JP2019218120A - Carbonic acid beverage aseptic filling system - Google Patents

Carbonic acid beverage aseptic filling system Download PDF

Info

Publication number
JP2019218120A
JP2019218120A JP2018117991A JP2018117991A JP2019218120A JP 2019218120 A JP2019218120 A JP 2019218120A JP 2018117991 A JP2018117991 A JP 2018117991A JP 2018117991 A JP2018117991 A JP 2018117991A JP 2019218120 A JP2019218120 A JP 2019218120A
Authority
JP
Japan
Prior art keywords
line
carbonated beverage
filling
aseptic
bottle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018117991A
Other languages
Japanese (ja)
Other versions
JP6627918B2 (en
Inventor
睦 早川
Mutsumi Hayakawa
睦 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018117991A priority Critical patent/JP6627918B2/en
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to PCT/JP2019/024663 priority patent/WO2019245019A1/en
Priority to US17/251,268 priority patent/US11498823B2/en
Priority to CN202310130757.1A priority patent/CN116040561A/en
Priority to CN201980040203.4A priority patent/CN112313167B/en
Priority to EP19822916.3A priority patent/EP3812343A4/en
Publication of JP2019218120A publication Critical patent/JP2019218120A/en
Application granted granted Critical
Publication of JP6627918B2 publication Critical patent/JP6627918B2/en
Priority to US17/818,806 priority patent/US11834315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)

Abstract

To provide a carbonic acid beverage aseptic filling system capable of reducing a number of rotary joints and of realizing a simple configuration of an overall system.SOLUTION: A carbonic acid beverage aseptic filling system 10 comprises a filling nozzle 72 for filling carbonic acid beverage, a carbonic acid beverage filing tank 75 coupled to the filling nozzle 72 via a carbonic acid beverage supply line 73 and a counter gas line 74, a snifting line 78 coupled to the filling nozzle and an aseptic chamber 13 enclosing the filling nozzle 72, at least a part of the carbonic acid beverage supply line 73 and at least a part of the counter gas line 74. The carbonic acid beverage supply line 73 and the counter gas line 74 are mounted to the aseptic chamber 13 by the rotary joint 77. An exhaust valve 79 is arranged in the snifting line 78 in the aseptic chamber 13 and gas from the snifting line 78 is exhausted into the aseptic chamber.SELECTED DRAWING: Figure 2

Description

本開示は、炭酸飲料無菌充填システムに関する。   The present disclosure relates to a carbonated beverage aseptic filling system.

従来より、炭酸飲料無菌充填装置に設けられたフィラー等の充填機を用いて、高速で搬送されている多数のプラスチックボトルに、炭酸飲料等の内容物を連続的に無菌充填することが行われている。   2. Description of the Related Art Conventionally, using a filling machine such as a filler provided in a carbonated beverage aseptic filling apparatus, a large number of plastic bottles being conveyed at a high speed have been continuously and aseptically filled with contents such as a carbonated beverage. ing.

このような炭酸飲料無菌充填装置において、炭酸飲料をプラスチックボトルに充填する充填ノズルは、無菌チャンバ内で回転可能に配置されている。このため、充填ノズルに連結される炭酸飲料供給ライン、カウンタガス用のライン、およびスニフト用のライン等はそれぞれロータリジョイントによって無菌チャンバに取り付けられている(例えば特許文献1参照)。   In such a carbonated beverage aseptic filling device, a filling nozzle for filling a carbonated beverage into a plastic bottle is rotatably arranged in a sterile chamber. For this reason, a carbonated beverage supply line connected to the filling nozzle, a line for counter gas, a line for snift, and the like are each attached to a sterile chamber by a rotary joint (for example, see Patent Document 1).

しかしながら、ロータリジョイントは構造が複雑であるため、炭酸飲料無菌充填装置の構成が複雑になるおそれがある。また、ロータリジョイントは高価であるため、ロータリジョイントを多数設けた場合、炭酸飲料無菌充填装置が高価になるおそれがある。   However, since the structure of the rotary joint is complicated, the structure of the aseptic filling apparatus for carbonated beverages may be complicated. Further, since the rotary joint is expensive, if a large number of rotary joints are provided, the carbonated beverage aseptic filling apparatus may be expensive.

特開2007−302325号公報JP 2007-302325 A 特開2008−105699号公報JP 2008-105699A 特開2005−14918号公報JP 2005-14918 A

本開示はこのような点を考慮してなされたものであり、ロータリジョイントの数を減らすことにより、システム全体の構成を簡単なものとすることが可能な、炭酸飲料無菌充填システムを提供する。   The present disclosure has been made in view of such a point, and provides a carbonated beverage aseptic filling system that can simplify the configuration of the entire system by reducing the number of rotary joints.

一実施の形態による炭酸飲料無菌充填システムは、炭酸飲料を充填する充填ノズルと、炭酸飲料供給ラインおよびカウンタガスラインを介して前記充填ノズルに連結された炭酸飲料充填タンクと、前記充填ノズルに連結されたスニフトラインと、前記充填ノズルと、前記炭酸飲料供給ラインの少なくとも一部と、前記カウンタガスラインの少なくとも一部とを取り囲む無菌チャンバと、を備え、前記炭酸飲料供給ラインおよび前記カウンタガスラインは、ロータリージョイントによって前記無菌チャンバに取り付けられ、前記無菌チャンバ内の前記スニフトラインに排出弁を設け、前記スニフトラインからのガスを前記無菌チャンバ内に排出する。   An aseptic carbonated beverage filling system according to one embodiment includes a filling nozzle for filling a carbonated beverage, a carbonated beverage filling tank connected to the filling nozzle via a carbonated beverage supply line and a counter gas line, and a connection to the filling nozzle. And a sterile chamber surrounding at least a part of the carbonated beverage supply line and at least a part of the counter gas line, wherein the carbonated beverage supply line and the counter gas line are provided. Is attached to the aseptic chamber by a rotary joint, and a discharge valve is provided at the snift line in the aseptic chamber to discharge gas from the snift line into the aseptic chamber.

一実施の形態による炭酸飲料無菌充填システムにおいて、前記スニフトラインは、前記無菌チャンバ内に位置するとともに前記充填ノズルとともに回転する回転式の内側スニフトラインと、前記無菌チャンバから外方へ延在するとともに非回転式の外側スニフトラインとを有し、前記排出弁は、前記内側スニフトラインと前記外側スニフトラインとの間に位置しても良い。   In one embodiment of the carbonated beverage aseptic filling system, the snift line is located within the aseptic chamber and rotates with the filling nozzle and rotates with the inner snift line, and extends outwardly from the aseptic chamber. A non-rotating outer snift line may be provided, and the discharge valve may be located between the inner snift line and the outer snift line.

一実施の形態による炭酸飲料無菌充填システムにおいて、前記外側スニフトラインは、伸縮自在となっていても良い。   In an aseptic carbonated beverage filling system according to one embodiment, the outer snift line may be telescopic.

一実施の形態による炭酸飲料無菌充填システムにおいて、前記炭酸飲料充填タンクに、炭酸ガス供給ラインと炭酸ガス放出ラインとを連結し、前記炭酸ガス供給ラインと前記炭酸ガス放出ラインとにそれぞれバルブを設け、制御部により前記バルブをそれぞれ制御して前記炭酸飲料充填タンク内の圧力を制御しても良い。   In an aseptic carbonated beverage filling system according to one embodiment, a carbonated gas supply line and a carbon dioxide release line are connected to the carbonated beverage fill tank, and valves are provided for the carbon dioxide supply line and the carbon dioxide release line, respectively. The controller may control each of the valves to control the pressure in the carbonated beverage filling tank.

一実施の形態による炭酸飲料無菌充填システムにおいて、前記炭酸飲料充填タンク内の圧力P1と前記炭酸ガス放出ライン内の圧力P2との間で、P1>P2という関係が成り立っても良い。   In the aseptic carbonated beverage filling system according to one embodiment, a relationship of P1> P2 may be established between the pressure P1 in the carbonated beverage filling tank and the pressure P2 in the carbon dioxide gas discharge line.

一実施の形態による炭酸飲料無菌充填システムにおいて、前記炭酸飲料充填タンク内の圧力P1が0.01MPa以下にならないように、前記炭酸ガス供給ラインと前記炭酸ガス放出ラインとに設けられた前記バルブをそれぞれ制御しても良い。   In the carbonated beverage aseptic filling system according to one embodiment, the valve provided in the carbon dioxide gas supply line and the carbon dioxide gas discharge line is provided so that the pressure P1 in the carbonated beverage filling tank does not become 0.01 MPa or less. Each may be controlled.

本開示によれば、ロータリジョイントの数を減らすことにより、炭酸飲料無菌充填システム全体の構成を簡単なものとすることができる。   According to the present disclosure, by reducing the number of rotary joints, the configuration of the entire carbonated beverage aseptic filling system can be simplified.

図1は、一実施の形態による炭酸飲料無菌充填システムを示す概略平面図。FIG. 1 is a schematic plan view illustrating a carbonated beverage aseptic filling system according to an embodiment. 図2は、一実施の形態による炭酸飲料無菌充填システムの炭酸飲料充填部およびその周囲における流体の流れを示す概略図。FIG. 2 is a schematic diagram showing the flow of fluid in the carbonated beverage filling section and its surroundings of the aseptic carbonated beverage filling system according to one embodiment. 図3は、一実施の形態による炭酸飲料無菌充填システムの炭酸飲料充填部の充填ノズルを示す概略断面図。FIG. 3 is a schematic cross-sectional view illustrating a filling nozzle of a carbonated beverage filling section of the carbonated beverage aseptic filling system according to one embodiment.

以下、一実施の形態について、図1乃至図3を参照して説明する。図1乃至図3は一実施の形態を示す図である。なお、以下の各図において、同一部分には同一の符号を付しており、一部詳細な説明を省略する場合がある。   Hereinafter, an embodiment will be described with reference to FIGS. 1 to 3 show an embodiment. In the following drawings, the same portions are denoted by the same reference numerals, and a detailed description thereof may be partially omitted.

(炭酸飲料無菌充填システム)
まず図1により本実施の形態による炭酸飲料無菌充填システムの全体について説明する。
(Carbonated beverage aseptic filling system)
First, the entire carbonated beverage aseptic filling system according to the present embodiment will be described with reference to FIG.

図1に示す炭酸飲料無菌充填システム10は、ボトル(容器)30に対して無菌炭酸飲料からなる内容物を充填するシステムである。ボトル30は、合成樹脂材料を射出成形して製作したプリフォームを二軸延伸ブロー成形することにより作製することができる。ボトル30の材料としては、熱可塑性樹脂、特にPE(ポリエチレン)、PP(ポリプロピレン)、PET(ポリエチレンテレフタレート)、又はPEN(ポリエチレンナフタレート)を使用することが好ましい。このほか、容器としては、炭酸飲料を充填可能なガラス瓶、缶等であっても良い。本実施の形態においては、容器としてプラスチックボトルを用いる場合を例にとって説明する。   The carbonated beverage aseptic filling system 10 shown in FIG. 1 is a system that fills a bottle (container) 30 with contents made of a sterilized carbonated beverage. The bottle 30 can be manufactured by subjecting a preform manufactured by injection molding of a synthetic resin material to biaxial stretching blow molding. As a material of the bottle 30, it is preferable to use a thermoplastic resin, in particular, PE (polyethylene), PP (polypropylene), PET (polyethylene terephthalate), or PEN (polyethylene naphthalate). In addition, the container may be a glass bottle, can, or the like that can be filled with a carbonated beverage. In the present embodiment, a case where a plastic bottle is used as a container will be described as an example.

図1に示すように、炭酸飲料無菌充填システム10は、ボトル供給部21と、ボトル殺菌部11と、エアリンス部14と、無菌水リンス部15と、炭酸飲料充填部(フィラー)20と、キャップ装着部(キャッパー、巻締及び打栓機)16と、製品ボトル搬出部22とを備えている。これらボトル供給部21、ボトル殺菌部11、エアリンス部14と、無菌水リンス部15、炭酸飲料充填部20、キャップ装着部16、および製品ボトル搬出部22は、ボトル30の搬送方向に沿って、上流側から下流側に向けてこの順に配設されている。また、ボトル殺菌部11、エアリンス部14と、無菌水リンス部15、炭酸飲料充填部20、およびキャップ装着部16の間には、これらの装置間でボトル30を搬送する複数の搬送ホイール12が設けられている。   As shown in FIG. 1, the carbonated beverage aseptic filling system 10 includes a bottle supply unit 21, a bottle sterilizing unit 11, an air rinsing unit 14, a sterile water rinsing unit 15, a carbonated beverage filling unit (filler) 20, and a cap. A mounting section (capper, winding and tapping machine) 16 and a product bottle unloading section 22 are provided. These bottle supply unit 21, bottle sterilizing unit 11, air rinsing unit 14, sterile water rinsing unit 15, carbonated beverage filling unit 20, cap mounting unit 16, and product bottle unloading unit 22 are arranged along the transport direction of bottle 30, They are arranged in this order from upstream to downstream. In addition, between the bottle sterilizing section 11, the air rinsing section 14, the aseptic water rinsing section 15, the carbonated beverage filling section 20, and the cap mounting section 16, a plurality of transport wheels 12 for transporting the bottle 30 between these devices are provided. Is provided.

ボトル供給部21は、外部から炭酸飲料無菌充填システム10へ空のボトル30を順次受け入れ、受け入れたボトル30をボトル殺菌部11へ向けて搬送するものである。   The bottle supply unit 21 sequentially receives empty bottles 30 from the outside into the carbonated beverage aseptic filling system 10, and transports the received bottles 30 to the bottle sterilization unit 11.

なお、ボトル供給部21の上流側に、プリフォームを二軸延伸ブロー成形することによりボトル30の成形を行うボトル成形部(図示せず)が設けられていても良い。このように、プリフォームの供給からボトル30の成形を経て、ボトル30への無菌炭酸飲料の充填および閉栓に至る工程を連続して行っても良い。この場合、外部から炭酸飲料無菌充填システム10まで、容積の大きいボトル30の形態ではなく容積の小さいプリフォームの形態で運搬することができるので、炭酸飲料無菌充填システム10を構成する設備をコンパクトにすることができる。   A bottle forming unit (not shown) for forming the bottle 30 by biaxially stretch-blowing the preform may be provided upstream of the bottle supply unit 21. As described above, the steps from the supply of the preform to the filling of the bottle 30 with the aseptic carbonated beverage and the closing of the bottle 30 through the molding of the bottle 30 may be continuously performed. In this case, since it is possible to transport from the outside to the aseptic carbonated beverage filling system 10 in the form of a small volume preform instead of the large volume bottle 30, the equipment constituting the carbonated beverage aseptic filling system 10 can be made compact. can do.

ボトル殺菌部11は、殺菌剤をボトル30に噴射することにより、ボトル30内を殺菌するものである。殺菌剤としては、例えば過酸化水素水溶液が用いられる。ボトル殺菌部11においては、1重量%以上、好ましくは35重量%の濃度の過酸化水素水溶液を一旦気化させた後に凝縮したミスト又はガスが生成され、このミスト又はガスがボトル30の内外面に噴霧される。このようにボトル30内が過酸化水素水溶液のミスト又はガスで殺菌されるので、ボトル30の内面がムラなく殺菌される。   The bottle sterilizing section 11 sterilizes the inside of the bottle 30 by injecting a sterilizing agent into the bottle 30. As the disinfectant, for example, an aqueous solution of hydrogen peroxide is used. In the bottle sterilizing section 11, a mist or gas condensed after once evaporating an aqueous solution of hydrogen peroxide having a concentration of 1% by weight or more, preferably 35% by weight is generated. Sprayed. Since the inside of the bottle 30 is sterilized by the mist or gas of the aqueous hydrogen peroxide solution, the inner surface of the bottle 30 is evenly sterilized.

エアリンス部14は、ボトル30に無菌の加熱エア又は常温エアを供給することにより、過酸化水素の活性化を行いつつ、ボトル30内から異物、過酸化水素等を除去するものである。   The air rinsing unit 14 removes foreign substances, hydrogen peroxide, and the like from the inside of the bottle 30 while activating hydrogen peroxide by supplying sterile heated air or room temperature air to the bottle 30.

無菌水リンス部15は、殺菌剤である過酸化水素により殺菌されたボトル30に対して、無菌の15℃以上85℃以下の水による洗浄を行うものである。これによりボトル30に付着した過酸化水素を洗い流し、且つ異物が除去される。なお、無菌水リンス部15は必ずしも設ける必要はない。   The aseptic water rinsing unit 15 is for washing the bottle 30 sterilized with hydrogen peroxide as a sterilizing agent with sterile water of 15 ° C. or more and 85 ° C. or less. As a result, the hydrogen peroxide attached to the bottle 30 is washed away, and foreign matters are removed. Note that the sterile water rinsing unit 15 does not always need to be provided.

炭酸飲料充填部20は、ボトル30の口部からボトル30内へ、予め殺菌処理された無菌炭酸飲料を充填するものである。この炭酸飲料充填部20において、空の状態のボトル30に対して無菌炭酸飲料が充填される。この炭酸飲料充填部20において、複数のボトル30が回転(公転)されながら、ボトル30の内部へ無菌炭酸飲料が充填される。この無菌炭酸飲料は1℃以上40℃以下、好ましくは5℃以上10℃以下の充填温度でボトル30内に充填される。このように無菌炭酸飲料の充填温度を例えば1℃以上10℃以下とする理由は、無菌炭酸飲料の液温が10℃を上回ると炭酸ガスが無菌炭酸飲料から抜けやすくなってしまうためである。無菌炭酸飲料としては、炭酸ガスを含む各種飲料、例えば、サイダー、コーラ等の炭酸清涼飲料、ビール等のアルコール飲料等が挙げられる。   The carbonated drink filling unit 20 fills the bottle 30 with a sterilized carbonated drink that has been sterilized in advance from the mouth of the bottle 30. In the carbonated beverage filling section 20, an empty bottle 30 is filled with a sterile carbonated beverage. In the carbonated beverage filling section 20, the inside of the bottle 30 is filled with a sterilized carbonated beverage while the plurality of bottles 30 are rotated (revolved). The aseptic carbonated beverage is filled into the bottle 30 at a filling temperature of 1 ° C or more and 40 ° C or less, preferably 5 ° C or more and 10 ° C or less. The reason why the filling temperature of the aseptic carbonated beverage is set to, for example, 1 ° C. or more and 10 ° C. or less is that when the liquid temperature of the aseptic carbonated beverage exceeds 10 ° C., carbon dioxide gas is easily removed from the aseptic carbonated beverage. Examples of aseptic carbonated drinks include various drinks containing carbon dioxide, for example, carbonated soft drinks such as cider and cola, and alcoholic drinks such as beer.

キャップ装着部16は、ボトル30の口部にキャップ33を装着することにより、ボトル30を閉栓するものである。キャップ装着部16において、ボトル30の口部はキャップ33により閉じられ、ボトル30内に外部の空気や微生物が侵入しないように密封される。キャップ装着部16において、無菌炭酸飲料が充填された複数のボトル30が回転(公転)しながらその口部にキャップ33が装着される。このようにして、ボトル30の口部にキャップ33を装着することにより、製品ボトル35が得られる。   The cap mounting section 16 closes the bottle 30 by mounting the cap 33 on the mouth of the bottle 30. In the cap mounting portion 16, the mouth of the bottle 30 is closed by a cap 33, and the bottle 30 is sealed so that outside air and microorganisms do not enter the bottle 30. In the cap mounting portion 16, the plurality of bottles 30 filled with the sterile carbonated beverage are rotated (revolved) and the caps 33 are mounted on their mouths. By attaching the cap 33 to the mouth of the bottle 30 in this manner, a product bottle 35 is obtained.

キャップ33は、予めキャップ殺菌部25において殺菌される。キャップ殺菌部25は、例えば無菌チャンバ13(後述)の外側であってキャップ装着部16の近傍に配置されている。キャップ殺菌部25において、外部から搬入されたキャップ33は、予め多数集められ、キャップ装着部16に向かって列になって搬送される。キャップ33がキャップ装着部16に向かう途中で、過酸化水素のミスト又はガスがキャップ33の内外面に向かって吹き付けられた後、ホットエアで乾燥し、殺菌処理される。   The cap 33 is sterilized in the cap sterilizing section 25 in advance. The cap sterilizing unit 25 is arranged, for example, outside the sterile chamber 13 (described later) and near the cap mounting unit 16. In the cap sterilizing section 25, a large number of the caps 33 carried in from the outside are collected in advance and conveyed in a line toward the cap mounting section 16. A mist or gas of hydrogen peroxide is blown toward the inner and outer surfaces of the cap 33 on the way of the cap 33 toward the cap mounting portion 16, and is then dried with hot air and sterilized.

製品ボトル搬出部22は、キャップ装着部16でキャップ33を装着された製品ボトル35を、炭酸飲料無菌充填システム10の外部へ向けて連続的に搬出するものである。   The product bottle unloading unit 22 continuously unloads the product bottle 35 with the cap 33 attached by the cap attachment unit 16 to the outside of the carbonated beverage aseptic filling system 10.

また、炭酸飲料無菌充填システム10は、無菌チャンバ13を有している。無菌チャンバ13の内部に、上述したボトル殺菌部11、エアリンス部14、無菌水リンス部15、炭酸飲料充填部20、およびキャップ装着部16が収容されている。この無菌チャンバ13の内部は、無菌状態に保持されている。   Further, the carbonated beverage aseptic filling system 10 has a sterile chamber 13. Inside the sterile chamber 13, the above-mentioned bottle sterilizing section 11, air rinsing section 14, sterile water rinsing section 15, carbonated beverage filling section 20, and cap mounting section 16 are accommodated. The inside of the sterile chamber 13 is maintained in a sterile state.

さらに無菌チャンバ13は、ボトル殺菌チャンバ13aと、充填・巻締チャンバ13bとに区画されている。ボトル殺菌チャンバ13aと充填・巻締チャンバ13bとの間にはチャンバ壁13cが設けられ、チャンバ壁13cを介してボトル殺菌チャンバ13aと充填・巻締チャンバ13bとが互いに分離されている。ボトル殺菌チャンバ13aの内部には、ボトル殺菌部11とエアリンス部14と無菌水リンス部15とが配置されている。一方、充填・巻締チャンバ13bの内部には、炭酸飲料充填部20とキャップ装着部16とが配置されている。   Further, the aseptic chamber 13 is divided into a bottle sterilization chamber 13a and a filling / tightening chamber 13b. A chamber wall 13c is provided between the bottle sterilizing chamber 13a and the filling / tightening chamber 13b, and the bottle sterilizing chamber 13a and the filling / tightening chamber 13b are separated from each other via the chamber wall 13c. Inside the bottle sterilization chamber 13a, a bottle sterilization section 11, an air rinse section 14, and a sterile water rinse section 15 are arranged. On the other hand, inside the filling / tightening chamber 13b, a carbonated beverage filling section 20 and a cap mounting section 16 are arranged.

次に、図2を用いて、炭酸飲料無菌充填システム10の炭酸飲料充填部20およびその周囲の構成について説明する。   Next, the configuration of the carbonated beverage filling section 20 of the carbonated beverage aseptic filling system 10 and its surroundings will be described with reference to FIG.

図2に示すように、炭酸飲料充填部20は、無菌チャンバ13内に設けられている。また、無菌チャンバ13の外部であって、炭酸飲料充填部20の上方には、炭酸飲料充填タンク(充填ヘッドタンク、バッファータンク)75が配置されている。炭酸飲料充填タンク75の内部には炭酸飲料が充填されている。炭酸飲料充填タンク75は、炭酸ガス供給ライン61を介して無菌炭酸供給部63に連結されている。炭酸ガス供給ライン61には、第1バルブ62が設けられており、第1バルブ62を開放することにより、無菌炭酸供給部63から炭酸飲料充填タンク75に無菌状態の炭酸ガスが供給される。この無菌炭酸ガスによって炭酸飲料充填タンク75内の無菌炭酸飲料を加圧することにより、無菌炭酸飲料に溶解した炭酸ガスが気相中に放出されるのを防ぐ。好ましくは製造基準の炭酸ガス圧より高い圧力で加圧すると良い。これにより、炭酸飲料充填タンク75内の炭酸飲料中の炭酸ガスの濃度が一定に保たれる。なお、炭酸飲料充填タンク75内の圧力P1は、炭酸飲料充填タンク75に設けられた第1圧力計64によって測定されている。   As shown in FIG. 2, the carbonated beverage filling section 20 is provided in the sterile chamber 13. A carbonated beverage filling tank (filling head tank, buffer tank) 75 is arranged outside the aseptic chamber 13 and above the carbonated beverage filling section 20. The inside of the carbonated beverage filling tank 75 is filled with a carbonated beverage. The carbonated beverage filling tank 75 is connected to the aseptic carbonic acid supply unit 63 via the carbon dioxide gas supply line 61. The carbon dioxide gas supply line 61 is provided with a first valve 62. By opening the first valve 62, aseptic carbon dioxide gas is supplied from the sterile carbon dioxide supply unit 63 to the carbonated beverage filling tank 75. By pressurizing the aseptic carbonated beverage in the carbonated beverage filling tank 75 with the aseptic carbon dioxide, the carbon dioxide dissolved in the aseptic carbonated beverage is prevented from being released into the gas phase. Preferably, the pressure is increased at a pressure higher than the production standard carbon dioxide gas pressure. Thus, the concentration of carbon dioxide in the carbonated beverage in the carbonated beverage filling tank 75 is kept constant. The pressure P1 in the carbonated beverage filling tank 75 is measured by a first pressure gauge 64 provided in the carbonated beverage filling tank 75.

炭酸飲料充填タンク75には、炭酸飲料導入ライン65が連結されている。この炭酸飲料導入ライン65は、図示しない炭酸飲料製造装置に連結されている。また炭酸飲料導入ライン65には、第2バルブ66が設けられている。この第2バルブ66を開放することにより、炭酸飲料製造装置からの無菌炭酸飲料(製品液)が炭酸飲料導入ライン65を通過して、炭酸飲料充填タンク75に充填される。また炭酸飲料導入ライン65には、後述するCIP循環ライン81に連結されている。炭酸飲料導入ライン65のうち、炭酸飲料充填タンク75側の部分には、CIP処理用の洗浄液や、SIP処理用の加熱蒸気又は熱水も流される。   A carbonated beverage introduction line 65 is connected to the carbonated beverage filling tank 75. The carbonated beverage introduction line 65 is connected to a carbonated beverage production device (not shown). The carbonated beverage introduction line 65 is provided with a second valve 66. By opening the second valve 66, the aseptic carbonated beverage (product liquid) from the carbonated beverage production device passes through the carbonated beverage introduction line 65 and is filled in the carbonated beverage filling tank 75. Further, the carbonated beverage introduction line 65 is connected to a CIP circulation line 81 described later. A part of the carbonated beverage introduction line 65 on the carbonated beverage filling tank 75 side is also supplied with a cleaning liquid for CIP processing and heated steam or hot water for SIP processing.

炭酸飲料充填タンク75には、炭酸ガス放出ライン86が連結されている。この炭酸ガス放出ライン86は、後述する排出タンク85に連結されている。さらに炭酸ガス放出ライン86には、第3バルブ87が設けられている。第3バルブ87を開放した場合、炭酸飲料充填タンク75内の炭酸ガスを排出タンク85に向けて放出することができる。また、炭酸ガス放出ライン86内の圧力P2は、炭酸ガス放出ライン86に設けられた第2圧力計88によって測定されている。この圧力P2は、排出タンク85内の圧力に等しい。   A carbonated gas discharge line 86 is connected to the carbonated beverage filling tank 75. This carbon dioxide gas discharge line 86 is connected to a discharge tank 85 described later. Further, a third valve 87 is provided in the carbon dioxide gas discharge line 86. When the third valve 87 is opened, the carbon dioxide in the carbonated beverage filling tank 75 can be discharged toward the discharge tank 85. The pressure P <b> 2 in the carbon dioxide gas discharge line 86 is measured by a second pressure gauge 88 provided in the carbon dioxide gas discharge line 86. This pressure P2 is equal to the pressure in the discharge tank 85.

この場合、第1バルブ62と第3バルブ87とは、制御部60によって制御され、これにより炭酸飲料充填タンク75内の圧力が制御されている。具体的には、第1圧力計64によって測定された炭酸飲料充填タンク75内の圧力P1と、第2圧力計88によって測定された炭酸ガス放出ライン86内の圧力P2との間で、P1>P2という関係が成り立つようになっている。なお、炭酸飲料充填タンク75内の圧力P1は、例えば0.01MPa以上1.0MPa以下となるように制御されても良い。また、炭酸ガス放出ライン86内の圧力P2は、0MPaをわずかに上回る圧力、例えば0.0001MPa以上0.01MPa以下となるように制御されても良い。これにより、炭酸飲料充填タンク75に対して無菌チャンバ13の外部から非無菌状態のガスが侵入することを防ぐことができる。このため、排出タンク85として、無菌状態に制御されていない非無菌タンクを用いることができる。この場合、炭酸ガス放出ライン86を、無菌状態となっている無菌タンクと連結する必要がないので、このような無菌タンクを炭酸飲料無菌充填システム10から取り除くことができる。この結果、炭酸飲料無菌充填システム10の製造コストを低減することができる。なお、制御部60は、炭酸飲料無菌充填システム10全体を制御する制御部からなっているが、これに限らず、第1バルブ62と第3バルブ87とを独立して制御するものであっても良い。また、第2圧力計88を設けずに、第1圧力計64のみで制御を行うことも可能である。具体的には、第1圧力計64の指示値より、第1バルブ62と第3バルブ87のそれぞれの開度を調整し、第1圧力計64の値を機器滅菌(SIP)処理中から生産終了時まで0.01MPa以上1.0MPa以下となるよう両バルブ62、87のみで制御しても良い。   In this case, the first valve 62 and the third valve 87 are controlled by the control unit 60, whereby the pressure in the carbonated beverage filling tank 75 is controlled. Specifically, between the pressure P1 in the carbonated beverage filling tank 75 measured by the first pressure gauge 64 and the pressure P2 in the carbon dioxide gas discharge line 86 measured by the second pressure gauge 88, P1> The relationship of P2 is established. In addition, the pressure P1 in the carbonated beverage filling tank 75 may be controlled to be, for example, 0.01 MPa or more and 1.0 MPa or less. Further, the pressure P2 in the carbon dioxide gas discharge line 86 may be controlled so as to be slightly higher than 0 MPa, for example, 0.0001 MPa or more and 0.01 MPa or less. Accordingly, it is possible to prevent non-sterile gas from entering the carbonated beverage filling tank 75 from outside the sterile chamber 13. Therefore, a non-sterile tank that is not controlled to be in a sterile state can be used as the discharge tank 85. In this case, there is no need to connect the carbon dioxide gas discharge line 86 to a sterile tank that is in a sterile state, and such a sterile tank can be removed from the carbonated beverage aseptic filling system 10. As a result, the manufacturing cost of the aseptic carbonated beverage filling system 10 can be reduced. The control unit 60 is a control unit that controls the entire carbonated beverage aseptic filling system 10, but is not limited thereto, and controls the first valve 62 and the third valve 87 independently. Is also good. Further, it is also possible to perform control using only the first pressure gauge 64 without providing the second pressure gauge 88. Specifically, the opening of each of the first valve 62 and the third valve 87 is adjusted based on the indicated value of the first pressure gauge 64, and the value of the first pressure gauge 64 is produced during the equipment sterilization (SIP) process. The control may be performed by only the two valves 62 and 87 so that the pressure is 0.01 MPa or more and 1.0 MPa or less until the end.

また、炭酸飲料充填タンク75には、炭酸飲料供給ライン73が連結されている。炭酸飲料供給ライン73は、炭酸飲料充填タンク75に充填された無菌炭酸飲料を、後述する充填ノズル72に向けて供給するラインである。この炭酸飲料充填タンク75は、炭酸飲料供給ライン73を介して充填ノズル72に連結されている。   A carbonated beverage supply line 73 is connected to the carbonated beverage filling tank 75. The carbonated beverage supply line 73 is a line that supplies the sterilized carbonated beverage filled in the carbonated beverage filling tank 75 to a filling nozzle 72 described later. The carbonated beverage filling tank 75 is connected to a filling nozzle 72 via a carbonated beverage supply line 73.

さらに、炭酸飲料充填タンク75には、カウンタガスライン74が連結されている。カウンタガスライン74は、炭酸飲料充填タンク75に充填された無菌炭酸ガスを、後述する充填ノズル72に向けて供給するラインである。この炭酸飲料充填タンク75は、カウンタガスライン74を介して充填ノズル72に連結されている。   Further, a counter gas line 74 is connected to the carbonated beverage filling tank 75. The counter gas line 74 is a line that supplies the aseptic carbon dioxide gas filled in the carbonated beverage filling tank 75 to a filling nozzle 72 described later. The carbonated beverage filling tank 75 is connected to a filling nozzle 72 via a counter gas line 74.

炭酸飲料充填部20においては、炭酸飲料充填タンク75に充填された無菌炭酸飲料が、空の状態のボトル30に対して充填される。炭酸飲料充填部20は、鉛直方向に平行な軸周りに回転する搬送ホイール71を有している。この搬送ホイール71によって複数のボトル30が回転(公転)されながら、ボトル30内部へ無菌炭酸飲料が充填される。また搬送ホイール71の外周に沿って、複数の充填ノズル72が配置されている。各充填ノズル72には、それぞれ1本のボトル30が装着され、充填ノズル72からボトル30の内部に無菌炭酸飲料が注入される。なお、充填ノズル72の構成は後述する。   In the carbonated beverage filling section 20, the aseptic carbonated beverage filled in the carbonated beverage filling tank 75 is filled in the empty bottle 30. The carbonated beverage filling section 20 has a transport wheel 71 that rotates around an axis parallel to the vertical direction. As the plurality of bottles 30 are rotated (revolved) by the transport wheel 71, the inside of the bottles 30 is filled with the aseptic carbonated beverage. A plurality of filling nozzles 72 are arranged along the outer periphery of the transfer wheel 71. One bottle 30 is attached to each filling nozzle 72, and a sterile carbonated beverage is injected into the bottle 30 from the filling nozzle 72. The configuration of the filling nozzle 72 will be described later.

搬送ホイール71と、充填ノズル72と、炭酸飲料供給ライン73の少なくとも一部と、カウンタガスライン74の少なくとも一部とは、無菌チャンバ13の一部を構成するカバー76によって取り囲まれている。カバー76の上部にはロータリージョイント77が取り付けられている。炭酸飲料供給ライン73およびカウンタガスライン74は、ロータリージョイント77によって無菌チャンバ13のカバー76に取り付けられている。このロータリージョイント77は、回転体(搬送ホイール71、充填ノズル72、ならびに炭酸飲料供給ライン73およびカウンタガスライン74の回転配管等)と非回転体(カバー76、ならびに炭酸飲料供給ライン73およびカウンタガスライン74の固定配管等)とを、無菌状態でシールする。   The transfer wheel 71, the filling nozzle 72, at least a part of the carbonated beverage supply line 73, and at least a part of the counter gas line 74 are surrounded by a cover 76 forming a part of the sterile chamber 13. A rotary joint 77 is attached to an upper portion of the cover 76. The carbonated beverage supply line 73 and the counter gas line 74 are attached to the cover 76 of the sterile chamber 13 by a rotary joint 77. The rotary joint 77 includes a rotating body (the transport wheel 71, the filling nozzle 72, and a rotating pipe of the carbonated beverage supply line 73 and the counter gas line 74, etc.) and a non-rotating body (the cover 76, the carbonated beverage supply line 73, and the counter gas). (Fixed piping of the line 74) is sealed under aseptic conditions.

各充填ノズル72には、炭酸飲料供給ライン73およびカウンタガスライン74が連結されている。このうち炭酸飲料供給ライン73は、その一端が無菌炭酸飲料を充填した炭酸飲料充填タンク75に連結されるとともに、他端においてボトル30の内部に連通している。そして炭酸飲料充填タンク75から供給された無菌炭酸飲料は、炭酸飲料供給ライン73を通過して、ボトル30の内部に注入される。   Each filling nozzle 72 is connected to a carbonated beverage supply line 73 and a counter gas line 74. One end of the carbonated beverage supply line 73 is connected to a carbonated beverage filling tank 75 filled with a sterile carbonated beverage, and the other end thereof communicates with the inside of the bottle 30. Then, the aseptic carbonated beverage supplied from the carbonated beverage filling tank 75 passes through the carbonated beverage supply line 73 and is injected into the bottle 30.

特開2008−105699号公報にも記載の通り、カウンタガスライン74は、その一端が炭酸飲料充填タンク75に連結されるとともに、他端においてボトル30の内部に連通している。炭酸飲料充填タンク75から供給される無菌炭酸ガスからなるカウンタープレッシャー用のガスは、カウンタガスライン74を通過して、ボトル30の内部に充填される。カウンタガスライン74の途中にはカウンタガス分岐部53が設けられており、炭酸飲料充填タンク75からのカウンタガスライン74は、カウンタガス分岐部53において複数に分岐されて、それぞれの充填ノズル72まで延在する。   As described in JP-A-2008-105699, the counter gas line 74 has one end connected to the carbonated beverage filling tank 75 and the other end communicating with the inside of the bottle 30. The gas for counter pressure consisting of aseptic carbon dioxide gas supplied from the carbonated beverage filling tank 75 passes through the counter gas line 74 and fills the inside of the bottle 30. A counter gas branch portion 53 is provided in the middle of the counter gas line 74, and the counter gas line 74 from the carbonated beverage filling tank 75 is branched into a plurality of pieces at the counter gas branch portion 53 to the respective filling nozzles 72. Extend.

さらに、各充填ノズル72には、スニフトライン78が連結されている。スニフトライン78は、その一端がカウンタガスライン74に連結されるとともに、他端において無菌チャンバ13の外方へ延在している。このスニフトライン78を介してボトル30の内部のガスを排出可能となっている。スニフトライン78の途中にはスニフトライン分岐部56が設けられており、スニフトライン78からの炭酸ガスは、スニフトライン分岐部56においてまとめられて、無菌チャンバ13内に排出されるようになっている。無菌チャンバ13内のスニフトライン78には、排出弁79が設けられている。この排出弁79によって、スニフトライン78からの炭酸ガスが無菌チャンバ13内に排出される。なお、スニフトライン分岐部56とカウンタガス分岐部53とは、第1バイパスライン54によって連結されている。第1バイパスライン54には、第4バルブ55が設けられており、通常、この第4バルブ55は閉鎖されている。   Further, a snift line 78 is connected to each filling nozzle 72. The snift line 78 has one end connected to the counter gas line 74 and the other end extending out of the sterile chamber 13. The gas inside the bottle 30 can be discharged through the snift line 78. A snift line branch portion 56 is provided in the middle of the snift line 78, and carbon dioxide from the snift line 78 is collected at the snift line branch portion 56 and discharged into the aseptic chamber 13. . A discharge valve 79 is provided in the snift line 78 in the sterile chamber 13. By this discharge valve 79, carbon dioxide gas from the snift line 78 is discharged into the sterile chamber 13. The sniff line branch 56 and the counter gas branch 53 are connected by a first bypass line 54. The first bypass line 54 is provided with a fourth valve 55, and the fourth valve 55 is normally closed.

この場合、スニフトライン78は、内側スニフトライン78aと、外側スニフトライン78bとを有している。内側スニフトライン78aは、その一端が充填ノズル72に連結されるとともに、他端において排出弁79に連結されている。内側スニフトライン78aは、その全体が無菌チャンバ13内に位置しており、上述したスニフトライン分岐部56は、内側スニフトライン78aの途中に位置している。また内側スニフトライン78aは、充填ノズル72とともに回転する回転式となっている。   In this case, the snift line 78 has an inner snift line 78a and an outer snift line 78b. The inner snift line 78a has one end connected to the filling nozzle 72 and the other end connected to the discharge valve 79. The entire inner snift line 78a is located in the sterile chamber 13, and the above-described snift line branch portion 56 is located in the middle of the inner snift line 78a. The inner snift line 78a is of a rotary type that rotates together with the filling nozzle 72.

外側スニフトライン78bは、その一端が排出弁79に連結されるとともに、他端において無菌チャンバ13の外部に開放されている。外側スニフトライン78bは、その一部が無菌チャンバ13の内部に位置しており、残りの一部が無菌チャンバ13の外部に位置している。また外側スニフトライン78bは、充填ノズル72とともに回転することがない非回転式となっている。   One end of the outer snift line 78b is connected to the discharge valve 79, and the other end is open to the outside of the sterile chamber 13. A part of the outer snift line 78 b is located inside the sterile chamber 13, and the other part is located outside the sterile chamber 13. The outer snift line 78b is a non-rotating type that does not rotate with the filling nozzle 72.

上述した排出弁79は、内側スニフトライン78aと外側スニフトライン78bとの間に位置している。内側スニフトライン78aと外側スニフトライン78bとは、排出弁79において着脱可能となっている。また排出弁79は、開閉可能であり、通常時は開放されている。排出弁79が開放された状態では、内側スニフトライン78aは外側スニフトライン78bから物理的に分離されており、内側スニフトライン78aは排出弁79において無菌チャンバ13内と連通する。排出弁79が閉鎖された場合、内側スニフトライン78aは外側スニフトライン78bに連結され、内側スニフトライン78aは外側スニフトライン78bに連通する。このとき、内側スニフトライン78aは無菌チャンバ13内とは連通しない。なお、従来は、例えば特開2005−14918号公報に記載のとおり、スニフトラインはロータリジョイントおよびスニフト用配管を介して大気に開放される。   The above-described discharge valve 79 is located between the inner snift line 78a and the outer snift line 78b. The inner snift line 78a and the outer snift line 78b are detachable at a discharge valve 79. The discharge valve 79 can be opened and closed, and is normally opened. When the discharge valve 79 is opened, the inner snift line 78a is physically separated from the outer snift line 78b, and the inner snift line 78a communicates with the inside of the aseptic chamber 13 at the discharge valve 79. When the discharge valve 79 is closed, the inner snift line 78a is connected to the outer snift line 78b, and the inner snift line 78a communicates with the outer snift line 78b. At this time, the inner snift line 78a does not communicate with the inside of the sterile chamber 13. Conventionally, as described in, for example, Japanese Patent Application Laid-Open No. 2005-14918, the snift line is opened to the atmosphere via a rotary joint and a snift pipe.

また、外側スニフトライン78bは、蛇腹部78cにおいて伸縮自在となっている。そして排出弁79が開放されている場合、外側スニフトライン78bの蛇腹部78cが縮まり、外側スニフトライン78bが内側スニフトライン78aから離脱する。この際、内側スニフトライン78aは、回転可能となるとともに、排出弁79において無菌チャンバ13内に連通する。一方、排出弁79を閉鎖する場合、内側スニフトライン78aの回転を停止するとともに、内側スニフトライン78aと外側スニフトライン78bとを回転方向に位置決めする。この状態で、外側スニフトライン78bの蛇腹部78cを伸長させ、排出弁79において外側スニフトライン78bが内側スニフトライン78aに連結される。このとき、内側スニフトライン78aは、外側スニフトライン78bと一体化されて外側スニフトライン78bと連通する。   The outer snift line 78b is extendable and contractible at the bellows portion 78c. When the discharge valve 79 is open, the bellows portion 78c of the outer snift line 78b is contracted, and the outer snift line 78b is separated from the inner snift line 78a. At this time, the inner snift line 78 a becomes rotatable and communicates with the inside of the aseptic chamber 13 at the discharge valve 79. On the other hand, when closing the discharge valve 79, the rotation of the inner snift line 78a is stopped, and the inner snift line 78a and the outer snift line 78b are positioned in the rotation direction. In this state, the bellows portion 78c of the outer snift line 78b is extended, and the outer snift line 78b is connected to the inner snift line 78a at the discharge valve 79. At this time, the inner snift line 78a is integrated with the outer snift line 78b and communicates with the outer snift line 78b.

このように、排出弁79を用いてスニフトライン78からの炭酸ガスを無菌チャンバ13内に排出することにより、ボトル30内の炭酸ガスを無菌空間である無菌チャンバ13内に、菌のコンタミなく排出することができる。また、回転するスニフトライン78を無菌チャンバ13の外部へ連結するためのロータリージョイントを設ける必要がない。このようなロータリージョイントは、一般に複雑な機構を有しているとともに、高価である。このため、スニフトライン78用のロータリージョイントを省略することにより、炭酸飲料無菌充填システム10の機構を簡素化し、製造コストを低減することができる。   By discharging the carbon dioxide gas from the snift line 78 into the sterile chamber 13 using the discharge valve 79, the carbon dioxide gas in the bottle 30 is discharged into the sterile chamber 13, which is a sterile space, without contaminating bacteria. can do. Further, there is no need to provide a rotary joint for connecting the rotating snift line 78 to the outside of the sterile chamber 13. Such a rotary joint generally has a complicated mechanism and is expensive. For this reason, by omitting the rotary joint for the snift line 78, the mechanism of the aseptic carbonated beverage filling system 10 can be simplified and the manufacturing cost can be reduced.

ところで、炭酸飲料無菌充填システム10のうち、飲料(原料液、殺菌済み飲料又は無菌炭酸飲料)が通過する流路については、定期的にあるいは飲料の種類を切り替える際に、CIP(Cleaning in Place)処理をし、さらに、SIP(Sterilizing in Place)処理をすることが好ましい。CIP処理は、原料液を供給する経路の管路内から炭酸飲料充填部20の充填ノズル72に至るまでの流路に、例えば水に苛性ソーダ等のアルカリ性薬剤を添加した洗浄液を流した後に、水に酸性薬剤を添加した洗浄液を流すことにより行われる。これにより、飲料が通過する流路内に付着した前回の飲料の残留物等が除去される。またSIP処理は、飲料の充填作業に入る前に、予め飲料が通過する流路内を殺菌するための処理であり、例えば、上記CIPで洗浄した流路内に加熱蒸気又は熱水を流すことによって行われる。これにより、飲料が通過する流路内が殺菌処理され無菌状態とされる。   Meanwhile, in the aseptic carbonated beverage filling system 10, the flow path through which the beverage (raw material liquid, sterilized beverage or aseptic carbonated beverage) passes is periodically or when the type of beverage is switched, and is subjected to CIP (Cleaning in Place). It is preferable to perform the processing and further perform the SIP (Sterilizing in Place) processing. In the CIP process, for example, after a washing liquid obtained by adding an alkaline agent such as caustic soda to water is flown in a flow path from the inside of the pipe for supplying the raw material liquid to the filling nozzle 72 of the carbonated beverage filling section 20, water is added. The washing is performed by flowing a washing solution to which an acidic agent is added. As a result, the residue of the previous beverage or the like attached to the flow path through which the beverage passes is removed. In addition, the SIP process is a process for sterilizing the inside of the flow passage through which the beverage passes before starting the filling operation of the beverage. For example, flowing heated steam or hot water into the flow passage washed with the CIP is performed. Done by Thereby, the inside of the flow path through which the beverage passes is sterilized and brought into a sterile state.

上述したCIP処理を行うために、充填ノズル72の近傍には、充填ノズル72からの洗浄液を受けるCIPカップ82が設けられている。このCIPカップ82には、CIPライン83が連結されている。CIPライン83は、その一端がCIPカップ82に連結されるとともに、他端が無菌チャンバ13の外方に配置された排出タンク85に連結されている。このCIPライン83を介して充填ノズル72からの洗浄液を排出タンク85に排出可能となっている。CIPライン83の途中にはCIPライン分岐部59が設けられており、CIPライン83からの洗浄液は、CIPライン分岐部59でまとめて回収されて、排出タンク85に排出されるようになっている。なお、CIPライン分岐部59とスニフトライン分岐部56とは、第2バイパスライン57によって連結されている。第2バイパスライン57には、第5バルブ58が設けられている。通常、この第5バルブ58は閉鎖されている。   In order to perform the above-described CIP processing, a CIP cup 82 that receives the cleaning liquid from the filling nozzle 72 is provided near the filling nozzle 72. A CIP line 83 is connected to the CIP cup 82. The CIP line 83 has one end connected to the CIP cup 82 and the other end connected to a discharge tank 85 disposed outside the sterile chamber 13. The cleaning liquid from the filling nozzle 72 can be discharged to the discharge tank 85 via the CIP line 83. A CIP line branching section 59 is provided in the middle of the CIP line 83, and the cleaning liquid from the CIP line 83 is collectively collected at the CIP line branching section 59 and discharged to the discharge tank 85. . The CIP line branch 59 and the snift line branch 56 are connected by a second bypass line 57. A fifth valve 58 is provided in the second bypass line 57. Usually, the fifth valve 58 is closed.

この場合、CIPライン83は、内側CIPライン83aと、外側CIPライン83bとを有している。内側CIPライン83aは、その一端がCIPカップ82に連結されるとともに、他端において接続弁84に連結されている。内側CIPライン83aは、その全体が無菌チャンバ13内に位置しており、上述したCIPライン分岐部59は、内側CIPライン83aの途中に位置している。また内側CIPライン83aは、充填ノズル72とともに回転する回転式となっている。   In this case, the CIP line 83 has an inner CIP line 83a and an outer CIP line 83b. The inner CIP line 83a has one end connected to the CIP cup 82 and the other end connected to the connection valve 84. The entire inner CIP line 83a is located in the sterile chamber 13, and the above-described CIP line branching section 59 is located in the middle of the inner CIP line 83a. The inner CIP line 83a is of a rotary type that rotates together with the filling nozzle 72.

外側CIPライン83bは、その一端が接続弁84に連結されるとともに、他端において排出タンク85に連結されている。外側CIPライン83bは、その一部が無菌チャンバ13の内部に位置しており、残りの一部が無菌チャンバ13の外部に位置している。また外側CIPライン83bは、充填ノズル72とともに回転することがない、非回転式となっている。   The outer CIP line 83b has one end connected to the connection valve 84 and the other end connected to the discharge tank 85. A part of the outer CIP line 83b is located inside the sterile chamber 13, and the other part is located outside the sterile chamber 13. The outer CIP line 83b does not rotate with the filling nozzle 72, and is of a non-rotating type.

接続弁84は、内側CIPライン83aと外側CIPライン83bとの間に位置している。内側CIPライン83aと外側CIPライン83bとは、接続弁84において着脱可能となっている。また接続弁84は、開閉可能であり、通常時は開放されている。接続弁84が開放された状態では、内側CIPライン83aは外側CIPライン83bから物理的に分離されており、内側CIPライン83aは接続弁84において無菌チャンバ13内と連通する。接続弁84が閉鎖された場合、内側CIPライン83aは外側CIPライン83bに連結され、内側CIPライン83aは外側CIPライン83bを介して排出タンク85に連通する。接続弁84の構成は、上述した排出弁79の構成と略同様であっても良い。なお、第5バルブ58を開放することにより、スニフトライン78から送られてきたボトル30の内部のガスを、接続弁84から無菌チャンバ13内に排出しても良い。   The connection valve 84 is located between the inner CIP line 83a and the outer CIP line 83b. The inner CIP line 83a and the outer CIP line 83b are detachable at the connection valve 84. The connection valve 84 can be opened and closed, and is normally opened. When the connection valve 84 is open, the inner CIP line 83a is physically separated from the outer CIP line 83b, and the inner CIP line 83a communicates with the inside of the sterile chamber 13 at the connection valve 84. When the connection valve 84 is closed, the inner CIP line 83a is connected to the outer CIP line 83b, and the inner CIP line 83a communicates with the discharge tank 85 via the outer CIP line 83b. The configuration of the connection valve 84 may be substantially the same as the configuration of the discharge valve 79 described above. By opening the fifth valve 58, the gas inside the bottle 30 sent from the snift line 78 may be discharged from the connection valve 84 into the aseptic chamber 13.

また、外側CIPライン83bは、蛇腹部83cにおいて伸縮自在となっている。そして接続弁84が開放されている場合、外側CIPライン83bの蛇腹部83cが縮まり、接続弁84において外側CIPライン83bが内側CIPライン83aから離脱する。この際、内側CIPライン83aは、回転可能となるとともに、無菌チャンバ13内と連通する。一方、接続弁84を閉鎖する場合、内側CIPライン83aと外側CIPライン83bとを回転方向に位置決めする。この状態で、外側CIPライン83bの蛇腹部83cを伸長させ、接続弁84において外側CIPライン83bが内側CIPライン83aに接続される。このとき、内側CIPライン83aは、外側CIPライン83bと一体化され、外側CIPライン83bと連通する。   Further, the outer CIP line 83b is freely expandable and contractable at the bellows portion 83c. When the connection valve 84 is open, the bellows portion 83c of the outer CIP line 83b is contracted, and the outer CIP line 83b of the connection valve 84 is separated from the inner CIP line 83a. At this time, the inner CIP line 83a becomes rotatable and communicates with the inside of the sterile chamber 13. On the other hand, when closing the connection valve 84, the inner CIP line 83a and the outer CIP line 83b are positioned in the rotation direction. In this state, the bellows portion 83c of the outer CIP line 83b is extended, and the outer CIP line 83b is connected to the inner CIP line 83a at the connection valve 84. At this time, the inner CIP line 83a is integrated with the outer CIP line 83b, and communicates with the outer CIP line 83b.

排出タンク85の上部には、排出タンク85の内部のガスを排出する排気ライン89が設けられている。排気ライン89には、ガスを処理する図示しないスクラバーが連結されている。また、排出タンク85の下部には、上述したCIP循環ライン81が連結されている。このCIP循環ライン81は、排出タンク85に貯留された洗浄液を炭酸飲料充填タンク75側に向けて送液し、循環させるラインである。CIP循環ライン81は、排出タンク85と、炭酸飲料導入ライン65の途中とを連結している。CIP循環ライン81には、排出タンク85側から順に、洗浄液供給部94と、ポンプ91と、第6バルブ92と、ヒータ93と、第7バルブ95とが設けられている。また、ポンプ91と第6バルブ92との間には、排液ライン96が連結され、この排液ライン96には第8バルブ97が設けられている。排液ライン96は、ヒータ93と第7バルブ95との間に設けても良く、また各配管内の残水を速やかに除去できる場所であれば適宜追加しても良い。   An exhaust line 89 for discharging gas inside the discharge tank 85 is provided above the discharge tank 85. A scrubber (not shown) for processing gas is connected to the exhaust line 89. The above-described CIP circulation line 81 is connected to a lower portion of the discharge tank 85. The CIP circulation line 81 is a line for sending and circulating the cleaning liquid stored in the discharge tank 85 toward the carbonated beverage filling tank 75 side. The CIP circulation line 81 connects the discharge tank 85 and the middle of the carbonated beverage introduction line 65. The CIP circulation line 81 is provided with a cleaning liquid supply unit 94, a pump 91, a sixth valve 92, a heater 93, and a seventh valve 95 in this order from the discharge tank 85 side. A drain line 96 is connected between the pump 91 and the sixth valve 92, and the drain line 96 is provided with an eighth valve 97. The drain line 96 may be provided between the heater 93 and the seventh valve 95, and may be appropriately added as long as the remaining water in each pipe can be quickly removed.

無菌チャンバ13のカバー76には、無菌チャンバ13内に大容量の無菌エアを送り込む無菌エア供給装置70が設けられている。この無菌エア供給装置70が、無菌チャンバ13内に無菌エアを導入することにより、無菌チャンバ13内が陽圧に保持され、無菌チャンバ13内に外気が侵入することを抑止している。また、無菌エア供給装置70によって大容量の無菌エアが無菌チャンバ13内に送られるので、上述したように排出弁79から無菌チャンバ13内に炭酸ガスが排出された場合でも、無菌チャンバ13内の炭酸ガス濃度が過度に上昇するおそれがない。上記目的を満たすための無菌エアの供給量は、5m/min以上100m/min以下であり、好ましくは10m/min以上50m/min以下である。 The cover 76 of the sterile chamber 13 is provided with a sterile air supply device 70 for feeding a large volume of sterile air into the sterile chamber 13. The aseptic air supply device 70 introduces aseptic air into the aseptic chamber 13 so that the inside of the aseptic chamber 13 is maintained at a positive pressure, thereby preventing outside air from entering the aseptic chamber 13. Further, since a large volume of sterile air is sent into the sterile chamber 13 by the sterile air supply device 70, even when carbon dioxide gas is discharged from the discharge valve 79 into the sterile chamber 13 as described above, even if carbon dioxide is discharged into the sterile chamber 13, There is no possibility that the concentration of carbon dioxide gas excessively increases. The supply amount of the sterile air for satisfying the above purpose is 5 m 3 / min or more and 100 m 3 / min or less, preferably 10 m 3 / min or more and 50 m 3 / min or less.

(充填ノズル)
次に、図3を用いて、上述した炭酸飲料充填部20の充填ノズル72の構成について説明する。
(Filling nozzle)
Next, the configuration of the filling nozzle 72 of the above-described carbonated beverage filling section 20 will be described with reference to FIG.

図3に示すように、充填ノズル72は、本体部72aを有している。本体部72aには、炭酸飲料供給ライン73およびカウンタガスライン74がそれぞれ連結されている。このうち炭酸飲料供給ライン73は、その上端が炭酸飲料充填タンク75に連結されるとともに、下端においてボトル30の内部に連通している。そして炭酸飲料充填タンク75から供給された無菌炭酸飲料は、炭酸飲料供給ライン73を通過して、ボトル30の内部に注入される。   As shown in FIG. 3, the filling nozzle 72 has a main body 72a. A carbonated beverage supply line 73 and a counter gas line 74 are connected to the main body 72a. The carbonated beverage supply line 73 has an upper end connected to the carbonated beverage filling tank 75 and a lower end communicating with the inside of the bottle 30. Then, the aseptic carbonated beverage supplied from the carbonated beverage filling tank 75 passes through the carbonated beverage supply line 73 and is injected into the bottle 30.

特開2008−105699号公報にも記載の通り、カウンタガスライン74は、その上端が炭酸飲料充填タンク75に連結されるとともに、下端においてボトル30の内部に連通している。炭酸飲料充填タンク75から供給された炭酸ガス等のカウンタープレッシャー用のガスは、カウンタガスライン74を通過して、ボトル30の内部に充填される。カウンタガスライン74の途中には、スニフトライン78が連結されており、スニフトライン78を介してボトル30の内部の炭酸ガス等を排出可能となっている。   As described in Japanese Patent Application Laid-Open No. 2008-105699, the upper end of the counter gas line 74 is connected to the carbonated beverage filling tank 75, and the lower end communicates with the inside of the bottle 30 at the lower end. The gas for counter pressure, such as carbon dioxide gas, supplied from the carbonated beverage filling tank 75 passes through the counter gas line 74 and fills the inside of the bottle 30. A snift line 78 is connected in the middle of the counter gas line 74 so that carbon dioxide and the like inside the bottle 30 can be discharged through the snift line 78.

炭酸飲料供給ライン73およびカウンタガスライン74は、カバー76に設けられたロータリージョイント77を通過している。一方、スニフトライン78は、上述したようにロータリージョイントを介在させることなく、スニフトライン78からの炭酸ガスを無菌チャンバ13内に排出させるようになっている。   The carbonated beverage supply line 73 and the counter gas line 74 pass through a rotary joint 77 provided on a cover 76. On the other hand, the snift line 78 discharges carbon dioxide from the snift line 78 into the sterile chamber 13 without interposing a rotary joint as described above.

(無菌炭酸飲料充填方法)
次に、上述した炭酸飲料無菌充填システム10(図1)を用いた無菌炭酸飲料充填方法について説明する。なお、以下において、通常時における充填方法、すなわち無菌炭酸飲料をボトル30に充填して製品ボトル35を製造する無菌炭酸飲料充填方法について説明する。
(Sterile carbonated beverage filling method)
Next, a method for filling a sterile carbonated beverage using the above-described aseptic carbonated beverage filling system 10 (FIG. 1) will be described. In the following, a filling method at a normal time, that is, a method for filling a bottle 30 with a sterile carbonated beverage to produce a product bottle 35 by aseptic carbonated beverage will be described.

まず複数の空のボトル30が、炭酸飲料無菌充填システム10の外部からボトル供給部21へ順次供給される。このボトル30は、搬送ホイール12によってボトル供給部21からボトル殺菌部11へ送られる(容器供給工程)。   First, a plurality of empty bottles 30 are sequentially supplied to the bottle supply unit 21 from outside the carbonated beverage aseptic filling system 10. The bottle 30 is sent from the bottle supply unit 21 to the bottle sterilization unit 11 by the transport wheel 12 (container supply step).

次に、ボトル殺菌部11において、ボトル30に対して殺菌剤である過酸化水素水溶液を用いて殺菌処理が行われる(殺菌工程)。このとき、過酸化水素水溶液は、1重量%以上、好ましくは35重量%の濃度の過酸化水素水溶液を一旦気化させた後に凝縮したガス又はミストであり、このガス又はミストがボトル30に向かって供給される。   Next, in the bottle sterilizing section 11, the bottle 30 is sterilized using an aqueous solution of hydrogen peroxide as a sterilizing agent (sterilizing step). At this time, the aqueous hydrogen peroxide solution is a gas or mist that is condensed after once evaporating an aqueous solution of hydrogen peroxide having a concentration of 1% by weight or more, preferably 35% by weight. Supplied.

続いて、ボトル30は、搬送ホイール12によってエアリンス部14に送られ、エアリンス部14において、無菌の加熱エア又は常温エアを供給することにより、過酸化水素の活性化を行いつつ、ボトル30から異物、過酸化水素等が除去される。次いで、ボトル30は、搬送ホイール12によって無菌水リンス部15に搬送される。この無菌水リンス部15において、無菌の15℃以上85℃以下の水による洗浄が施される(リンス工程)。具体的には、無菌の15℃以上85℃以下の水が、5L/min以上15L/min以下の流量でボトル30内に供給される。その際、好ましくはボトル30は倒立状態とされ、下向きになった口部からボトル30内へ無菌水が供給され、この無菌水は口部からボトル30の外方に流出する。この無菌水によって、ボトル30に付着した過酸化水素を洗い流し、且つ異物が除去される。なお、ボトル30内へ無菌水が供給される工程は必ずしも設けられていなくても良い。   Subsequently, the bottle 30 is sent to the air rinsing unit 14 by the transfer wheel 12, and the sterilizing heating air or the room temperature air is supplied to the air rinsing unit 14 to activate the hydrogen peroxide while the foreign matter is removed from the bottle 30. , Hydrogen peroxide and the like are removed. Next, the bottle 30 is transported to the sterile water rinsing unit 15 by the transport wheel 12. The aseptic water rinsing section 15 is washed with aseptic water at a temperature of 15 ° C to 85 ° C (rinsing step). Specifically, aseptic water having a temperature of 15 ° C. or more and 85 ° C. or less is supplied into the bottle 30 at a flow rate of 5 L / min or more and 15 L / min or less. At this time, the bottle 30 is preferably turned upside down, and sterile water is supplied into the bottle 30 from the downwardly directed mouth, and the sterile water flows out of the bottle 30 from the mouth. With this sterile water, the hydrogen peroxide adhering to the bottle 30 is washed away and foreign substances are removed. It should be noted that the step of supplying sterile water into the bottle 30 is not necessarily provided.

続いて、ボトル30は、搬送ホイール12によって炭酸飲料充填部20に搬送される。この炭酸飲料充填部20において、ボトル30は回転(公転)されながら、その口部からボトル30内へ無菌炭酸飲料が充填される(充填工程)。炭酸飲料充填部20においては、殺菌されたボトル30に、炭酸飲料充填タンク75から送られた無菌炭酸飲料が1℃以上40℃以下、好ましくは5℃以上10℃以下の充填温度で充填される。   Subsequently, the bottle 30 is transported to the carbonated beverage filling section 20 by the transport wheel 12. In the carbonated beverage filling section 20, the bottle 30 is filled with a sterile carbonated beverage from its mouth into the bottle 30 while being rotated (revolved) (filling step). In the carbonated beverage filling unit 20, the sterilized bottle 30 is filled with the sterilized carbonated beverage sent from the carbonated beverage filling tank 75 at a filling temperature of 1 ° C or more and 40 ° C or less, preferably 5 ° C or more and 10 ° C or less. .

この間、図3に示すように、炭酸飲料充填部20において、充填ノズル72がボトル30の口部に密着し、カウンタガスライン74とボトル30とが互いに連通する。なお、このときスニフトライン78は閉鎖されている。次に、炭酸飲料充填タンク75からカウンタガスライン74を介して、ボトル30の内部にカウンタープレッシャー用の無菌炭酸ガスが供給される。これにより、ボトル30の内圧が大気圧よりも高められ、ボトル30の内圧が炭酸飲料充填タンク75の内圧と同一の圧力となる。   During this time, as shown in FIG. 3, in the carbonated beverage filling section 20, the filling nozzle 72 is in close contact with the mouth of the bottle 30, and the counter gas line 74 and the bottle 30 communicate with each other. At this time, the snift line 78 is closed. Next, aseptic carbon dioxide for counter pressure is supplied from the carbonated beverage filling tank 75 to the inside of the bottle 30 via the counter gas line 74. Thereby, the internal pressure of the bottle 30 becomes higher than the atmospheric pressure, and the internal pressure of the bottle 30 becomes the same pressure as the internal pressure of the carbonated beverage filling tank 75.

次に、炭酸飲料供給ライン73からボトル30の内部に無菌炭酸飲料が充填される。この場合、無菌炭酸飲料は、炭酸飲料充填タンク75から炭酸飲料供給ライン73を通過して、ボトル30の内部に注入される。   Next, a sterile carbonated beverage is filled into the bottle 30 from the carbonated beverage supply line 73. In this case, the aseptic carbonated beverage passes through the carbonated beverage supply line 73 from the carbonated beverage filling tank 75 and is injected into the bottle 30.

続いて、炭酸飲料供給ライン73からの無菌炭酸飲料の供給を停止する。次いで、炭酸飲料供給ライン73およびカウンタガスライン74を閉鎖するとともに、スニフトライン78を開放し、スニフトライン78からボトル30の内部のガスを排出する。これにより、ボトル30の内部の圧力が大気圧と等しくなり、ボトル30への無菌炭酸飲料の充填が完了する。このとき、ボトル30からのガスは、スニフトライン78を通過した後、排出弁79から無菌チャンバ13内へ排出される。   Subsequently, the supply of the aseptic carbonated beverage from the carbonated beverage supply line 73 is stopped. Next, the carbonated beverage supply line 73 and the counter gas line 74 are closed, the snift line 78 is opened, and the gas inside the bottle 30 is discharged from the snift line 78. Thereby, the pressure inside the bottle 30 becomes equal to the atmospheric pressure, and the filling of the bottle 30 with the sterile carbonated beverage is completed. At this time, the gas from the bottle 30 is discharged from the discharge valve 79 into the aseptic chamber 13 after passing through the snift line 78.

再度図1を参照すると、炭酸飲料充填部20で無菌炭酸飲料が充填されたボトル30は、搬送ホイール12によってキャップ装着部16に搬送される。   Referring again to FIG. 1, the bottle 30 filled with the aseptic carbonated beverage in the carbonated beverage filling unit 20 is transported to the cap mounting unit 16 by the transport wheel 12.

一方、キャップ33は、予めキャップ殺菌部25によって殺菌処理される(キャップ殺菌工程)。キャップ殺菌部25で殺菌されたキャップ33は、キャップ装着部16において、炭酸飲料充填部20から搬送されてきたボトル30の口部に装着される。これにより、ボトル30とキャップ33とを有する製品ボトル35が得られる(キャップ装着工程)。   On the other hand, the cap 33 is previously sterilized by the cap sterilizing section 25 (cap sterilizing step). The cap 33 sterilized by the cap sterilizing unit 25 is attached to the mouth of the bottle 30 transported from the carbonated beverage filling unit 20 in the cap attaching unit 16. Thus, a product bottle 35 having the bottle 30 and the cap 33 is obtained (cap attaching step).

その後、製品ボトル35は、キャップ装着部16から製品ボトル搬出部22へ搬送され、炭酸飲料無菌充填システム10の外部へ向けて搬出される。   Thereafter, the product bottle 35 is transported from the cap mounting unit 16 to the product bottle unloading unit 22, and is unloaded to the outside of the carbonated beverage aseptic filling system 10.

なお、上記殺菌工程からキャップ装着工程に至る各工程は、無菌チャンバ13で囲まれた無菌の雰囲気内すなわち無菌の環境下で行われる。無菌エアが常時無菌チャンバ13外に向かって吹き出るように、無菌エア供給装置70から無菌チャンバ13内に陽圧の無菌エアが供給される。   The steps from the sterilization step to the cap mounting step are performed in a sterile atmosphere surrounded by a sterile chamber 13, that is, in a sterile environment. A positive pressure sterile air is supplied from the sterile air supply device 70 into the sterile chamber 13 so that the sterile air always blows out of the sterile chamber 13.

なお、炭酸飲料無菌充填システム10におけるボトル30の生産(搬送)速度は、100bpm以上かつ1500bpm以下とすることが好ましい。ここでbpm(bottle per minute)とは、1分間当たりのボトル30の搬送速度をいう。   The production (transport) speed of the bottle 30 in the carbonated beverage aseptic filling system 10 is preferably 100 bpm or more and 1500 bpm or less. Here, bpm (bottle per minute) refers to the transport speed of the bottle 30 per minute.

以上のように本実施の形態によれば、無菌チャンバ13内のスニフトライン78に排出弁79を設け、スニフトライン78からのガスを排出弁79から無菌チャンバ13内に排出している。これにより、スニフトライン78を回転体(例えば充填ノズル72)と非回転体(例えば無菌チャンバ13の外部)との間で連結するためのロータリジョイントを設ける必要が生じない。この結果、スニフトライン78用のロータリジョイントを省略することができるため、システム全体でのロータリジョイントの数を減らし、炭酸飲料無菌充填システム10の全体構成を簡単なものとすることができる。また、炭酸飲料無菌充填システム10の製造コストを低減することができる。   As described above, according to the present embodiment, the discharge valve 79 is provided in the snift line 78 in the sterile chamber 13, and the gas from the snift line 78 is discharged into the sterile chamber 13 from the discharge valve 79. Accordingly, there is no need to provide a rotary joint for connecting the snift line 78 between a rotating body (for example, the filling nozzle 72) and a non-rotating body (for example, outside the sterile chamber 13). As a result, the rotary joint for the snift line 78 can be omitted, so that the number of rotary joints in the entire system can be reduced, and the entire configuration of the aseptic carbonated beverage filling system 10 can be simplified. In addition, the manufacturing cost of the carbonated beverage aseptic filling system 10 can be reduced.

また、本実施の形態によれば、排出弁79は、回転式の内側スニフトライン78aと非回転式の外側スニフトライン78bとの間に位置している。これにより、通常時は、内側スニフトライン78aと外側スニフトライン78bとが分離されて、スニフトライン78からのガスを排出弁79から無菌チャンバ13内に排出することができる。一方、内側スニフトライン78aの回転を停止することにより、内側スニフトライン78aと外側スニフトライン78bとを連結して排出弁79を閉鎖し、スニフトライン78を無菌チャンバ13の外部と連通させることもできる。   Further, according to the present embodiment, the discharge valve 79 is located between the rotating inner snift line 78a and the non-rotating outer snift line 78b. As a result, at normal times, the inner snift line 78a and the outer snift line 78b are separated, and the gas from the snift line 78 can be discharged from the discharge valve 79 into the aseptic chamber 13. On the other hand, by stopping the rotation of the inner snift line 78a, the inner snift line 78a and the outer snift line 78b are connected to close the discharge valve 79, and the snift line 78 can be communicated with the outside of the sterile chamber 13. .

また、本実施の形態によれば、外側スニフトライン78bは、伸縮自在となっている。これにより、通常時は、内側スニフトライン78aと外側スニフトライン78bとを分離し、外側スニフトライン78bと回転する内側スニフトライン78aとが干渉しないようにすることができる。また、排出弁79を閉鎖する際には、外側スニフトライン78bの蛇腹部78cを伸長させ、排出弁79において外側スニフトライン78bを内側スニフトライン78aに連結することができる。   Further, according to the present embodiment, outer snift line 78b is extendable and contractible. Thus, in normal times, the inner snift line 78a and the outer snift line 78b can be separated from each other so that the outer snift line 78b and the rotating inner snift line 78a do not interfere with each other. Further, when closing the discharge valve 79, the bellows portion 78c of the outer sniff line 78b can be extended, and the outer sniff line 78b can be connected to the inner sniff line 78a at the discharge valve 79.

また、本実施の形態によれば、炭酸飲料充填タンク75に、炭酸ガス供給ライン61と炭酸ガス放出ライン86とを連結している。また、炭酸ガス供給ライン61と炭酸ガス放出ライン86とに、それぞれ第1バルブ62と第3バルブ87とを設け、制御部60により第1バルブ62及び第3バルブ87をそれぞれ制御して炭酸飲料充填タンク75内の圧力を制御するようになっている。とりわけ、炭酸飲料充填タンク75内の圧力P1と炭酸ガス放出ライン86内の圧力P2との間でP1>P2という関係が成り立つように制御される。これにより、炭酸飲料充填タンク75に対して無菌チャンバ13の外部から非無菌状態のガスが侵入することを防ぐことができる。このため、排出タンク85として、無菌状態に制御されていない非無菌タンクを用いることができる。この場合、炭酸ガス放出ライン86を無菌状態の無菌タンクと連結する必要がないので、このような無菌タンクを炭酸飲料無菌充填システム10に設ける必要がなく、炭酸飲料無菌充填システム10の製造コストを低減することができる。   According to the present embodiment, the carbon dioxide supply line 61 and the carbon dioxide release line 86 are connected to the carbonated beverage filling tank 75. A first valve 62 and a third valve 87 are provided in the carbon dioxide gas supply line 61 and the carbon dioxide gas discharge line 86, respectively, and the control unit 60 controls the first valve 62 and the third valve 87, respectively, to control the carbonated beverage. The pressure in the filling tank 75 is controlled. In particular, control is performed so that the relationship of P1> P2 is established between the pressure P1 in the carbonated beverage filling tank 75 and the pressure P2 in the carbon dioxide gas discharge line 86. Accordingly, it is possible to prevent non-sterile gas from entering the carbonated beverage filling tank 75 from outside the sterile chamber 13. Therefore, a non-sterile tank that is not controlled to be in a sterile state can be used as the discharge tank 85. In this case, there is no need to connect the carbon dioxide release line 86 to a sterile aseptic tank, so there is no need to provide such a sterile tank in the carbonated beverage aseptic filling system 10, and the manufacturing cost of the carbonated beverage aseptic filling system 10 is reduced. Can be reduced.

また、第2圧力計88を設けずに、第1圧力計64のみで制御を行うことも可能である。具体的には、第1圧力計64の指示値より、第1バルブ62と第3バルブ87のそれぞれの開度を調整し、第1圧力計64の値を機器滅菌(SIP)処理中から生産終了時まで0.01MPa以上1.0MPa以下となるよう両バルブ62、87のみで制御される。これにより、炭酸飲料充填タンク75に対して無菌チャンバ13の外部から非無菌状態のガスが侵入することを防ぐことができ、上記と同様の効果を得ることができる。   Further, it is also possible to perform control using only the first pressure gauge 64 without providing the second pressure gauge 88. Specifically, the opening of each of the first valve 62 and the third valve 87 is adjusted based on the indicated value of the first pressure gauge 64, and the value of the first pressure gauge 64 is produced during the equipment sterilization (SIP) process. Only the two valves 62 and 87 are controlled so that the pressure becomes 0.01 MPa or more and 1.0 MPa or less until the end. This can prevent non-sterile gas from entering the carbonated beverage filling tank 75 from the outside of the sterile chamber 13 and achieve the same effect as described above.

なお、上記において、ボトル30、プリフォーム、キャップ33等の容器殺菌は、過酸化水素からなる殺菌剤を用いて行う場合を例にとって説明したが、これに限らず、過酢酸等の殺菌剤や電子線を用いて殺菌しても良い。   In the above description, the sterilization of containers such as the bottle 30, the preform, and the cap 33 has been described by taking as an example the case where the sterilization is performed using a disinfectant composed of hydrogen peroxide. Sterilization may be performed using an electron beam.

上記実施の形態および変形例に開示されている複数の構成要素を必要に応じて適宜組合せることも可能である。あるいは、上記実施の形態および変形例に示される全構成要素から幾つかの構成要素を削除してもよい。   A plurality of constituent elements disclosed in the above-described embodiments and modifications can be appropriately combined as needed. Alternatively, some components may be deleted from all the components shown in the above-described embodiment and the modified examples.

10 炭酸飲料無菌充填システム
20 炭酸飲料充填部
30 ボトル
60 制御部
72 充填ノズル
73 炭酸飲料供給ライン
74 カウンタガスライン
75 炭酸飲料充填タンク
77 ロータリージョイント
78 スニフトライン
79 排出弁
DESCRIPTION OF SYMBOLS 10 Aseptic carbonated beverage filling system 20 Carbonated beverage filling unit 30 Bottle 60 Control unit 72 Filling nozzle 73 Carbonated beverage supply line 74 Counter gas line 75 Carbonated beverage filling tank 77 Rotary joint 78 Snift line 79 Discharge valve

Claims (6)

炭酸飲料を充填する充填ノズルと、
炭酸飲料供給ラインおよびカウンタガスラインを介して前記充填ノズルに連結された炭酸飲料充填タンクと、
前記充填ノズルに連結されたスニフトラインと、
前記充填ノズルと、前記炭酸飲料供給ラインの少なくとも一部と、前記カウンタガスラインの少なくとも一部とを取り囲む無菌チャンバと、を備え、
前記炭酸飲料供給ラインおよび前記カウンタガスラインは、ロータリージョイントによって前記無菌チャンバに取り付けられ、
前記無菌チャンバ内の前記スニフトラインに排出弁を設け、前記スニフトラインからのガスを前記無菌チャンバ内に排出する、炭酸飲料無菌充填システム。
A filling nozzle for filling carbonated beverages,
A carbonated beverage filling tank connected to the filling nozzle via a carbonated beverage supply line and a counter gas line,
A snift line connected to the filling nozzle,
The filling nozzle, and a sterile chamber surrounding at least a part of the carbonated beverage supply line and at least a part of the counter gas line,
The carbonated beverage supply line and the counter gas line are attached to the sterile chamber by a rotary joint,
An aseptic filling system for carbonated beverages, wherein a discharge valve is provided in the snift line in the aseptic chamber, and gas from the snift line is discharged into the aseptic chamber.
前記スニフトラインは、前記無菌チャンバ内に位置するとともに前記充填ノズルとともに回転する回転式の内側スニフトラインと、前記無菌チャンバから外方へ延在するとともに非回転式の外側スニフトラインとを有し、
前記排出弁は、前記内側スニフトラインと前記外側スニフトラインとの間に位置する、請求項1記載の炭酸飲料無菌充填システム。
The sniff line has a rotating inner snift line located in the sterile chamber and rotating with the filling nozzle, and a non-rotating outer snift line extending outward from the sterile chamber.
The carbonated beverage aseptic filling system according to claim 1, wherein the discharge valve is located between the inner sniff line and the outer snif line.
前記外側スニフトラインは、伸縮自在となっている、請求項2記載の炭酸飲料無菌充填システム。   The aseptic filling system for carbonated beverages according to claim 2, wherein the outer snift line is stretchable. 前記炭酸飲料充填タンクに、炭酸ガス供給ラインと炭酸ガス放出ラインとを連結し、前記炭酸ガス供給ラインと前記炭酸ガス放出ラインとにそれぞれバルブを設け、制御部により前記バルブをそれぞれ制御して前記炭酸飲料充填タンク内の圧力を制御する、請求項1乃至3のいずれか一項記載の炭酸飲料無菌充填システム。   The carbonated beverage filling tank is connected to a carbon dioxide gas supply line and a carbon dioxide gas discharge line, and a valve is provided for each of the carbon dioxide gas supply line and the carbon dioxide gas discharge line. The aseptic filling system for carbonated beverages according to any one of claims 1 to 3, wherein the pressure in the carbonated beverage filling tank is controlled. 前記炭酸飲料充填タンク内の圧力P1と前記炭酸ガス放出ライン内の圧力P2との間で、P1>P2という関係が成り立つ、請求項4記載の炭酸飲料無菌充填システム。   The carbonated beverage aseptic filling system according to claim 4, wherein a relationship of P1> P2 is established between the pressure P1 in the carbonated beverage filling tank and the pressure P2 in the carbon dioxide gas discharge line. 前記炭酸飲料充填タンク内の圧力P1が0.01MPa以下にならないように、前記炭酸ガス供給ラインと前記炭酸ガス放出ラインとに設けられた前記バルブをそれぞれ制御する、請求項4記載の炭酸飲料無菌充填システム。   The carbonated beverage aseptic according to claim 4, wherein the valves provided in the carbon dioxide gas supply line and the carbon dioxide gas discharge line are controlled such that the pressure P1 in the carbonated beverage filling tank does not become 0.01 MPa or less. Filling system.
JP2018117991A 2018-06-21 2018-06-21 Carbonated beverage aseptic filling system Active JP6627918B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018117991A JP6627918B2 (en) 2018-06-21 2018-06-21 Carbonated beverage aseptic filling system
US17/251,268 US11498823B2 (en) 2018-06-21 2019-06-21 Carbonated beverage aseptic filling system, beverage filling system, and CIP processing method
CN202310130757.1A CN116040561A (en) 2018-06-21 2019-06-21 Carbonated beverage sterile filling system, beverage filling system and CIP processing method
CN201980040203.4A CN112313167B (en) 2018-06-21 2019-06-21 Carbonated beverage aseptic filling system, beverage filling system, and CIP processing method
PCT/JP2019/024663 WO2019245019A1 (en) 2018-06-21 2019-06-21 Carbonated beverage aseptic filling system, beverage filling system, and cip processing method
EP19822916.3A EP3812343A4 (en) 2018-06-21 2019-06-21 Carbonated beverage aseptic filling system, beverage filling system, and cip processing method
US17/818,806 US11834315B2 (en) 2018-06-21 2022-08-10 Carbonated beverage aseptic filling system, beverage filling system, and CIP processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018117991A JP6627918B2 (en) 2018-06-21 2018-06-21 Carbonated beverage aseptic filling system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019216751A Division JP6860862B2 (en) 2019-11-29 2019-11-29 Carbonated drink aseptic filling system

Publications (2)

Publication Number Publication Date
JP2019218120A true JP2019218120A (en) 2019-12-26
JP6627918B2 JP6627918B2 (en) 2020-01-08

Family

ID=69095565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018117991A Active JP6627918B2 (en) 2018-06-21 2018-06-21 Carbonated beverage aseptic filling system

Country Status (1)

Country Link
JP (1) JP6627918B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018044A (en) * 2002-06-18 2004-01-22 Kirin Brewery Co Ltd Container filling device
JP2016094250A (en) * 2014-11-11 2016-05-26 クロネス アーゲー Apparatus and method for charging a container with a carbonic acid filling material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018044A (en) * 2002-06-18 2004-01-22 Kirin Brewery Co Ltd Container filling device
JP2016094250A (en) * 2014-11-11 2016-05-26 クロネス アーゲー Apparatus and method for charging a container with a carbonic acid filling material

Also Published As

Publication number Publication date
JP6627918B2 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
JP6044651B2 (en) Method and apparatus for manufacturing package
WO2019245019A1 (en) Carbonated beverage aseptic filling system, beverage filling system, and cip processing method
US20220127126A1 (en) Sterile carbonated beverage filling system and sterile carbonated beverage filling method
JP7205783B2 (en) Carbonated beverage aseptic filling system
US11046567B2 (en) Beverage aseptic filling system and carbonated beverage aseptic filling system
JP6379233B2 (en) Carbonated beverage aseptic filling system
US11655133B2 (en) Cap sterilizer, content filling system, cap sterilization method, and content filling method
JP6449357B2 (en) Beverage aseptic filling system
JP6849009B2 (en) Beverage filling system and CIP processing method
JP6551803B2 (en) Cap sterilizer, content filling system, cap sterilizing method and content filling method
JP6627918B2 (en) Carbonated beverage aseptic filling system
JP7329200B2 (en) Beverage filling system and CIP processing method
JP7157936B2 (en) Beverage filling system and CIP processing method
JP7157937B2 (en) Beverage filling system and CIP processing method
JP6645538B2 (en) Aseptic carbonated beverage filling system and aseptic carbonated beverage filling method
JP2017132547A (en) Aseptic filling apparatus and purifying method for the same
JP2017095115A (en) Aseptic filling device and decontamination method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R150 Certificate of patent or registration of utility model

Ref document number: 6627918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150