JP2019218591A - Recovery method of nickel powder - Google Patents

Recovery method of nickel powder Download PDF

Info

Publication number
JP2019218591A
JP2019218591A JP2018115992A JP2018115992A JP2019218591A JP 2019218591 A JP2019218591 A JP 2019218591A JP 2018115992 A JP2018115992 A JP 2018115992A JP 2018115992 A JP2018115992 A JP 2018115992A JP 2019218591 A JP2019218591 A JP 2019218591A
Authority
JP
Japan
Prior art keywords
nickel powder
pipe
valve
pressure
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018115992A
Other languages
Japanese (ja)
Other versions
JP7034439B2 (en
Inventor
高石 和幸
Kazuyuki Takaishi
和幸 高石
佳智 尾崎
Keichi Ozaki
佳智 尾崎
伸一 平郡
Shinichi Hiragori
伸一 平郡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018115992A priority Critical patent/JP7034439B2/en
Publication of JP2019218591A publication Critical patent/JP2019218591A/en
Application granted granted Critical
Publication of JP7034439B2 publication Critical patent/JP7034439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

To provide a recovery method of nickel powder that suppresses scaling inside a piping or sticking to a valve to stably generate nickel powder by a continued process, through providing a mechanism capable of cleaning the piping or the valve, in a method of reducing a nickel complex ion by hydrogen gas to obtain nickel powder.SOLUTION: A recovery method is for nickel powder included in reduction slurry containing the nickel powder generated by reducing, with hydrogen, a nickel complex ion contained in a raw material liquid supply containing a sulfuric acid nickel ammine complex solution continuously from the solution. The raw material liquid supply is mixed slurry further containing a seed crystal, the nickel powder has nickel precipitated on the seed crystal by the reduction process and the recovery method for nickel powder is conducted using a recovery apparatus appropriate for the recovery method.SELECTED DRAWING: Figure 1

Description

本発明は硫酸ニッケルアンミン錯体溶液からニッケル粉を回収する方法で、高温高圧の反応槽から生成したニッケル粉を含む還元スラリーのニッケル粉スラリーを安定的に回収する方法に関するものである。   The present invention relates to a method for recovering nickel powder from a nickel ammine sulfate complex solution, and more particularly to a method for stably recovering a nickel powder slurry of a reduced slurry containing nickel powder generated from a high-temperature and high-pressure reaction tank.

湿式製錬プロセスを用いてニッケル粉を工業的に製造する方法として、特許文献1に示すように、ニッケルを含有する原料を硫酸溶液に溶解後、溶解液に含有する不純物を除去する浄液工程を経て、得られた硫酸ニッケル溶液にアンモニアを添加してニッケルのアンミン錯体を形成させ、次いでこの硫酸ニッケルアンミン錯体溶液を高温高圧の容器に入れ、水素ガスを供給して硫酸ニッケルアンミン錯体溶液中のニッケルを還元し、ニッケル粉を製造する方法が知られている。   As a method for industrially producing nickel powder using a hydrometallurgical process, as shown in Patent Document 1, a nickel-containing raw material is dissolved in a sulfuric acid solution, and then a purification step of removing impurities contained in the solution. After that, ammonia is added to the obtained nickel sulfate solution to form an ammine complex of nickel. There is known a method for producing nickel powder by reducing nickel.

上記のような製造方法に際しては、高温高圧の反応で行われることから、取扱いしやすさや装置コストの観点からバッチ式を用いた製造方法を用いることが多かった。
しかしバッチ式の製造方法では、反応容器を開け、溶液を装入し、密栓して昇温し、温度と圧力を制御し、水素ガスを吹き込んで還元し、冷却し、反応物を取出す一連の操作を段階ごとに行う必要があり、多大な手間と時間を要し、稼動率が低くなり効率的ではなかった。さらに、反応前後の加熱途中や降温中の影響などが無視できず、この間にスケーリングと称する不均一な析出や粒径のばらつきが生じることがあり、その影響や除去する手間の問題も重なって、反応稼動率の維持と製品品質を一定に保つのが難しかった。
In the above-mentioned production method, since the reaction is carried out at a high temperature and a high pressure, a production method using a batch method is often used from the viewpoint of easy handling and equipment cost.
However, in a batch-type manufacturing method, a series of steps are performed in which a reaction vessel is opened, a solution is charged, a stopper is provided, the temperature is increased, the temperature and pressure are controlled, hydrogen gas is blown, reduced, cooled, and the reactants are taken out. The operation had to be performed for each stage, which required a great deal of labor and time, and the operation rate was low, which was not efficient. In addition, the effects of heating and cooling during and before and after the reaction cannot be ignored, and during this time, non-uniform precipitation called "scaling" and variation in particle size may occur. It was difficult to maintain the reaction availability and keep the product quality constant.

また、上記のバッチ式の方法で得たニッケル粉は、一般的な電解製錬で得られる板(シート)状の電気ニッケルに比較すると、不純物品質面での課題もあった。具体的には、ニッケルの国際的な取引市場であるLME(London Metal Exchenge)において高純度なグレードの認定を得るには、硫黄品位は0.01重量%以下であることが必要とされているが、バッチ式の方法を用いて得られたニッケル粉では、上記の高純度のLMEグレードのスペックよりも硫黄品位が高くなる場合があり、電気ニッケルを完全に代替する用途に用いることは難しかった。   In addition, the nickel powder obtained by the above-mentioned batch method has a problem in terms of impurity quality as compared with a plate (sheet) -like electric nickel obtained by general electrolytic smelting. Specifically, in order to obtain certification of a high-purity grade in LME (London Metal Exchange), which is an international trading market for nickel, the sulfur grade is required to be 0.01% by weight or less. However, in the nickel powder obtained by using the batch method, the sulfur grade may be higher than the above-mentioned high-purity LME grade specification, and it is difficult to use the nickel powder for completely replacing electric nickel. .

そこで、生産性を高め、一定の品質を得るために、連続化された処理によるニッケル粉の生成の提案が成された。具体的には、高温高圧反応槽に上述のニッケルアンミン錯体溶液や種晶を供給し、一定の高温高圧下で水素ガスを吹き込んでニッケル粉を生成させ、これを連続的に高温高圧反応槽から取り出し、固液分離してニッケル粉を回収しようとするものである。
しかしながら、上記方法では、高圧の反応槽から直接スラリーを取り出すと、急激な減圧に伴ってスラリーが飛散するなど操業の安全性から問題を生じていた。
Therefore, in order to increase the productivity and obtain a certain quality, it has been proposed to generate nickel powder by continuous processing. Specifically, the above-mentioned nickel ammine complex solution or seed crystal is supplied to a high-temperature and high-pressure reactor, and hydrogen gas is blown under a constant high-temperature and high-pressure to generate nickel powder. It is to take out, to separate solid and liquid, and to recover nickel powder.
However, in the above method, when the slurry is directly taken out of the high-pressure reaction tank, there is a problem in terms of operational safety such as the slurry being scattered due to a sudden pressure reduction.

このため、高圧の反応槽の下手に降圧槽(あるいは「フラッシュベッセル」ともいう)を設け、さらに降圧槽の入り口(給液側)に設けた弁(バルブ)等を制御することで、高温高圧反応槽から排出されたスラリーを安全に常圧まで降圧する操作が行われる。降圧槽を用いることで、発生する蒸気を回収し有効に活用できるメリットもある。
なお、実操業では前記高温高圧反応槽と降圧槽との間は、接続配管を介して接続されるのが一般的である。このため弁は高温高圧反応槽の吐出口と降圧槽の給液側の双方に設けることが接続配管の耐圧性の点で好ましい。
For this reason, a low-pressure tank (also called a “flash vessel”) is provided below the high-pressure reaction tank, and a valve (valve) provided at the entrance (liquid supply side) of the low-pressure tank is controlled, so that a high-temperature high-pressure tank is provided. An operation of safely reducing the pressure of the slurry discharged from the reaction tank to normal pressure is performed. There is also an advantage that the generated steam can be collected and used effectively by using the pressure reducing tank.
In actual operation, it is general that the high-temperature high-pressure reaction tank and the pressure-reducing tank are connected via a connection pipe. For this reason, it is preferable from the viewpoint of the pressure resistance of the connection pipe that the valve be provided on both the discharge port of the high-temperature and high-pressure reaction tank and the liquid supply side of the pressure-reducing tank.

しかしながら、ニッケル粉スラリーなどが弁を介して供給される場合、ニッケル粉などの固体部分が弁の機構に噛みこんだり挟まったりする懸念がある。
特に工業的には自動制御を行うために電磁弁が一般に用いられるが、ニッケルのような強磁性の粉末の場合、電磁弁の磁石に反応し、開閉機構に磁着する恐れが強い。
However, when the nickel powder slurry or the like is supplied via the valve, there is a concern that a solid portion such as the nickel powder may bite or be caught in the valve mechanism.
In particular, an electromagnetic valve is generally used industrially to perform automatic control. However, in the case of a ferromagnetic powder such as nickel, there is a strong possibility that it reacts to the magnet of the electromagnetic valve and magnetically attaches to the opening / closing mechanism.

弁の開閉機構に噛みこんだり磁着してしまった場合、制御ができず高温高圧反応槽からスラリーが未反応な状態で排出されたり、降圧槽に過大な負荷をかけるなど品質と安全面で問題となる。
さらに接続配管の途中の配管内部にニッケル粉が析出してスケールとなることもあった。
If it gets stuck or magnetically attached to the opening and closing mechanism of the valve, it cannot be controlled and the slurry is discharged from the high-temperature and high-pressure reactor in an unreacted state, or an excessive load is applied to the pressure-reducing tank. It becomes a problem.
Further, nickel powder was sometimes deposited inside the pipe in the middle of the connection pipe to form scale.

このため、複数のバルブを設けて安全対策を強化したり、こまめに弁や配管を分解掃除したりする手間と費用が必要となり連続操業は困難だった。
ニッケル粉の生成の連続化には、このような障害を乗り越える必要があり、そのため、ニッケル粉の工業的な回収方法は、生産性の低いバッチ反応による生成が主体となっていた。
For this reason, it was necessary to provide a plurality of valves to enhance safety measures, and to frequently disassemble and clean the valves and pipes, which required labor and cost, making continuous operation difficult.
It is necessary to overcome such obstacles for the continuation of the generation of nickel powder. Therefore, the industrial recovery method of nickel powder has mainly been generated by a batch reaction with low productivity.

特開2015−140480号公報JP 2015-140480 A

本発明は、ニッケル錯イオンを水素ガスで還元してニッケル粉を得る方法において、配管や弁を洗浄できる機構を設けることで、配管内部のスケーリングや弁への噛み込みを抑制し、安定してニッケル粉の生成を連続化された処理によってなし得るニッケル粉の回収方法を提供するものである。   The present invention provides a method for obtaining nickel powder by reducing nickel complex ions with hydrogen gas, by providing a mechanism capable of washing pipes and valves, thereby suppressing scaling inside the pipes and biting into valves and stably. An object of the present invention is to provide a method for recovering nickel powder, which can produce nickel powder by a continuous process.

上記の課題を解決するための本発明の第1の発明は、硫酸ニッケルアンミン錯体溶液を含む原料給液から連続して前記硫酸ニッケルアンミン錯体溶液に含まれるニッケル錯イオンを水素により還元処理して生成されたニッケル粉を含む還元スラリーに含まれるニッケル粉の回収方法であって、前記原料給液が、さらに種晶を含む混合スラリーであり、前記ニッケル粉が、前記還元処理により前記種晶上に析出したニッケルを有し、下記回収装置を用いて製造されることを特徴とするニッケル粉の回収方法である。   A first invention of the present invention for solving the above-mentioned problem is to reduce the nickel complex ions contained in the nickel ammine complex solution continuously with hydrogen from a raw material supply solution containing the nickel ammine complex solution with hydrogen. A method for recovering nickel powder contained in a reduced slurry containing generated nickel powder, wherein the raw material supply liquid is a mixed slurry further containing a seed crystal, and the nickel powder is formed on the seed crystal by the reduction treatment. A method for recovering nickel powder, characterized in that the method comprises the following apparatus:

(記)
原料給液を供給する開閉弁付き給液管と、水素ガスを前記原料給液に吹き込む開閉弁付き水素導入管と、前記還元スラリーを排出する開閉弁付き吐出管を備え、前記原料給液を貯留、撹拌し、前記原料給液中のニッケル錯イオンを前記水素ガスにより還元処理して生成されたニッケル粉を含む還元スラリーを形成する反応槽と、
一端が前記吐出管に連結された接続配管と連結している開閉弁付き流入管と、固液分離装置に接続する開閉弁付き排出管を備え、前記反応槽から接続配管を介して還元スラリーを貯留後、前記還元スラリーを常圧まで降圧して常圧後還元スラリーとし、前記常圧後還元スラリーからニッケル粉を回収するために前記排出管を介して固液分離装置に排出する降圧槽と、
一端が前記接続配管の中間部で分岐する開閉弁付き洗浄配管と、開閉弁付き洗浄水給液管を有し、前記洗浄水給液管を介して洗浄水を貯め込み、前記洗浄配管を介して洗浄水を前記反応槽又は降圧槽、或いは前記反応槽と降圧槽の両者に供給する洗浄水貯留槽を備え、
前記接続配管に洗浄配管を介して前記洗浄水貯留槽から洗浄水を供給し、前記接続配管から降圧槽に向かう方向への洗浄と、前記接続配管から前記反応槽に向かう方向への逆洗浄が可能な構造のニッケル粉の回収装置。
(Record)
A supply pipe with an on-off valve for supplying a raw material supply liquid, a hydrogen introduction pipe with an on-off valve for blowing hydrogen gas into the raw material supply liquid, and a discharge pipe with an on-off valve for discharging the reduced slurry; Storing and stirring, a reaction tank for forming a reduced slurry containing nickel powder generated by reducing nickel complex ions in the raw material supply liquid with the hydrogen gas,
An on-off valve with an on-off valve connected to a connection pipe having one end connected to the discharge pipe, and an on-off valve with an on-off valve connected to the solid-liquid separator are provided. The reduced slurry is supplied from the reaction tank through a connection pipe. After storing, the reduced slurry is reduced to normal pressure to be reduced to normal pressure, and a reduced pressure tank is discharged to a solid-liquid separator through the discharge pipe in order to recover nickel powder from the reduced slurry after normal pressure. ,
One end has a cleaning pipe with an on-off valve branching off at an intermediate portion of the connection pipe, and a cleaning water supply pipe with an on-off valve, stores cleaning water through the cleaning water supply pipe, and passes through the cleaning pipe. A washing water storage tank for supplying washing water to the reaction tank or the pressure-reducing tank, or both the reaction tank and the pressure-reducing tank;
The washing water is supplied from the washing water storage tank through the washing pipe to the connection pipe, and washing in the direction from the connection pipe to the pressure reduction tank and back washing in the direction from the connection pipe to the reaction tank are performed. Nickel powder recovery device with possible structure.

また、本発明の第2の発明は、第1の発明における接続配管から前記反応槽に向かう方向への逆洗浄が、前記洗浄水貯留槽から供給される洗浄水の圧力を、前記反応槽の内部圧力Pよりも、P+0.2[MPa]からP+0.5[MPa]の圧力で、前記洗浄配管に供給されることを特徴とするニッケル粉の回収方法である。 Further, in the second invention of the present invention, the back washing in the direction from the connection pipe to the reaction tank in the first invention causes the pressure of the washing water supplied from the washing water storage tank to decrease. than the internal pressure P R, at a pressure of P R +0.5 [MPa] from P R +0.2 [MPa], a method of recovering nickel powder characterized in that it is supplied to the wash pipe.

また、本発明の第3の発明は、第1又は第2の発明における接続配管に供給される洗浄水に、前記還元スラリーを固液分離して得た濾液を用いることを特徴とするニッケル粉の回収方法である。   In a third aspect of the present invention, a nickel powder characterized in that a filtrate obtained by solid-liquid separation of the reduced slurry is used as washing water supplied to the connection pipe according to the first or second aspect. It is a method of collecting.

本発明によれば、ニッケル錯イオンを水素ガスで還元してニッケル粉を連続化された処理によるニッケル粉の回収方法において、配管や弁を洗浄できる機構を設けることで、ニッケル粉の配管内部でのスケーリングや弁への噛み込みが抑制され、安定してニッケル粉の生成を可能とする工業上顕著な効果を奏するものである。   According to the present invention, in a method for recovering nickel powder by a process in which nickel complex ions are reduced by hydrogen gas and nickel powder is made continuous, by providing a mechanism capable of cleaning pipes and valves, the inside of nickel powder pipes is provided. In this case, the scaling and the biting of the valve are suppressed, and an industrially remarkable effect of stably generating nickel powder is achieved.

本発明に係るニッケル粉の回収装置を説明する概略構成図である。It is a schematic structure figure explaining the recovery device of nickel powder concerning the present invention.

本発明は、反応槽、降圧槽を備えるニッケル粉の回収装置を用いたニッケル粉の回収方法において、その回収装置に高温高圧状態で使用される反応槽内の配管及び反応槽から降圧槽までの配管および各種機器へのニッケルメタルのスケーリングや弁などへのニッケル粉の噛み込みを低減する「逆洗浄」が実施可能な回収装置とし、反応槽の連続運転を可能とするものである。   The present invention provides a method for recovering nickel powder using a nickel powder recovery device including a reaction tank and a pressure-reducing tank, wherein a pipe in the reaction tank and a reaction tank to a pressure-reducing tank are used in the recovery device at a high temperature and a high pressure. This is a recovery device that can perform "backwashing" that reduces the scaling of nickel metal into piping and various devices and the biting of nickel powder into valves and the like, and enables continuous operation of the reaction tank.

具体的には、図1に概略構成を示すニッケル粉の回収装置1を使用し、ニッケルアンミン錯体溶液中のニッケル錯イオンを所定の高温高圧下で水素ガスによって還元反応させてニッケル粉を析出させる工程を連続化された処理方法で行なうもので、生産性の高い連続化された処理を、安定して行えるようにするため、反応槽10の槽内貯留量が所定レベルの上限値になったら、反応槽10の吐出管11に設けられた開閉弁の吐出弁Vを開けてニッケル粉スラリーで有る還元スラリー41を取り出して降圧槽20に接続配管13a、13を介して移送し、所定の下限値になったら吐出弁Vを閉じる操作を繰り返すものである。 Specifically, the nickel complex ions in the nickel ammine complex solution are subjected to a reduction reaction with hydrogen gas at a predetermined high temperature and high pressure to precipitate nickel powder using a nickel powder recovery device 1 schematically shown in FIG. Since the process is performed by a continuous processing method, in order to stably perform a continuous process with high productivity, when the storage amount in the reaction tank 10 reaches an upper limit value of a predetermined level. , by opening the discharge valve V 1 of the on-off valve provided in the discharge pipe 11 of the reaction vessel 10 is taken out reducing slurry 41 there nickel powder slurry was transferred through the connection pipe 13a, 13 in the step-down tank 20, a predetermined it is intended to repeat the operations of closing the discharge valve V 1 When turned to the lower limit.

その際に、本発明は別途設けられた洗浄水貯留槽30から洗浄配管14を介して洗浄水Wwを供給し、接続配管13、13aや反応槽10の吐出管11、及び吐出弁Vなどの閉塞を生じやすい部分を洗浄するもので、特に、降圧槽20に向かう接続配管13や降圧槽20への開閉弁である流入弁Vの洗浄のみでなく、反応槽10に向かって洗浄することで、反応槽10に向う接続配管13aや吐出弁V、及び吐出管11、さらには反応槽10の内部にまで洗浄水が届く、「逆洗浄」を行うことで、効果的に閉塞を防止している。 In doing so, the present invention supplies the cleaning water Ww through the cleaning pipe 14 from the cleaning water reservoir 30 which is separately provided, connecting the discharge pipe 11 of the pipe 13,13a and reaction tank 10, and the like discharge valve V 1 by washing the easy part cause of obstruction, in particular, not only the cleaning of the on-off valve in which the inlet valve V 2 to the connecting pipe 13 and the step-down tank 20 toward the buck tank 20, washing toward the reaction vessel 10 it is, connection pipe 13a and discharge valve V 1 toward the reaction vessel 10, and discharge pipe 11, further washing water reaches to the inside of the reaction vessel 10, by performing the "reverse washing", effectively closed It is preventing.

また、このため本発明では、洗浄水Wwを貯留する洗浄水貯留槽30も反応槽10の圧力よりも高い圧力に加圧できる構造とし、少なくとも反応槽10に向かって「逆洗浄」を行なう際に、反応槽10での操業を停止することなく連続操業できるようにした。その際の洗浄水の圧力Pとしては、反応槽10の槽内圧力Pに対して、P=P+0.2からP=P+0.5[MPa]となるように洗浄水の圧力を、圧力調整弁GVを流れる雰囲気ガス(実施例では窒素ガス)IGの流量を調整することで洗浄水の圧力を上記範囲に維持して作業を実施している。 For this reason, in the present invention, the cleaning water storage tank 30 for storing the cleaning water Ww is also configured to be pressurized to a pressure higher than the pressure of the reaction tank 10, and when performing “backwashing” at least toward the reaction tank 10. In addition, continuous operation can be performed without stopping operation in the reaction tank 10. The pressure P W of the washing water during the washing respect intracisternal pressure P R in the reaction vessel 10, as the P W = P R +0.2 becomes P W = P R +0.5 [MPa] the pressure of the water, and the pressure of the washing water by (in the embodiment, nitrogen gas) atmosphere gas flowing through the pressure regulating valve GV 2 to adjust the flow rate of the IG performed work to maintain the above range.

なお、「洗浄」および「逆洗浄」に使用する洗浄水Wwは、工業用水など普通の水Wの他に、還元反応により生成したニッケル粉を含む常圧還元スラリーをヌッチェやフィルタープレスや遠心分離機などの固液分離装置(例えば、符号50に示す固液分離装置)を用いてニッケル粉と分離した濾液51を用いることもできる。   The washing water Ww used for “washing” and “backwashing” is not only ordinary water W such as industrial water, but also a normal-pressure reduction slurry containing nickel powder generated by a reduction reaction, using a Nutsche, filter press, or centrifuge. The filtrate 51 separated from the nickel powder using a solid-liquid separation device such as a machine (for example, a solid-liquid separation device indicated by reference numeral 50) can also be used.

次に、「洗浄」及び「逆洗浄」時における回収装置1のニッケル粉のフローを説明する。
通常、供給配管15、15a、供給弁V、供給弁V4aを介して反応槽10内に所定容量の混合スラリー(原料給液)40を貯留する。なお、混合スラリー40は硫酸ニッケルアンミン錯体溶液60及び種晶スラリー61を別個に反応槽20に供給して槽内で混合スラリー40としても良く、或いは、それらの混合物である混合スラリーの形で供給して貯留しても良い。
この給液の際には、吐出弁Vは「閉」状態、供給弁V、V4aは「開」で行なわれる。
Next, the flow of the nickel powder in the recovery device 1 during “washing” and “backwashing” will be described.
Usually, a supply pipe 15, 15a, the supply valve V 4, storing the mixed slurry (raw material liquid supply) 40 of a predetermined volume into the reaction vessel 10 through the supply valve V 4a. The mixed slurry 40 may be supplied separately to the nickel ammine complex solution 60 and the seed crystal slurry 61 to the reaction tank 20 to form the mixed slurry 40 in the tank, or may be supplied in the form of a mixed slurry that is a mixture thereof. May be stored.
At the time of liquid supply, the discharge valve V 1 was "closed" state, the supply valve V 4, V 4a is performed in "open".

反応槽内に所定容量の混合スラリー40が貯留されているのを確認後、撹拌機Mにより貯留された混合スラリー40を撹拌しながら、水素導入弁GVを「開」状態として水素ガスを混合スラリー40に吹き込み、ニッケル錯イオンを還元してニッケル成分を析出させてニッケル粉を生成し、還元スラリー41を形成する。 After confirming that the mixed slurry 40 of predetermined volume in the reaction vessel is stored, with stirring to the mixed slurry 40 stored by stirrer M, mixing the hydrogen gas hydrogen introduction valve GV 1 as a state "open" The reduced slurry 41 is formed by blowing into the slurry 40 to reduce nickel complex ions and precipitate nickel components to generate nickel powder.

その形成された還元スラリー41は、ニッケル粉を含んで、吐出管11、吐出弁V、接続配管13a、分岐点A、接続配管13、流入弁V、流入管21を通り、降圧槽20に貯められ、常圧に降圧された常圧後還元スラリー42となる。その後、抜出管18、抜出弁Vを介して、固液分離装置50に移送され、ニッケル粉と濾液51に固液分離される。なお、濾液51の一部又は全量は、洗浄水に用いるために洗浄水貯留槽30に移送されて洗浄水となる。 Reducing slurry 41 that is formed, contains nickel powder, the discharge pipe 11, the discharge valve V 1, the connection pipe 13a, the branch point A, the connection pipe 13, inlet valve V 2, through the inlet pipe 21, the step-down tank 20 And reduced slurry 42 at normal pressure after being reduced to normal pressure. Thereafter, extraction pipe 18, through the evacuation valve V 6, is transferred to solid-liquid separator 50, it is solid-liquid separation of nickel powder and filtrate 51. In addition, a part or all of the filtrate 51 is transferred to the washing water storage tank 30 to be used as washing water.

「洗浄」及び「逆洗浄」は、以下のタイミング、方法で実施される。その一例を以下に示す。   “Washing” and “backwashing” are performed according to the following timing and method. An example is shown below.

[洗浄]
反応槽10に貯留されていたニッケル粉を含む還元スラリー41を、降圧槽20に排出し、降圧槽20で常圧後還元スラリー42とした後、抜出弁Vを「開」にして、全量を固液分離装置50に移送して降圧槽20内を「空」状態にする。その後、抜出弁Vを「閉」とし、流入弁V及び洗浄水調整弁Vを「開」状態にして洗浄水Wwを流して分岐点AよりC側に配置されている接続配管13及び流入弁V、並びに洗浄水Wwが貯まる降圧槽20の洗浄が行なわれる。洗浄が終了した時には、降圧槽20に備わるドレーン(図示せず)から洗浄水Wwが外部に排出されるか、一部は抜出弁V、固液分離装置50に流され、その洗浄に使用される。
[Washing]
The reduced slurry 41 containing the nickel powder stored in the reaction tank 10 is discharged to the pressure reducing tank 20, and the reduced pressure tank 20 is changed to the normal pressure post-reduced slurry 42, and then the extraction valve V 6 is “opened”. The entire amount is transferred to the solid-liquid separation device 50 to make the inside of the pressure reducing tank 20 “empty”. Then, the evacuation valve V 6 is "closed", the connection is located at the C-side of the inlet valve V 2 and cleaning water control valve V 3 by flowing washing water Ww in the "open" state branching point A pipe 13 and the inflow valve V 2 , and the step-down tank 20 storing the washing water Ww are washed. When cleaning is finished, or the washing water Ww is discharged to the outside from the drain provided in the step-down tank 20 (not shown), some evacuation valve V 6, shed solid-liquid separator 50, the cleaning thereof used.

[逆洗浄]
上記「洗浄」と同時に、又は別個に実施が可能である。
同時に行なう場合には、洗浄水調整弁V、流入弁Vを「開」状態としたまま、吐出弁Vを「開」状態にすることで、洗浄配管14と接続配管13の分岐点Aにおける反応槽10側の接続配管13a、吐出弁V、吐出管11、反応槽10の順に洗浄水が流れることにより、各部の洗浄が行なわれる。なお、この洗浄水の流れの方向が、還元スラリーの移送方向とは逆の方向であることから「逆洗浄」と称している。
又、別個に実施する際には、流入弁Vを「閉」状態とし、洗浄水調整弁V、吐出弁Vを「開」状態とすることで、分岐点AよりB方向に向い、反応槽10側の接続配管13a、吐出弁V、吐出管11、反応槽10の順に洗浄を行なうものである。
[Backwash]
It can be performed simultaneously with or separately from the above “washing”.
In the case where the cleaning water adjustment valve V 3 and the inflow valve V 2 are kept “open”, the discharge valve V 1 is kept “open”. the reaction vessel 10 side of the connection pipe 13a at a, the discharge valve V 1, the discharge pipe 11, by the washing water flows in the order of the reaction vessel 10, each part of the cleaning is performed. In addition, since the direction of the flow of the washing water is opposite to the direction in which the reduced slurry is transferred, it is referred to as “backwashing”.
Further, when performed separately, the inlet valve V 2 is set to "closed" state, the wash water regulating valve V 3, by the discharge valve V 1 is "open" state, facing the branch point A in the direction B , the reaction vessel 10 side of the connection pipe 13a, the discharge valve V 1, the discharge pipe 11, and performs cleaning in the order of the reaction vessel 10.

[洗浄水貯留槽]
洗浄水貯留槽30は、洗浄水Wwを供給、貯留する開閉弁の洗浄水供給弁V付きの洗浄水供給管16と、洗浄水Wwを反応槽10、降圧槽20、各種配管、付属する弁に供給する吐出管31及びその流量調整を担う洗浄水調整弁Vを備え、さらに洗浄水の圧力調整を担う雰囲気ガスIGを洗浄水貯留槽30に導入する槽内圧力調整弁GV付き圧力調整管17を有している。
なお、各種溶液やスラリーの移送、供給、給液、抜出、排出は、図1には図示されていない高圧ポンプなどを用いて行なわれている。
[Washing water storage tank]
Washing water reservoir 30, supplies the washing water Ww, and the cleaning water supply valve V 5 with the cleaning water supply pipe 16 of the on-off valve for storing, cleaning water Ww reaction vessel 10, the step-down tank 20, various pipes, accompanying comprising a cleaning water regulating valve V 3 to play a discharge pipe 31 and the flow rate adjusted to supply the valve, the tank internal pressure regulating valve GV with 2 to introduce an atmospheric gas IG to the wash water reservoir 30 further responsible for the pressure adjustment of the washing water It has a pressure adjusting pipe 17.
The transfer, supply, supply, withdrawal, and discharge of various solutions and slurries are performed using a high-pressure pump or the like not shown in FIG.

以下、本発明を実施例により詳細する。
図1に示すニッケル粉の回収装置1を用いて実施例を行なっている。
Hereinafter, the present invention will be described in more detail with reference to examples.
The embodiment is performed using the nickel powder recovery apparatus 1 shown in FIG.

内容量が190Lの高温高圧保持が可能なステンレス製反応槽10(オートクレーブ)を用い、ニッケル濃度が82.5g/Lの硫酸ニッケルアンミン錯体溶液を1.0L/分の流量で高圧ポンプ(図示せず)を用いて連続して反応槽10内に供給した。
同時に、種晶になる粒径が45μm以下のニッケル粉を66〜124g/Lの濃度で含有する種晶スラリー61を用い、0.5L/分の供給量で高圧スラリーポンプ(図示せず)を介して連続して反応槽10内に供給した。
Using a stainless steel reactor 10 (autoclave) having an internal capacity of 190 L and capable of holding high temperature and pressure, a nickel sulfate ammine complex solution having a nickel concentration of 82.5 g / L was pumped at a flow rate of 1.0 L / min by a high pressure pump (shown in the figure). ) Was continuously supplied into the reaction tank 10.
At the same time, a high-pressure slurry pump (not shown) was used at a supply rate of 0.5 L / min using a seed slurry 61 containing nickel powder having a particle size of 45 μm or less as a seed crystal at a concentration of 66 to 124 g / L. And continuously supplied into the reaction tank 10.

なお、図1に示すように、反応槽の吐出管11には電磁弁である吐出弁Vが設けられ、接続配管13a、接続配管13を介して降圧槽20の流入管21に設置した電磁弁である流入弁Vに接続した。
また、洗浄水貯留槽30の吐出管31には洗浄配管14を接続し、洗浄配管14は電磁弁の洗浄水調整弁Vを介して分岐点Aで接続配管13、接続配管13aに接続した。
Incidentally, as shown in FIG. 1, the discharge valve V 1 is an electromagnetic valve is provided in the discharge pipe 11 of the reaction vessel, the connecting pipe 13a, electromagnetic installed in the inlet pipe 21 of the step-down tank 20 through the connecting pipe 13 was connected to the inlet valve V 2 is a valve.
Further, the cleaning pipe 14 is connected to the discharge pipe 31 of the washing water storage tank 30, the cleaning pipe 14 connecting pipe 13 at a branch point A through the wash water regulating valve V 3 of the solenoid valve, connected to the connecting pipe 13a .

反応槽10の内部には、ボンベや水素発生器等の水素ガス供給装置(図示せず)から供給される水素ガス(H)が吹き込める構造とし、開閉弁の水素供給弁GVを持つ水素導入管12を備えていた。 Inside the reaction tank 10, a cylinder or a hydrogen gas supply device, such as a hydrogen generator hydrogen gas supplied from the (not shown) (H 2) is Fukikomeru structure, with the hydrogen supply valve GV 1 on-off valve A hydrogen inlet tube 12 was provided.

洗浄水貯留槽30には電磁弁の槽内圧力調整弁GVを介して不活性ガス(窒素ガス)IGを吹込めるようにして洗浄水の水圧を調整可能としていた。また、工業用水Wないし還元スラリーを固液分離してニッケル粉を回収した後の濾液51を供給する電磁弁の洗浄水供給弁Vを設けてある。 The washing water reservoir 30 had adjustable water pressure of washing water so as to put blowing an inert gas (nitrogen gas) IG through the tank internal pressure regulating valve GV 2 of the solenoid valve. Further, it is provided with a cleaning water supply valve V 5 of the solenoid valve for supplying the filtrate 51 after the recovery of nickel powder by solid-liquid separation of industrial water W to reducing slurry.

次に、上記の混合スラリー40を張り込んだ反応槽10の内部温度を185℃に保ち、水素ガスを水素供給器(図示せず)から水素導入管12を経て吹込んで、その圧力Pを2.9〜3.1MPaの範囲に保持し、還元処理を行ない、種晶の表面にニッケルを析出させてニッケル粉を生成し、ニッケル粉スラリーで有る還元スラリー41を形成した。 Then, keeping the internal temperature of the reaction vessel 10 that Harikon the mixed slurry 40 of above 185 ° C., the hydrogen supply hydrogen gas by blowing (not shown) via a hydrogen feed pipe 12, the pressure P R While maintaining the pressure in the range of 2.9 to 3.1 MPa, a reduction treatment was performed, and nickel was precipitated on the surface of the seed crystal to produce nickel powder, thereby forming a reduced slurry 41 as a nickel powder slurry.

反応槽10に貯留される内容物の容量は平均90リットルを維持するように送液を続けながら、降圧槽20に向けて断続的に還元スラリー41を抜出した。   The reduction slurry 41 was intermittently drawn out toward the pressure-reducing tank 20 while continuing the liquid supply so that the volume of the content stored in the reaction tank 10 was maintained at 90 liters on average.

具体的な抜出方法は、図1の洗浄水貯留槽30に洗浄水供給弁Vを開状態にして洗浄水(今回の実施例は工業用水を使用)を張り込み、槽内圧力調整弁GVを介して高圧の窒素ガスを吹込み、洗浄水貯留槽30の槽内圧力Pを3.3〜3.5MPaに昇圧した。
また、反応槽の圧力Pは、水素ガスの吹込み量を調整し、2.9〜3.1MPaに維持した。高温高圧状態の反応槽に貯留液量が92リットルとなったら、吐出弁Vと流入弁Vを開けて還元スラリー41を、高温高圧状態の反応槽10から吐出管11を介して排出させ、接続配管13a、13を通って降圧槽20に移送され、降圧槽20内で常圧まで減圧して抜取り、固液分離装置50に送られて固液分離され、ニッケル粉と濾液51に分離した。
Specific extraction process, the washing water cleaning water supply valve V 5 in the open state to the wash water reservoir 30 of FIG. 1 (Example of this time using industrial water) imposition of, intracisternal pressure regulating valve GV blowing high pressure nitrogen gas through 2, the tank internal pressure P R of the washing water storage tank 30 has been boosted to 3.3~3.5MPa.
Further, the pressure P R in the reaction vessel to adjust the blow amount of the hydrogen gas was maintained at 2.9~3.1MPa. When effusion amount becomes 92 liters reactor high temperature and high pressure conditions, reducing slurry 41 by opening the discharge valve V 1 and the inflow valve V 2, it is discharged through the discharge pipe 11 from the reaction vessel 10 of the high-temperature, high-pressure state Is transferred to the pressure-reducing tank 20 through the connecting pipes 13a and 13; the pressure is reduced to normal pressure in the pressure-reducing tank 20; the liquid is separated and sent to the solid-liquid separator 50 to be separated into nickel powder and filtrate 51. did.

83リットルまで減少した時点で吐出弁Vと流入弁Vを「閉」として抜取りを停止した。その後、流入弁Vを「開」とし、洗浄水調整弁Vを「開」として洗浄水貯留槽30から吐出管31、洗浄配管14を通して洗浄水Wwを供給し、接続配管の降圧槽方向(図1でのAからCの接続配管13および流入弁V弁)を1回に4リットルの洗浄水で洗浄した。 The discharge valve V 1 and the inflow valve V 2 at the time was reduced to 83 liters of stop sampling as "closed". Thereafter, the inflow valve V 2 is "open", the discharge pipe 31 from the wash water reservoir 30 to the wash water regulating valve V 3 as "open", and supplies the washing water Ww through washing pipe 14, the step-down tank direction of the connecting pipe and washed with 4 liter wash water once (C connection pipe 13 and the inlet valve V 2 valve from a in Figure 1).

所定の時間洗浄後、流入弁Vを「閉」とし、次いで数秒後に洗浄水調整弁Vを「閉」として、接続配管13の圧力を3.3〜3.5MPaに維持した。次に、吐出弁Vと洗浄水調整弁Vを同時に「開」として、分岐点Aから高温高圧状態の反応槽10方向(図1でのAからBの接続配管13aと吐出弁V)を洗浄する逆洗浄をおこなった。
所定の洗浄時間で経過後、吐出弁Vと洗浄水調整弁Vを「閉」として洗浄サイクルを終了した。なお、接続配管13aから吐出管11を経て高温高圧状態の反応槽10方向(AからBの接続配管13aおよび吐出弁V)の洗浄時間は、反応槽10の内部温度変化が1.0℃未満になるように調整した。
After washing the predetermined time, the inlet valve V 2 is "closed", then the cleaning water regulating valve V 3 in a few seconds as a "closed", the pressure was maintained connection pipe 13 to 3.3~3.5MPa. Next, the discharge valve V 1 and the washing water regulating valve V 3 at the same time as "open", the A in the reaction vessel 10 direction (Figure 1 high-temperature high-pressure state from the branch point A and the connecting pipe 13a of the B discharge valves V 1 ) Was performed.
After a predetermined cleaning time, to complete the wash cycle discharge valve V 1 and the washing water regulating valve V 3 as "closed". The cleaning time from the connection pipe 13a through the discharge pipe 11 to the direction of the reaction tank 10 in a high temperature and high pressure state (the connection pipe 13a from A to B and the discharge valve V 1 ) is such that the internal temperature change of the reaction tank 10 is 1.0 ° C. Adjusted to be less than.

洗浄終了後は、反応槽10内の液レベルが上述の92リットルとなるのを待って上記の反応槽10から降圧槽20へのニッケル粉スラリーである還元スラリー41の排出と、水洗浄を繰り返した。
この洗浄ならびに逆洗浄を行う効果により24H以上経過しても配管や弁の閉塞することなく連続運転が可能となった。
After completion of the washing, the discharge of the reduced slurry 41, which is a nickel powder slurry, from the reaction tank 10 to the pressure reducing tank 20 and the water washing are repeated until the liquid level in the reaction tank 10 reaches the above-mentioned 92 liters. Was.
Due to the effect of this washing and back washing, continuous operation was possible without blocking pipes and valves even after 24H or more.

(比較例1)
上記実施例1と同じ反応槽10に、同じ組成の硫酸ニッケルアンミン錯体溶液60を同じ1.0L/分で供給し、種晶に同じ粒径の種晶スラリー61を同じく0.5L/分の流量で供給した。反応槽10の温度を同じく185℃に保ち、水素ガスを吹込み、反応槽内10の圧力Pを3.1MPaとして還元処理を行なった。
(Comparative Example 1)
A nickel sulfate ammine complex solution 60 having the same composition is supplied to the same reaction tank 10 as in Example 1 at the same rate of 1.0 L / min, and a seed crystal slurry 61 having the same particle size as the seed crystal is similarly supplied at a rate of 0.5 L / min. It was supplied at a flow rate. The temperature of the reaction vessel 10 also maintained at 185 ° C., the hydrogen gas blown, the pressure P R in the reaction vessel 10 was subjected to reduction treatment as 3.1 MPa.

反応槽の容量を基準の90Lに維持しながら、実施例1と同じように降圧槽に断続的にニッケル粉スラリーを抜出した。
しかし、実施例1とは異なり、洗浄水貯留槽30からの降圧槽20側への洗浄と高温高圧状態の反応槽10側への逆洗浄は行わなかった。
The nickel powder slurry was intermittently extracted from the pressure-reducing tank in the same manner as in Example 1 while maintaining the capacity of the reaction tank at the standard 90 L.
However, different from Example 1, the washing from the washing water storage tank 30 to the pressure reducing tank 20 side and the back washing to the reaction tank 10 side in a high temperature and high pressure state were not performed.

還元処理の反応時間が1時間を経過したころ、反応槽10の吐出管11の吐出弁Vと、降圧槽20に還元スラリー41を供給する流入弁Vが、ニッケル粉および還元析出したニッケルによって閉塞し、弁を制御できなくなって、反応槽の液量を90Lに維持できなくなった。 Time the reaction time of the reduction treatment has passed for 1 hour, and the discharge valve V 1 of the discharge pipe 11 of the reaction vessel 10, the step-down tank 20 flows into valve V 2 for supplying a reducing slurry 41 is, and nickel powder and reduction precipitation of nickel As a result, the valve could not be controlled, and the liquid volume in the reaction tank could not be maintained at 90 L.

(比較例2)
上記実施例1と同じ反応槽10と硫酸ニッケルアンミン錯体溶液と種晶を用い、同じ流量、温度で反応させながら、同じく92リットルになった時点で吐出弁Vと流入弁Vを開け、吐出管11、接続配管13a、13を経て、降圧槽20に断続的に還元スラリー41を抜出した。
この還元スラリー41の降圧槽20への排出後、実施例1と同じく洗浄配管14から降圧槽20側への「洗浄」を行った。
しかし、洗浄配管14から反応槽20側への「逆洗浄」は行わなかった。
(Comparative Example 2)
Using the same reaction vessel 10 and the nickel ammine complex solution and seed crystals sulfate as in Example 1, the same flow rate, while at a temperature, a discharge valve V 1 and the inflow valve V 2 is opened at the time when the same was 92 liters Through the discharge pipe 11 and the connection pipes 13 a and 13, the reduced slurry 41 was withdrawn intermittently into the pressure-reducing tank 20.
After discharging the reduced slurry 41 to the pressure reduction tank 20, “cleaning” was performed from the cleaning pipe 14 to the pressure reduction tank 20 side in the same manner as in Example 1.
However, "backwashing" from the washing pipe 14 to the reaction tank 20 was not performed.

その結果、8時間経過後に反応槽10から還元スラリーを吐出させる吐出弁Vが、ニッケル粉および還元析出したニッケルによって閉塞して制御できなくなり、高温高圧反応槽の液量を90Lに維持できなくなった。 As a result, the discharge valve V 1 to discharge the reducing slurry from the reaction tank 10 after the lapse of 8 hours, can not be controlled to close by nickel powder and the reducing precipitated nickel, are unable to maintain the liquid volume of the high-temperature high-pressure reaction tank 90L Was.

1 ニッケル粉回収装置
10 反応槽
11、31 吐出管
12 水素導入管
13、13a 接続配管
14 洗浄配管
15、15a 供給配管
16 洗浄水供給管
17 圧力調整管
18 抜出管
20 降圧槽
21 流入管
30 洗浄水貯留槽
40 混合スラリー
41 還元スラリー
42 常圧後還元スラリー
50 固液分離装置
51 濾液
60 硫酸ニッケルアンミン錯体溶液(給液原料)
61 種晶スラリー

A 分岐点
B 反応槽方向
C 降圧槽方向
M 撹拌機
吐出弁
流入弁
洗浄水調整弁
、V4a 原料供給弁
洗浄水供給弁
抜出弁
GV 水素供給弁
GV 槽内圧力調整弁
W 水(工業用水等)
Ww 洗浄水
DESCRIPTION OF SYMBOLS 1 Nickel powder collection apparatus 10 Reaction tank 11, 31 Discharge pipe 12 Hydrogen introduction pipe 13, 13a Connection pipe 14 Cleaning pipe 15, 15a Supply pipe 16 Cleaning water supply pipe 17 Pressure adjustment pipe 18 Extraction pipe 20 Pressure reduction tank 21 Inflow pipe 30 Washing water storage tank 40 Mixed slurry 41 Reduced slurry 42 After-pressure reduced slurry 50 Solid-liquid separator 51 Filtrate 60 Nickel ammine complex solution (feeding material)
61 seed slurry

A Branch point B Reaction tank direction C Pressure reducing tank direction M Stirrer V 1 Discharge valve V 2 Inflow valve V 3 Wash water adjustment valve V 4 , V 4a Raw material supply valve V 5 Wash water supply valve V 6 Extraction valve GV 1 Hydrogen Supply valve GV 2 tank pressure regulating valve W Water (industrial water, etc.)
Ww Wash water

Claims (3)

硫酸ニッケルアンミン錯体溶液を含む原料給液から連続して前記硫酸ニッケルアンミン錯体溶液に含まれるニッケル錯イオンを水素により還元処理して生成されたニッケル粉を含む還元スラリーに含まれるニッケル粉の回収方法であって、
前記原料給液が、さらに種晶を含む混合スラリーであり、
前記ニッケル粉が、前記還元処理により前記種晶上に析出したニッケルを有し、
下記回収装置を用いて製造されることを特徴とするニッケル粉の回収方法。
(記)
原料給液を供給する開閉弁付き給液管と、水素ガスを前記原料給液に吹き込む開閉弁付き水素導入管と、前記還元スラリーを排出する開閉弁付き吐出管を備え、
前記原料給液を貯留、撹拌し、前記原料給液中のニッケル錯イオンを前記水素ガスにより還元処理して生成されたニッケル粉を含む還元スラリーを形成する反応槽と、
一端が前記吐出管に連結された接続配管と連結している開閉弁付き流入管と、固液分離装置に接続する開閉弁付き排出管を備え、
前記反応槽から接続配管を介して還元スラリーを貯留後、前記還元スラリーを常圧まで降圧して常圧後還元スラリーとし、前記常圧後還元スラリーからニッケル粉を回収するために前記排出管を介して固液分離装置に排出する降圧槽と、
一端が前記接続配管の中間部で分岐する開閉弁付き洗浄配管と、開閉弁付き洗浄水給液管を有し、
前記洗浄水給液管を介して洗浄水を貯め込み、前記洗浄配管を介して洗浄水を前記反応槽又は降圧槽、或いは前記反応槽と降圧槽の両者に供給する洗浄水貯留槽を備え、
前記接続配管に洗浄配管を介して前記洗浄水貯留槽から洗浄水を供給し、前記接続配管から降圧槽に向かう方向への洗浄と、前記接続配管から前記反応槽に向かう方向への逆洗浄が可能な構造のニッケル粉の回収装置。
A method for recovering nickel powder contained in a reduced slurry containing nickel powder produced by subjecting a nickel complex ion contained in the nickel ammine complex solution to a reduction treatment with hydrogen continuously from a raw material supply solution containing the nickel ammine sulfate complex solution And
The raw material feed is a mixed slurry further containing a seed crystal,
The nickel powder has nickel precipitated on the seed crystal by the reduction treatment,
A method for recovering nickel powder, which is manufactured using the following recovery apparatus.
(Record)
A supply pipe with an on-off valve for supplying a raw material supply liquid, a hydrogen introduction pipe with an on-off valve for blowing hydrogen gas into the raw material supply liquid, and a discharge pipe with an on-off valve for discharging the reduced slurry,
A reactor for storing and stirring the raw material supply liquid, forming a reduced slurry containing nickel powder generated by reducing nickel complex ions in the raw material supply liquid with the hydrogen gas,
An on-off valve-equipped inflow pipe connected at one end to a connection pipe connected to the discharge pipe, and an on-off valve-equipped discharge pipe connected to the solid-liquid separator,
After storing the reduced slurry from the reaction tank via a connecting pipe, the reduced slurry is reduced to normal pressure to form a reduced slurry after normal pressure, and the discharge pipe is collected to recover nickel powder from the reduced slurry after normal pressure. A pressure-reducing tank discharged to the solid-liquid separation device through
One end has a cleaning pipe with an on-off valve branched at an intermediate portion of the connection pipe, and a cleaning water supply pipe with an on-off valve,
A washing water storage tank that stores washing water through the washing water supply pipe and supplies the washing water to the reaction tank or the pressure reducing tank through the washing pipe, or to both the reaction tank and the pressure reducing tank.
The washing water is supplied from the washing water storage tank through the washing pipe to the connection pipe, and washing in the direction from the connection pipe to the pressure reduction tank and back washing in the direction from the connection pipe to the reaction tank are performed. Nickel powder recovery device with possible structure.
前記接続配管から前記反応槽に向かう方向への逆洗浄が、前記洗浄水貯留槽から供給される洗浄水の圧力を、前記反応槽の内部圧力Pよりも、P+0.2[MPa]からP+0.5[MPa]の圧力で、前記洗浄配管に供給されることを特徴とする請求項1に記載のニッケル粉の回収方法。 Backwashing in a direction toward the reaction vessel from the connection pipe, the pressure of the washing water supplied from the cleaning water reservoir, than the internal pressure P R of the reactor, P R +0.2 [MPa] The nickel powder recovery method according to claim 1, wherein the nickel powder is supplied to the cleaning pipe at a pressure of P R +0.5 [MPa]. 前記接続配管に供給される洗浄水に、前記還元スラリーを固液分離して得た濾液を用いることを特徴とする請求項1又は2に記載のニッケル粉の回収方法。
The method for recovering nickel powder according to claim 1 or 2, wherein a filtrate obtained by solid-liquid separation of the reduced slurry is used as washing water supplied to the connection pipe.
JP2018115992A 2018-06-19 2018-06-19 Nickel powder recovery method Active JP7034439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018115992A JP7034439B2 (en) 2018-06-19 2018-06-19 Nickel powder recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018115992A JP7034439B2 (en) 2018-06-19 2018-06-19 Nickel powder recovery method

Publications (2)

Publication Number Publication Date
JP2019218591A true JP2019218591A (en) 2019-12-26
JP7034439B2 JP7034439B2 (en) 2022-03-14

Family

ID=69095592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018115992A Active JP7034439B2 (en) 2018-06-19 2018-06-19 Nickel powder recovery method

Country Status (1)

Country Link
JP (1) JP7034439B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712874B1 (en) * 1999-11-09 2004-03-30 Outokumpu Oyj Method for the reduction of nickel from an aqueous solution
JP2017155319A (en) * 2016-03-04 2017-09-07 住友金属鉱山株式会社 Manufacturing method of nickel powder
WO2017150717A1 (en) * 2016-03-04 2017-09-08 住友金属鉱山株式会社 Nickel powder production method
JP2017226867A (en) * 2016-06-21 2017-12-28 住友金属鉱山株式会社 Manufacturing method of nickel powder, manufacturing device of nickel powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712874B1 (en) * 1999-11-09 2004-03-30 Outokumpu Oyj Method for the reduction of nickel from an aqueous solution
JP2017155319A (en) * 2016-03-04 2017-09-07 住友金属鉱山株式会社 Manufacturing method of nickel powder
WO2017150717A1 (en) * 2016-03-04 2017-09-08 住友金属鉱山株式会社 Nickel powder production method
JP2017226867A (en) * 2016-06-21 2017-12-28 住友金属鉱山株式会社 Manufacturing method of nickel powder, manufacturing device of nickel powder

Also Published As

Publication number Publication date
JP7034439B2 (en) 2022-03-14

Similar Documents

Publication Publication Date Title
AU2013228541B2 (en) Dezincification plant, method for operating dezincification plant, and hydrometallurgical method for nickel oxide ore
JP5359989B2 (en) Method for preventing the formation of sulfides
JP5435058B2 (en) Neutralization treatment method and neutralization treatment plant
US9751035B2 (en) Operation method for dezincification plant
WO2023020041A1 (en) Method and system for purifying nickel sulfate
CN215886393U (en) Nickel sulfate purification system
US20180257143A1 (en) Method for manufacturing nickel powder, and method for operating reaction facility
WO2017221787A1 (en) Nickel powder production method and nickel powder production device
JP2019218591A (en) Recovery method of nickel powder
JP5660248B1 (en) Operation method of dezincification plant
JP6245314B2 (en) Method for producing nickel powder
JP7354710B2 (en) Method for producing high-purity nickel sulfate aqueous solution
JP7147452B2 (en) Filtration facility for removing zinc sulfide and method for producing nickel-cobalt mixed sulfide using the same
JP7091909B2 (en) Nickel powder manufacturing method
CN110951969B (en) Method for recovering valuable metals from difficult-to-treat cobalt-nickel-containing tailings
JP2023031095A (en) Operational method of filtration unit, dezincification processing method, and purification method of nickel oxide ore
CN117051253A (en) Method for solidifying copper and arsenic in copper sulfate crystallization mother liquor
JP2014074233A (en) Neutralization treatment plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220213

R150 Certificate of patent or registration of utility model

Ref document number: 7034439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150