JP2019214041A - Separation membrane element - Google Patents

Separation membrane element Download PDF

Info

Publication number
JP2019214041A
JP2019214041A JP2019102268A JP2019102268A JP2019214041A JP 2019214041 A JP2019214041 A JP 2019214041A JP 2019102268 A JP2019102268 A JP 2019102268A JP 2019102268 A JP2019102268 A JP 2019102268A JP 2019214041 A JP2019214041 A JP 2019214041A
Authority
JP
Japan
Prior art keywords
separation membrane
supply
flow path
separation
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019102268A
Other languages
Japanese (ja)
Inventor
洋帆 広沢
Hiroho Hirozawa
洋帆 広沢
高木 健太朗
Kentaro Takagi
健太朗 高木
祐太郎 鈴木
Yutaro Suzuki
祐太郎 鈴木
剛士 誉田
Takeshi Konda
剛士 誉田
久美子 小川
Kumiko Ogawa
久美子 小川
秀 谷口
Shu Taniguchi
秀 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2019214041A publication Critical patent/JP2019214041A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide a separation membrane element, which can exert stable separation/removal performance even during operation at high pressure.SOLUTION: The separation membrane element comprises a water collecting pipe, a separation membrane, a supply-side passage material, and a permeation-side passage material. The supply-side passage material has a plurality of regions X, arranged between two surfaces of the separation membrane, which contact the separation membrane in a thickness direction thereof, and a plurality of regions Y which do not contact the separation membrane in the thickness direction thereof. The regions X are firmly fixed to at least one surface of the separation membrane and the regions Y are held by the regions X.SELECTED DRAWING: Figure 3

Description

本発明は、分離膜エレメントに関する。   The present invention relates to a separation membrane element.

海水及びかん水等に含まれるイオン性物質を除くための技術においては、近年、省エネルギー及び省資源のためのプロセスとして、分離膜エレメントによる分離法の利用が拡大している。分離膜エレメントによる分離法に使用される分離膜は、その孔径や分離機能の点から、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜、正浸透膜に分類される。これらの膜は、例えば海水、かん水及び有害物を含んだ水等からの飲料水の製造、工業用超純水の製造、並びに、排水処理及び有価物の回収等に用いられており、目的とする分離成分及び分離性能によって使い分けられている。   In the technology for removing ionic substances contained in seawater, brackish water, and the like, in recent years, the use of separation methods using separation membrane elements has been expanding as a process for saving energy and resources. Separation membranes used in separation methods using separation membrane elements are classified into microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, and forward osmosis membranes in terms of their pore size and separation function. These membranes are used, for example, for the production of drinking water from seawater, brackish water and water containing harmful substances, the production of industrial ultrapure water, and the treatment of wastewater and the collection of valuable resources. It is properly used depending on the separation component and the separation performance.

分離膜エレメントとしては様々な形態があるが、分離膜の一方の面に供給水を供給し、他方の面から透過水を得る点では共通している。分離膜エレメントは、束ねられた多数の分離膜を備えることで、1個の分離膜エレメント当たりの膜面積が大きくなるように、つまり1個の分離膜エレメント当たりに得られる透過水の量が大きくなるように形成されている。分離膜エレメントとしては、用途や目的にあわせて、スパイラル型、中空糸型、プレート・アンド・フレーム型、回転平膜型又は平膜集積型等の各種の形状が提案されている。   There are various forms of separation membrane elements, but they are common in that supply water is supplied to one surface of the separation membrane and permeate is obtained from the other surface. The separation membrane element has a large number of bundled separation membranes, so that the membrane area per one separation membrane element is large, that is, the amount of permeated water obtained per one separation membrane element is large. It is formed so that it becomes. As the separation membrane element, various shapes such as a spiral type, a hollow fiber type, a plate-and-frame type, a rotating flat membrane type, and a flat membrane integrated type have been proposed in accordance with the use and purpose.

例えば、逆浸透ろ過には、スパイラル型分離膜エレメントが広く用いられる。スパイラル型分離膜エレメントは、集水管と、集水管の周囲に巻き付けられた分離膜とを備える。分離膜は、供給水(つまり被処理水)を分離膜表面へ供給する供給側流路材、供給水に含まれる成分を分離する分離膜及び分離膜を透過し分離された透過水を集水管へと導くための透過側流路材が積層されることで形成される。スパイラル型分離膜エレメントは、供給水に高い圧力を付与することができるので、透過水を多く取り出すことができる点で好ましく用いられている。   For example, a spiral separation membrane element is widely used for reverse osmosis filtration. The spiral type separation membrane element includes a water collecting pipe and a separation membrane wound around the water collecting pipe. The separation membrane includes a supply-side channel material that supplies supply water (that is, water to be treated) to the surface of the separation membrane, a separation membrane that separates components contained in the supply water, and a permeation pipe that transmits permeated water separated through the separation membrane. It is formed by laminating a permeate-side flow path material for leading to the flow path. Spiral-type separation membrane elements are preferably used because a high pressure can be applied to feed water, and a large amount of permeated water can be taken out.

濃度分極による分離膜エレメント性能低下を抑制するためには、例えば供給側流路材の厚みを薄くし、供給水の膜面線速度を大きくして分離膜表面近くで乱流を生じさせ、濃度分極層を薄くすればよいが、供給側流路材の厚みを薄くすると供給水中の不純物や微生物によるファウラントが供給側の流路を閉塞して分離膜エレメント性能が低下したり、分離膜エレメントの圧力損失が大きくなり、供給水を供給するポンプの必要動力が大きくなるため電力費が高くなったり、分離膜エレメントが破損するといった問題が生じるため、供給側流路材による分離膜エレメントの性能向上が提案されている。   In order to suppress the decrease in the performance of the separation membrane element due to concentration polarization, for example, the thickness of the supply-side flow path material is reduced, the linear velocity of the supply water on the membrane surface is increased, and a turbulent flow is generated near the separation membrane surface. The thickness of the supply-side flow path material may be reduced, but if the thickness of the supply-side flow path material is reduced, foulants due to impurities or microorganisms in the supply water block the flow path on the supply side, and the performance of the separation membrane element is reduced. Pressure loss increases and the required power of the pump that supplies the supply water increases, resulting in higher power costs and breakage of the separation membrane element. Has been proposed.

具体的には、特許文献1及び2では、供給側流路材中の繊維状物の配列を制御することで、流動抵抗を低減させたネットが提案されている。また、特許文献3では縦糸及び横糸が非円形断面である織物状の流路材が考案されている。   Specifically, Patent Literatures 1 and 2 propose a net in which the flow resistance is reduced by controlling the arrangement of fibrous materials in a supply-side channel material. Further, Patent Document 3 discloses a woven channel material in which the warp and the weft have a non-circular cross section.

特表2015−525282号公報JP-T-2015-525282A 特開2000−000437号公報JP 2000-000437 A 特開平10−118468号公報JP-A-10-118468

しかしながら、従来の供給側流路材では、流動抵抗の低減と乱流発生強度とのバランスが最適化されているとはいえず、さらには供給側流路材近傍における供給水の滞留が問題視されていた。そこで本発明は、高圧運転下においても安定した分離除去性能を発揮することができる、分離膜エレメントを提供することを課題とする。   However, in the conventional supply-side flow path material, it cannot be said that the balance between the reduction of the flow resistance and the turbulence generation intensity is optimized, and furthermore, the stagnation of the supply water near the supply-side flow path material is regarded as a problem. It had been. Therefore, an object of the present invention is to provide a separation membrane element that can exhibit stable separation and removal performance even under high-pressure operation.

上記目的を達成するため、本発明によれば、集水管と、分離膜と、供給側流路材と、透過側流路材とを備え、上記供給側流路材は、上記分離膜の二つの面の間に配置され、その厚み方向において上記分離膜と接触する、複数の領域Xと、その厚み方向において上記分離膜と接触しない、複数の領域Yを有し、上記領域Xは、少なくとも前記分離膜の一つの面に固着しており、上記領域Yは、上記領域Xにより保持されている、分離膜エレメントが提供される。   In order to achieve the above object, according to the present invention, there is provided a water collection pipe, a separation membrane, a supply-side flow path material, and a permeation-side flow path material, and the supply-side flow path material is composed of the separation membrane. A plurality of regions X arranged between the two surfaces and in contact with the separation membrane in the thickness direction thereof, and a plurality of regions Y not in contact with the separation membrane in the thickness direction thereof. A separation membrane element is provided, which is fixed to one surface of the separation membrane, and the region Y is held by the region X.

本発明によれば、供給側流路における流動抵抗の低減と乱流発生強度のバランスとが顕著に好適化されており、さらには高圧運転下においてもファウラントの付着によるファウリングの進行を減退させることが可能であり、運転安定性に優れた分離膜エレメントを得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the reduction of the flow resistance in the supply side flow path and the balance of the turbulence generation intensity are remarkably optimized, and furthermore, even under high pressure operation, the progress of fouling due to foulant adhesion is reduced. It is possible to obtain a separation membrane element having excellent operation stability.

分離膜エレメントの一形態を示す展開斜視図である。FIG. 4 is an exploded perspective view showing one mode of a separation membrane element. 本発明の分離膜エレメントが備える供給側流路材の一例の断面図である。It is sectional drawing of an example of the supply side flow path material with which the separation membrane element of this invention is provided. 本発明の分離膜エレメントが備える供給側流路材の別の一例の断面図である。It is sectional drawing of another example of the supply side flow path material with which the separation membrane element of this invention is provided. 本発明の分離膜エレメントが備える供給側流路材の一例の平面図である。It is a top view of an example of the supply side channel material with which the separation membrane element of the present invention is provided.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

<分離膜エレメント>
図1に示すように、分離膜エレメント(100)は、集水管(6)と、集水管(6)の周囲に巻回された分離膜(1)を備える。図1に示すx軸の方向が、集水管の長手方向である。またy軸やz軸等の方向が、集水管の長手方向に対し垂直な方向である。
<Separation membrane element>
As shown in FIG. 1, the separation membrane element (100) includes a water collecting pipe (6) and a separation membrane (1) wound around the water collecting pipe (6). The direction of the x-axis shown in FIG. 1 is the longitudinal direction of the water collecting pipe. The directions such as the y-axis and the z-axis are perpendicular to the longitudinal direction of the water collecting pipe.

<供給側流路材>
供給側流路材は、分離膜の二つの面の間に配置され、供給側流路材と分離膜とにより供給側流路が形成される。供給側流路には供給水が通水されるが、供給水が含有するファウラントの付着等を抑制するためには、供給側流路の流動抵抗を低減し、排濁性を高めることが重要である。
<Supply-side flow path material>
The supply-side channel material is disposed between the two surfaces of the separation membrane, and a supply-side channel is formed by the supply-side channel material and the separation membrane. Supply water is passed through the supply-side flow path, but it is important to reduce the flow resistance of the supply-side flow path and increase turbidity in order to suppress the adhesion of foulants contained in the supply water. It is.

本発明の分離膜エレメントが備える供給側流路材は、その厚み方向において上記分離膜と接触する、複数の領域Xと、その厚み方向において上記分離膜と接触しない、複数の領域Yを有し、上記領域Xは、少なくとも前記分離膜の一つの面に固着しており、上記領域Yは、上記領域Xにより保持されていることが必要である。   The supply-side flow path member provided in the separation membrane element of the present invention has a plurality of regions X that are in contact with the separation membrane in its thickness direction and a plurality of regions Y that are not in contact with the separation membrane in its thickness direction. The region X is fixed to at least one surface of the separation film, and the region Y needs to be held by the region X.

分離膜と接触しない、供給側流路材の領域Yと、分離膜との間に複数の空隙が確保されることで、供給側流路の空間がより拡張され、供給側流路材の厚み方向への供給水の移動の自由度が高まり、供給側流路の流動抵抗を低減しつつ、排濁性を高めることができる。その一方で、供給側流路材の領域Xに保持された領域Yの存在により、適度な乱流が発生することで、流動抵抗の低減と乱流発生強度との好適なバランスを確保することが可能である。   By providing a plurality of voids between the region Y of the supply-side flow path material that does not contact the separation membrane and the separation membrane, the space of the supply-side flow path is further expanded, and the thickness of the supply-side flow path material is increased. The degree of freedom of movement of the supply water in the direction is increased, and the turbidity can be improved while reducing the flow resistance of the supply-side flow path. On the other hand, by the presence of the region Y held in the region X of the supply-side channel material, an appropriate turbulence is generated, thereby ensuring a suitable balance between the reduction of the flow resistance and the turbulence generation intensity. Is possible.

また分離膜と接触しかつ固着する、複数の領域Xの存在により、供給側流路材のそれぞれの領域Yを好適な位置に保持しつつ、供給側流路材と分離膜とのずれを抑止することができ、分離膜エレメントの分離除去性能を維持することが可能となる。供給側流路材が有する領域Xについては、図2(a)や(b)に一態様を示すように、分離膜の片面にのみ接触するものが混在していても構わないし、図3(a)や(b)に一態様を示すように、全ての領域Xが分離膜の二つの面と接触していても構わないが、上記のずれの抑止の観点から、供給側流路材は、その厚み方向において分離膜の二つの面と接触する領域Xを有することが好ましい。   In addition, the presence of the plurality of regions X, which are in contact with and adhere to the separation membrane, suppresses the displacement between the supply-side flow path material and the separation membrane while maintaining each area Y of the supply-side flow path material at a suitable position. And the separation and removal performance of the separation membrane element can be maintained. As for the region X of the supply-side flow path material, as shown in one embodiment in FIGS. 2A and 2B, a material that contacts only one surface of the separation membrane may be mixed, or FIG. As shown in one embodiment in a) or (b), all the regions X may be in contact with the two surfaces of the separation membrane. However, from the viewpoint of suppressing the above-described displacement, the supply-side flow path material is It is preferable to have a region X in contact with the two surfaces of the separation membrane in its thickness direction.

領域Yの形状は特に限定されないが、乱流の発生効果を適度なものとするため、円筒形状又は曲面を含む形状が好ましい。   The shape of the region Y is not particularly limited, but is preferably a cylindrical shape or a shape including a curved surface in order to make the effect of generating turbulence appropriate.

分離膜の表面に供給側流路材領域Xを固着させる方法としては、例えば、予め成型した樹脂製の供給側流路材を分離膜の表面に熱溶着させる方法、接着剤を介在させ、予め成型した供給側流路材を分離膜の表面に接着する方法、又は、サポート剤を用いずに、3Dプリンターで分離膜の表面に3Dプリントをして供給側流路材を直接成形する方法、が挙げられる。   As a method of fixing the supply-side flow path material region X to the surface of the separation membrane, for example, a method of heat-welding a supply-side flow path material made of resin molded in advance to the surface of the separation membrane, a method of interposing an adhesive, A method of bonding the formed supply-side flow path material to the surface of the separation membrane, or a method of directly forming the supply-side flow path material by performing 3D printing on the surface of the separation membrane with a 3D printer without using a support agent, Is mentioned.

(領域X及び領域Yの確認)
分離膜エレメントを適宜分解し、供給側流路材の断面積ができるだけ大きくなるような部位を選んで、分離膜の二つの面の間に配置された供給側流路材を、分離膜ごと集水管の長手方向に切断し、供給側流路材及び分離膜の横断面(以下、「断面Z」)を露出させる。断面Zをマイクロスコープで観察して、分離膜の膜面に対し垂直な方向に相当する、供給側流路材の厚み方向における供給側流路材と分離膜との接触及び固着の有無を確認することで、供給側流路材における領域Xと領域Yとを区別することができる。
(Confirmation of area X and area Y)
The separation membrane element is appropriately disassembled, and a portion where the cross-sectional area of the supply-side flow path material is as large as possible is selected, and the supply-side flow path material disposed between the two surfaces of the separation membrane is collected together with the separation membrane. The water pipe is cut in the longitudinal direction to expose a cross section (hereinafter, “cross section Z”) of the supply-side channel material and the separation membrane. Observe the cross-section Z with a microscope to confirm the presence and absence of contact and fixation between the supply-side channel material and the separation membrane in the thickness direction of the supply-side channel material, which corresponds to the direction perpendicular to the membrane surface of the separation membrane By doing so, the region X and the region Y in the supply-side channel material can be distinguished.

さらに、断面Zをマイクロスコープで観察することで、隣接する二つの領域Xにより保持されている、領域Yの有無も確認することができる。   Further, by observing the cross section Z with a microscope, the presence or absence of a region Y held by two adjacent regions X can be confirmed.

ここで領域Yが「領域Xにより保持されている」とは、供給側流路材における領域Yに相当する部位が、領域Xに固着している、又は、領域Xと一体的に成型若しくは成形されていることをいう。   Here, the region Y is “held by the region X” when the portion corresponding to the region Y in the supply-side channel material is fixed to the region X, or is molded or molded integrally with the region X. That is being done.

なお図2及び図3における断面は、いずれも上記の断面Zに相当するものである。   Each of the cross sections in FIGS. 2 and 3 corresponds to the above cross section Z.

(分離膜の膜面間隔)
上記の断面Zにおいて、無作為に選択した10箇所について、分離膜同士の間の距離を測定し、その平均値を分離膜の膜面間隔とすることができる。
(Spacing of separation membrane)
In the above-mentioned cross section Z, the distance between the separation membranes is measured at ten locations selected at random, and the average value can be used as the separation between the separation membranes.

分離膜の膜面間隔は、小さくすれば、供給水の膜面線速度が大きくなり分離膜表面の流れが乱れるので、濃度分極層が薄くなり、分離膜エレメントの分離性能が向上し好ましい。しかし過度に分離膜の膜面間隔を小さくすると、供給水中の不純物や、微生物等のファウラントが供給側流路を閉塞する傾向が高まりかねない。そこで分離膜の膜面間隔は、0.20〜1.5mmが好ましく、0.32〜0.85mmがより好ましく、0.50〜0.80mmがさらに好ましい。ただし、本発明の分離膜エレメントが備える供給側流路材を用いる場合は後述するように供給側流路材を薄くすることによって分離膜の膜面積を増大させる構成をとることができるが、その場合は供給水の水質に応じて膜面間隔を0.20mm〜0.50mmの範囲で適宜変更することが好ましい。   When the separation between the separation surfaces of the separation membrane is small, the linear velocity of the supply water on the separation surface of the separation membrane increases, and the flow on the separation membrane surface is disturbed. However, if the separation between the separation membranes is excessively reduced, the tendency of impurities in the supply water or foulants such as microorganisms to block the supply-side flow path may increase. Therefore, the separation distance of the separation membrane is preferably 0.20 to 1.5 mm, more preferably 0.32 to 0.85 mm, and still more preferably 0.50 to 0.80 mm. However, when using the supply-side flow path material provided in the separation membrane element of the present invention, it is possible to adopt a configuration in which the membrane area of the separation membrane is increased by thinning the supply-side flow path material as described later. In this case, it is preferable to appropriately change the membrane surface interval in the range of 0.20 mm to 0.50 mm according to the quality of the supply water.

<高膜面積化>
上述したように、供給側流路材を薄くすると流路が狭小化するため流動抵抗が高く、供給水中の不純物や、微生物等のファウラントが供給側流路を閉塞する傾向が高まりかねない。本発明の分離膜エレメントが備える供給側流路材は、従来品に比べて空隙が大きい構造であり、膜面間隔が小さくなるように薄くしても流動抵抗と排濁性が優れている。
<Higher film area>
As described above, when the supply-side flow path material is thinned, the flow path is narrowed and the flow resistance is high, so that the impurity in the supply water and foulants such as microorganisms may increase the tendency to block the supply-side flow path material. The supply-side channel material provided in the separation membrane element of the present invention has a structure with a larger gap than conventional products, and has excellent flow resistance and turbidity even when thinned so as to reduce the distance between the membrane surfaces.

そのため膜面間隔を小さくして空間を創出し、その空間に分離膜を充填して分離膜エレメントの膜面積を増大させた構成においても、流動抵抗増加や排濁性悪化の影響が軽微であり、膜面積増大による造水量向上が可能となる。   Therefore, even if the space between the membranes is reduced to create a space, and the space is filled with a separation membrane to increase the membrane area of the separation membrane element, the effect of the increase in flow resistance and deterioration of turbidity is negligible. In addition, the amount of fresh water can be improved by increasing the membrane area.

(材料)
供給側流路材を成型又は成形するための材料としては、成型又は成形性の観点から熱可塑性樹脂が好ましく、分離膜の損傷を抑制する観点から、ポリエチレン、ポリプロピレン、ポリ乳酸、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂又はUV硬化性樹脂がより好ましい。なお上記のような材料を用いて供給側流路材を成型又は成形するための方法としては、例えば、金型や3Dプリンターを用いる方法が挙げられる。
(material)
As a material for molding or molding the supply-side channel material, a thermoplastic resin is preferred from the viewpoint of moldability or moldability, and from the viewpoint of suppressing damage to the separation membrane, polyethylene, polypropylene, polylactic acid, ABS (acrylonitrile- Butadiene-styrene) resins or UV-curable resins are more preferred. In addition, as a method for molding or molding the supply-side channel material using the above-mentioned materials, for example, a method using a mold or a 3D printer can be mentioned.

(隣接する領域X間の間隔)
上記の断面Zにおいて、無作為に選択した30箇所の領域Xについて、マイクロスコープで、分離膜の表面と平行な方向における隣接する領域Xとの最近接距離を測定し、その平均値を、隣接する領域X間の間隔として算出することができる。
(Interval between adjacent areas X)
In the above-mentioned cross section Z, the closest distance to the adjacent area X in a direction parallel to the surface of the separation membrane is measured with a microscope for 30 randomly selected areas X, and the average value is calculated as It can be calculated as the interval between the regions X to be performed.

隣接する領域X間の間隔は、供給側流路の流動抵抗と供給側流路材全体の剛性とを勘案しつつ、適宜調整することができる。   The distance between the adjacent regions X can be appropriately adjusted while taking into account the flow resistance of the supply-side flow path and the rigidity of the entire supply-side flow path material.

<透過側流路材>
本発明の分離膜エレメントは、透過側流路材を備える。透過側流路材としては、例えば、トリコット、不織布、突起物を固着させた多孔性シート、又は、凹凸成形し穿孔加工を施したフィルム等が挙げられる。また、透過側流路材として機能する突起物を、分離膜の表面に固着させても構わない。
<Permeate-side channel material>
The separation membrane element of the present invention includes a permeate-side channel material. Examples of the permeation-side flow path material include a tricot, a nonwoven fabric, a porous sheet to which projections are fixed, or a film formed by forming irregularities and perforating. In addition, a projection functioning as a permeate-side channel material may be fixed to the surface of the separation membrane.

<分離膜>
本発明の分離膜エレメントは、分離膜を備える。分離膜としては、例えば、基材と、多孔性支持体と、分離機能層とを備える、複合半透膜が挙げられる。
<Separation membrane>
The separation membrane element of the present invention includes a separation membrane. Examples of the separation membrane include a composite semipermeable membrane including a base material, a porous support, and a separation function layer.

上記の基材としては、例えば、ポリエステル又は芳香族ポリアミドを主成分とする布帛が挙げられる。   Examples of the above-mentioned base material include a cloth mainly composed of polyester or aromatic polyamide.

上記の多孔性支持体としては、例えば、基材上に形成された、ポリスルホン、ポリエーテルスルホン、ポリアミド、ポリエステル、セルロース系ポリマー、ビニルポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン又はポリフェニレンオキシド等の高分子層が挙げられる。   Examples of the porous support include, for example, polysulfone, polyethersulfone, polyamide, polyester, cellulosic polymer, vinyl polymer, polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfone or polyphenylene oxide formed on a base material. And a polymer layer.

分離機能層としては、例えば、イオン等の分離が十分行なえるほど緻密であり、かつ、水との親和性が高い、ポリアミドを主成分とする分離機能層が挙げられる。ポリアミドは、例えば、多官能性アミンと多官能性酸ハロゲン化物との界面重縮合により形成することができる。   Examples of the separation functional layer include a separation functional layer containing polyamide as a main component, which is dense enough to sufficiently separate ions and the like and has high affinity for water. Polyamides can be formed, for example, by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide.

<供給側流路材の配置>
供給側流路材は、供給側の面が内側を向くように折り畳まれた分離膜に挟まれるように、分離膜の二つの面の間に配置又はされても構わないし、供給側の面が向かい合った二枚の分離膜で挟まれるように、分離膜の二つの面の間に配置されても構わない。
<Arrangement of supply-side channel material>
The supply-side channel material may be disposed or arranged between the two surfaces of the separation membrane so that the supply-side surface is sandwiched between the separation membranes that are folded inward. It may be arranged between two surfaces of the separation membrane so as to be sandwiched between two facing separation membranes.

供給側流路材を挟んだ分離膜の端部同士は、適宜封止されるが、その「封止」の方法としては、例えば、接着剤若しくはホットメルト等による接着、加熱若しくはレーザ等による融着又は、ゴム製シートを挟みこむ方法が挙げられるが、簡便な接着による封止が好ましい。   The ends of the separation membrane sandwiching the supply-side flow path material are appropriately sealed, and the “sealing” method includes, for example, bonding with an adhesive or hot melt, heating or melting by laser or the like. Although a method of attaching or sandwiching a rubber sheet is mentioned, sealing by simple adhesion is preferable.

<分離膜モジュール及び水処理装置>
本発明の分離膜エレメントを含む、複数の分離膜エレメントを、直列又は並列に接続して圧力容器に収納することで、分離膜モジュールを構成することができる。
<Separation membrane module and water treatment device>
A separation membrane module can be configured by connecting a plurality of separation membrane elements including the separation membrane element of the present invention in series or in parallel and storing them in a pressure vessel.

また、本発明の分離膜エレメント、又は、上記の分離膜モジュールに、供給水を供給するポンプや供給水の前処理装置等を組み合わせて、水処理装置を構成することができる。   Further, a water treatment apparatus can be configured by combining a separation membrane element of the present invention or the above separation membrane module with a pump for supplying supply water, a pretreatment apparatus for supply water, and the like.

水処理装置の操作圧力は、運転エネルギーの節約、及び、供給側流路材や透過側流路材の早期劣化防止の観点から、0.2〜10MPaが好ましい。水処理装置に供される供給水の温度は、塩除去率と膜透過流束とのバランスの好適なものとする観点から、5〜45℃が好ましい。水処理装置に供される供給水のpHは、マグネシウム等のスケール発生や分離膜劣化の抑制の観点から、中性領域であることが好ましい。   The operating pressure of the water treatment device is preferably 0.2 to 10 MPa from the viewpoint of saving operating energy and preventing early deterioration of the supply-side channel material and the permeate-side channel material. The temperature of the supply water supplied to the water treatment device is preferably from 5 to 45 ° C. from the viewpoint of making the balance between the salt removal rate and the membrane permeation flux suitable. The pH of the supply water supplied to the water treatment apparatus is preferably in a neutral range from the viewpoint of suppressing generation of scale such as magnesium and deterioration of the separation membrane.

水処理装置に供される供給水としては、例えば、500mg/L〜100g/LのTDS(Total Dissolved Solids:総溶解固形分)を含有する海水、かん水又は排水等が挙げられる。   Examples of the supply water supplied to the water treatment apparatus include seawater, brackish water, and drainage containing 500 mg / L to 100 g / L of TDS (Total Dissolved Solids: total dissolved solids).

以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

(供給側流路材の作製)
3Dプリンターを用いてポリ乳酸をモデル材として、3Dプリンターで分離膜の表面に3Dプリントをして、供給側流路材を直接成形し、その領域Xを固着させた。より具体的には、一部の領域Xが分離膜の二つの面と接触するような、図4に示す態様のネット状(隣接する領域X間の間隔はいずれも3.0mm;領域Yは直径0.2mmの円筒形)の供給側流路材Aを成形した。また他の分離膜の表面に、全ての領域Xが分離膜の二つの面と接触するような(領域Xとなり得る部位の厚みが均一な)、図4に示す態様のネット状(隣接する領域X間の間隔はいずれも3.0mm;領域Yは直径0.2mmの円筒形)の供給側流路材Bを成形した。なお供給側流路材A及び供給側流路材Bのそれぞれについて、領域Xによる領域Yの保持の態様が異なる、二種類ずつのタイプを用意した。
(Production of supply-side channel material)
Using a 3D printer with polylactic acid as a model material, 3D printing was performed on the surface of the separation membrane with a 3D printer, and the supply-side flow path material was directly formed to fix the region X thereof. More specifically, the net shape shown in FIG. 4 is such that a part of the region X is in contact with the two surfaces of the separation membrane (the distance between adjacent regions X is 3.0 mm; the region Y is A supply-side flow path material A (cylindrical shape having a diameter of 0.2 mm) was formed. Also, on the surface of another separation membrane, a net-like (adjacent area) shown in FIG. 4 such that all the areas X are in contact with the two surfaces of the separation membrane (the thickness of the area that can be the area X is uniform) The supply-side flow path material B having an interval between X in all cases of 3.0 mm; and a region Y having a cylindrical shape with a diameter of 0.2 mm was formed. For each of the supply-side flow path material A and the supply-side flow path material B, two types were prepared, each having a different manner of holding the region Y by the region X.

(乱流強度)
その表面に供給側流路材を成形した分離膜を、幅40mm、長さ250mmのサンプル辺にカットして、同サイズのアクリルセルに挟み込み、蒸留水を、供給側流路での線速度が0.05m/秒になるように、アクリルセルの長さ方向の一端部から供給した。なおネット状の供給側流路材は、いずれも、蒸留水すなわち供給水の流れ方向に対して図4に示す状態となるように配置した。通水をしながら、アクリルセルにおける蒸留水の供給側端部から水性赤色インクを10mL注入し、アクリルセル内でのインクの広がり具合を、アクリルセルの垂直上方からデジタルビデオカメラで録画した。そしてインクの広がりが、アクリルセルの長さ方向において蒸留水の供給側端部から240mmmの位置に到達した時点の画像を処理し、テクスチャの数値をゼロにして画像を白黒化した。得られた白黒化画像を画像解析ソフト(例えば、ImageJ)で解析し、アクリルセルの面積(40mm×250mm)に対するインクの広がりの面積の割合(%)を、乱流強度として算出した。乱流強度の値が大きいほど、供給側流路材の乱流発生効果が大きいことを意味する。
(Turbulence intensity)
A separation membrane having a supply-side channel material formed on the surface thereof is cut into a sample side having a width of 40 mm and a length of 250 mm, and is sandwiched between acrylic cells of the same size. The acrylic cell was supplied from one end in the length direction so as to be 0.05 m / sec. Each of the net-shaped supply-side flow path members was disposed so as to be in the state shown in FIG. 4 with respect to the flow direction of distilled water, that is, the supply water. While flowing water, 10 mL of aqueous red ink was injected from the supply side end of the distilled water in the acrylic cell, and the spread of the ink in the acrylic cell was recorded by a digital video camera from vertically above the acrylic cell. Then, the image at the time when the spread of the ink reached a position 240 mm from the supply side end of the distilled water in the length direction of the acrylic cell was processed, and the value of the texture was set to zero to black and white the image. The obtained black and white image was analyzed with image analysis software (for example, ImageJ), and the ratio (%) of the area of the spread of the ink to the area of the acrylic cell (40 mm × 250 mm) was calculated as the turbulence intensity. The higher the value of the turbulence intensity, the greater the turbulence generation effect of the supply-side channel material.

(実施例1)
(乱流強度の測定)
その表面に供給側流路材A−1を成形した分離膜について、乱流強度を測定した。
(Example 1)
(Measurement of turbulence intensity)
The turbulence intensity of the separation membrane having the supply-side channel material A-1 formed on the surface thereof was measured.

(分離膜エレメントの作製)
抄紙法で製造されたポリエステル繊維からなる不織布(通気度1.0cc/cm/sec)上に、ポリスルホンの15質量%ジメチルホルムアミド(DMF)溶液を室温(25℃)、塗布厚み180μmでキャストした後、直ちに純水中に5分間浸漬することによって、基材である不織布上に多孔性支持体を形成した。
(Preparation of separation membrane element)
A 15% by mass dimethylformamide (DMF) solution of polysulfone was cast at room temperature (25 ° C.) and a coating thickness of 180 μm on a nonwoven fabric (air permeability: 1.0 cc / cm 2 / sec) made of polyester fiber produced by a papermaking method. Thereafter, the porous substrate was immediately immersed in pure water for 5 minutes to form a porous support on the nonwoven fabric as the substrate.

次に、2−エチルピペラジンが2.0質量%、ドデシルジフェニルエーテルジスルホン酸ナトリウムが100ppm、リン酸3ナトリウムが1.0質量%になるように溶解した水溶液に、多孔性支持体を形成した基材を10秒間浸漬した後、エアーノズルから窒素を吹き付けて、余分な水溶液を除去した。続いて70℃に加温した0.2質量%のトリメシン酸クロリドを含むn−デカン溶液を、多孔性支持体の表面に均一塗布し、60℃の膜面温度で3秒間保持した後に、膜面温度を10℃まで冷却し、この温度を維持したまま空気雰囲気下で1分間放置し、分離機能層を形成した。得られた複合半透膜を垂直に保持して液切りし、60℃の純水で2分間洗浄して、分離膜を得た。   Next, a base material on which a porous support is formed in an aqueous solution in which 2-ethylpiperazine is dissolved in an amount of 2.0% by mass, sodium dodecyldiphenyletherdisulfonate in an amount of 100 ppm, and trisodium phosphate in an amount of 1.0% by mass. Was immersed for 10 seconds, and nitrogen was blown from an air nozzle to remove excess aqueous solution. Subsequently, an n-decane solution containing 0.2% by mass of trimesic acid chloride heated to 70 ° C. was uniformly applied to the surface of the porous support, and was held at a film surface temperature of 60 ° C. for 3 seconds. The surface temperature was cooled to 10 ° C., and left at this temperature for 1 minute in an air atmosphere to form a separation functional layer. The obtained composite semipermeable membrane was held vertically and drained, and washed with pure water at 60 ° C. for 2 minutes to obtain a separation membrane.

得られた分離膜を幅920mmに裁断し、分離膜エレメントにおける有効面積が1.8mとなるように折り畳み、折り畳まれた分離膜に挟まれるように、三つの分離膜の表面に供給側流路材A−1を成形する構成とした。さらに、供給側流路材A−1が成形されたのとは逆側の分離膜の面に、透過側流路材としてトリコットのシートを配置し、これらの積層物を、ABS樹脂製集水管(幅:1000mm、径:18mm、孔数40個×直線2列)にスパイラル状に巻き付けた。最後に、両端のエッジカットを行い、直径が2インチの分離膜エレメントを作製した。なおネット状の供給側流路材A−1は、いずれも、供給水の流れ方向に対して図4に示す状態となるように成形した。 The obtained separation membrane was cut to a width of 920 mm, folded so that the effective area of the separation membrane element was 1.8 m 2, and supplied to the surfaces of the three separation membranes so as to be sandwiched between the folded separation membranes. The road material A-1 was formed. Further, a tricot sheet is disposed as a permeate-side flow path material on the surface of the separation membrane opposite to the side on which the supply-side flow path material A-1 is formed, and these laminates are collected into an ABS resin water collecting pipe. (Width: 1000 mm, diameter: 18 mm, number of holes: 40 × two straight lines) and spirally wound. Finally, both edges were cut to produce a separation membrane element having a diameter of 2 inches. Each of the net-shaped supply-side flow path members A-1 was formed so as to be in the state shown in FIG. 4 with respect to the flow direction of the supply water.

(TDS除去率)
分離膜エレメントを圧力容器に入れて、琵琶湖水を供給水として、運転圧力0.48MPa、温度25℃、回収率20%の条件下で、供給水を循環しながら30分間運転した後に、1分間透過水のサンプリングを行った。
(TDS removal rate)
The separation membrane element is placed in a pressure vessel, and after operating for 30 minutes while circulating the supply water under the conditions of an operating pressure of 0.48 MPa, a temperature of 25 ° C., and a recovery rate of 20%, using the water of Lake Biwa as the supply water, for 1 minute Permeated water was sampled.

サンプリングした透過水、及び、供給水である琵琶湖水のTDS濃度を、市販の電気伝導率計を用いて測定し、下記式からTDS除去率を算出した。   The TDS concentration of the sampled permeated water and the supply water of Lake Biwa was measured using a commercially available electric conductivity meter, and the TDS removal rate was calculated from the following equation.

TDS除去率(%)=100×{1−(透過水中のTDS濃度/供給水中のTDS濃度)}
一連の評価結果を、表1に示す。
TDS removal rate (%) = 100 × {1- (TDS concentration in permeated water / TDS concentration in feed water)}
Table 1 shows a series of evaluation results.

Figure 2019214041
Figure 2019214041

(実施例2〜4)
供給側流路材を表1のとおりにした以外は全て実施例1と同様の評価をした結果を、表1に示す。
(Examples 2 to 4)
Table 1 shows the results of the same evaluation as in Example 1 except that the supply-side channel material was changed as shown in Table 1.

(実施例5および6)
供給側流路材を表1のとおり薄くし、有効膜面積を増大させた以外は全て実施例1と同様にして、分離膜エレメントを作製した。
(Examples 5 and 6)
A separation membrane element was produced in the same manner as in Example 1 except that the supply-side channel material was thinned as shown in Table 1 and the effective membrane area was increased.

分離膜エレメントを圧力容器に入れて、実施例1と同条件で各性能を評価したところ、結果は表1のとおりであった。   Each performance was evaluated under the same conditions as in Example 1 by placing the separation membrane element in a pressure vessel, and the results were as shown in Table 1.

(比較例1)
供給側流路材を3Dプリンターで成形するのではなく、一般的なポリプロピレン製ネット(交点間の距離2.5mm×2.5mm、繊維が形成する角度45°、厚み0.75mm、一方向に配列した繊維に、他の方向に配列した繊維が積層)を分離膜に固着させた分離膜について、乱流強度を測定した。結果を表1に示す。
(Comparative Example 1)
Instead of molding the supply-side channel material with a 3D printer, a general polypropylene net (distance between intersections 2.5 mm x 2.5 mm, angle formed by the fiber 45 °, thickness 0.75 mm, unidirectional The turbulence intensity was measured for a separation membrane in which fibers arranged in the other direction were laminated on the arranged fibers). The results are shown in Table 1.

また、折り畳まれた分離膜に挟まれるように、三つの上記ポリプロピレン製ネットを配置して供給側流路材とし、分離膜エレメントを作製して実施例1と同様の評価をした結果を、表1に示す。   In addition, three polypropylene nets were arranged so as to be sandwiched between the folded separation membranes, used as a supply-side flow path material, and a separation membrane element was produced. 1 is shown.

(比較例2および3)
供給側流路材を表1のとおりにし、有効膜面積を増大させた以外は全て比較例1と同様にして、分離膜エレメントを作製した。
(Comparative Examples 2 and 3)
A separation membrane element was produced in the same manner as in Comparative Example 1 except that the supply-side flow path material was as shown in Table 1 and the effective membrane area was increased.

比較例1〜3ではネットの全領域が厚み方向において分離膜のいずれかと接触し、領域Yが存在しないことから、流動抵抗が高まるばかりでなく乱流強度が大幅に低くなり、それに伴い除去率も低下した。   In Comparative Examples 1 to 3, since the entire region of the net was in contact with any of the separation membranes in the thickness direction and the region Y was not present, not only the flow resistance was increased but also the turbulence intensity was significantly reduced, and the removal rate was accordingly reduced. Also fell.

表1に示す結果から明らかなように、実施例1〜6の分離膜エレメントは、供給水の流動抵抗が十分に低減されており、かつ供給側流路における好適な乱流発生効果が得られていることから、優れた分離除去性能を安定的に発揮しているといえる。   As is clear from the results shown in Table 1, in the separation membrane elements of Examples 1 to 6, the flow resistance of the supply water was sufficiently reduced, and a favorable turbulence generation effect in the supply-side flow path was obtained. Therefore, it can be said that excellent separation and removal performance is stably exhibited.

本発明の分離膜エレメントは、かん水や海水の脱塩に好適に用いることができる。   The separation membrane element of the present invention can be suitably used for desalination of brackish water or seawater.

1 分離膜
2 供給側流路材
6 集水管
100 分離膜エレメント
201 供給水の流れ方向
H 分離膜の膜面間隔
X 領域X
Y 領域Y
DESCRIPTION OF SYMBOLS 1 Separation membrane 2 Supply side flow path material 6 Water collecting pipe 100 Separation membrane element 201 Flow direction H of supply water Separation membrane surface X area X
Y area Y

Claims (4)

集水管と、分離膜と、供給側流路材と、透過側流路材とを備え、
前記供給側流路材は、前記分離膜の二つの面の間に配置され、
その厚み方向において前記分離膜と接触する、複数の領域Xと、
その厚み方向において前記分離膜と接触しない、複数の領域Yを有し、
前記領域Xは、少なくとも前記分離膜の一つの面に固着しており、
前記領域Yは、前記領域Xにより保持されている、分離膜エレメント。
A collecting pipe, a separation membrane, a supply-side flow path material, and a permeation-side flow path material,
The supply-side channel material is disposed between two surfaces of the separation membrane,
A plurality of regions X in contact with the separation membrane in the thickness direction thereof;
It has a plurality of regions Y that do not contact the separation membrane in its thickness direction,
The region X is fixed to at least one surface of the separation membrane,
The region Y is a separation membrane element held by the region X.
前記領域Yは、隣接する二つの領域Xにより保持されている、請求項1記載の分離膜エレメント。   The separation membrane element according to claim 1, wherein the region (Y) is held by two adjacent regions (X). 前記供給側流路材は、その厚み方向において前記分離膜の二つの面と接触する、前記領域Xを有する、請求項1又は2記載の分離膜エレメント。   3. The separation membrane element according to claim 1, wherein the supply-side flow path member has the region X in contact with two surfaces of the separation membrane in a thickness direction. 4. 前記分離膜の厚み方向における間隔が0.20〜0.50mmである請求項1〜3のいずれかに記載の分離膜エレメント。
The separation membrane element according to any one of claims 1 to 3, wherein an interval in a thickness direction of the separation membrane is 0.20 to 0.50 mm.
JP2019102268A 2018-06-12 2019-05-31 Separation membrane element Pending JP2019214041A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018111692 2018-06-12
JP2018111692 2018-06-12

Publications (1)

Publication Number Publication Date
JP2019214041A true JP2019214041A (en) 2019-12-19

Family

ID=68918297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019102268A Pending JP2019214041A (en) 2018-06-12 2019-05-31 Separation membrane element

Country Status (1)

Country Link
JP (1) JP2019214041A (en)

Similar Documents

Publication Publication Date Title
CN109715275B (en) Separation membrane element and method for operating same
JPWO2018079511A1 (en) Separation membrane element
US20210275968A1 (en) Osmotic pressure assisted reverse osmosis membrane and module
KR20220052935A (en) Separator element
JP2019214040A (en) Separation membrane element
JP2021090952A (en) Separation membrane element
WO2014208602A1 (en) Separation membrane element
JP2018086638A (en) Spiral type separation membrane element
JP2019214041A (en) Separation membrane element
CN114602327B (en) Separation membrane element
JP6245407B1 (en) Separation membrane element
WO2017150531A1 (en) Flat-sheet separation membrane element, element unit, flat-sheet separation membrane module, and operation method for flat-sheet separation membrane module
JP2006255672A (en) Separation membrane
JP2020069473A (en) Separation membrane element
JP2020011231A (en) Supply side channel material and separation membrane element
JP2020175385A (en) Separation membrane element
JP2022024469A (en) Separation membrane element and method for operating the same
WO2023048052A1 (en) Separation membrane element
WO2024095643A1 (en) Separation membrane element
JP2019205954A (en) Separation membrane element and operation method thereof
JP4400123B2 (en) Liquid separation membrane and liquid processing method
JP2005144211A (en) Composite semi-permeable membrane, its production method and treatment method for fluid separation element
JP2019025419A (en) Separation membrane element and vessel
JP2024049759A (en) Separation Membrane Element
WO2023008251A1 (en) Separation membrane element and separation membrane system