JP2019215993A - Production method of coating liquid - Google Patents

Production method of coating liquid Download PDF

Info

Publication number
JP2019215993A
JP2019215993A JP2018111693A JP2018111693A JP2019215993A JP 2019215993 A JP2019215993 A JP 2019215993A JP 2018111693 A JP2018111693 A JP 2018111693A JP 2018111693 A JP2018111693 A JP 2018111693A JP 2019215993 A JP2019215993 A JP 2019215993A
Authority
JP
Japan
Prior art keywords
coating liquid
liquid
defoaming
coating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018111693A
Other languages
Japanese (ja)
Other versions
JP7119607B2 (en
Inventor
頌 加藤
Sho Kato
頌 加藤
三宅 徹
Toru Miyake
徹 三宅
由恵 的場
Yoshie Matoba
由恵 的場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2018111693A priority Critical patent/JP7119607B2/en
Publication of JP2019215993A publication Critical patent/JP2019215993A/en
Application granted granted Critical
Publication of JP7119607B2 publication Critical patent/JP7119607B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a production method of a coating liquid, which efficiently removes bubble contained in the coating liquid for forming a fine porous layer of a gas diffusion electrode.SOLUTION: Provided is a production method of a coating liquid for forming a fine porous layer of a gas diffusion electrode, the coating liquid containing conductive particles and a water repellent resin, where pressure applied to the coating liquid is set by using a defoaming device provided with a means which enables defoaming under a reduced pressure, the coating liquid being sealed in the device, to 30 kPa in absolute pressure or less and a vapor pressure or more of a solvent of the coating liquid at a liquid temperature during a defoaming treatment, and where a preset temperature of the device or a liquid temperature in the device is selected in a range 15 degree C and 0 degree C.SELECTED DRAWING: None

Description

燃料電池は、水素と酸素を反応させて水が生成する際に生起するエネルギーを電気的に取り出す機構であり、エネルギー効率が高く、排出物が水しかないことから、クリーンエネルギーとしてその普及が期待されている。本発明は、燃料電池に用いられるガス拡散電極に関し、特に、燃料電池の中でも燃料電池車などの電源として使用される高分子電解質型燃料電池に用いるガス拡散電極の微多孔層を形成するための塗液の製造方法に関する。   Fuel cells are mechanisms that electrically extract energy generated when hydrogen and oxygen are reacted to produce water, and are expected to spread as clean energy because they have high energy efficiency and only water is discharged. Have been. The present invention relates to a gas diffusion electrode used for a fuel cell, and in particular, for forming a microporous layer of a gas diffusion electrode used for a polymer electrolyte fuel cell used as a power source of a fuel cell vehicle among fuel cells. The present invention relates to a method for producing a coating liquid.

高分子電解質型燃料電池に使用される電極は、高分子電解質型燃料電池において2つのセパレータで挟まれてその間に配置されるもので、高分子電解質膜の両面において、高分子電解質膜の表面に形成される触媒層と、この触媒層の外側に形成されるガス拡散層とからなる構造を有する。電極でのガス拡散層を形成するための個別の部材として、ガス拡散電極が流通している。そして、このガス拡散電極に求められる性能としては、例えばガス拡散性、触媒層で発生した電気を集電するための導電性、および触媒層表面に発生した水分を効率よく除去する排水性などがあげられる。このようなガス拡散電極を得るため、一般的に、ガス拡散能および導電性を兼ね備えた導電性多孔質基材が用いられる。   Electrodes used in a polymer electrolyte fuel cell are sandwiched between two separators in a polymer electrolyte fuel cell, and are disposed between the two separators. It has a structure consisting of a formed catalyst layer and a gas diffusion layer formed outside the catalyst layer. Gas diffusion electrodes are distributed as individual members for forming a gas diffusion layer at an electrode. The performance required of the gas diffusion electrode includes, for example, gas diffusion, conductivity for collecting electricity generated in the catalyst layer, and drainage for efficiently removing moisture generated on the surface of the catalyst layer. can give. In order to obtain such a gas diffusion electrode, generally, a conductive porous substrate having both gas diffusion ability and conductivity is used.

導電性多孔質基材としては、具体的には、炭素繊維からなるカーボンフェルト、カーボンペーパーおよびカーボンクロスなどが用いられ、中でも機械的強度などの点からカーボンペーパーが最も好ましいとされる。   As the conductive porous substrate, specifically, carbon felt made of carbon fiber, carbon paper, carbon cloth, and the like are used, and among them, carbon paper is most preferable in terms of mechanical strength and the like.

上記のような導電性多孔質基材をそのままガス拡散電極として用いると、その繊維の目が粗いため、水蒸気が凝縮すると大きな水滴が発生し、フラッディングを起こしやすい。このため、撥水処理を施した導電性多孔質基材の上に、カーボンブラックなどの導電性微粒子を分散した塗液を塗布し乾燥焼結することにより、微多孔層と呼ばれる層(マイクロポーラスレイヤーともいう)を設ける場合がある。このほか微多孔層の役割としては、導電性多孔質基材の粗さを電解質膜に転写させないための化粧直し効果、また、導電性多孔質基材の空隙を適度に埋めて、触媒層とガス拡散層の接触抵抗(電気抵抗)を低下することなどがある。導電性多孔質基材の粗さ(算術平均粗さ)は通常10〜30μmあるため化粧直し効果を得るためには、基材上の微多孔層厚みは10〜80μmとウェットコーティングとしては大きな厚みを要する。このような厚みを確保するため、また、多孔質基材にしみこまないようにするため、前記微多孔層を形成するための塗液は、高粘度であることが求められる。
また、塗液は環境負荷低減の観点、およびコスト低減の観点から、上記塗液は水系であることが望ましい。溶媒としての水に疎水性の導電性微粒子を分散させる場合、分散剤として界面活性剤を添加することがある。また、塗液の粘度を高くするために、増粘剤として界面活性剤を加える場合がある。このように水系で界面活性剤を添加した塗液は気泡が発生しやすく、また高粘度であるため、一度発生した気泡は抜けにくい。気泡が塗液に含まれたまま塗布を行うと、塗膜に欠点を生じることになる。このため、塗液は塗布を行う前に十分に脱泡しておく必要がある。
液体の脱泡処理の一般的な方法としては、例えば減圧法が挙げられる。具体的には、減圧したタンク内に液体を静置する方法、または、減圧したタンク内にある液体を撹拌する方法がある。しかし、この方法では、特に粘性の高い液体の場合、いったん気泡が混入すると非常に抜けにくいため、バッチ処理では長時間の処理が必要になることがある。また、減圧状態で長時間保持すると、液体の成分によっては揮発によりその成分比が変化してしまう。液体の成分比が変化すると、それを使用する製品の性能が低下することにもなる。
When the conductive porous substrate as described above is used as it is as a gas diffusion electrode, the fibers thereof are coarse, so that when water vapor condenses, large water droplets are generated and flooding is likely to occur. Therefore, a coating liquid in which conductive fine particles such as carbon black are dispersed is applied onto a water-repellent conductive porous base material and dried and sintered to form a layer called a microporous layer (microporous layer). (Also referred to as a layer). In addition, the role of the microporous layer is to make up the effect of preventing the roughness of the conductive porous substrate from being transferred to the electrolyte membrane. For example, the contact resistance (electric resistance) of the diffusion layer may be reduced. Since the roughness (arithmetic mean roughness) of the conductive porous substrate is usually 10 to 30 μm, the thickness of the microporous layer on the substrate should be 10 to 80 μm, which is large for wet coating, in order to obtain a makeup retouching effect. It costs. In order to ensure such a thickness and to prevent penetration into the porous substrate, the coating liquid for forming the microporous layer is required to have a high viscosity.
In addition, the coating liquid is preferably water-based from the viewpoint of reducing the environmental load and cost. When dispersing hydrophobic conductive fine particles in water as a solvent, a surfactant may be added as a dispersant. In order to increase the viscosity of the coating liquid, a surfactant may be added as a thickener. As described above, bubbles are easily generated in the water-based coating liquid to which a surfactant is added, and since the viscosity is high, bubbles generated once are difficult to be removed. If the coating is performed while bubbles are contained in the coating liquid, a defect will occur in the coating film. For this reason, the coating liquid needs to be sufficiently defoamed before coating.
As a general method of the defoaming treatment of the liquid, for example, a decompression method can be mentioned. Specifically, there is a method in which the liquid is allowed to stand in the depressurized tank, or a method in which the liquid in the depressurized tank is stirred. However, in this method, particularly in the case of a highly viscous liquid, once air bubbles are mixed in, it is very difficult to remove the air bubbles, so that a long-time processing may be required in batch processing. In addition, if the liquid is held under a reduced pressure for a long time, the component ratio of the liquid changes due to volatilization. When the composition ratio of the liquid changes, the performance of the product using the liquid also decreases.

そこで、従来の減圧法を改良すべく、高粘性液体の効率的な脱泡方法が検討されている。特許文献1では、粘度が30Pa・s以上の高粘性液体の脱泡について検討されている。より具体的には、減圧状態で液面が排気管に到達した場合は、減圧の排気バルブを閉止して容器内の圧力を上昇させる。そして、液面が低下したら、減圧を再開する。これを繰り返し、減圧しても液面が排気管に到達しなくなったら、撹拌回転数を単位体積当たりの所要動力が1/2になるような回転数に設定し、脱泡が完了するまで減圧下で撹拌する、という脱泡方法である。特許文献2は、セラミック粒子を分散させた液体を容器内で真空引きすると共に、容器を水平面内で振盪させることで液体にせん断応力を作用させ、脱泡する方法が記載されている。   Therefore, in order to improve the conventional decompression method, an efficient defoaming method for a highly viscous liquid has been studied. Patent Document 1 discusses defoaming of a highly viscous liquid having a viscosity of 30 Pa · s or more. More specifically, when the liquid level reaches the exhaust pipe in a reduced pressure state, the pressure in the container is increased by closing the reduced pressure exhaust valve. Then, when the liquid level decreases, the pressure reduction is restarted. If the liquid level does not reach the exhaust pipe even if the pressure is reduced, set the stirring speed to a speed that reduces the required power per unit volume to 1 /, and reduce the pressure until the defoaming is completed. It is a defoaming method of stirring underneath. Patent Literature 2 describes a method in which a liquid in which ceramic particles are dispersed is evacuated in a container and a shear stress is applied to the liquid by shaking the container in a horizontal plane to remove bubbles.

特許文献3には、ペーストを調製後、60torr以下の減圧下に保持する工程が開示されている。   Patent Document 3 discloses a process of preparing a paste and maintaining the paste under a reduced pressure of 60 torr or less.

特開2002−113303号公報JP-A-2002-113303 特開平4−256404号公報JP-A-4-256404 特許第5148036号公報Japanese Patent No. 5148036

しかしながら、特許文献1に記載の脱泡方法は、容器内の圧力や回転数を逐一変化させる必要があり、操作が煩雑となる。 However, the defoaming method described in Patent Document 1 requires that the pressure and the number of rotations in the container be changed one by one, and the operation becomes complicated.

また、分散された微粒子を有する液体の中には、せん断応力を過大に加えると液中の分散構造が変化し、粘度が著しく低下するものも存在するところ、特許文献2に記載の脱泡方法は、大量の液体を処理する場合には、液体に過大なせん断応力をかける必要があり、液体の分散構造に変化が生じる恐れがある。   In addition, in some liquids having dispersed fine particles, when a shear stress is excessively applied, the dispersion structure in the liquid is changed and the viscosity is significantly reduced. In the case of treating a large amount of liquid, it is necessary to apply an excessive shear stress to the liquid, which may cause a change in the dispersion structure of the liquid.

また、特許文献3のように、ペースト調製後に減圧下に保持するだけの方法では、気泡が圧力に応じて膨張して、気泡の上昇速度は上がるものの、脱泡方法として十分ではなかった。   Further, in the method of merely keeping the paste under reduced pressure after the preparation of the paste as in Patent Document 3, although the bubbles expand according to the pressure and the rising speed of the bubbles increases, it is not sufficient as a defoaming method.

本発明の目的は、高粘度塗料に含まれる気泡の除去について、短時間で効率よく行うことができる脱泡方法を提供することである。   An object of the present invention is to provide a defoaming method capable of efficiently removing bubbles contained in a high-viscosity paint in a short time.

本発明のガス拡散電極の微多孔層を形成するための塗液の製造方法は上記の課題を解決するため、次の構成を有する。
(1)導電性粒子および撥水性樹脂を含む、ガス拡散電極の微多孔層を形成するための塗液の製造方法であって、
減圧下で脱泡可能な手段を備える脱泡装置を用いて、
前記装置内に封入された塗液に付与される圧力を、絶対圧で30kPa以下、前記液の溶媒の脱泡処理中の液温における蒸気圧以上として、かつ、
前記装置の設定温度または前記装置内の液温を、15度以下0度より大きい範囲から選ばれるものとする、塗液の製造方法。
(2)前記塗液の粘度は、
23度の温度において1Pa・s以上30Pa・s以下であり、
かつ、15度以下0度より大きい範囲から選ばれる温度における粘度が、23度のときの粘度より1Pa・s以上低い、(1)に記載の塗液の製造方法。
The method for producing a coating liquid for forming a microporous layer of a gas diffusion electrode according to the present invention has the following configuration in order to solve the above problems.
(1) A method for producing a coating liquid for forming a microporous layer of a gas diffusion electrode, comprising a conductive particle and a water-repellent resin,
Using a defoaming device equipped with means capable of defoaming under reduced pressure,
The pressure applied to the coating liquid sealed in the apparatus is 30 kPa or less in absolute pressure, not less than the vapor pressure at the liquid temperature during the defoaming treatment of the solvent of the liquid, and
A method for producing a coating liquid, wherein a set temperature of the apparatus or a liquid temperature in the apparatus is selected from a range of 15 degrees or less and greater than 0 degrees.
(2) The viscosity of the coating liquid is
At a temperature of 23 degrees Celsius is 1 Pa.s or more and 30 Pa.s or less,
(1) The method for producing a coating liquid according to (1), wherein the viscosity at a temperature selected from the range of 15 degrees or less and greater than 0 degrees is 1 Pa · s or more lower than the viscosity at 23 degrees.

本発明の製造方法を用いることにより、効率的に高粘度塗液から気泡が除去できるため、製造効率が高められる。また、ガス拡散層の微多孔層における塗布欠点のないガス拡散電極が収率高く得られ、ガス拡散層、ひいては燃料電池の製造コストを低減することができる。   By using the production method of the present invention, bubbles can be efficiently removed from the high-viscosity coating solution, and thus the production efficiency is improved. In addition, a gas diffusion electrode having no coating defect in the microporous layer of the gas diffusion layer can be obtained with a high yield, and the manufacturing cost of the gas diffusion layer and thus the fuel cell can be reduced.

本発明の微多孔層塗液の脱泡の実施例に用いた減圧可能な水冷ジャケット付き攪拌タンクの略図Schematic diagram of a decompressible water-cooled jacketed stirring tank used in Examples of defoaming the microporous layer coating liquid of the present invention 本発明の微多孔層塗液の塗布に用いた装置の略図Schematic diagram of the apparatus used for applying the microporous layer coating liquid of the present invention

本発明の製造方法が対象とするガス拡散電極は、導電性多孔質基材の少なくとも片面に微多孔層を有する。もしくは、微多孔層のみでもよい。このような本発明の対象とするガス拡散電極に関し、初めに導電性多孔質基材について説明する。   The gas diffusion electrode targeted by the production method of the present invention has a microporous layer on at least one surface of a conductive porous substrate. Alternatively, only the microporous layer may be used. Regarding such a gas diffusion electrode to which the present invention is applied, a conductive porous substrate will be described first.

高分子電解質型燃料電池において、ガス拡散電極は、セパレータから供給されるガスを触媒へと拡散するための高いガス拡散性、電気化学反応に伴って生成する水をセパレータへ排出するための高い排水性、発生した電流を取り出すため、高い導電性が要求される。このためガス拡散電極には、導電性を有し、通常10μm以上100μm以下の領域に細孔径のピークを有する多孔体からなる基材である導電性多孔質基材が用いられる。   In a polymer electrolyte fuel cell, a gas diffusion electrode has a high gas diffusivity for diffusing gas supplied from a separator to a catalyst, and a high drainage for discharging water generated by an electrochemical reaction to the separator. In order to take out the generated current and generated current, high conductivity is required. For this reason, a conductive porous substrate, which is a porous substrate having conductivity and having a pore diameter peak in a region of usually 10 μm or more and 100 μm or less, is used for the gas diffusion electrode.

導電性多孔質基材としては、具体的には、例えば、炭素繊維織物、炭素繊維抄紙体、炭素繊維不織布、カーボンフェルト、カーボンペーパー、カーボンクロスなどの炭素繊維を含む多孔質基材、発泡焼結金属、金属メッシュ、エキスパンドメタルなどの金属多孔質基材を用いることが好ましい。中でも、耐腐食性が優れることから、炭素繊維を含むカーボンフェルト、カーボンペーパー、カーボンクロスなどの多孔質基材を用いることが好ましく、中でも、電解質膜の厚み方向の寸法変化を吸収する特性、すなわち「ばね性」に優れることから、炭素繊維抄紙体を炭化物で結着してなる基材、すなわちカーボンペーパーを用いることが好適である。   As the conductive porous substrate, specifically, for example, a porous substrate containing carbon fibers such as carbon fiber woven fabric, carbon fiber paper, carbon fiber nonwoven fabric, carbon felt, carbon paper, carbon cloth, foam firing It is preferable to use a porous metal substrate such as a binding metal, a metal mesh, or an expanded metal. Among them, it is preferable to use a porous substrate such as carbon felt containing carbon fibers, carbon paper, carbon cloth, etc., since the corrosion resistance is excellent, and in particular, the property of absorbing a dimensional change in the thickness direction of the electrolyte membrane, that is, It is preferable to use a base material obtained by binding a carbon fiber paper body with a carbide, that is, carbon paper, because of its excellent “spring properties”.

ガス拡散電極のガス拡散性を高めて燃料電池の発電性能を極力高めるため、導電性多孔質基材には高い空隙率が求められる。空隙率は好ましくは80%以上、さらに好ましくは85%以上である。空隙率の上限としては導電性多孔質基材がその構造を保ちうる限界として95%である。   In order to increase the gas diffusivity of the gas diffusion electrode and to maximize the power generation performance of the fuel cell, a high porosity is required for the conductive porous substrate. The porosity is preferably at least 80%, more preferably at least 85%. The upper limit of the porosity is 95% as a limit that the conductive porous substrate can keep its structure.

また、カーボンペーパーなどの導電性多孔質基材の厚みを薄くすることによっても、ガス拡散電極のガス拡散性を高めることができるので、カーボンペーパーなどの導電性多孔質基材の厚みは220μm以下が好ましく、150μm以下がさらに好ましく、さらに好ましくは120μm以下である。導電性多孔質基材の厚み下限を50μmとすると、機械的強度を保ち、製造工程でのハンドリングを容易とできるので好ましい。導電性基材の厚みを薄くすることは、燃料電池としたときの厚み方向の電気抵抗を低減する意味でも有効である。     Also, by reducing the thickness of the conductive porous substrate such as carbon paper, the gas diffusibility of the gas diffusion electrode can be increased, so that the thickness of the conductive porous substrate such as carbon paper is 220 μm or less. Is preferably 150 μm or less, more preferably 120 μm or less. It is preferable that the lower limit of the thickness of the conductive porous substrate be 50 μm, because mechanical strength can be maintained and handling in the manufacturing process can be facilitated. Reducing the thickness of the conductive substrate is also effective in reducing the electric resistance in the thickness direction when the fuel cell is used.

上記導電性多孔質基材を用いてガス拡散電極を効率よく製造するためには、上記導電性多孔質基材を長尺に巻いた状態のものを巻き出して、巻き取るまでの間に連続的に微多孔層を形成することが好ましい。   In order to efficiently manufacture a gas diffusion electrode using the conductive porous substrate, the conductive porous substrate is unwound in a state in which the conductive porous substrate is rolled up in a long length, and is continuously wound before being wound. It is preferable to form a microporous layer.

導電性多孔質基材は、排水性を高めるため撥水処理が施されていても良い。撥水処理は、フッ素樹脂などの撥水性樹脂を用いて行うことが好ましい。フッ素樹脂としては、PTFE(ポリテトラフルオロエチレン)(たとえば“テフロン”(登録商標))、FEP(四フッ化エチレン六フッ化プロピレン共重合体)、PFA(ペルフルオロアルコキシフッ化樹脂)、ETFA(エチレン四フッ化エチレン共重合体)、PVDF(ポリフッ化ビニリデン)、PVF(ポリフッ化ビニル)等が挙げられるが、強い撥水性を発現するPTFE、あるいはFEPが好ましい。   The conductive porous substrate may be subjected to a water-repellent treatment in order to enhance drainage. The water-repellent treatment is preferably performed using a water-repellent resin such as a fluororesin. Examples of the fluororesin include PTFE (polytetrafluoroethylene) (for example, “Teflon” (registered trademark)), FEP (ethylene tetrafluoride hexafluoropropylene copolymer), PFA (perfluoroalkoxy fluorinated resin), ETFA (ethylene Examples thereof include tetrafluoroethylene copolymer), PVDF (polyvinylidene fluoride), and PVF (polyvinyl fluoride), and PTFE or FEP exhibiting strong water repellency is preferable.

撥水性樹脂の量は特に限定されないが、導電性多孔質基材の全体100質量%中に0.1質量%以上20質量%以下が好ましい。この範囲であると、撥水性が十分に発揮され、一方、撥水性樹脂がガスの拡散経路あるいは排水経路となる細孔を塞いでしまったり、電気抵抗が上がったりする可能性が低い。   The amount of the water-repellent resin is not particularly limited, but is preferably 0.1% by mass or more and 20% by mass or less based on 100% by mass of the whole conductive porous substrate. In this range, the water repellency is sufficiently exhibited, while the water repellent resin is less likely to block the pores serving as the gas diffusion path or the drain path, or to increase the electric resistance.

導電性多孔質基材を撥水処理する方法は、一般的に知られている撥水性樹脂を含むディスパージョンに導電性多孔質基材を浸漬する処理技術のほか、ダイコート、スプレーコートなどによって導電性多孔質基材に撥水性樹脂を塗布する塗布技術も適用可能である。また、フッ素樹脂のスパッタリングなどのドライプロセスによる加工も適用できる。なお、撥水処理の後、必要に応じて乾燥工程、さらには焼結工程を加えても良い。   The method of water-repellent treatment of the conductive porous base material includes, in addition to a generally known processing technique of dipping the conductive porous base material in a dispersion containing a water-repellent resin, conductive coating by die coating, spray coating, or the like. An application technique for applying a water-repellent resin to a porous substrate is also applicable. Processing by a dry process such as sputtering of a fluororesin can also be applied. After the water repellent treatment, a drying step and a sintering step may be added as necessary.

次いで、微多孔層について説明する。微多孔層は、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、炭素繊維のチョップドファイバー、グラフェン、黒鉛などの導電性粒子を含んだ層である。導電性粒子としては、コストが低く、安全性や製品の品質の安定性の点から、カーボンブラックが好適に用いられる。微多孔層中に含まれるカーボンブラックとしては、不純物が少なく触媒の活性を低下させにくいという点でアセチレンブラックが好適に用いられる。
また、微多孔層には、導電性、ガス拡散性、水の排水性、あるいは保湿性、熱伝導性といった特性、さらには燃料電池内部のアノード側での耐強酸性、カソード側での耐酸化性が求められるため、微多孔層は、導電性粒子に加えて、フッ素樹脂をはじめとする撥水性樹脂を含むことが好ましい。微多孔層に含まれるフッ素樹脂としては、導電性多孔質基材を撥水する際に好適に用いられるフッ素樹脂と同様、PTFE、FEP、PFA、ETFA等が上げられる。撥水性が特に高いという点でPTFE、あるいはFEPが好ましい。
Next, the microporous layer will be described. The microporous layer is a layer containing conductive particles such as carbon black, carbon nanotubes, carbon nanofibers, chopped carbon fibers, graphene, and graphite. As the conductive particles, carbon black is preferably used from the viewpoint of low cost, safety and stability of product quality. As carbon black contained in the microporous layer, acetylene black is preferably used because it has few impurities and is hard to lower the activity of the catalyst.
In addition, the microporous layer has properties such as conductivity, gas diffusion, water drainage, moisture retention, and thermal conductivity, as well as strong acid resistance on the anode side inside the fuel cell and oxidation resistance on the cathode side. Since the microporous layer is required to have a property, it is preferable that the microporous layer contains a water-repellent resin such as a fluororesin in addition to the conductive particles. Examples of the fluororesin contained in the microporous layer include PTFE, FEP, PFA, ETFA and the like, similarly to the fluororesin suitably used when water repelling the conductive porous substrate. PTFE or FEP is preferred because of its particularly high water repellency.

ガス拡散電極が微多孔層を有するためには、導電性多孔質基材に、微多孔層を形成するための塗液(以下、塗液という)を塗布することが一般的である。塗液は通常、前記導電性粒子と水やアルコールなどの分散媒を含むが、環境負荷低減、塗布乾燥工程の簡略化の観点から水を溶媒として用いることが好ましい。導電性粒子を分散するための分散剤として、界面活性剤などが配合されることが多い。また、微多孔層に撥水性樹脂を含ませる場合には、塗液には予め撥水性樹脂を含ませておくことが好ましい。   In order for the gas diffusion electrode to have a microporous layer, it is common to apply a coating liquid (hereinafter, referred to as a coating liquid) for forming the microporous layer to the conductive porous substrate. The coating liquid usually contains the conductive particles and a dispersion medium such as water or alcohol, but it is preferable to use water as a solvent from the viewpoint of reducing the environmental load and simplifying the coating and drying process. Surfactants and the like are often blended as a dispersant for dispersing the conductive particles. When the water-repellent resin is contained in the microporous layer, it is preferable that the coating liquid contains the water-repellent resin in advance.

微多孔層のみでガス拡散電極を形成するためには、フィルムに塗布し剥離することが一般的である。   In order to form a gas diffusion electrode only with a microporous layer, it is common to apply and peel off a film.

塗液中の導電性粒子の濃度は、塗液生産性の点から、好ましくは5質量%以上、より好ましくは10質量%以上である。粘度、導電性粒子の分散安定性、塗液の塗布性などが好適であれば濃度に上限はない。導電性粒子としてアセチレンブラックを用いた場合には、水系塗液の場合、塗液中のアセチレンブラックの濃度は25質量%またはその付近を上限とするのが好ましく、この好ましい範囲であると、アセチレンブラック同士が再凝集して、いわゆるパーコレーションが発生することはなく、急激な粘度増加で塗液の塗布性が損なわれる可能性が低い。   The concentration of the conductive particles in the coating liquid is preferably 5% by mass or more, more preferably 10% by mass or more, from the viewpoint of coating liquid productivity. There is no upper limit on the concentration as long as the viscosity, the dispersion stability of the conductive particles, and the applicability of the coating liquid are favorable. When acetylene black is used as the conductive particles, in the case of an aqueous coating solution, the upper limit of the concentration of acetylene black in the coating solution is preferably at or around 25% by mass. Black does not re-aggregate, so-called percolation does not occur, and there is a low possibility that the applicability of the coating liquid is impaired due to a sharp increase in viscosity.

微多孔層の役割としては、(1)触媒の保護、(2)目の粗い導電性多孔質基材の表面が電解質膜に転写しないようにする化粧直し効果、(3)カソードで発生する水蒸気を凝縮防止の効果などである。上記のうち、化粧直し効果を発現するためには、微多孔層がある程度の厚みを有することが好ましい。また、微多孔層のみでガス拡散電極を形成するためには、強度の観点でもある程度の厚みを有することが好ましい。   The role of the microporous layer is as follows: (1) protection of the catalyst; (2) a makeup repair effect of preventing the surface of the coarse conductive porous substrate from being transferred to the electrolyte membrane; and (3) water vapor generated at the cathode. This is the effect of preventing condensation. Of the above, it is preferable that the microporous layer has a certain thickness in order to exhibit a makeup retouching effect. Further, in order to form a gas diffusion electrode only with a microporous layer, it is preferable to have a certain thickness from the viewpoint of strength.

本発明の製造方法が対象となる微多孔層の厚みは、導電性多孔質基材に塗布する場合は、現状の導電性多孔質基材の粗さを考慮すれば、乾燥膜厚で10μmより大きく60μm以下であることが好ましい。微多孔層の厚みが10μm以下であると、前記した化粧直し効果が不足することがあり、60μmを超えるとガス拡散電極自体のガス拡散性(透過性)が低下したり、電気抵抗が高くなったりすることがある。ガス拡散性を高める、あるいは電気抵抗を下げるという観点からは、微多孔層の厚みは、好ましくは50μm以下、より好ましくは40μm以下である。微多孔層は、導電性多孔質基材の空孔に浸み込み、導電性多孔質基材中に微多孔層の染み込み部分が形成される場合があるが、微多孔層の厚みは、この浸み込み部分は除いて、導電性多孔質基材の外側に存在する部分の厚みのみで評価する。つまり、微多孔層の厚みはガス拡散層の厚みから導電性多孔質基材の厚みを引いた値と定義される。微多孔層の微多孔層のみの場合は、強度の観点から10μmより大きく、5mm以下であることが好ましい。微多孔層10μm以下であると強度が弱くなり、燃料電池としたときの耐久性が弱くなったり、ハンドリングが困難となったりする。5mmを超えるとガス拡散性(透過性)が低下したり、電気抵抗が高くなったりすることがある。ガス拡散性を高める、あるいは電気抵抗を下げるという観点からは、微多孔層の厚みは、好ましくは1mm以下、より好ましくは500μm以下、さらに好ましくは100μm以下である。   The thickness of the microporous layer targeted by the production method of the present invention is, when applied to a conductive porous substrate, the dry film thickness is more than 10 μm in consideration of the current roughness of the conductive porous substrate. It is preferably as large as 60 μm or less. If the thickness of the microporous layer is 10 μm or less, the above-described makeup repair effect may be insufficient, and if it exceeds 60 μm, the gas diffusion property (permeability) of the gas diffusion electrode itself may decrease or the electrical resistance may increase. Sometimes. The thickness of the microporous layer is preferably 50 μm or less, more preferably 40 μm or less, from the viewpoint of increasing gas diffusivity or reducing electric resistance. The microporous layer may penetrate into the pores of the conductive porous substrate, and a portion of the microporous layer may be formed in the conductive porous substrate. The evaluation is made only by the thickness of the portion existing outside the conductive porous substrate, excluding the infiltrated portion. That is, the thickness of the microporous layer is defined as a value obtained by subtracting the thickness of the conductive porous substrate from the thickness of the gas diffusion layer. When only the microporous layer is used, the thickness is preferably larger than 10 μm and 5 mm or less from the viewpoint of strength. If the microporous layer has a thickness of 10 μm or less, the strength becomes weak, the durability of the fuel cell becomes weak, and the handling becomes difficult. If it exceeds 5 mm, the gas diffusivity (permeability) may decrease or the electric resistance may increase. The thickness of the microporous layer is preferably 1 mm or less, more preferably 500 μm or less, and still more preferably 100 μm or less, from the viewpoint of increasing gas diffusivity or reducing electric resistance.

塗液は、通常、前記したように分散剤を用いて導電性粒子を分散して調製する。導電性粒子を分散させるためには、導電性粒子に対して、分散剤として界面活性剤を用いて分散させることが好ましい。この分散を長時間安定させて塗液粘度の上昇を防ぎ、液が分離したりしないようにするために、分散剤の添加量は、塗液中の導電性粒子の10質量%以上であることが好ましい。500質量%以上であると塗料焼結工程時に負荷がかかることがあるため好ましくない。10質量%未満では、塗液の分散安定が確保できず、粘度の低下などの変化を起こすことがある。また、温度の低下によって粘度が低下する分散剤を用いて導電性粒子を分散し塗液を作製するときのように、塗液自体の粘度が、温度低下によって低下する特性を示すことがある。本発明は、このような特性を示す塗液を用いた場合に特に顕著な効果を示す。すなわち、脱泡処理時の温度を低下させることで、塗液の粘度が低下することから、脱泡効率がより向上する効果が確認される。   The coating liquid is usually prepared by dispersing conductive particles using a dispersant as described above. In order to disperse the conductive particles, the conductive particles are preferably dispersed using a surfactant as a dispersant. In order to stabilize the dispersion for a long time and prevent the viscosity of the coating liquid from increasing and prevent the liquid from being separated, the amount of the dispersant added should be 10% by mass or more of the conductive particles in the coating liquid. Is preferred. When the content is 500% by mass or more, a load may be applied during the paint sintering step, which is not preferable. If the amount is less than 10% by mass, the dispersion stability of the coating liquid cannot be secured, and a change such as a decrease in viscosity may occur. Further, as in the case of preparing a coating liquid by dispersing conductive particles using a dispersant whose viscosity decreases with a decrease in temperature, the viscosity of the coating liquid itself may exhibit a characteristic of decreasing with a decrease in temperature. The present invention exhibits a particularly remarkable effect when a coating liquid having such characteristics is used. That is, by lowering the temperature during the defoaming treatment, the viscosity of the coating liquid is reduced, and thus the effect of further improving the defoaming efficiency is confirmed.

また、前記したように微多孔層の厚みを乾燥後の塗膜として10μmより大きくする場合、塗布時の塗液の粘度を少なくとも1Pa・s以上に保つことが好ましい。塗液の粘度がこれより低いと、塗液が導電性多孔質基材やフィルムの表面上で流れ、所望の厚みを確保できないことがあったり、導電性多孔質基材の細孔に塗液が流入して裏抜けを起こしてしまったりすることがある。逆に、塗液を高粘度にしすぎると、塗布性が低下することがあるため、上限は30Pa・sである。塗液の好ましい粘度は、3Pa・s以上20Pa・s以下、より好ましくは5Pa・s以上15Pa・s以下である。上記の上限のいずれかと下限のいずれかの組み合わせによる範囲であってもよい。本発明において、第1の微多孔層を形成した後、次いで、第2の微多孔層を形成するための塗液(以下、第2の塗液)を塗布して第2の微多孔層を形成することが好ましいことがあるが、第2の塗液の粘度は、第1の微多孔層を形成するための塗液(以下、第1の塗液)の粘度よりも低いことが好ましく、かつ10Pa・s以下であることが望ましい。また、前記したような温度低下により粘度が低下する特性を示す塗料の場合、温度23度において前記した粘度範囲であることが好ましく、さらに、15度以下かつ0度より大きい範囲から選ばれるある温度における粘度が、23度のときの粘度より1Pa・s以上低いことが好ましい。さらに好ましくは23度のときの粘度より2Pa・s以上低く、特に好ましくは23度のときの粘度より4Pa・s以上低いことである。15度以下かつ0度の全温度範囲において上記粘度低下があることがより好ましい。この粘度差が低ければ、その分脱泡特性が向上すると考えられるが、粘度の下限は、塗液に含まれる溶媒単体のその温度での粘度であり、この粘度より下がることは物性上考えられない。   When the thickness of the microporous layer is made larger than 10 μm as a coating film after drying as described above, it is preferable that the viscosity of the coating liquid at the time of coating be kept at least 1 Pa · s or more. If the viscosity of the coating liquid is lower than this, the coating liquid may flow on the surface of the conductive porous substrate or film and may not have a desired thickness, or the coating liquid may flow into the pores of the conductive porous substrate. May flow in and cause strikethrough. Conversely, if the viscosity of the coating liquid is too high, the coatability may decrease, so the upper limit is 30 Pa · s. The preferred viscosity of the coating liquid is 3 Pa · s or more and 20 Pa · s or less, more preferably 5 Pa · s or more and 15 Pa · s or less. The range may be a combination of any of the above upper limits and any of the lower limits. In the present invention, after forming the first microporous layer, a coating liquid for forming the second microporous layer (hereinafter, a second coating liquid) is applied to form the second microporous layer. Although it may be preferable to form, the viscosity of the second coating liquid is preferably lower than the viscosity of the coating liquid for forming the first microporous layer (hereinafter, the first coating liquid), And it is desirable that it is 10 Pa.s or less. Further, in the case of a coating material exhibiting the property of decreasing the viscosity due to the temperature decrease as described above, it is preferable that the viscosity is within the above-mentioned viscosity range at a temperature of 23 ° C. Is preferably 1 Pa · s or more lower than the viscosity at 23 degrees. It is more preferably lower than the viscosity at 23 degrees by 2 Pa.s or more, and particularly preferably lower than the viscosity at 23 degrees by 4 Pa.s or more. It is more preferable that the above-mentioned viscosity decrease occurs in the entire temperature range of 15 degrees or less and 0 degrees. It is considered that the lower the viscosity difference, the better the defoaming property is.However, the lower limit of the viscosity is the viscosity of the solvent alone contained in the coating liquid at that temperature, and it is considered that the viscosity is lower than this in terms of physical properties. Absent.

上記のように塗液の粘度を高粘度に保つためには、増粘剤を添加することが有効である。ここで用いる増粘剤は、一般的に良く知られたもので良い。例えば、メチルセルロース系、ポリエチレングリコール系、ポリビニルアルコール系などが好適に用いられる。   In order to keep the viscosity of the coating liquid high as described above, it is effective to add a thickener. The thickener used here may be a generally well-known one. For example, a methylcellulose type, a polyethylene glycol type, a polyvinyl alcohol type or the like is suitably used.

これらの分散剤や増粘剤は、同じ物質に二つ以上の機能を持たせても良く、またそれぞれの機能に適した素材を選んでも良い。ただし、増粘剤と分散剤を別個に選定する場合には、導電性粒子の分散系および撥水性樹脂であるフッ素樹脂の分散系を壊さないものを選ぶことが好ましい。上記分散剤と増粘剤は、ここでは界面活性剤と総称する。塗液の高粘度、分散安定を保つために、界面活性剤の総量が、導電性粒子の添加質量の10質量%以上が好ましく、より好ましくは50質量%以上、さらに好ましくは100質量%以上である。界面活性剤の添加量の好ましい上限としては、通常導電性粒子の添加質量の500質量%以下であり、この好ましい範囲であると後の焼結工程において蒸気や分解ガスが発生しにくく、安全性、生産性を確保できる。
これらの成分を含んだ塗液は、各種の分散装置で各成分を分散することができるが、上記のような成分を含む塗液は、分散を進めすぎると粘度が低下する場合が多く、固形分で粘度を調整しても多孔質基材に塗液が滲みこむ傾向がある。このため、分散を低いレベルで留めておき、これを保つことが必要となる場合がある。従い、塗液調製後、基材へ塗布するまで、導電性粒子の分散状態を変化させるようなせん断力を極力かけないことが好ましい。
上記のように、調製された塗液は、水系で界面活性剤が添加されているため、攪拌などの操作により気泡が発生しやすい。気泡が塗液に含まれたまま基材に塗布されると、気泡の存在する部分に塗膜が形成されずに、いわゆる塗布抜けと言う現象が置き、その部分は微多孔層の機能が低下してしまう恐れがある。そこで、塗液は塗布前に十分脱泡しておく必要がある。
本発明の脱泡方法では、塗液を減圧下で脱泡可能な装置を少なくとも備える脱泡装置を用いる。
塗液を減圧下で脱泡できる装置は、減圧下で塗液から脱泡をする能力を有する装置であればいかなるものでも良く、例えば、減圧可能な容器や、減圧可能な容器に攪拌翼がついた構造の、いわゆる攪拌タンク、遊星式攪拌装置(自転公転ミキサー)、連続式脱泡機、脱泡ポンプ、等が挙げられる。減圧下で塗液から脱泡をする能力を有する装置の圧力を調整するための手段は、前記装置内に封入された塗液に付与される圧力、言い換えれば脱泡に寄与する圧力を、絶対圧として、30kPa以下、かつ、上記装置内の液の溶媒の脱泡処理中の液の温度における蒸気圧以上にすることができればいかなるものでも良く、例えば、真空ポンプや、アスピレータ等が挙げられる。前記装置、又は前記装置内の液の温度を制御する手段としては、脱泡処理が行われている瞬間の液の温度が制御できる手段であればいかなるものでも良く、例えば、温調可能な部屋に脱泡装置を置くことや、水冷式ジャケットとチラー、ペルチェ素子、あらかじめ冷やした塗液を使用すること等が挙げられる。
本発明における脱泡方法においては、温度を制御する手段を用いて、減圧下で塗液から脱泡可能な装置における液温を15度以下、かつ0度より大きく保つ。ただし、脱泡に比較的時間を要することがあるので、上記装置における設定温度を上記範囲とすることでもよく、結果的に液温は上記範囲となるとみなせる。一方、必ずしも脱泡を行う装置の温度を上記範囲に設定しなくてもよく、例えば、別の装置または容器内で塗液を上記範囲として、脱泡装置に移してもよく、この場合、周囲雰囲気を調整するなどして、脱泡中に塗液の液温が上記範囲から外れることがなければよい。
液温の設定の理由について、15度を超えると温度が高すぎて効率向上効果が薄く、0度以下にすると凍結の可能性がある。さらに好ましくは10度以下4度以上である。上記の上限のいずれかと下限のいずれかの組み合わせによる範囲であってもよい。
また、前記装置の脱泡に寄与する圧力は、絶対圧として、塗液に含まれる溶媒の脱泡中の温度での蒸気圧以上であることが、減圧沸騰により溶媒が蒸発し導電性粒子濃度が変化してしまうことを抑制するためによい。上記の理由から、塗液に溶媒が複数種類含まれる場合、その全ての溶媒の蒸気圧以上であることがよい。一方、あまりにも圧力が高すぎると、脱泡の効率が損なわれるため、絶対圧として30kPa以下であることがよく、30kPa以下かつ前記蒸気圧+10kPa以下であることが好ましい。より好ましくは、前記蒸気圧+5kPa以下、さらに好ましくは前記蒸気圧同等である。また、蒸気圧は塗液の温度によっても変化するため、脱泡時の液温に応じて、圧力を変化させてもよい。
上記のようにして調製、脱泡した塗液は、導電性多孔質基材に塗布され、もしくはフィルムに塗布後剥離され、ガス拡散電極が製造される。
These dispersants and thickeners may have the same substance have two or more functions, and materials suitable for each function may be selected. However, when the thickener and the dispersant are separately selected, it is preferable to select one that does not break the dispersion of the conductive particles and the dispersion of the fluororesin that is the water-repellent resin. The dispersant and the thickener are collectively referred to herein as a surfactant. In order to maintain high viscosity and dispersion stability of the coating liquid, the total amount of the surfactant is preferably 10% by mass or more, more preferably 50% by mass or more, even more preferably 100% by mass or more of the added mass of the conductive particles. is there. The preferable upper limit of the amount of the surfactant added is usually 500% by mass or less of the added mass of the conductive particles, and within this preferable range, it is difficult to generate steam or decomposition gas in the subsequent sintering step, and the safety is increased. , Ensuring productivity.
The coating liquid containing these components can be dispersed with various dispersing devices, but the coating liquid containing the components as described above often decreases in viscosity if dispersion is excessively advanced, Even if the viscosity is adjusted in minutes, the coating liquid tends to seep into the porous substrate. For this reason, it may be necessary to keep the variance at a low level and keep it. Therefore, it is preferable that a shearing force that changes the dispersion state of the conductive particles is not applied as much as possible after the preparation of the coating solution and before the application to the substrate.
As described above, since the prepared coating liquid contains a surfactant in an aqueous system, bubbles are easily generated by operations such as stirring. If air bubbles are applied to the substrate while being contained in the coating liquid, a coating film is not formed in the area where the air bubbles are present, and a phenomenon called so-called coating loss occurs, which deteriorates the function of the microporous layer. There is a risk of doing it. Therefore, the coating liquid must be sufficiently defoamed before coating.
In the defoaming method of the present invention, a defoaming device including at least a device capable of defoaming the coating liquid under reduced pressure is used.
The device capable of defoaming the coating solution under reduced pressure may be any device capable of defoaming from the coating solution under reduced pressure.For example, a decompressible container or a stirring blade in a decompressible container may be used. Examples include a so-called stirring tank, a planetary stirring device (rotating revolving mixer), a continuous defoaming machine, and a defoaming pump having a used structure. Means for adjusting the pressure of a device capable of defoaming from a coating solution under reduced pressure is a pressure applied to the coating solution sealed in the device, in other words, a pressure contributing to defoaming, Any pressure can be used as long as the pressure can be set to 30 kPa or less and the vapor pressure at the temperature of the liquid during the defoaming treatment of the solvent in the liquid in the above-described apparatus, and examples thereof include a vacuum pump and an aspirator. As the means for controlling the temperature of the liquid in the apparatus or the apparatus, any means can be used as long as the temperature of the liquid at the moment when the defoaming treatment is performed can be controlled. And using a water-cooled jacket and chiller, a Peltier element, and a pre-cooled coating liquid.
In the defoaming method of the present invention, the temperature of the device capable of defoaming from the coating liquid under reduced pressure is maintained at 15 ° C. or lower and higher than 0 ° C. using a means for controlling the temperature. However, since relatively long time may be required for defoaming, the set temperature in the above apparatus may be set in the above range, and as a result, the liquid temperature can be considered to be in the above range. On the other hand, the temperature of the defoaming device does not necessarily need to be set in the above range.For example, the coating liquid may be transferred to the defoaming device in another device or container in the above range, It is sufficient that the temperature of the coating liquid does not deviate from the above range during defoaming by adjusting the atmosphere or the like.
Regarding the reason for setting the liquid temperature, if the temperature exceeds 15 degrees, the temperature is too high and the efficiency improvement effect is small, and if it is 0 degrees or less, there is a possibility of freezing. More preferably, it is 10 degrees or less and 4 degrees or more. The range may be a combination of any of the above upper limits and any of the lower limits.
Further, the pressure contributing to the defoaming of the above-described apparatus is, as an absolute pressure, equal to or higher than the vapor pressure at the temperature during the defoaming of the solvent contained in the coating liquid. It is good for suppressing that it changes. For the above reasons, when a plurality of types of solvents are contained in the coating liquid, it is preferable that the vapor pressure be equal to or higher than the vapor pressure of all the solvents. On the other hand, if the pressure is too high, the efficiency of defoaming is impaired. Therefore, the absolute pressure is preferably 30 kPa or less, more preferably 30 kPa or less and the vapor pressure +10 kPa or less. More preferably, the vapor pressure is equal to or lower than +5 kPa, and further preferably, the vapor pressure is equal to the vapor pressure. Further, since the vapor pressure also changes depending on the temperature of the coating liquid, the pressure may be changed according to the liquid temperature at the time of defoaming.
The coating liquid prepared and defoamed as described above is applied to a conductive porous substrate or peeled off after being applied to a film to produce a gas diffusion electrode.

塗液の導電性多孔質基材、もしくはフィルムへの塗布は、市販されている各種の塗布装置を用いて行うことができる。塗布方式としては、スクリーン印刷、ロータリースクリーン印刷、スプレー噴霧、凹版印刷、グラビア印刷、ダイコーター塗布、バー塗布、ブレード塗布、ロールナイフコーター塗布などが使用できるが、導電性多孔質基材の表面粗さによらず塗布量の定量化を図ることができるため、ダイコーターによる塗布が好ましい。また、燃料電池にガス拡散電極を組み込んだ場合に触媒層との密着を高めるため塗布面の平滑性を求める場合には、ブレードコーターやロールナイフコーターによる塗布が好適に用いられる。以上のとおり示した塗布方法はあくまでも例示のためであり、必ずしもこれらに限定されるものではない。   The application of the coating liquid to the conductive porous substrate or film can be performed using various commercially available coating apparatuses. As the coating method, screen printing, rotary screen printing, spray spraying, intaglio printing, gravure printing, die coater coating, bar coating, blade coating, roll knife coater coating, etc. can be used, but the surface roughness of the conductive porous substrate can be used. The application by a die coater is preferable because the amount of application can be quantified regardless of this. Further, when a gas diffusion electrode is incorporated in a fuel cell, when smoothness of the coated surface is required to enhance adhesion to the catalyst layer, coating with a blade coater or a roll knife coater is preferably used. The application methods described above are for illustration only, and are not necessarily limited thereto.

塗液を塗布した後、必要に応じ、塗液の分散媒(水系の場合は水)を乾燥除去する。塗布後の乾燥の温度は、分散媒が水の場合、室温(20℃前後)から150℃以下が望ましく、さらに好ましくは60℃以上120℃以下が好ましい。上記の上限のいずれかと下限のいずれかの組み合わせによる範囲であってもよい。この分散媒(たとえば水)の乾燥は後の焼結工程において一括して行なっても良い。   After applying the coating solution, the dispersion medium (water in the case of an aqueous system) of the coating solution is dried and removed as necessary. When the dispersion medium is water, the drying temperature after coating is preferably from room temperature (about 20 ° C.) to 150 ° C. or lower, more preferably from 60 ° C. to 120 ° C. The range may be a combination of any of the above upper limits and any of the lower limits. The drying of the dispersion medium (for example, water) may be performed collectively in a subsequent sintering step.

塗液を塗布した後、塗液に用いた界面活性剤を除去する目的および撥水性樹脂を一度溶解して導電性粒子を結着させる目的で、焼結を行なうことが一般的である。   After applying the coating liquid, sintering is generally performed for the purpose of removing the surfactant used in the coating liquid and for dissolving the water-repellent resin once to bind the conductive particles.

焼結の温度は、添加されている界面活性剤の沸点あるいは分解温度にもよるが、250℃以上、400℃以下で行なうことが好ましい。焼結の温度がこの好ましい範囲であると、界面活性剤の除去が十分に達成でき、一方、撥水性樹脂の分解が起こる可能性も低い。微多孔層のみの場合、焼結を行うためには基材のフィルムに高耐熱性が求められ、例えばカプトンフィルムが用いられる。   The sintering temperature depends on the boiling point or decomposition temperature of the added surfactant, but is preferably from 250 ° C. to 400 ° C. When the sintering temperature is in this preferred range, the removal of the surfactant can be sufficiently achieved, and the possibility that the water-repellent resin is decomposed is low. When only a microporous layer is used, a high heat resistance is required for a substrate film in order to perform sintering. For example, a Kapton film is used.

以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。     Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

(a)塗液の調製
電気化学工業(株)製“デンカブラック”(登録商標)15質量%、PTFEディスパージョン(ダイキン工業(株)製 “ポリフロン”(登録商標)D−210C)5量%、界面活性剤(ナカライテスク(株)製、“TRITON”(登録商標) X−100)5質量%、イオン交換水 75質量%をプラネタリーミキサーで混練した。塗液の粘度は温度23度のとき10Pa・s、温度15度のとき7Pa・s、温度5度のとき3Pa・sであった。
(A) Preparation of coating liquid 15% by mass of "Denka Black" (registered trademark) manufactured by Electrochemical Industry Co., Ltd., 5% by mass of PTFE dispersion ("Polyflon" (registered trademark) D-210C manufactured by Daikin Industries, Ltd.) 5% by mass of a surfactant (manufactured by Nacalai Tesque, Inc., "TRITON" (registered trademark) X-100) and 75% by mass of ion-exchanged water were kneaded with a planetary mixer. The viscosity of the coating liquid was 10 Pa · s at a temperature of 23 degrees, 7 Pa · s at a temperature of 15 degrees, and 3 Pa · s at a temperature of 5 degrees.

作製した塗液10.0Lを、攪拌タンクに移液した。撹拌翼は、ヘリカルリボン翼を使用した。大気圧下、翼先端速度1.5m/sで30分間撹拌し、気泡を含んだ塗液とした。この塗液について、後述する(c)に示す方法で泡数を測定したところ、15〜25個/0.2gであった(表1参照)。
(b)粘度測定
スペクトリス社製ボーリン回転型レオメーターの粘度測定モードにおいて、直径40mm、傾き2°の円形コーンプレートを用いプレートの回転数を増加させながら(せん断速度を上昇させながら)任意にサンプリングした塗液のせん断応力を測定していく。このとき、せん断速度17(1/s)における塗液の粘度の値を読み取った。測定サンプルを変えてN=3で実施し、その算術平均値を塗液の粘度とした。
(c)塗液中の泡数測定
一辺15cmの正方形状で、厚み0.5cmのガラス板を2枚用意し、1枚の四隅にフッ素テープ(中興化成工業社製 ASF−110FR)を貼付し、任意にサンプリングした塗液0.2gを上下から挟んで30分間静置した。その後、オーツカ光学社製 ILLMINATED MAGNIFIERS OSL−1を用いて観察したサンプルについて、デジタルカメラ等で撮影した画像中の泡数を目視でカウントした。この作業を20回行い、得られた数の算術平均値を、塗液中の泡数とした。
(d)実際の塗布における気泡の確認
準備された微多孔層塗液を図1に示すようなタンクに仕込み、図2のような配管系を組み、図2に示すようなダイコータ(口金の開口部巾240mm)を用いて、巾300mmのPETフィルムあるいはカーボンペーパー(0.15MPaで厚み方向に加圧時の厚み150μm、密度0.45g/cm、空隙率80%)に塗液流量500g/min、基材搬送速度5m/minで10分間塗布を行い、目視にて、気泡による欠点が塗膜上に発生しないかどうかを確認した。
(実施例1)
減圧可能な水冷ジャケット付き攪拌タンク(攪拌翼はダブルヘリカルリボン)に気泡を含んだ塗液を10L仕込み、水冷ジャケットをチラーによって冷却し、塗液温度を5度とした。真空ポンプにより、容器内の圧力を大気圧の状態から0.5分かけて圧力を絶対圧で1kPaとし、攪拌翼の周速を約1m/sで回転させ、その状態で20分間脱泡を実施した。ここで、周速とは攪拌翼の先端速度であり、以下の式で定義される。
翼先端速度(m/s)=回転数(rpm)/60×撹拌翼の直径d(m)×円周率脱泡処理後の塗液中の泡数測定を実施した。
(実施例2)
圧力を絶対圧で10kPaとした以外は、全て実施例1と同条件で脱泡処理を実施し、その後の塗液中の泡数測定を実施した。
(実施例3)
塗液温度を15度とした以外は、全て実施例2と同条件で脱泡処理を実施し、その後の塗液中の泡数測定を実施した。
(比較例1)
圧力を絶対圧で40kPaとした以外は、全て実施例1と同条件で脱泡処理を実施し、その後の塗液中の泡数測定を実施した。
(比較例2)
塗液温度を23度とした以外は、全て実施例2と同条件で脱泡処理を実施し、その後の塗液中の泡数測定を実施した。
(実施例4)
遊星式攪拌装置専用容器に気泡を含んだ塗液を0.5L仕込み、温度5度の部屋に24時間静置し、塗液の温度を約5度とした。その塗液を遊星式攪拌装置((株)シンキー製 “ARV−930TWIN”)でDEFOAMモード、1200rpm、圧力を絶対圧で30kPaとし1分間脱泡を実施した。脱泡処理後の塗液中の泡数測定を実施した。
(比較例3)
温度を23度に保った部屋に24時間静置し、塗液の温度を約23度とした以外は、全て実施例4と同条件で処理を実施し、その後の塗液中の泡数測定を実施した。
10.0 L of the prepared coating liquid was transferred to a stirring tank. As the stirring blade, a helical ribbon blade was used. The mixture was stirred at atmospheric pressure at a blade tip speed of 1.5 m / s for 30 minutes to obtain a coating liquid containing bubbles. When the number of bubbles of this coating solution was measured by the method shown in (c) described later, it was 15 to 25 / 0.2 g (see Table 1).
(B) Viscosity measurement In a viscosity measurement mode of a spectrin borin rotary rheometer, using a circular cone plate having a diameter of 40 mm and an inclination of 2 °, arbitrarily sampling while increasing the number of rotations of the plate (while increasing the shear rate). The shear stress of the applied coating solution is measured. At this time, the value of the viscosity of the coating liquid at a shear rate of 17 (1 / s) was read. The measurement was carried out at N = 3 while changing the measurement sample, and the arithmetic average value was defined as the viscosity of the coating liquid.
(C) Measurement of Number of Bubbles in Coating Liquid Two glass plates each having a square shape of 15 cm on a side and a thickness of 0.5 cm are prepared, and a fluorine tape (ASF-110FR manufactured by Chuko Kasei Kogyo Co., Ltd.) is attached to each of four corners. Then, 0.2 g of the coating liquid arbitrarily sampled was allowed to stand for 30 minutes between upper and lower sides. Thereafter, the number of bubbles in an image taken by a digital camera or the like was visually counted for a sample observed using ILLMINATED MAGNIFIERS OSL-1 manufactured by Otsuka Optics. This operation was performed 20 times, and the arithmetic average value of the obtained numbers was defined as the number of bubbles in the coating liquid.
(D) Confirmation of air bubbles in actual application The prepared microporous layer coating solution is charged into a tank as shown in FIG. 1, a piping system as shown in FIG. 2 is assembled, and a die coater as shown in FIG. Using a PET film or carbon paper (width: 240 mm) with a width of 300 mm, a thickness of 150 μm when pressed in the thickness direction at a pressure of 0.15 MPa, a density of 0.45 g / cm 3 , and a porosity of 80%, a coating liquid flow rate of 500 g / The coating was performed at a substrate transport speed of 5 m / min for 10 minutes, and it was visually confirmed whether or not defects due to bubbles were generated on the coating film.
(Example 1)
10 L of a coating solution containing air bubbles was charged into a stirring tank equipped with a water-cooling jacket capable of decompression (the stirring blade was a double helical ribbon), and the water-cooling jacket was cooled by a chiller to adjust the coating solution temperature to 5 degrees. Using a vacuum pump, the pressure in the vessel is changed from the atmospheric pressure state to an absolute pressure of 1 kPa over 0.5 minutes, the peripheral speed of the stirring blade is rotated at about 1 m / s, and defoaming is performed for 20 minutes in that state. Carried out. Here, the peripheral speed is the tip speed of the stirring blade, and is defined by the following equation.
Blade tip speed (m / s) = number of rotations (rpm) / 60 x diameter of stirring blade d (m) x pi The number of bubbles in the coating liquid after the defoaming treatment was measured.
(Example 2)
The defoaming treatment was performed under the same conditions as in Example 1 except that the pressure was 10 kPa in absolute pressure, and the measurement of the number of bubbles in the coating liquid was performed thereafter.
Example 3
The defoaming treatment was performed under the same conditions as in Example 2 except that the temperature of the coating liquid was changed to 15 degrees, and the subsequent measurement of the number of bubbles in the coating liquid was performed.
(Comparative Example 1)
The defoaming treatment was performed under the same conditions as in Example 1 except that the pressure was 40 kPa in absolute pressure, and the number of bubbles in the coating liquid was measured thereafter.
(Comparative Example 2)
The defoaming treatment was performed under the same conditions as in Example 2 except that the coating liquid temperature was set to 23 ° C., and the number of bubbles in the coating liquid was measured thereafter.
(Example 4)
0.5 L of the coating solution containing air bubbles was charged into a dedicated container for the planetary stirring device, and allowed to stand in a room at a temperature of 5 ° C. for 24 hours, so that the temperature of the coating solution was about 5 ° C. The coating solution was defoamed with a planetary stirrer ("ARV-930TWIN" manufactured by Sinky Co., Ltd.) in a DEFOM mode at 1200 rpm and a pressure of 30 kPa in absolute pressure for 1 minute. The number of bubbles in the coating solution after the defoaming treatment was measured.
(Comparative Example 3)
The treatment was carried out under the same conditions as in Example 4 except that the temperature of the coating liquid was kept at about 23 ° C. for 24 hours in a room where the temperature was maintained at 23 ° C., and the subsequent measurement of the number of bubbles in the coating liquid Was carried out.

Figure 2019215993
Figure 2019215993

本発明は、燃料電池用ガス拡散層の微多孔層用塗液の脱泡を簡易的かつ低コストで行うことができ、燃料電池の製造コスト低減に寄与できる。   ADVANTAGE OF THE INVENTION This invention can defoam the coating liquid for microporous layers of the gas diffusion layer for fuel cells easily and at low cost, and can contribute to the reduction of fuel cell manufacturing cost.

101 導電性多孔質基材(カーボンペーパー)
102 巻き出し機
103 ガイドロール(非駆動)
104 ダイコーターA
105 ダイコーターB
106 バックロール(駆動)
107 乾燥機
108 焼結炉
109 巻き取り機
110 合い紙
111 合い紙巻き出し機
112 塗液タンク
113 送液ポンプ
114 フィルター
115 浸漬槽
101 conductive porous substrate (carbon paper)
102 Unwinding machine 103 Guide roll (not driven)
104 Die coater A
105 Die coater B
106 Back roll (drive)
107 dryer 108 sintering furnace 109 take-up machine 110 interleaf paper 111 interleaf paper unwinder 112 coating liquid tank 113 liquid feed pump 114 filter 115 immersion tank

Claims (2)

導電性粒子および撥水性樹脂を含む、ガス拡散電極の微多孔層を形成するための塗液の製造方法であって、
減圧下で脱泡可能な手段を備える脱泡装置を用いて、
前記装置内に封入された塗液に付与される圧力を、絶対圧で30kPa以下、前記液の溶媒の脱泡処理中の液温における蒸気圧以上として、かつ、
前記装置の設定温度または前記装置内の液温を、15度以下0度より大きい範囲から選ばれるものとする、塗液の製造方法。
Including a conductive particle and a water-repellent resin, a method for producing a coating liquid for forming a microporous layer of a gas diffusion electrode,
Using a defoaming device equipped with means capable of defoaming under reduced pressure,
The pressure applied to the coating liquid sealed in the apparatus is 30 kPa or less in absolute pressure, not less than the vapor pressure at the liquid temperature during the defoaming treatment of the solvent of the liquid, and
A method for producing a coating liquid, wherein a set temperature of the apparatus or a liquid temperature in the apparatus is selected from a range of 15 degrees or less and greater than 0 degrees.
前記塗液の粘度は、
23度の温度において1Pa・s以上30Pa・s以下であり、
かつ、15度以下0度より大きい範囲から選ばれる温度における粘度が、23度のときの粘度より1Pa・s以上低い、請求項1に記載の塗液の製造方法。
The viscosity of the coating liquid,
At a temperature of 23 degrees Celsius is 1 Pa.s or more and 30 Pa.s or less,
2. The method for producing a coating liquid according to claim 1, wherein the viscosity at a temperature selected from a range of 15 degrees or less and greater than 0 degrees is 1 Pa · s or less lower than the viscosity at 23 degrees.
JP2018111693A 2018-06-12 2018-06-12 Coating liquid manufacturing method Active JP7119607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018111693A JP7119607B2 (en) 2018-06-12 2018-06-12 Coating liquid manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018111693A JP7119607B2 (en) 2018-06-12 2018-06-12 Coating liquid manufacturing method

Publications (2)

Publication Number Publication Date
JP2019215993A true JP2019215993A (en) 2019-12-19
JP7119607B2 JP7119607B2 (en) 2022-08-17

Family

ID=68919671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018111693A Active JP7119607B2 (en) 2018-06-12 2018-06-12 Coating liquid manufacturing method

Country Status (1)

Country Link
JP (1) JP7119607B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021154252A (en) * 2020-03-30 2021-10-07 大建工業株式会社 Method and device for producing sheet-decorative plate material
CN114592372A (en) * 2022-03-29 2022-06-07 常州太乙新材料有限公司 Transfer paper coating and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100305A (en) * 2001-09-19 2003-04-04 Matsushita Electric Ind Co Ltd Method of manufacturing electrode for fuel cell
JP2008041514A (en) * 2006-08-09 2008-02-21 Toyota Motor Corp Catalyst ink for fuel cell, membrane-electrode assembly and manufacturing method of them
JP2009301792A (en) * 2008-06-11 2009-12-24 Aisin Chem Co Ltd Water-repellent paste for gas diffusion layer
JP2012009169A (en) * 2010-06-22 2012-01-12 Aisin Chem Co Ltd Water-repellent paste for gas diffusion layer and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100305A (en) * 2001-09-19 2003-04-04 Matsushita Electric Ind Co Ltd Method of manufacturing electrode for fuel cell
JP2008041514A (en) * 2006-08-09 2008-02-21 Toyota Motor Corp Catalyst ink for fuel cell, membrane-electrode assembly and manufacturing method of them
JP2009301792A (en) * 2008-06-11 2009-12-24 Aisin Chem Co Ltd Water-repellent paste for gas diffusion layer
JP2012009169A (en) * 2010-06-22 2012-01-12 Aisin Chem Co Ltd Water-repellent paste for gas diffusion layer and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021154252A (en) * 2020-03-30 2021-10-07 大建工業株式会社 Method and device for producing sheet-decorative plate material
CN114592372A (en) * 2022-03-29 2022-06-07 常州太乙新材料有限公司 Transfer paper coating and preparation method thereof
CN114592372B (en) * 2022-03-29 2023-09-01 常州太乙新材料有限公司 Transfer paper coating and preparation method thereof

Also Published As

Publication number Publication date
JP7119607B2 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
TWI644478B (en) Gas diffusion electrode substrate, manufacturing method and application thereof
TWI644477B (en) Gas diffusion electrode substrate, membrane electrode assembly having the same, and fuel cell
TW201801384A (en) Gas?diffusion electrode and manufacturing method thereof capable of adequately removing carbon short fibers that are insufficiently bounded on the surface of the porous carbon electrode substrate and having adequate thickness
CN106797036B (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
TWI710468B (en) Gas diffusion electrode substrate, laminate and fuel cell
JP4388314B2 (en) GAS DIFFUSION ELECTRODE BASE FOR SOLID POLYMER FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL USING THE SAME
JP6911847B2 (en) Manufacturing method of gas diffusion electrode base material
JP7119607B2 (en) Coating liquid manufacturing method
JP2015191826A (en) Method for manufacturing gas diffusion electrode, and manufacturing device therefor
JP6439263B2 (en) Gas diffusion electrode manufacturing equipment
JP6863536B2 (en) Gas diffusion electrode, manufacturing method of gas diffusion electrode, membrane electrode assembly, fuel cell
JP7263774B2 (en) MICROPOROUS LAYER AND MANUFACTURING METHOD THEREOF, GAS DIFFUSION ELECTRODE BASE MATERIAL, FUEL CELL
JP5292729B2 (en) Method for producing gas diffusion layer and paste composition for producing gas diffusion layer
JP2004164903A (en) Polymer electrolyte type fuel cell, and manufacturing method of its electrode
CN108137419B (en) Carbon sheet, gas diffusion electrode substrate, wound body, and fuel cell
JP2019216060A (en) Production method of coating liquid for forming fine porous layer of gas diffusion electrode
JP6291962B2 (en) Method and apparatus for manufacturing gas diffusion electrode
JP7067242B2 (en) Manufacturing method of coating liquid
JP7290112B2 (en) GAS DIFFUSION ELECTRODE SUBSTRATE AND MANUFACTURING METHOD THEREOF, POLYMER FUEL CELL
JP2022182299A (en) Method for manufacturing gas diffusion electrode, gas diffusion electrode, and gas diffusion electrode roll-like object
JP2023147966A (en) Water-repellent conductive porous base material and manufacturing method thereof, and gas diffusion electrode and manufacturing method thereof
JP2022042074A (en) Gas diffusion electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220718

R151 Written notification of patent or utility model registration

Ref document number: 7119607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151