。
特定の実施形態では、ここに開示される方法に用いられる人工の足場は、外表面が、紡糸されたポリマー繊維を備える管状の部材である。特定の実施形態では、紡糸される繊維は、この開示で示されたような適切な方法によって、電界紡糸されうる。細胞化されたシース層は、特定の実施形態において、少なくとも、外側に位置する電界紡糸された繊維の部分にかかる。細胞化されたシース層は、細胞材料から構成されることができ、細胞材料が、間葉細胞、幹細胞、多能性細胞を備える。細胞材料は、患者から同系細胞で生じうるか、または、同種異系で生じうる。
なんらかの理論に拘束されることなく、ここで様々に開示されているような人工の足場、特に、播種され細胞シースに覆われたものを、移植することによって、移植された人工の足場の場所に接してまたは近接して、患者の組織の成長、再生、および分化が促進されると考えられる。成長し再生する組織は、人工の足場および結合したシースに案内され、その結果、留まっている管状の器官の切除端に一体的に結合され、外側に広がって人工の足場および結合された細胞シース層を包含する、管状の細胞体を生み出す。足場および結合した細胞シース層は、組織の拒絶反応を最小限に抑える一方で、切除された組織の再生可能な成長を促進または活発にする可能性があると考えられる。また、細胞シース層の存在は、再生された組織が、成長および分化の間に、シース内に貫通するのを低減または最小化しうると考えられる。特定の実施形態では、組織の再生は、各端部から中央に向かって進行する。一旦、再生された組織が適切な位置にくれば、人工の足場は除去されうる。特定の実施形態では、人工の足場の除去直後、再生された組織の構造は、内側の上皮層を失うであろう。この層は、足場の除去後、再生することが分かっている。
本開示の更なる理解のため、以下の実施例について述べる。これらの実施例は、例示のために備えられ、本開示およびクレームに明記される発明の実例であると考えられるべきである。
実施例
実施例I:食道の足場
人工の食道の足場は、図1Aに示されるように、3層の材料を含有して製造された。ポリウレタン(PU)の第1層は、エレクトロスプレーによって、金属製のマンドレル上に堆積された。そして、編まれた材料が、第1PU層上に堆積された。それから、第2PU層が、電界紡糸によって堆積された。結果として得られた足場は、そしてマンドレルから取り外された。各足場は、(編まれた層が、内側のエレクトロスプレーされた層と外側の電界紡糸された層との間に挟まれた)3つの層を含む壁を備える管状の構造を有していた。足場の物理的寸法は、走査電子顕微鏡(SEM)によって決定された。平均的な足場の壁厚は、約500ミクロンであった。その壁の断面の限定されないSEM画像が、図1Bに示される。管状の足場の断面の限定されない視覚像が図1Cに示される。この像は、断面がほぼ「D」形状であることを示している。これは、「D」形状をした断面を有するマンドレルを用いることによって得られる。
外側の電界紡糸された層は、孔を規定するポリマー繊維の層であった。外層における平均繊維直径は、およそ3〜6ミクロンであった。平均孔サイズは、およそ15〜20ミクロンであり、メジアン孔サイズは、およそ25〜45ミクロンであった。
足場は、バイオリアクターチャンバー内の液状媒質の槽内で回転可能な支持体に取り付けられた。回転機構は、支持体を、取り付けられた足場とともに、液槽内で長手方向軸まわりに回転させる磁気駆動部を備えうる。
足場は、外側の足場の表面に細胞の溶液を付着させることによって、細胞(例えば、MSCまたは他の幹細胞)が播種された。播種された足場は、それから、バイオリアクターチャンバー内の液状媒質の槽内で足場を約1週間回転させることによって細胞の成長を助ける液状媒質内で培養された。結果として得られた足場は、足場の外表面に対し覆う関係にある細胞シースを備える。特定の実施形態では、細胞シースは、シース層に構造的な完全性を与えるのに十分な厚みを有しうる。特定の実施形態では、細胞シースは、シースと接する細胞の再生を導き、シースを覆うがそれとは一体にはならない組織の壁を生み出すのに十分な、足場の外表面と接する複数の細胞から構成されるであろう。特定の実施形態では、シースは、平均で1から100の間の細胞厚さの裏張りから構成されうる。特定の実施形態は、10から100の間、10から30の間、20から30の間、20から40の間、20から50の間、10から20の間、30から50の間、30から60の間、40から60の間、40から70の間、70から90の間の、細胞厚さを有しうる。
播種された細胞シースを有する足場10は、切除部位に移植され、適切な位置に配置されうる。シース内に存在する播種された細胞は、着床後、成長し続けることができると考えられる。このような状況では、シース内に存在する播種された細胞は、移植部位で再生している組織から分離し並んだ構造を維持し支持するであろう。
各足場は、それから、ブタの食道部位に移植された。食道の約5cmの部分が、除去され、患者の中に留まっている食道組織の端部に縫い合わされた足場の部分に取り替えられた。
食道組織の再生は、数週間、内視鏡的に観察された。
食道は、頸部、胸部、および腹部のパーツを有する長い筋肉管である。図2は、人間における食道の断面を示す概略図である。成人の人間では、食道は、18cmから25cmの長さでありうる。食道の壁は、上部では横紋筋で、下部では平滑筋で、中間ではそれら2つの混合から構成される。従って、ここでは、いくつかの実施形態において、自然の食道組織の層に対応して2つ以上の層を有する食道組織の治療および再生を促進しうる多層の人工の足場が提供される。
図3は、ブタでの食道の足場の移植後1〜2週間における、本来および再生された食道の染色された断面である。断面は、(異なる筋肉および腺の層を備える)基本的に全ての食道組織の層の再生を示す。さらに、再生された組織の分析は、足場それ自身が、再生された食道の壁に取り込まれないことを明らかにした。足場は、依然として食道内にあったが、再生された食道の全体部となるのとは対照的に、食道の再生を活性化させるガイドとして振る舞っているように見えた。
実施例II:食道移植
ヘキサフルオロイソプロパノール(HFIP)(DuPont,Wilmington,DE,USA)に12%w/vで溶解されたポリカーボネートポリウレタンの溶液として堆積されたポリカーボネートポリウレタンの外側の電界紡糸された層を備え、図1Aに示されるように、3層を含有する人工の食道の足場が、製造された。使用された電界紡糸装置は、オランダ、ゲルドロップ、IMEテクノロジーズから市販されていた。等方性の繊維を堆積して500ミクロンの平均壁厚を有する足場を製造するシリンジの先端から、22mmの距離に配置され、800rpmで回転する、ターゲットのアルミニウムのマンドレル上に、電界紡糸された繊維は集められた。足場は、真空中で乾燥され、余分な溶媒を除去された。足場は、それから、低圧プラズマシステム(Diener Tetra 150−LF−PC−D)を使用して、エチレンおよび酸素のガスの2つの結果として生じるサイクルで、プラズマ処理された。足場はガンマ殺菌された(STERIS,Northborough,MA)。適用された線量範囲は、25〜35KGyであった。
結果として得られた管は、22mmの一定の外径(OD)および11cmの長さを有する電界紡糸されたポリウレタンから構成されたポリマーの足場であった。
電界紡糸された繊維の形態は、走査電子顕微鏡(Zeiss−EVO MA10)によって分析された。足場のサンプルは、スパッタコータ(Cressington−208HR,TED PELLA,Inc,Redding,CA)を用いて、8×10−2mbarの圧力および300Vの電位の下で、2分間、プラチナおよびパラジウムでスパッタコーティングされた。空隙率は、重量測定法を用いて計算された。空隙率、εは、繊維マットの見かけ密度、ρAPP、および、ポリマーのかさ密度、ρPUに関して規定され、それらからε=1−ρAPP/ρPUと求められる。見かけ足場密度ρAPPは、10mmの乾燥したディスクの上で、体積に対する質量の割合として測定された。すなわちρAPP=Mass/VPU。孔サイズの測定は、水銀ポロシメータ(Micromeritics AutoPore IV)を用いて行われた。引っ張り試験は、1kNロードセルを使用して、電気機械的な負荷フレーム(Instron 5943 Apparatus)に配置された10mm×40mmのサンプルに、ASTM D638ガイドラインに従って行われた。走査電子顕微鏡は、図7Aに示されるような増加する倍率で、電界紡糸された人工の足場の等方性の繊維の配置状態を示した。繊維の滑らかな表面および等方性の性質は、足場の強度および弾性が全方向で均一であることを確実にする。
一軸の機械的荷重による引っ張り試験は、3つの移植前の足場および3つの移植後に対して行われ(図7B)、それらは全て、体内の荷重値で、同様の結果を示した。体内の荷重における6つのサンプルの間の一致は、足場が、製造および体内での移植の後に存在する低いばらつきを有することを示す(図7B、C)。平均(±SD)引っ張りひずみは、6つの足場にわたって、119.5±1.61mmと124、5±3.44mmとの間の範囲にあった。破断時において、サンプルについての引っ張りひずみは、移植前が397.38%±5.52%に達し、移植後が408.61±17.64%に達した。400%を上回るひずみ値は、製造プロセスの信頼性、および、相対的な体内での安定性を示唆する。破断時での引っ張り応力は、移植前および移植後の足場について、それぞれ、7.25±0.59MPa、および、4.43±0.77MPaであった。従って、ヤング率は、移植後のサンプルよりも、移植前のサンプルの方が大きかった。しかし、体内のひずみでは、両グループは、同等の弾性であった(図7B、C)。破断時の荷重は、移植前の値が移植後の値よりも大きく、ヤング率と同じ傾向をたどった。
自己移植のブタの脂肪由来の間充織幹細胞(aMSC)は、8頭のブタから分離され、直視下脂肪生検をともない、特性評価のために分析された。8頭のユカタンミニブタは、側方の腹部の壁から採取された殺菌された直視下脂肪組織生検に先立ち、全身麻酔とクロルヘキシジンの皮膚処置を受けた。5cmの切開が、電気焼灼器を使用して止血がなされた状態で、白線に隣接して行われた。およそ30〜50gの脂肪組織が分離され、alpha Minimal Essential Medium(MEM)/glutamax (Thermo Fisher Scientific,Waltham,MA)、および、1% ペニシリン/ストレプトマイシン(Thermo Fisher Scientific)を含有する50mLの円すい管に移された。
20〜60gの腹部の脂肪組織は、それぞれの麻酔されたユカタンミニブタ(50〜60kgの体重)から、外科的に摘出された。その組織のサンプルは、alpha Minimal Essential Medium(MEM)/glutamax (Thermo Fisher Scientific,Waltham,MA)、および、1% ペニシリン/ストレプトマイシン(Thermo Fisher Scientific)において、3回洗浄された。洗浄された組織は、リンパ節および血管を除去するように切り取って整えられ、5mmより小さい断片に細かく分割される。その組織の断片は、消化緩衝液(300IU/mL コラゲナーゼ タイプII,0.1% ウシ血清アルブミン(7.5%、分画V)、1% ペニシリン/ストレプトマイシン,alpha MEM/glutamax)において、37℃、5%CO2で、55分間、分離される。完全な成長培地(StemXVivo,R&D Systems,Minneapolis,MNおよび1%ペニシリン/ストレプトマイシン)でクエンチ後、細胞は、1500rpmで、15分間、遠心分離機にかけられた。細胞ペレットは、5mLの成長培地で再びけん濁され、70μmのフィルターを通じてろ過される。細胞のろ液は、1500rpmで、5分間、遠心分離機にかけられた。細胞ペレットは、5mLの成長培地で再びけん濁され、細胞は、組織の重さに従って、平板培養された(20mLの成長培地を含有するT75フラスコごとに3gの脂肪組織の分離株)。
細胞は、カルシウムおよびマグネシウムのないPBS(Thermo Fisher Scientific)において2回洗浄され、TrypLe(Thermo Fisher Scientific)を用いて分離された。分離物は成長培地とクエンチされ、細胞は、1000rpmで、5分間、遠心分離機にかけられた。細胞ペレットは、PBSで希釈された1%ウシ血清アルブミン中で、再びけん濁された。100万個の細胞のアリコートが、暗闇中で、4℃で、30分間、抗体中で培養された(補足の表1)。標識した細胞は、緩衝液中で3回洗浄され、二次抗体(Life Technologies,Carlsbad,CA)が、必要に応じて、暗闇中で、4℃で、30分間、適用された。さらに3回洗浄後、細胞けん濁液が、フローサイトメトリー(Guava easyCyte HT,EMD Millipore,Billerica,MA)のために、96ウェルプレートに入れられた。生細胞を代表する事象は、生存率の測定に基づき、前方および側方の散乱値にゲーティングされた(ViaCount,EMD Millipore)。細胞の種類の分析は、染色されていない、およびアイソタイプコントロール抗体の染色されているサンプルに対して補正された蛍光事象を利用して行われた。得られたデータは、エクスポートされ、スタンドアロン型ソフトウェア(FlowJo version 10,FlowJo,LLC,Ashland,OR)を使用して分析された。
コロニーの形成を評価するため、脂肪由来の細胞が、記載されたように分離され、単一の細胞のけん濁液へと粉砕されて粉末にされ、100細胞/mLの成長培地へと希釈された。100μLの細胞のけん濁液は、96ウェルプレート(Corning,Inc.,Corning,NY)の各ウェルに加えられ、翌日、細胞の数について視覚的に調べられた。5〜7日後、細胞のコロニーは目で見え、培地は、コロニーが少なくとも50細胞を含有するまで3日ごとに変化した。ウェルは、コロニーの存在のために数えられ、分析された全ウェルの割合として表された。
脂肪由来の細胞の多能性は、化学作用による誘発によって脂質生成および骨形成する能力によって決定された。細胞は、6ウェルの組織培養プレートで平板培養され、完全な成長培地で培養され、脂質生成および骨形成の分化、それぞれのために、60%または100%の密集度まで成長させられた。コンフルエンスに至ると、培地は、脂質生成または骨形成のいずれかの分化培地(CCM007,R&D Systems,Minneapolis,MN)に変えられた。培養においては、培地は、14日まで2日ごとに変えられた。脂質生成の分化培地で培養された細胞は、Oil Red O (American MasterTech,Lodi,CA)で染色され、骨形成の培地で培養された細胞は、カルシウムの堆積のため、Alizarin Red (EMD Millipore)で染色された。
グルコースおよび乳酸塩の濃度は、播種、ならびに、2、5、および7日間の事前播種(iSTAT,Abbott,Princeton,NJ)の際にバイオリアクターからの馴化培地で測定された。
細胞の浮遊物は、Luminex200プラットフォームにおけるマルチプレックスアッセイ、または、市販のキットを使用し、メーカーの指示に従って行われるミネソタ大学サイトカイン参照試験所におけるELISAのいずれかによって、ブタのサイトカインの生成、および成長因子のために、分析された。10の13乗のブタ種のビーズセットパネル(EMD Millipore)が、ブタのVEGF、GM−CSF、IL−1RA、IL−6、およびIL−8のレベルを決定するのに使用された。値は、LuminexプラットフォームのためのBioPlexソフトウェア(BioRad,Hercules,CA)、または、BioRad550プレートリーダーで読み取られるELISAプレートのためのMicroplate Managerソフトウェアを使用して、各プレートで生じる標準曲線から、補間された。全てのサンプルは、正副2つ分析された。
細胞は、PBS中ですすがれ、10%ホルマリンとともに15分間、室温で維持された。細胞は、0.1%Triton X−100(PBS−T)を含有するPBS中で、静かに3回すすがれ、PBS−T中で希釈された10%標準ヤギ血清(Vector)において、1時間、室温で培養された。rabbit anti−nestin抗体(Biolegend, 1:100)が、10%標準ヤギ血清およびPBS−Tで希釈され、4℃で一晩、培養された。細胞は、PBS−T中で2回すすがれ、蛍光goat anti−rabbit抗体(Alexa Fluor 594,Thermo Fisher Scientific)中で、1時間、室温で培養された。細胞は、2回すすがれ、4’,6−ジアミジノ−2−フェニルインドール(DAPI)で対比染色された。
37℃で48時間後、細胞は、カルシウムおよびマグネシウムを含有するリン酸塩中和生理食塩水(Thermo Fisher Scientific)で2回洗浄され、新たな成長培地と取り替えられた。その後、培地は、フラスコが70%−80%のコンフルエンスとなるまで、2日ごとに取り替えられた。継代培養において、細胞は、分離され(TrypLe,Thermo Fisher Scientific)、数えられ(Countess,Thermo Fisher Scientific)、T175フラスコごとに200,000細胞で平板培養された。細胞は、足場の播種に先立って、2回継代培養された。
各11cmの長さの足場は、バイオリアクターに配置され、0.1875%の重曹(Thermo Fisher Scientific)、MEM eagle(Lonza)、および0.01M塩酸中1.19mg/mL牛コラーゲン(器官形成)で補完された成長培地において、3200万の細胞で播種された(生存率>70%,trypan blue dye exclusion,Countess,Thermo Fisher Scientific)。細胞は、200mLの成長培地がゆっくりとバイオリアクターに入れられる前に、37℃、5%CO2で、5分間、培養された。バイオリアクターは、足場の移植前に、7〜8日間、培養された。培地は、2日ごとに変えられ、以下に記載する様々な分析のために利用される。
ブタのaMSCは、事前に特徴付けられた足場に播種され、その後、バイオリアクターにおいて培養された。播種された足場は、そして、3週間での足場の除去まで、ユカタンミニブタにおける食道の切除に続けて移植されるとともに(図6)、再現性よく染色され、抗ブタのCD44、CD73、CD90、CD105、およびCD146の抗体を使用した既知のMSCマーカに対して陽性であり、CD14、CD45、CD106、CD271、および、SLA Class II DRに対し、陰性である。染色されnestinおよびaSMAに対し陽性な95%より多い培養された細胞が、幹細胞の特性を示し、培地に維持される。多能性は、脂質生成および骨形成をそれぞれするブタのMSC分離株を化学的に誘導することによって決められた。これらのaMSCは、継代培養1から5へ、定期的に拡大するとともに特徴づけられ、一貫した表現型および機能的な特性を示した。
継代培養2から成長したブタのaMSCは、ポリマーの足場に播種され、37℃で、7日間(+/−1日)、バイオリアクター内で培養された。足場に培養された播種されたaMSCが、血管形成および免疫修飾に役立つかもしれない因子を分泌するかどうか確認するために、多くのサイトカインおよび成長因子が、酵素結合免疫吸着検定法(ELISA)を使用して測定された。血管内皮増殖因子(VEGF)、顆粒球単球コロニー刺激因子(GM−CSF)、インターロイキン(IL)−6、IL−8、およびIL−1RAの細胞分泌は、培地単独を大きく超えたレベルで馴化培地で、検出される(図4A)。しかしながら、追加のサイトカイン、TNF−α、IL−1α、IL−1β、INF−γ、IL−10、IL−12、IL−18、血小板由来成長因子(PDGF)、および、血小板やT細胞由来の好酸球走化性物質(RANTES)は、検出されなかったが、測定された。
播種された移植片の切片のパンチ生検が、7日の培養時間の終わりに行われ、細胞の健康状態および足場への貫通が評価された。細胞の健康状態は、カルセイン(生きた細胞)およびエチジウムブロマイド(死んだ細胞)を使用し免疫蛍光染色によって評価された。足場の細胞の貫通は、細胞の同定のためエチジウムブロマイドを使用して評価された。足場に付着した生きた細胞の集団は、生検サンプルのカルセイン染色の優位性によって示される。足場の生検の断面において、細胞の付着の大部分は、足場の表面に存在した。一方で、足場内に、細胞の増殖および内方成長のいくつかの形跡があった。バイオリアクターの培養の間の移植片の代謝活動は、グルコース取り込みおよび乳酸産生のため48時間ごとに測定される。馴化培地の測定は、継続的な代謝の細胞成長の両指標である、時間とともに減少するグルコースおよび増加する乳酸産生レベルを一貫して示した。加えて、バイオリアクター内での7日以上の細胞の増殖が、バイオリアクターの細胞播種のコース上で数倍増加する全DNA含量によって、定量化された。7日の培養に続く足場における細胞表現型のさらなる特性評価は、細胞が、alpha smooth muscle actin(aSMA)およびnestinを発現し続けることを示す。
気管内挿管および全身麻酔導入後、動物は、左側臥位に寝かされた。毛は短く切りそろえられ、クロルヘキシジンまたはポビドンヨードが、皮膚処置のために使用され、動物は、無菌的に覆われた。各動物における第4肋間間隙のレベルでの標準的な右開胸手術が行われ、胸腔に入った。ダブルルーメンの気管内チューブの使用を通じ、単一の肺換気が実現された。右肺門の後方にある胸中部に位置する食道の4〜4.5cmの部分が、周囲から分離されるとともに切除され、6cmの欠損(近位および遠位への組織の退縮)を生じさせる。そして、播種された足場(6cmの長さ)が、近位および遠位の食道へ吻合させて、ポリジオキサノン(PDS, Ethicon Inc.,Somerville,NJ)の吸収性縫合糸を使用して移植される。移植後、市販の食道ステント(WallFlex M00516740, Boston Scientific)が、直接の内視鏡的な案内(Storz Video Gastroscope Silver Scope 9.3mm×110cm,Tuttlingen,Germany)の下で、挿入される。ステントの配置は、内視鏡的および外科的な視覚化の下で行われる。食道ステントは、正常な食道の組織に対し、近位および遠位の両方のステントのフレアで、吸収性縫合糸を使用して適切な位置に固定される。
術後、動物は、胃瘻栄養補給によって支えられて補助され、栄養チューブを通じた流動食で2週間、すりつぶされた食事でさらに2週間生かされ、それから、調査の継続のための後、口を通して固形食をとることが許された。
移植の後、約21日で、足場は内視鏡的に回収され、aMSCの含浸された多血小板血漿(PRP)ゲルが適用されて、新しく形成された食道管の治癒過程を促進した。PRPの適用後、新しい完全に覆われた食道ステント(WallFlex(登録商標),12cmの長さ×23mmの外径,Boston Scientific Corporation)が、移植区間にわたって配置されて梗塞形成を防止し、再生の間、生体構造を維持した。2週間ごとに、動物は、鎮静剤の使用および食道の吻合の評価および食道ステントの交換を経験し、食道の再生の直接的な視覚化および進展を可能にした。追跡観察は、内視鏡的に行われた(Storz Video Gastroscope Silver Scope 9.3mm×110cm,Tuttlingen,Germany)。
再生の進展は、また、内視鏡検査によって評価された。足場の除去に続けて、移植区間は、およそ3〜4週のインターバルで、内視鏡的に視覚化された。2つの代表的な動物が示されている(図11および12)。3〜4週の移植後では、粘膜層の再生は、図11Aおよび12Aから分かるように、部分的にだけ完了していた。しかしながら、食道治癒の過程は、時間とともに続き、初期の隆線を形成する粘膜の層の近位端および遠位端によって示される(2層の融合および完全な粘膜の再生(図11Cおよび12E)の前の図11Bならびに図12B、12Cおよび12D)。食道の連続性および完全性の初期の再構成、および、切除の2つの反対側の端部からの粘膜下層のその後の成長は、全8頭の動物にわたって、一致していた。2頭の動物は、術後8〜9ヵ月まで維持され、食道ステントなしで、2および3ヶ月間のそれぞれで、梗塞または狭窄の証拠がなく、注目すべき体重増加をして永続的な経口摂取を有していた。
再生されたおよび本来の食道組織の形態の組織学的な類似性を解明するため、組織のサンプルは、移植後2.5ヶ月で代表的なブタの食道から摘出され、手術の部位、ならびに組織学のための隣接する遠位および近位組織を、両方備える(図13A、点在するボックスは、組織学的な分析サンプルの代表的なものを示す)。ヘマトキシリンおよびエオシン(図13BおよびD)およびマッソンのトリクロム(図13CおよびE)の染色された組織部分の代表的な画像は、組織学的に損傷のない多層の食道の上皮および粘膜下層および一般的な内側の筋肉層の形態を示す。
再生された領域からの代表的な免疫組織化学分析は、2.5ヶ月でKi67(図14F)に関し免疫活性を示し、粘膜および粘膜下の細胞の継続的な増殖、CD31(図14G)、CD3ε(図14H,aSMA 図14I,transgelin/SM22a(図14J)、および、手術部位の組織における線状のミオシン重鎖(図14K)の相対的な欠如を示唆する。aSMA、SM22a、およびミオシン重鎖の相対的な欠如の優位性は、平滑筋の増殖が、骨格筋の成長に先行することを示唆する。
同系細胞由来の間葉細胞(aMSC)で播種された人工のマトリックスは、粘膜の潰瘍または穿孔を最小限にして、切除された食道の全長さ方向の再生をもたらした。全ての動物は、6頭のうち1頭が粘膜の潰瘍または穿孔を経験しつつも、移植片の除去後の2〜9週から、全100%の長手方向の再生を経験した。
実施例III−拡大された端部を有する管状の足場
拡大された端部を含む図15AおよびBに示されるような管状の足場は、ブタの胃と食道の接続部に移植される。図16は、ブタの内部の足場のまわりで成長した再生された組織を示す。図16は、足場の拡大された端部の上に延びる再生された組織を示す。図17は、足場に成長した再生された組織の内径が約2.2cmであることを証明する。
実施例IV−他の胃腸への適用
実施例IおよびIIで要点が述べられたプロセスは、直腸に限定された胃腸の領域を置き換えて、実行される。結果は、前に要点を述べた結果を同様である。
本発明の複数の側面に関する様々な実施形態を結果として述べてきたことから、当然のことながら、当業者は、様々な調整、変更、および改良を思いつくであろう。このような調整、変更、および改良は、本開示の一部であることが意図されており、本発明の精神と範囲内であることが意図されている。従って、上述の説明および図面は、単なる例の目的である。
本明細書およびクレームで使用される不定冠詞「a」および「an」は、明らかに反対に示されない限り、「少なくとも1つの」を意味すると理解されるべきである。
本明細書およびクレームで使用される「および/または」なるフレーズは、非常に等位の構成要素の「どちらか一方または両方」である、すなわち、構成要素は、いくつかの場合には共同して存在するとともに、他の場合には離接的に存在する、ことを意味すると理解されるべきである。「および/または」の節によって明確に特定された構成要素以外に、明確に特定されたそれらの構成要素に関連しようと関連しまいと、明らかに反対に示されない限り、他の構成要素が任意に存在してもよい。従って、限定しない例として、「含む」のような制約のない用語とともに用いられる場合において、「Aおよび/またはB」への言及は、一の実施形態では、Bを除くA(任意にB以外の構成要素を備える)、他の実施形態では、Aを除くB(任意にA以外の構成要素を備える)、さらに他の実施形態では、AおよびBの両方(任意に他の構成要素を備える)等に、言及しうる。
本明細書およびクレームで使用される場合、「または」は、上で定義されたような「および/または」と同じ意味を有すると理解されるべきである。例えば、含まれる複数のもので項目を分けている場合、「または」または「および/または」は、包含的、すなわち、少なくとも1つを包含すること、しかし、多くのまたはリストの構成要素、および、任意に、リストに挙がっていない追加の項目の1つより多くを備えることもある、と理解されるべきである。「〜の1つだけ」もしくは「〜のただ1つ」、または、クレームで使用される場合、「からなる」等の、反対に明確に示された用語だけは、多くのまたはリストの構成要素のただ1つの包含に言及するであろう。通常、ここで使用される「または」なる用語は、「〜のいずれか一方」、「〜のうちの1つ」、「〜の1つだけ」、または「〜のただ1つ」のような、排他性の用語による前提がある場合、排他的な代替(すなわち「両方ではないが一のまたは他の」)を示すとして、理解されるだけであるべきだろう。「基本的に〜からなる」は、クレームで使用される場合、特許法の分野で使用される通常の意味を有するものとする。
本明細書およびクレームで使用される場合、「少なくとも1つの」なる用語は、1つ以上の構成要素のリストに関して、構成要素のリストにおけるいずれか1つ以上の構成要素から選択された少なくとも1つの構成要素を意味すると理解されるべきであるが、必ずしも、構成要素のリスト内に明確に挙げられた各々のおよびあらゆる構成要素の少なくとも1つを備えないわけではなく、また、構成要素のリストにおける構成要素のいずれかの組み合わせを除外するわけではない。この定義は、また、「少なくとも1つの」なるフレーズが言及している構成要素のリスト内に明確に特定された構成要素以外にも、明確に特定されたそれらの構成要素に関連しようと関連しまいと、構成要素が任意に存在してもよいことを認める。従って、限定しない例として、「AおよびBのうちの少なくとも1つ」(または、同等に、「AまたはBのうちの少なくとも1つ」、または、同等に、「Aおよび/またはBのうちの少なくとも1つ」)は、一の実施形態では、Bがなく、少なくとも1つの、任意に1つより多く備えるA(および任意にB以外の構成要素を備える)、他の実施形態では、Aがなく、少なくとも1つの、任意に1つより多く備えるB(および任意にA以外の構成要素を備える)、さらに他の実施形態では、少なくとも1つの、任意に1つより多く備えるA、および、少なくとも1つの、任意に1つより多く備えるB(および任意に他の構成要素を備える)等に、言及しうる。
クレームでは、上の明細書と同様に、「含む」、「備える」、「実行する」、「有する」、「含有する」、「ともなう」、「保持する」等の全ての移行句は、制約がない、すなわち、備えるが限定されないことを意味すると、理解されるべきである。「からなる」および「から基本的になる」というフレーズだけは、米国特許商標庁特許審査便覧セクション2111.03に説明されているように、閉じている、または、半分閉じている移行句であるとする。
クレームにおける構成要素を修飾する「第1」、「第2」、「第3」等の序数の使用は、それ自身によっては、なんらかの優先順位、優位性、または、他より上の一のクレームの序列もしくは方法における行為が実行される時間的順序を含意せず、単に、クレームの構成要素を区別するために、特定の名前を有する一のクレームの構成要素を、同じ名前を有する(しかし序数を使用するための)他の構成要素から区別するラベルとして使用されるにすぎない。
本開示は、特定の実施形態に関連して説明されてきたが、本開示は、その開示された実施形態に限定されず、それどころか、付け加えられたクレームの範囲内に含まれる様々な変更および同等のアレンジをカバーするよう意図されており、その範囲には、法の下で許可される全てのそのような変更および同等の構成が包含されるように、最も広い解釈が与えられるべきである。