JP2019212381A - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
JP2019212381A
JP2019212381A JP2018104826A JP2018104826A JP2019212381A JP 2019212381 A JP2019212381 A JP 2019212381A JP 2018104826 A JP2018104826 A JP 2018104826A JP 2018104826 A JP2018104826 A JP 2018104826A JP 2019212381 A JP2019212381 A JP 2019212381A
Authority
JP
Japan
Prior art keywords
strap
positive electrode
pole
positive
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018104826A
Other languages
Japanese (ja)
Other versions
JP6522832B1 (en
Inventor
吉田 英明
Hideaki Yoshida
英明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2018104826A priority Critical patent/JP6522832B1/en
Priority to CN201980002565.4A priority patent/CN110870100B/en
Priority to PCT/JP2019/019268 priority patent/WO2019230396A1/en
Application granted granted Critical
Publication of JP6522832B1 publication Critical patent/JP6522832B1/en
Publication of JP2019212381A publication Critical patent/JP2019212381A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • H01M50/541Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a lead storage battery having a structure capable of effectively preventing breaking of a positive electrode strap caused by extension of a positive electrode plate generated in long-term operation of a lead storage battery allowing relatively small current even though the battery has intermediate or larger capacity.SOLUTION: A lead storage battery comprises: electrodes each including a positive electrode plate and a negative electrode plate laminated alternatingly via a separation plate; a strap connecting ear parts of electrode plates having the same polarity of the electrodes; and a seat of an electrode pole connecting the strap with the electrode pole. Distances from two edges of a junction part between a seat of an electrode pole at a positive electrode side and a positive electrode strap to the positive electrode strap's ends existing at the same side of the respective edges are 0 to 20 mm. A positive electrode strap's width is 10 to 25 mm and a positive electrode strap's thickness is 5 to 15 mm. Additionally, a height of the remaining part of the positive electrode plate excluding an ear part and a leg part is equal to or larger than 180 mm.SELECTED DRAWING: None

Description

本発明は、鉛蓄電池に関し、更に詳しくは、中容量以上でありながら比較的小さな電流しか流さない鉛蓄電池における、正極ストラップの寸法、及び、上記正極ストラップと、該正極ストラップと正極極柱とを接続する正極側の極柱の座(以下、「正極極柱の座」と言うことがある。)との接合位置に関するものである。 The present invention relates to a lead-acid battery, and more specifically, in a lead-acid battery that has a medium capacity or more and that allows only a relatively small current to flow, the dimensions of the positive strap, the positive strap, and the positive strap and the positive pole. The present invention relates to a joining position with a pole pole seat to be connected (hereinafter sometimes referred to as “positive pole pole seat”).

従来、鉛又は鉛合金を主成分とする基板に正極活物質ペーストを充填して成る複数の正極板と、鉛又は鉛合金を主成分とする基板に負極活物質ペーストを充填して成る複数の負極板とを、ガラス繊維を主体とする隔離板を介して交互に積層して形成された極板群を、電槽内に収容し、上記極板群中の同極性同士の極板の耳部をストラップにより連結し、該ストラップに接続された極柱の座に極柱を設けた鉛蓄電池が広く知られている。また、近年、このような鉛蓄電池に対する長寿命化の要求がますます高まってきており、産業用鉛蓄電池においては、15年以上、例えば、20年の寿命が必要とされる品種もある。 Conventionally, a plurality of positive electrode plates formed by filling a substrate mainly composed of lead or lead alloy with a positive electrode active material paste, and a plurality of positive plates formed by filling a substrate mainly composed of lead or lead alloy with a negative electrode active material paste. An electrode plate group formed by alternately laminating negative electrode plates through separators mainly composed of glass fibers is housed in a battery case, and the ears of the electrode plates of the same polarity in the electrode plate group Lead-acid batteries in which the parts are connected by a strap and the pole column is provided on the pole pole seat connected to the strap are widely known. Further, in recent years, there is an increasing demand for such a lead storage battery to have a longer life, and there are some types of industrial lead storage batteries that require a life of 15 years or more, for example, 20 years.

鉛蓄電池の長寿命化を図るために、例えば、複数の極板の各耳部を鉛あるいは鉛合金からなるストラップで接続した極板群を有する鉛蓄電池において、前記各耳部の板面方向と平行方向の前記ストラップの断面積が、極柱がある部分から離れるにつれて次第に小さくなっていることを特徴とする鉛蓄電池が知られている(特許文献1)。該発明は、大容量であってかつ大電流を流す鉛蓄電池に関するものであり、大電流で放電した際に生ずる温度上昇によるストラップの溶断を防止し、かつ、無駄な鉛又は鉛合金を極力少なくし得るストラップの形状を提案するものである。 In order to extend the life of the lead-acid battery, for example, in a lead-acid battery having a group of electrode plates in which each ear portion of a plurality of electrode plates is connected by a strap made of lead or a lead alloy, the plate surface direction of each ear portion and A lead-acid battery is known in which the cross-sectional area of the strap in the parallel direction gradually decreases as the distance from the part where the pole pole is located (Patent Document 1). The present invention relates to a lead-acid battery having a large capacity and flowing a large current, preventing the fusing of a strap due to a temperature rise that occurs when discharging with a large current, and reducing wasteful lead or lead alloy as much as possible. A possible strap shape is proposed.

特開2000−173579号公報JP 2000-173579 A

本発明は、中容量以上でありながら比較的小さな電流しか流さない鉛蓄電池において、長期間に亘る運用において発生する正極板の伸びに起因する正極ストラップの破断を、効果的に防止し得る構造を有する鉛蓄電池を提供するものである。 The present invention has a structure capable of effectively preventing the breakage of the positive electrode strap caused by the elongation of the positive electrode plate that occurs in the operation over a long period of time in a lead storage battery that has a medium capacity or more and flows only a relatively small current. The lead acid battery which has is provided.

上記特許文献1記載の発明は、大容量であってかつ大電流を流す鉛蓄電池に関するものであり、大電流を流した際に発生する熱による、ストラップの溶断を回避する構造を提供するものである。例えば、実施例では、2V−1,000Ahの鉛蓄電池において、3C10A(3,000A)の大電流で放電した際のストラップ温度を測定し、ストラップの溶断の有無を観察して評価している。しかし、容量の大きい中容量以上の鉛蓄電池であっても、用途によっては、0.6C10A以下の小さな電流しか流さないような鉛蓄電池においては、そもそも、放電電流により温度上昇が生じて、ストラップが溶断することなど起こり得ない。 The invention described in Patent Document 1 relates to a lead-acid battery that has a large capacity and allows a large current to flow, and provides a structure that avoids fusing of the strap due to heat generated when a large current is passed. is there. For example, in the embodiment, in a lead storage battery of 2V-1,000 Ah, the strap temperature when discharged with a large current of 3C 10 A (3,000 A) is measured, and the presence or absence of fusing of the strap is observed and evaluated. Yes. However, even in a lead storage battery having a large capacity and a medium capacity or more, depending on the application, in a lead storage battery in which only a small current of 0.6 C 10 A or less flows, the temperature rises due to the discharge current in the first place. The strap can never melt.

しかし、このような小さな電流しか流さない鉛蓄電池であっても、使用期間が15〜20年という長期に及ぶようになると、ストラップが折れて破断してしまうという現象が報告されるようになってきた。本発明者は、この原因が何によるものかを追及したところ、使用期間が長期に及ぶと、その間の浮動充電又は充放電サイクル運用によって、正極板に腐食が生じて正極板自体が伸び、そして、正極ストラップが下から押し上げられて湾曲し、それにより、とりわけ、正極極柱の座と正極ストラップとの接合部分のエッジ部に、応力が集中してクラックが発生し、そして、クラックが発生した部分において腐食が加速されるためであることを見つけ出した。とりわけ、正極板の高さが大きいもの、例えば、耳部と足部とを除く正極板の高さが180mm以上、更には200mm以上であると、正極ストラップが破断する危険性が極めて大きくなることを見出した。 However, even in the case of a lead-acid battery that allows only such a small current to flow, the phenomenon that the strap breaks and breaks when the usage period reaches 15 to 20 years has come to be reported. It was. The present inventor investigated what caused this cause, and when the service period was long, the floating charge or charge / discharge cycle operation during that time caused corrosion of the positive electrode plate, and the positive electrode plate itself was elongated. The positive strap is pushed up from the bottom to bend, whereby stress concentrates on the edge of the joint between the positive pole pole seat and the positive strap, and cracks are generated. It was found that corrosion was accelerated in the part. In particular, when the height of the positive electrode plate is large, for example, when the height of the positive electrode plate excluding the ear and the foot is 180 mm or more, and further 200 mm or more, the risk of the positive strap breaking is extremely high. I found.

上記の正極ストラップの破断を防止するためには、正極ストラップをより頑丈なものにすればよい。しかし、それでは鉛蓄電池の使用材料量及び全体重量の増加等により、製造コストが著しく増大してしまう。また、正極ストラップを多少頑丈にした程度では、腐食による極板の伸びの力は強靭なため、ストラップの湾曲、また、それに伴う破断は抑制できない。そこで、本発明者は、如何にすれば、このようなコストの増大を伴わずに正極ストラップの破断を防止し得るかについて、種々検討を重ねた。その結果、正極極柱の座と正極ストラップとの接合部分の二つのエッジ部から、夫々のエッジ部の同側に存在する、正極ストラップの長さ方向の端部までの距離(a−1,a−1’)、正極ストラップの幅(b−1)及び正極ストラップの厚さ(c−1)を、下記所定の寸法にすれば、上記課題を効果的に解決し得ることを見出した。そして、これらに加えて、好ましくは、正極極柱の座と上記正極極柱との接合部分の長さ(e−1)を、著しく短くすることができることをも見出したのである。 In order to prevent breakage of the positive strap, the positive strap may be made more robust. However, this leads to a significant increase in manufacturing cost due to an increase in the amount of materials used and the overall weight of the lead storage battery. In addition, when the positive strap is made to be somewhat sturdy, the strength of the electrode plate due to corrosion is strong, so the bending of the strap and the accompanying breakage cannot be suppressed. Therefore, the present inventor conducted various studies on how to prevent the positive strap from being broken without increasing the cost. As a result, the distances (a-1,...) From the two edge portions of the joint portion of the positive electrode pole seat and the positive electrode strap to the end portions in the length direction of the positive electrode strap on the same side of the respective edge portions. It has been found that if the a-1 ′), the width (b-1) of the positive electrode strap, and the thickness (c-1) of the positive electrode strap are set to the following predetermined dimensions, the above problem can be effectively solved. In addition to the above, it has also been found that the length (e-1) of the joint portion between the positive electrode pole seat and the positive electrode pole can be remarkably shortened.

即ち、本発明は、
(1)正極板と負極板とを隔離板を介して交互に積層した極板群、上記極板群の同極性同士の極板の耳部を連結したストラップ、及び、上記ストラップと極柱とを接続した極柱の座、を備える鉛蓄電池において、正極側の極柱の座と正極ストラップとの接合部分の二つのエッジ部から、夫々のエッジ部の同側に存在する、上記正極ストラップの長さ方向の端部までの距離(a−1,a−1’)が、0〜20mmであり、上記正極ストラップの幅(b−1)が、10〜25mmであり、かつ、上記正極ストラップの厚さ(c−1)が、5〜15mmであり、加えて、耳部と足部とを除く正極板の高さ(d−1)が180mm以上であることを特徴とする鉛蓄電池である。
That is, the present invention
(1) An electrode plate group in which positive and negative electrode plates are alternately stacked via separators, a strap in which the ears of the electrode plates of the same polarity of the electrode plate group are connected, and the strap and the pole column In the lead-acid battery comprising the pole column seats connected to each other, from the two edge portions of the joint portion between the pole pole seat on the positive electrode side and the positive electrode strap, The distance (a-1, a-1 ′) to the end in the length direction is 0 to 20 mm, the width (b-1) of the positive strap is 10 to 25 mm, and the positive strap The lead-acid battery is characterized in that the thickness (c-1) is 5 to 15 mm, and in addition, the height (d-1) of the positive electrode plate excluding the ear part and the foot part is 180 mm or more. is there.

好ましい態様として、
(2)上記の正極側の極柱の座と正極極柱との接合部分の長さ(e−1)が、該正極極柱の長手方向に垂直な断面において、該正極極柱の断面の周の長さの60%以下である、上記(1)記載の鉛蓄電池、
(3)上記の正極側の極柱の座と正極極柱との接合部分の長さ(e−1)が、該正極極柱の長手方向に垂直な断面において、該正極極柱の断面の周の長さの30〜60%である、上記(1)記載の鉛蓄電池、
(4)上記の正極側の極柱の座と正極ストラップとの接合部分の二つのエッジ部から、夫々のエッジ部の同側に存在する、上記正極ストラップの長さ方向の端部までの距離(a−1,a−1’)が、10〜20mmである、上記(1)〜(3)のいずれか一つに記載の鉛蓄電池、
(5)上記正極ストラップの幅(b−1)が、10〜20mmである、上記(1)〜(4)のいずれか一つに記載の鉛蓄電池、
(6)上記正極ストラップの厚さ(c−1)が、5〜10mmである、上記(1)〜(5)のいずれか一つに記載の鉛蓄電池、
(7)耳部と足部とを除く上記正極板の高さ(d−1)が、200mm以上である、上記(1)〜(6)のいずれか一つに記載の鉛蓄電池、
(8)運用時の最大電流が、0.6C10アンペア(A)以下である、上記(1)〜(7)のいずれか一つに記載の鉛蓄電池、
(9)運用時の最大電流が、0.1〜0.3C10アンペア(A)である、上記(1)〜(7)のいずれか一つに記載の鉛蓄電池、
(10)上記正極ストラップの長さ(全長)が、250〜300mmである、上記(1)〜(9)のいずれか一つに記載の鉛蓄電池、
(11)上記正極ストラップの長さ(全長)が、260〜290mmである、上記(1)〜(9)のいずれか一つに記載の鉛蓄電池
を挙げることができる。
As a preferred embodiment,
(2) The length (e-1) of the joint portion between the positive pole pole seat and the positive pole pole on the positive pole side is the cross section of the positive pole pole in the cross section perpendicular to the longitudinal direction of the positive pole pole. The lead acid battery according to (1), which is 60% or less of the circumference,
(3) The length (e-1) of the joint portion between the positive pole pole seat and the positive pole pole on the positive pole side is the cross section of the positive pole pole in the cross section perpendicular to the longitudinal direction of the positive pole pole. The lead acid battery according to the above (1), which is 30 to 60% of the circumference length,
(4) The distance from the two edge portions of the joint portion between the positive pole seat on the positive electrode side and the positive electrode strap to the end in the length direction of the positive electrode strap on the same side of each edge portion (A-1, a-1 ') is 10-20 mm, The lead acid battery as described in any one of said (1)-(3),
(5) The lead acid battery according to any one of (1) to (4), wherein the positive electrode strap has a width (b-1) of 10 to 20 mm.
(6) The lead acid battery according to any one of (1) to (5), wherein the thickness (c-1) of the positive electrode strap is 5 to 10 mm,
(7) The lead acid battery according to any one of (1) to (6) above, wherein a height (d-1) of the positive electrode plate excluding the ear and the foot is 200 mm or more.
(8) The lead acid battery according to any one of the above (1) to (7), wherein the maximum current during operation is 0.6 C 10 amperes (A) or less.
(9) The lead acid battery according to any one of (1) to (7), wherein the maximum current during operation is 0.1 to 0.3C 10 amperes (A),
(10) The lead acid battery according to any one of (1) to (9), wherein a length (full length) of the positive electrode strap is 250 to 300 mm.
(11) The lead acid battery according to any one of (1) to (9) above, wherein the positive electrode strap has a length (full length) of 260 to 290 mm.

本発明の鉛蓄電池によれば、中容量以上でありながら比較的小さな電流しか流さない鉛蓄電池の長期間に亘る運用において発生する、正極板の腐食に伴う伸びによる正極ストラップの破断を、効果的に防止し得るばかりではなく、製造コストを低減することができる。 According to the lead acid battery of the present invention, it is effective to break the positive electrode strap due to the elongation accompanying the corrosion of the positive electrode plate, which occurs in the long-term operation of the lead acid battery which has a medium capacity or more and flows only a relatively small current. In addition, the manufacturing cost can be reduced.

本発明の鉛蓄電池の一実施態様を示す外観図である。It is an external view which shows one embodiment of the lead acid battery of this invention. 本発明の鉛蓄電池に収容される極板群の一実施態様を示す正面図である。It is a front view which shows one embodiment of the electrode group accommodated in the lead acid battery of this invention. 本発明の鉛蓄電池の蓋を取り外した状態における平面図である。It is a top view in the state where the lid of the lead acid battery of the present invention was removed. 本発明の鉛蓄電池の正極ストラップ、正極極柱の座及び正極極柱を示す概略図である。It is the schematic which shows the positive electrode strap of the lead acid battery of this invention, the seat of a positive electrode pole, and a positive electrode pole. 極板の高さ(d)を示す概略図である。It is the schematic which shows the height (d) of an electrode plate.

本発明の鉛蓄電池は、正極板、例えば、鉛又は鉛合金を主成分とする基板に正極活物質ペーストを充填して成る正極板と、負極板、例えば、鉛又は鉛合金を主成分とする基板に負極活物質ペーストを充填して成る負極板とを、隔離板、例えば、ガラス繊維を主体とするリテーナマットを介して交互に積層した極板群;上記極板群の同極性同士の極板の耳部を連結したストラップ;及び、上記ストラップと極柱とを接続した極柱の座を備える。ここで、上記ストラップ及び極柱の座は、好ましくは、鉛又は鉛合金を主成分とするものである。該鉛蓄電池は、従来公知の方法で製造することができる。 The lead-acid battery of the present invention includes a positive electrode plate, for example, a positive electrode plate formed by filling a positive electrode active material paste on a substrate mainly composed of lead or a lead alloy, and a negative electrode plate, for example, lead or a lead alloy. An electrode plate group in which a negative electrode plate formed by filling a substrate with a negative electrode active material paste is alternately laminated via separators, for example, retainer mats mainly composed of glass fibers; poles of the same polarity in the electrode plate group A strap connecting the ears of the plate; and a pole pole seat connecting the strap and the pole pole. Here, the strap and the pole column seat are preferably composed mainly of lead or a lead alloy. The lead acid battery can be manufactured by a conventionally known method.

以下、本発明の鉛蓄電池について図面を参照して説明する。図1は、本発明の鉛蓄電池(A)の一実施態様を示す外観図であり、上図が平面図であり、下図が正面図である。図2は、図1に示した本発明の鉛蓄電池に収容される極板群(10)の一実施態様を示す正面図である。左図が正極側(10−1)を示し、右図が負極側(10−2)を示す。図3は、図1に示した本発明の鉛蓄電池(A)の蓋(2)を取り外した状態における平面図である。鉛蓄電池(A)は、上面に開口部を有する、中空の略直方体である電槽(1)と、該電槽(1)の開口部の周縁部(1−1)に熱融着等により接合された蓋(2)とを備える。ここで、電槽(1)及び蓋(2)は、合成樹脂、例えば、ポリプロピレン、ABS樹脂等により形成されている。蓋(2)には、極柱(4)、即ち、正極極柱(4−1)及び負極極柱(4−2)が挿通される端子挿通孔が備えられており、これらの端子挿通孔に鉛合金製のブッシングを蓋(2)の合成樹脂材料内にインサートして成形されている。また、正極極柱(4−1)及び負極極柱(4−2)は、ブッシングと一体的に溶接されると共に、これらの先端部は蓋(2)の上部に突出して、夫々、正極端子及び負極端子を形成している。また、ブッシングと、該ブッシングと該極柱の溶接箇所の上面にエポキシ樹脂が注入され、それを硬化させて端子封口部(5)が形成される。電槽(1)内には、蓋(2)の上面に設けられた注液口より、所定濃度の希硫酸から成る電解液が注入される。該注液口には、ゴム弁が被せられ、その上から排気栓(3)が装着されて、鉛蓄電池(A)が密閉される。 Hereinafter, the lead storage battery of the present invention will be described with reference to the drawings. FIG. 1 is an external view showing an embodiment of the lead storage battery (A) of the present invention, an upper view is a plan view, and a lower view is a front view. FIG. 2 is a front view showing an embodiment of the electrode plate group (10) accommodated in the lead storage battery of the present invention shown in FIG. The left figure shows the positive electrode side (10-1), and the right figure shows the negative electrode side (10-2). FIG. 3 is a plan view of the lead storage battery (A) of the present invention shown in FIG. 1 with the lid (2) removed. The lead-acid battery (A) has a battery case (1) which is a hollow, substantially rectangular parallelepiped having an opening on the upper surface, and a peripheral part (1-1) of the opening of the battery case (1) by heat fusion or the like. And a joined lid (2). Here, the battery case (1) and the lid (2) are formed of a synthetic resin such as polypropylene or ABS resin. The lid (2) is provided with terminal insertion holes through which the pole column (4), that is, the positive electrode column (4-1) and the negative electrode column (4-2) are inserted, and these terminal insertion holes. Further, a lead alloy bushing is inserted into the synthetic resin material of the lid (2) and molded. Further, the positive electrode pole (4-1) and the negative electrode pole (4-2) are welded integrally with the bushing, and their tip portions protrude from the upper portion of the lid (2), respectively, and are respectively positive electrode terminals. And a negative electrode terminal. Moreover, an epoxy resin is inject | poured into the bushing and the upper surface of the welding location of this bushing and this pole, and it hardens it, and a terminal sealing part (5) is formed. An electrolytic solution made of dilute sulfuric acid having a predetermined concentration is injected into the battery case (1) from a liquid inlet provided on the upper surface of the lid (2). The liquid injection port is covered with a rubber valve, and an exhaust plug (3) is mounted thereon to seal the lead storage battery (A).

電槽(1)内には、例えば、図2に示されているような極板群(10)が収容される。極板群(10)は、複数の正極板(11−1)と複数の負極板(11−2)とを備え、これら正極板(11−1)と負極板(11−2)とを隔離板(図示せず)、例えば、微細ガラス繊維を主体としたマット状セパレータを介して交互に積層されて形成されている。正極板(11−1)は、その上方に突出する正極耳部(12−1)を備え、これらは、極板群(10−1)の積層方向に延びる正極ストラップ(16−1)により一体的に連結されている。同様に、負極板(11−2)も、その上方に突出する負極耳部(12−2)を備え、これらは、極板群(10−2)の積層方向に延びる負極ストラップ(16−2)により一体的に連結されている。 図3に示されているように、正極ストラップ(16−1)及び負極ストラップ(16−2)は、いずれも、極柱の座(15)[正極側(15−1)、負極側(15−2)]を介して、夫々、正極端子となる正極極柱(4−1)及び負極端子となる負極極柱(4−2)に接続されている。 In the battery case (1), for example, an electrode plate group (10) as shown in FIG. 2 is accommodated. The electrode plate group (10) includes a plurality of positive electrode plates (11-1) and a plurality of negative electrode plates (11-2), and separates the positive electrode plate (11-1) and the negative electrode plate (11-2). Plates (not shown), for example, are formed by alternately laminating through mat-like separators mainly composed of fine glass fibers. The positive electrode plate (11-1) includes a positive electrode ear (12-1) protruding upward, and these are integrated by a positive electrode strap (16-1) extending in the stacking direction of the electrode plate group (10-1). Connected. Similarly, the negative electrode plate (11-2) also includes a negative electrode ear (12-2) protruding upward, and these negative electrode straps (16-2) extend in the stacking direction of the electrode plate group (10-2). ). As shown in FIG. 3, both the positive strap (16-1) and the negative strap (16-2) are pole pole seats (15) [positive side (15-1), negative side (15 -2)] is connected to the positive electrode pole (4-1) serving as the positive electrode terminal and the negative electrode pole (4-2) serving as the negative electrode terminal, respectively.

図3に示されているように、極板集電部(13)は、極柱の座(15)とストラップ(16)とから構成されている。ここで、ストラップ(16)は、極板群(10)の積層方向に向かって平面略長方形に形成されている。また、極柱の座(15)は、平面略三角形状に形成されている。極柱の座(15)は、黄銅と鉛又は鉛合金を主成分とする極柱(4)と一体化されて形成されている。極板集電部(13)は、極柱(4)に一体的に設けられた極柱の座(15)とストラップ(16)とを溶接することにより一体的に構成される。 As shown in FIG. 3, the electrode plate current collector (13) includes a pole column seat (15) and a strap (16). Here, the strap (16) is formed in a substantially rectangular plane in the stacking direction of the electrode plate group (10). The pole pole seat (15) is formed in a substantially triangular plane. The pole pole seat (15) is formed integrally with the pole pole (4) mainly composed of brass and lead or lead alloy. The electrode plate current collector (13) is integrally formed by welding a pole column seat (15) and a strap (16) provided integrally with the pole column (4).

図4は、上記本発明の鉛蓄電池(A)の正極ストラップ(16−1)、正極極柱の座(15−1)及び正極極柱(4−1)のみを取り出して示した概略図であり、上図が平面図であり、下図が正面図である。本発明においては、正極極柱の座(15−1)と正極ストラップ(16−1)との接合部分の二つのエッジ部(20−1a,20−1a’)から、夫々のエッジ部(20−1a,20−1a’)の同側に存在する、上記正極ストラップ(16−1)の長さ方向の端部(16−1a,16−1a’)までの距離(a−1,a−1’)が、0〜20mmであり、好ましくは10〜20mmである。ここで、該距離(a−1,a−1’)は同一であっても異なっていてもよい。正極ストラップ(16−1)の幅(b−1)は、10〜25mmであり、好ましくは10〜20mmである。また、正極ストラップ(16−1)の厚さ(c−1)は、5〜15mmであり、好ましくは5〜10mmである。エッジ部(20−1a,20−1a’)から正極ストラップ端部(16−1a,16−1a’)までの距離(a−1,a−1’)、正極ストラップ(16−1)の幅(b−1)及び正極ストラップ(16−1)の厚さ(c−1)を上記の範囲にすることにより、正極板(11−1)の腐食による伸びに起因する正極ストラップ(16−1)の破断を長期間に亘って効果的に防止することができる。また、正極ストラップ(16−1)の幅(b−1)及び厚さ(c−1)が上記上限を超えても、破断防止効果に著しい改善は認められず、余計な材料の使用によりコスト高を招くばかりではなく、電池自体の質量が増加してしまう。また、本発明の鉛蓄電池においては、極板(11)の高さ(d)、とりわけ、正極板(11−1)の高さ(d−1)は180mm以上、好ましくは200mm以上であることが必要であり、最大約500mmである。上記下限未満では、そもそも、正極板の腐食による正極板の伸び自体が小さく、正極ストラップ(16−1)が破断するほどの応力が正極ストラップ(16−1)にかかることがない。ここで、極板(11)の高さ(d)とは、図5に示されているように、耳部(12)及び足部(17)を除いた極板の高さを言う。加えて、本発明の鉛蓄電池(A)においては、正極極柱の座(15−1)と正極極柱(4−1)との接合部分の長さ(e−1)は、正極極柱(4−1)の長手方向に垂直な断面における正極極柱(4−1)の断面の周の長さの60%以下であることが好ましく、正極極柱(4−1)の断面の周の長さの30〜60%であることがより好ましい。ここで、正極極柱の座(15−1)は、通常、ほぼ一定の厚さを有する平板であり、その厚さは、好ましくは5〜15mm、より好ましくは8〜10mmである。また、正極ストラップ(16−1)の長さ(全長)は、特に制限はないが、好ましくは250〜300mmであり、より好ましくは260〜290mmである。ここで、ストラップ(16)は、鉛又は鉛合金を主成分とするものであり、その硬度は低く比較的柔らかいものであることから、上記の距離(a−1,a−1’)は、正極ストラップ(16−1)の長さにほぼ無関係であり、上記範囲であれば本発明の効果を達成することができる。一方、負極側においては腐食による負極板(11−2)の伸びが発生することがない故に、負極側の極柱の座(以下、「負極極柱の座」と言うことがある。)(15−2)と負極ストラップ(16−2)との接合部分の二つのエッジ部(20−2a,20−2a’)から、夫々のエッジ部(20−2a,20−2a’)の同側に存在する、上記負極ストラップ(16−2)の長さ方向の端部(16−2a,16−2a’)までの距離(a−2,a−2’)、負極ストラップ(16−2)の幅(b−2)及び厚さ(c−2)、並びに、負極極柱の座(15−2)と負極極柱(4−2)との接合部分の長さ(e−2)は、いずれも任意である。但し、上記寸法を余りに小さくすると、たとえ、小さな電流しか流さなくても、鉛蓄電池の運用中に負極板集電部(13−2)が局部的に発熱して溶断するなどの問題が発生するおそれがある。従って、通常、負極ストラップ(16−2)の幅(b−2)及び厚さ(c−2)を夫々10mm以上及び5mm以上、並びに、負極極柱の座(15−2)と負極極柱(4−2)との接合部分の長さ(e−2)を、負極極柱の長手方向に垂直な断面において、該負極極柱の断面の周の長さの30%以上にしておけばよく、また、負極極柱の座(15−2)の厚さは、5mm以上にしておけばよい。負極板(11−2)の寸法は、正極板とほぼ同一であり、例えば、負極板(11−2)の高さ(d−2)は、通常、正極板の高さ(d−1)と同一である。 FIG. 4 is a schematic view showing only the positive electrode strap (16-1), the positive electrode pole column seat (15-1), and the positive electrode pole column (4-1) of the lead storage battery (A) of the present invention. The upper figure is a plan view and the lower figure is a front view. In the present invention, from the two edge portions (20-1a, 20-1a ′) of the joint portion between the positive pole base (15-1) and the positive strap (16-1), each edge portion (20 −1a, 20-1a ′), the distance (a-1, a−) to the end (16-1a, 16-1a ′) in the length direction of the positive electrode strap (16-1) existing on the same side of 1 ') is 0-20 mm, preferably 10-20 mm. Here, the distances (a-1, a-1 ') may be the same or different. The width | variety (b-1) of a positive electrode strap (16-1) is 10-25 mm, Preferably it is 10-20 mm. Moreover, the thickness (c-1) of the positive electrode strap (16-1) is 5 to 15 mm, preferably 5 to 10 mm. Distance (a-1, a-1 ′) from edge part (20-1a, 20-1a ′) to positive electrode strap end part (16-1a, 16-1a ′), width of positive electrode strap (16-1) By setting the thickness (c-1) of (b-1) and the positive electrode strap (16-1) within the above range, the positive electrode strap (16-1) caused by the elongation due to corrosion of the positive electrode plate (11-1). ) Can be effectively prevented over a long period of time. Further, even when the width (b-1) and thickness (c-1) of the positive electrode strap (16-1) exceed the above upper limit, no significant improvement is observed in the effect of preventing breakage, and the use of extra material reduces the cost. Not only is the height high, but the mass of the battery itself increases. Moreover, in the lead acid battery of this invention, the height (d) of an electrode plate (11), especially the height (d-1) of a positive electrode plate (11-1) is 180 mm or more, Preferably it is 200 mm or more. Is required, and the maximum is about 500 mm. If the amount is less than the above lower limit, the positive electrode plate itself is little stretched by corrosion of the positive electrode plate, and the positive strap (16-1) is not stressed enough to break the positive strap (16-1). Here, the height (d) of the electrode plate (11) refers to the height of the electrode plate excluding the ear part (12) and the foot part (17), as shown in FIG. In addition, in the lead acid battery (A) of the present invention, the length (e-1) of the joint portion between the positive pole column seat (15-1) and the positive electrode pole column (4-1) is the positive pole column. It is preferably 60% or less of the circumference of the cross section of the positive electrode pole column (4-1) in the cross section perpendicular to the longitudinal direction of (4-1), and the circumference of the cross section of the positive electrode pole column (4-1) More preferably, it is 30 to 60% of the length. Here, the positive pole base (15-1) is usually a flat plate having a substantially constant thickness, and the thickness is preferably 5 to 15 mm, more preferably 8 to 10 mm. Further, the length (full length) of the positive electrode strap (16-1) is not particularly limited, but is preferably 250 to 300 mm, and more preferably 260 to 290 mm. Here, since the strap (16) is mainly composed of lead or a lead alloy and has a low hardness and is relatively soft, the distance (a-1, a-1 ′) is as follows. It is almost irrelevant to the length of the positive electrode strap (16-1), and the effects of the present invention can be achieved within the above range. On the other hand, since the negative electrode plate (11-2) does not stretch due to corrosion on the negative electrode side, the pole pole seat on the negative electrode side (hereinafter sometimes referred to as "negative pole pole seat") ( 15-2) from the two edge portions (20-2a, 20-2a ′) of the joint portion between the negative electrode strap (16-2) and the same side of the respective edge portions (20-2a, 20-2a ′). The distance (a-2, a-2 ′) to the end (16-2a, 16-2a ′) in the length direction of the negative electrode strap (16-2), the negative electrode strap (16-2) Width (b-2) and thickness (c-2), and the length (e-2) of the junction between the negative pole pole seat (15-2) and the negative pole pole (4-2) , Both are optional. However, if the above dimensions are too small, even if only a small current flows, there will be a problem such that the negative electrode current collector (13-2) is locally heated and melted during operation of the lead storage battery. There is a fear. Therefore, the width (b-2) and the thickness (c-2) of the negative electrode strap (16-2) are usually 10 mm or more and 5 mm or more, respectively, and the negative electrode pole seat (15-2) and the negative electrode pole If the length (e-2) of the joining portion with (4-2) is 30% or more of the circumference of the cross section of the negative electrode pole in the cross section perpendicular to the longitudinal direction of the negative electrode pole The thickness of the negative pole pole seat (15-2) may be 5 mm or more. The dimensions of the negative electrode plate (11-2) are substantially the same as those of the positive electrode plate. For example, the height (d-2) of the negative electrode plate (11-2) is usually the height (d-1) of the positive electrode plate. Is the same.

本発明は、中容量以上でありながら比較的小さな電流しか流さない鉛蓄電池に適用され、運用時の最大電流が、好ましくは0.6C10アンペア(A)以下であり、より好ましくは0.1〜0.3C10アンペア(A)である鉛蓄電池に適用される。なお、0.6C10アンペア(A)を超える電流で充放電を繰り返すと、電池の内部温度の上昇による影響が顕著となる。該温度上昇によって腐食が加速され、それに伴う極板の伸びが著しく、ストラップが早期に破断し、短寿命となるおそれがある。ここで、中容量以上の鉛蓄電池とは、通常、定格容量が100Ah〜2,000Ah程度、好ましくは100Ah〜1,000Ah程度、より好ましくは500Ah〜1,000Ah程度の鉛蓄電池を意味する。 The present invention is applied to a lead-acid battery does not flow a relatively small current only while not less than medium-capacity, maximum current during operation is, preferably 0.6 C 10 amperes (A) or less, more preferably 0.1 Applies to lead-acid batteries that are ~ 0.3C 10 amps (A). In addition, when charging / discharging is repeated at a current exceeding 0.6 C 10 amperes (A), the influence of the rise in the internal temperature of the battery becomes significant. Corrosion is accelerated by the temperature rise, and the accompanying electrode plate is remarkably stretched, so that there is a possibility that the strap breaks early, resulting in a short life. Here, the lead-acid battery having a medium capacity or higher usually means a lead-acid battery having a rated capacity of about 100 Ah to 2,000 Ah, preferably about 100 Ah to 1,000 Ah, more preferably about 500 Ah to 1,000 Ah.

以下の実施例において、本発明を更に詳細に説明するが、本発明はこれら実施例により限定されるものではない。 In the following examples, the present invention will be described in more detail, but the present invention is not limited to these examples.

(鉛蓄電池の製造)
実施例1〜8及び11〜15、並びに比較例1〜18において使用した鉛蓄電池は、下記の通りに製造した。公知の方法で製造した未化成の正極板(11−1)22枚と負極板(11−2)23枚とを、微細ガラス繊維を主体としたマット状セパレータを介して交互に積層して組み合わせた後、同極性同士の極板の耳部(12−1,12−2)と、予め極柱に接合されている極柱の座(15−1,15−2)とを、足し鉛を溶解させながら溶接してストラップ(16−1,16−2)を形成した。この際、正極側については、極柱の座(15−1)とストラップ(16−1)との接合部分の二つのエッジ部(20−1a,20−1a’ )から、夫々のエッジ部の同側に存在する、ストラップ(16−1)の長さ方向の端部(16−1a,16−1a’)までの距離(a−1,a−1’)、ストラップの幅(b−1)及びストラップの厚さ(c−1)、並びに、ストラップの長さ(L−1)及び極柱の座(15−1)と極柱(4−1)との接合部分の長さ(e−1)を、夫々、表1に示した所定の寸法に調節した。負極側については極柱の座(15−2)とストラップ(16−2)との接合部分の二つのエッジ部(20−2a,20−2a’)から、夫々のエッジ部の同側に存在する、ストラップ(16−2)の長さ方向の端部(16−2a,16−2a’)までの距離(a−2,a−2’)を30mm、ストラップの幅(b−2)を20mm、ストラップの厚さ(c−2)を10mm、ストラップの長さ(L−2)を正極ストラップ長さ(L−1)に10mm加算した長さとし、かつ、極柱の座(15−2)と極柱(4−2)との接合部分の長さ(e−2)を、極柱(4−2)の長手方向に垂直な断面において、極柱(4−2)の断面の周の長さの55%とした。ここで、極柱の座(15−1,15−2)はいずれも平板であり、その厚さはいずれも10mmであった。極柱の座(15−1,15−2)と、足し鉛を溶解させながら溶接してストラップ(16−1,16−2)を形成する際、ストラップの厚みが極柱の座の厚みよりも厚い電池の場合は、溶解させた足し鉛が極柱の座の上部に流れ込まないように治具で遮蔽して溶接した。また、正極極柱(4−1)及び負極極柱(4−2)の長さ方向に垂直な断面の形状はいずれも略円形であり、その直径はいずれも40mmであった。また、極板(正極板及び負極板共)の高さ(d−1,d−2)は400mmとした。このようにして一体化された極板群(10)をポリプロピレン製の電槽(1)に挿入し、ヒートシールによって蓋(2)をして、未化成の鉛蓄電池を製造した。これに比重1.23の電解液を、極板群の理論空間体積の100%となるように調整し注液した。次いで、定格容量の約10倍の電気量で72時間通電して電槽化成を実施した。電槽化成終了後、電解液の補液作業を実施し、次いで、補充電を実施して2V−1,000Ahの鉛蓄電池を製造した。また、実施例9、10及び比較例19〜22においては、極板(正極板及び負極板共)の高さ(d−1,d−2)を180mmとした以外は、上記と同様の操作にて2V−450Ahの鉛蓄電池を製造した。なお、参考例1においては、極板(正極板及び負極板共)の高さ(d−1,d−2)を150mmとした以外は、上記と同様の操作にて2V−375Ahの鉛蓄電池を製造した。また、実施例11及び13は、夫々、実施例1及び5に対して、ストラップの長さ(L−1)を300mmにしたものであり、一方、実施例12及び14は、夫々、実施例1及び5に対して、ストラップの長さ(L−1)を250mmにしたものである。前者においては、セパレータの厚みを厚くして極板の間隔を大きくすることによりストラップの長さを長くし、一方、後者においては、セパレータの厚みを薄くして極板の間隔を小さくすることによりストラップの長さを短くした。同一寸法の電槽に、長さが異なる正極ストラップを備える極板群を挿入すると、極板群と電槽の間に余分な空間が生じたり、極板群が挿入できない等の問題が発生する。従って、本実施例、本比較例及び参考例1においては、最大長さである300mm長の正極ストラップを備える極板群を挿入するのに最適な寸法の電槽を全てに使用し、ストラップの長さが300mm未満の極板群については極板群の両側に適宜、厚みの違うスペーサを挿入して余分空間が生じないように調整した。ここで、上記の各実施例、各比較例及び参考例1において、電池容量当たりの耳部と足部とを除く正極板の格子の鉛量は、いずれもほぼ同一であった。
(Manufacture of lead-acid batteries)
The lead acid batteries used in Examples 1 to 8 and 11 to 15 and Comparative Examples 1 to 18 were manufactured as follows. A combination of 22 unformed positive electrode plates (11-1) and 23 negative electrode plates (11-2) produced by a known method, alternately stacked via a mat-like separator mainly composed of fine glass fibers. After that, the ears (12-1, 12-2) of the polar plates of the same polarity and the pole column seats (15-1, 15-2) previously joined to the polar columns are added, and lead is added. The straps (16-1, 16-2) were formed by welding while dissolving. At this time, with respect to the positive electrode side, from the two edge portions (20-1a, 20-1a ′) of the joint portion between the pole column seat (15-1) and the strap (16-1), The distance (a-1, a-1 ′) to the end (16-1a, 16-1a ′) in the length direction of the strap (16-1) existing on the same side, the width (b-1) of the strap ) And the thickness of the strap (c-1), the length of the strap (L-1), and the length of the joint between the pole column seat (15-1) and the pole column (4-1) (e) -1) was adjusted to the predetermined dimensions shown in Table 1, respectively. On the negative electrode side, it exists on the same side of each edge part from two edge parts (20-2a, 20-2a ') of the joint part of the pole column seat (15-2) and the strap (16-2). The distance (a-2, a-2 ′) to the end (16-2a, 16-2a ′) in the length direction of the strap (16-2) is 30 mm, and the width (b-2) of the strap is 20 mm, the strap thickness (c-2) is 10 mm, the strap length (L-2) is 10 mm plus the positive strap length (L-1), and the pole pole seat (15-2) ) And the length (e-2) of the joined portion of the pole column (4-2) in the section perpendicular to the longitudinal direction of the pole column (4-2). The length was 55%. Here, both pole pole seats (15-1, 15-2) were flat plates, and their thicknesses were both 10 mm. When forming the straps (16-1, 16-2) by melting the pole seats (15-1, 15-2) and dissolving lead, the thickness of the straps is larger than the thickness of the pole seats. In the case of a thicker battery, the melted lead was shielded with a jig and welded so as not to flow into the upper part of the pole column seat. Moreover, all of the shape of the cross section perpendicular | vertical to the length direction of the positive electrode pole column (4-1) and the negative electrode pole column (4-2) were substantially circular, and the diameter was both 40 mm. The height (d-1, d-2) of the electrode plate (both positive electrode plate and negative electrode plate) was 400 mm. The electrode plate group (10) integrated in this way was inserted into a polypropylene battery case (1) and covered with a heat seal (2) to produce an unformed lead-acid battery. To this, an electrolytic solution having a specific gravity of 1.23 was adjusted and poured so as to be 100% of the theoretical space volume of the electrode plate group. Next, a battery case was formed by energizing for 72 hours with an amount of electricity of about 10 times the rated capacity. After completion of the battery case formation, a replenishment operation of the electrolytic solution was carried out, and then a supplementary charge was carried out to produce a 2V-1,000 Ah lead storage battery. In Examples 9 and 10 and Comparative Examples 19 to 22, the same operation as above except that the height (d-1, d-2) of the electrode plate (both positive electrode plate and negative electrode plate) was 180 mm. Manufactured a 2V-450 Ah lead acid battery. In Reference Example 1, a 2V-375Ah lead acid battery is operated in the same manner as above except that the height (d-1, d-2) of the electrode plate (both positive electrode plate and negative electrode plate) is 150 mm. Manufactured. Further, in Examples 11 and 13, the strap length (L-1) is set to 300 mm with respect to Examples 1 and 5, respectively, while Examples 12 and 14 are examples. For 1 and 5, the strap length (L-1) is 250 mm. In the former, the length of the strap is increased by increasing the thickness of the separator and increasing the distance between the electrode plates, while in the latter, the thickness of the separator is decreased and the distance between the electrode plates is decreased. The strap length was shortened. Inserting electrode plate groups with positive straps with different lengths into a battery case of the same size causes problems such as an extra space between the electrode plate group and the battery case, or the electrode plate group cannot be inserted. . Therefore, in this example, this comparative example, and reference example 1, all of the battery cases having the optimal dimensions for inserting the electrode plate group including the positive electrode strap having the maximum length of 300 mm are used. For the electrode plate group having a length of less than 300 mm, spacers having different thicknesses were appropriately inserted on both sides of the electrode plate group so as not to generate an extra space. Here, in each of the above Examples, Comparative Examples, and Reference Example 1, the lead amount in the grid of the positive electrode plate excluding the ear and the foot per battery capacity was almost the same.

(高温加速浮動充電試験及び容量試験)
実施例及び比較例において高温加速浮動充電試験及び容量試験を、下記の要領にて実施した。上記のようにして製造した鉛蓄電池を、温度60℃の恒温槽中に設置し、浮動充電電圧2.23V/セルにおいて高温加速浮動充電試験に供した。浮動充電試験を開始した後、25℃換算年数で1年(60℃では32日)経過後に、60℃の恒温槽から鉛蓄電池を取り出し、25℃の環境において容量試験を実施した。ここで、容量試験条件は放電電流0.1C10及び放電終止電圧1.8V/セルとした。この操作を繰り返し、鉛蓄電池が、その定格容量の80%を下回った時点を寿命とした。この試験においては、25℃換算年数20年に満たない期間において、定格容量の80%を下回った電池は全てストラップの破断が生じたことによるものであった。25℃換算年数20年に到達した時点で高温加速浮動充電試験及び容量試験を終了し、解体調査を実施して、正極ストラップ(16−1)の破断の有無調査を行った。
(High-temperature accelerated floating charge test and capacity test)
In the examples and comparative examples, the high-temperature accelerated floating charge test and the capacity test were performed as follows. The lead storage battery manufactured as described above was placed in a thermostatic bath at a temperature of 60 ° C. and subjected to a high-temperature accelerated floating charge test at a floating charge voltage of 2.23 V / cell. After starting the floating charge test, after one year (32 days at 60 ° C.) elapsed in terms of 25 ° C., the lead storage battery was taken out from the 60 ° C. constant temperature bath and subjected to a capacity test in an environment of 25 ° C. Here, capacity test conditions were the discharge current 0.1 C 10 and discharge end voltage 1.8V / cell. This operation was repeated, and the time when the lead-acid battery fell below 80% of its rated capacity was defined as the life. In this test, all the batteries that fell below 80% of the rated capacity in a period of less than 20 years converted to 25 ° C. were due to the strap breaking. When the temperature reached 25 ° C. of 20 years, the high-temperature accelerated floating charge test and the capacity test were completed, and a disassembly survey was conducted to investigate whether the positive strap (16-1) was broken.

(実施例1〜15、比較例1〜22及び参考例1)
上記のようにして製造した夫々の鉛蓄電池について、上記の高温加速浮動充電試験及び容量試験を実施して、正極ストラップ(16−1)の破断の有無を調査した。結果を表1に示した。
(Examples 1-15, Comparative Examples 1-22 and Reference Example 1)
About each lead acid battery manufactured as mentioned above, said high temperature accelerated floating charge test and capacity | capacitance test were implemented, and the presence or absence of a fracture | rupture of a positive electrode strap (16-1) was investigated. The results are shown in Table 1.

Figure 2019212381
Figure 2019212381

実施例1〜4は、正極極柱の座(15−1)と正極ストラップ(16−1)との接合部分の二つのエッジ部(20−1a,20−1a’)から、夫々のエッジ部の同側に存在する、上記正極ストラップの長さ方向の端部(16−1a,16−1a’)までの距離(a−1,a−1’)を0mmとしたものである。即ち、正極極柱の座(15−1)の幅を最大にしたものである。ここで、実施例1は、正極ストラップの幅(b−1)及び厚さ(c−1)をいずれも本発明の範囲で最少にしたものである。正極ストラップ(16−1)の破断は生じなかった。実施例2〜4は、実施例1に対して、正極ストラップの幅(b−1)及び厚さ(c−1)を本発明の範囲内で変化させたものである。いずれも正極ストラップ(16−1)の破断は認められず、かつ、コスト的にも見合うものであった。 In Examples 1 to 4, two edge portions (20-1a and 20-1a ′) of the joint portion between the positive pole column seat (15-1) and the positive strap (16-1) are used as respective edge portions. The distance (a-1, a-1 ′) to the end portion (16-1a, 16-1a ′) in the length direction of the positive electrode strap existing on the same side is 0 mm. That is, the width of the positive electrode pole seat (15-1) is maximized. Here, in Example 1, both the width (b-1) and the thickness (c-1) of the positive electrode strap are minimized within the scope of the present invention. The positive strap (16-1) was not broken. In Examples 2 to 4, the width (b-1) and thickness (c-1) of the positive electrode strap are changed within the scope of the present invention with respect to Example 1. In either case, no breakage of the positive electrode strap (16-1) was observed, and the cost was appropriate.

一方、比較例1〜8は、実施例1〜4と同様に、距離(a−1,a−1’)を0mmとしたものである。ここで、比較例1及び2は、いずれも、実施例2に対して、正極ストラップの幅(b−1)を本発明の範囲未満にしたものである。いずれの正極ストラップ(16−1)にも破断が生じた。このように、正極極柱の座(15−1)の幅及び正極ストラップの厚さ(c−1)を、本発明の範囲で最大にしても、正極ストラップの幅(b−1)を本発明の範囲未満、即ち、10mm未満にすると正極ストラップ(16−1)に破断が生じることが分かった。比較例3及び4は、夫々、実施例1及び2に対して、正極ストラップの厚さ(c−1)を、本発明の範囲未満及び本発明の範囲を超えるものとしたものである。正極ストラップの厚さ(c−1)を本発明の範囲未満、即ち、4mmにした比較例3では、正極ストラップ(16−1)に破断が生じた。その一方、正極ストラップの厚さ(c−1)を本発明の範囲を超えるものとした比較例4では、正極ストラップ(16−1)に破断が生じなかったが、厚さ(c−1)が過大となり、コスト的に見合うものとは言えなかった。比較例5及び6は、夫々、実施例3及び4に対して、正極ストラップの厚さ(c−1)を、本発明の範囲未満及び本発明の範囲を超えるものとしたものである。比較例5では、正極極柱の座(15−1)の幅及び正極ストラップの厚さ(b−1)を、本発明の範囲で最大にしたものではあるが、正極ストラップの厚さ(c−1)が本発明の範囲未満、即ち、4mmであっては正極ストラップ(16−1)に破断が生じることが分かった。また、比較例6では、正極ストラップ(16−1)の破断は生じなかったが、上記と同様にコスト的に見合うものでなかった。比較例7及び8は、正極ストラップの幅(b−1)を本発明の範囲を超えるものとし、かつ、正極ストラップの厚さ(c−1)を、夫々、本発明の範囲未満及び本発明の範囲を超えるものとしたものである。比較例7から明らかなように、正極極柱の座(15−1)の幅を最大にし、かつ、正極ストラップの幅(b−1)を本発明の範囲を超えるほど過大にしても、正極ストラップの厚さが本発明の範囲未満、即ち、4mmであっては正極ストラップ(16−1)に破断が生じた。比較例8では、正極ストラップ(16−1)の破断は生じなかったが、全くコスト的に見合うものでなかった。 On the other hand, in Comparative Examples 1 to 8, as in Examples 1 to 4, the distance (a-1, a-1 ') is 0 mm. Here, in Comparative Examples 1 and 2, both the positive strap width (b-1) is less than the range of the present invention with respect to Example 2. Any positive strap (16-1) was broken. Thus, even if the width of the positive pole column seat (15-1) and the thickness of the positive strap (c-1) are maximized within the scope of the present invention, the width (b-1) of the positive strap is reduced. It was found that when the thickness was less than the range of the invention, that is, less than 10 mm, the positive strap (16-1) was broken. In Comparative Examples 3 and 4, with respect to Examples 1 and 2, respectively, the thickness (c-1) of the positive electrode strap is less than the range of the present invention and exceeds the range of the present invention. In Comparative Example 3 in which the thickness (c-1) of the positive electrode strap was less than the range of the present invention, that is, 4 mm, the positive electrode strap (16-1) was broken. On the other hand, in Comparative Example 4 in which the thickness (c-1) of the positive electrode strap exceeded the range of the present invention, the positive electrode strap (16-1) did not break, but the thickness (c-1) Was excessive and could not be said to be worth the cost. In Comparative Examples 5 and 6, with respect to Examples 3 and 4, respectively, the thickness (c-1) of the positive electrode strap is less than the range of the present invention and exceeds the range of the present invention. In Comparative Example 5, the width of the positive electrode pole seat (15-1) and the thickness of the positive electrode strap (b-1) were maximized within the scope of the present invention. It was found that when -1) was less than the range of the present invention, that is, 4 mm, the positive strap (16-1) was broken. Further, in Comparative Example 6, the positive strap (16-1) was not broken, but was not worth the cost as described above. In Comparative Examples 7 and 8, the width (b-1) of the positive electrode strap exceeds the range of the present invention, and the thickness (c-1) of the positive electrode strap is less than the range of the present invention. It is assumed to exceed the range of. As is clear from Comparative Example 7, even if the width of the positive pole base (15-1) is maximized and the width of the positive strap (b-1) is too large to exceed the range of the present invention, the positive electrode When the thickness of the strap was less than the range of the present invention, that is, 4 mm, the positive strap (16-1) was broken. In Comparative Example 8, the positive strap (16-1) was not broken, but was not suitable for cost.

実施例5〜8は、距離(a−1,a−1’)を20mmとした以外は、夫々、実施例1〜4と同一の正極ストラップの幅(b−1)及び厚さ(c−1)を有するものである。即ち、正極極柱の座(15−1)の幅を、本発明の範囲内で最小にしたものである。いずれも正極ストラップ(16−1)の破断は認められず、かつ、コスト的にもより一層見合うものであった。また、実施例1〜4と比較して、よりコスト的に良好であった。 In Examples 5 to 8, the width (b-1) and thickness (c-) of the same positive electrode strap as in Examples 1 to 4, respectively, except that the distance (a-1, a-1 ') was 20 mm. 1). That is, the width of the positive electrode pole seat (15-1) is minimized within the scope of the present invention. In either case, no breakage of the positive electrode strap (16-1) was observed, and the cost was further met. Moreover, compared with Examples 1-4, it was more favorable in cost.

一方、比較例9〜16は、実施例5〜8と同様に、距離(a−1,a−1’)を20mmとしたものである。ここで、比較例9及び10は、いずれも、実施例6に対して、正極ストラップの幅(b−1)を本発明の範囲未満にしたものである。いずれの正極ストラップ(16−1)にも破断が生じた。比較例11及び12は、夫々、実施例5及び6に対して、正極ストラップの厚さ(c−1)を、本発明の範囲未満及び本発明の範囲を超えるものとしたものである。正極ストラップの厚さ(c−1)を本発明の範囲未満、即ち、4mmにした比較例11では、正極ストラップ(16−1)に破断が生じた。その一方、正極ストラップの厚さ(c−1)を本発明の範囲を超えるものとした比較例12では、正極ストラップ(16−1)に破断が生じなかったが、コスト的に見合うものとは言えなかった。比較例13及び14は、夫々、実施例7及び8に対して、正極ストラップの厚さ(c−1)を、本発明の範囲未満及び本発明の範囲を超えるものとしたものである。比較例13では、正極ストラップ(16−1)に破断が生じた。一方、比較例14では、正極ストラップ(16−1)の破断は生じなかったが、コスト的に見合うものでなかった。比較例15及び16は、正極ストラップの幅(b−1)を本発明の範囲を超えるものとし、かつ、正極ストラップの厚さ(c−1)を、夫々、本発明の範囲未満及び本発明の範囲を超えるものとしたものである。比較例15から分かるように、正極ストラップの幅(b−1)を本発明の範囲を超えるものとしても、正極ストラップの厚さ(c−1)を本発明の範囲未満にすると、正極ストラップ(16−1)に破断が生じた。比較例16では、正極ストラップ(16−1)の破断は生じなかったが、全くコスト的に見合うものでなかった。また、比較例17及び18は、距離(a−1,a−1’)を本発明の範囲を超えるものにしたものである。比較例17から明らかなように、距離(a−1,a−1’)が本発明の範囲を僅かにでも超えると、正極ストラップ(16−1)に破断が生じた。また、比較例18のように、正極ストラップの幅(b−1)及び厚さ(c−1)を本発明の範囲を超えて相当大きくしても、距離(a−1,a−1’)が本発明の範囲を超えると、ストラップ(16−1)に破断が生じた。 On the other hand, in Comparative Examples 9 to 16, as in Examples 5 to 8, the distance (a-1, a-1 ') is 20 mm. Here, in Comparative Examples 9 and 10, both the positive strap width (b-1) is less than the range of the present invention with respect to Example 6. Any positive strap (16-1) was broken. In Comparative Examples 11 and 12, with respect to Examples 5 and 6, respectively, the thickness (c-1) of the positive electrode strap is less than the range of the present invention and exceeds the range of the present invention. In Comparative Example 11 in which the thickness (c-1) of the positive electrode strap was less than the range of the present invention, that is, 4 mm, the positive electrode strap (16-1) was broken. On the other hand, in Comparative Example 12 in which the thickness (c-1) of the positive electrode strap exceeded the range of the present invention, the positive electrode strap (16-1) did not break, but it was worth the cost. I could not say. In Comparative Examples 13 and 14, with respect to Examples 7 and 8, respectively, the thickness (c-1) of the positive electrode strap is less than the range of the present invention and exceeds the range of the present invention. In Comparative Example 13, the positive strap (16-1) was broken. On the other hand, in Comparative Example 14, the positive strap (16-1) did not break, but was not commensurate with cost. In Comparative Examples 15 and 16, the width (b-1) of the positive strap exceeds the range of the present invention, and the thickness (c-1) of the positive strap is less than the range of the present invention. It is assumed to exceed the range of. As can be seen from Comparative Example 15, even if the width (b-1) of the positive strap exceeds the range of the present invention, when the thickness (c-1) of the positive strap is less than the range of the present invention, the positive strap ( A fracture occurred in 16-1). In Comparative Example 16, the positive strap (16-1) was not broken, but was not suitable for cost. In Comparative Examples 17 and 18, the distance (a-1, a-1 ') exceeds the range of the present invention. As apparent from Comparative Example 17, when the distance (a-1, a-1 ') slightly exceeded the range of the present invention, the positive strap (16-1) was broken. Further, even if the width (b-1) and the thickness (c-1) of the positive strap are significantly increased beyond the range of the present invention as in Comparative Example 18, the distance (a-1, a-1 ') ) Exceeded the scope of the present invention, the strap (16-1) was broken.

実施例9は、実施例1において、即ち、距離(a−1,a−1’)が0mm、正極ストラップの幅(b−1)が10mm及び正極ストラップの厚さ(c−1)が5mmである場合に、正極板の高さ(d−1)を180mmとしたものである。また、実施例10は、実施例5において、即ち、距離(a−1,a−1’)が20mm、正極ストラップの幅(b−1)が10mm及び正極ストラップの厚さ(c−1)が5mmである場合に、正極板の高さ(d−1)を180mmとしたものである。いずれも、正極ストラップ(16−1)の破断は生じなかった。一方、比較例19及び20は、実施例9と同じく、距離(a−1,a−1’)が0mmである場合に、正極板の高さ(d−1)を180mmとしたものであって、正極ストラップの幅(b−1)及び厚さ(c−1)を本発明の範囲外にしたものである。また、比較例21及び22は、実施例10と同じく、距離(a−1,a−1’)が20mmである場合に、正極板の高さ(d−1)を180mmとしたものであって、正極ストラップの幅(b−1)及び厚さ(c−1)を本発明の範囲外にしたものである。比較例19〜22のいずれにおいても、正極ストラップ(16−1)に破断が見られた。以上のことから、正極板の高さ(d−1)が180mmの場合においても、正極板の高さ(d−1)が400mmの場合と同様に、距離(a−1,a−1’)、正極ストラップの幅(b−1)及び厚さ(c−1)を、本発明の範囲にすることにより、正極ストラップ(16−1)の破断を防止し得ることが分かった。なお、参考例1は、正極板の高さ(d−1)を150mmとした以外は、比較例1及び20と同一の条件で正極ストラップ(16−1)の破断の有無を調査したものである。比較例1及び20、即ち、正極板の高さ(d−1)が夫々400mm及び180mmの場合においては、正極ストラップ(16−1)の破断が認められたが、正極板の高さ(d−1)を150mmとした参考例1では、正極ストラップ(16−1)の破断は認められなかった。これは、正極板の高さ(d−1)が小さいことから極板自体の腐食による伸びが小さく、従って、そもそも、正極ストラップ(16−1)の破断が生ずるような応力が発生していないためと考えられる。また、比較例4、6、8、12、14、16及び18においては、正極ストラップの厚さ(c−1)は、いずれも18mmである。このように、正極ストラップの厚さ(c−1)が15mmを超えると、正極極柱の座の厚みとの差があまりに大きいため、正極ストラップ(16−1)の形成の際に、足し鉛の溶解と溶解した足し鉛の流し込みの繰り返し作業が増加することからコストアップにつながり好ましくない。 In Example 9, the distance (a-1, a-1 ′) is 0 mm, the positive strap width (b-1) is 10 mm, and the positive strap thickness (c-1) is 5 mm. In this case, the height (d-1) of the positive electrode plate is 180 mm. In addition, Example 10 is the same as Example 5, that is, the distance (a-1, a-1 ′) is 20 mm, the positive strap width (b-1) is 10 mm, and the positive strap thickness (c-1). Is 5 mm, the height (d-1) of the positive electrode plate is 180 mm. In any case, the positive strap (16-1) was not broken. On the other hand, in Comparative Examples 19 and 20, as in Example 9, when the distance (a-1, a-1 ′) was 0 mm, the height (d-1) of the positive electrode plate was 180 mm. Thus, the width (b-1) and the thickness (c-1) of the positive strap are outside the scope of the present invention. Further, in Comparative Examples 21 and 22, as in Example 10, when the distance (a-1, a-1 ′) is 20 mm, the height (d-1) of the positive electrode plate is 180 mm. Thus, the width (b-1) and the thickness (c-1) of the positive strap are outside the scope of the present invention. In any of Comparative Examples 19 to 22, the positive strap (16-1) was broken. From the above, even when the height (d-1) of the positive electrode plate is 180 mm, the distance (a-1, a-1 ′) is the same as when the height (d-1) of the positive electrode plate is 400 mm. ), It was found that the positive strap (16-1) could be prevented from breaking by setting the width (b-1) and the thickness (c-1) of the positive strap within the range of the present invention. In Reference Example 1, the positive strap (16-1) was examined for breakage under the same conditions as Comparative Examples 1 and 20, except that the height (d-1) of the positive electrode plate was 150 mm. is there. In Comparative Examples 1 and 20, that is, when the height (d-1) of the positive electrode plate was 400 mm and 180 mm, respectively, breakage of the positive electrode strap (16-1) was observed, but the height of the positive electrode plate (d In Reference Example 1 in which -1) was 150 mm, no breakage of the positive electrode strap (16-1) was observed. This is because the height (d-1) of the positive electrode plate is small, so that the elongation due to the corrosion of the electrode plate itself is small. Therefore, in the first place, there is no stress that causes the positive strap (16-1) to break. This is probably because of this. Moreover, in Comparative Examples 4, 6, 8, 12, 14, 16, and 18, the thickness (c-1) of the positive electrode strap is 18 mm. Thus, when the thickness (c-1) of the positive electrode strap exceeds 15 mm, the difference from the thickness of the seat of the positive electrode pole column is so large that when the positive electrode strap (16-1) is formed, lead is added. This leads to an increase in cost due to an increase in the number of repeated operations of melting and adding molten lead, which is not preferable.

実施例11〜14は、いずれも、正極ストラップの長さ(L−1)を変えたものである。いずれの場合にも、正極ストラップ(16−1)の破断は認められなかった。また、実施例15は、正極極柱の座(15−1)と正極極柱(4−1)との接合部分の長さ(e−1)が、正極極柱(4−1)の長手方向に垂直な断面における該極柱(4−1)の断面の周の長さの30%であるものである。同様に、正極ストラップ(16−1)の破断は認められなかった。 In all of Examples 11 to 14, the length (L-1) of the positive electrode strap was changed. In any case, no breakage of the positive strap (16-1) was observed. In Example 15, the length (e-1) of the joint portion between the positive electrode pole column seat (15-1) and the positive electrode pole column (4-1) is the length of the positive electrode pole column (4-1). It is 30% of the circumferential length of the cross section of the pole column (4-1) in the cross section perpendicular to the direction. Similarly, no breakage of the positive strap (16-1) was observed.

本発明の鉛蓄電池は、中容量以上でありながら比較的小さな電流しか流さない鉛蓄電池であって、かつ、長期間に亘って、ストラップの破断を効果的に防止し得るばかりではなく、製造コスト等が比較的低いことから、長寿命を要求される産業用鉛蓄電池として、今後、大いに利用されることが期待される。 The lead-acid battery of the present invention is a lead-acid battery that has a medium capacity or more and allows only a relatively small current to flow, and not only can effectively prevent the strap from breaking for a long period of time, but also the production cost. Therefore, it is expected to be widely used in the future as an industrial lead storage battery that requires a long life.

A 鉛蓄電池
1 電槽
1−1 電槽の開口部の周縁部
2 蓋
3 排気栓
4 極柱
4−1 正極極柱
4−2 負極極柱
5 端子封口部
10 極板群
10−1 正極板群
10−2 負極板群
11 極板
11−1 正極板
11−2 負極板
12 耳部
12−1 正極耳部
12−2 負極耳部
13 極板集電部
13−1 正極板集電部
13−2 負極板集電部
15 極柱の座
15−1 正極側の極柱の座
15−2 負極側の極柱の座
16 ストラップ
16−1 正極ストラップ
16−2 負極ストラップ
17 足部
16a,16a’ ストラップの長さ方向の両端部
16a−1,16a−1’ 正極ストラップの長さ方向の両端部
16a−2,16a−2’ 負極ストラップの長さ方向の両端部
20a,20a’ 極柱の座とストラップとの接合部分の二つのエッジ部
20−1a,20−1a’ 正極極柱の座と正極ストラップとの接合部分の二つのエッジ部
20−2a,20−2a’ 負極極柱の座と負極ストラップとの接合部分の二つのエッジ部
a,a’ 極柱の座とストラップとの接合部分の二つのエッジ部から、夫々のエッジ部の同側に存在する、ストラップの長さ方向の端部までの距離
a−1,a−1’ 正極極柱の座と正極ストラップとの接合部分の二つのエッジ部から、夫々のエッジ部の同側に存在する、正極ストラップの長さ方向の端部までの距離
a−2,a−2’ 負極極柱の座と負極ストラップとの接合部分の二つのエッジ部から、夫々のエッジ部の同側に存在する、負極ストラップの長さ方向の端部までの距離
b ストラップの幅
b−1 正極ストラップの幅
b−2 負極ストラップの幅
c ストラップの厚さ
c−1 正極ストラップの厚さ
c−2 負極ストラップの厚さ
d 極板の高さ
d−1 正極板の高さ
d−2 負極板の高さ
e 極柱の座と極柱との接合部分の長さ
e−1 正極極柱の座と正極極柱との接合部分の長さ
e−2 負極極柱の座と負極極柱との接合部分の長さ
L ストラップの長さ
L−1 正極ストラップの長さ
L−2 負極ストラップの長さ
A Lead acid battery 1 Battery case 1-1 Peripheral part 2 of battery case opening Lid 3 Exhaust plug 4 Polar pole 4-1 Positive pole 4-2 Negative pole 5 Terminal sealing part 10 Electrode group 10-1 Positive electrode Group 10-2 Negative electrode plate group 11 Electrode plate 11-1 Positive electrode plate 11-2 Negative electrode plate 12 Ear portion 12-1 Positive electrode ear portion 12-2 Negative electrode ear portion 13 Electrode plate current collector portion 13-1 Positive electrode plate current collector portion 13 -2 Negative electrode current collector 15 Polar pole seat 15-1 Positive pole seat 15-2 Negative pole seat 16 Strap 16-1 Positive strap 16-2 Negative strap 17 Legs 16a, 16a 'Both ends 16a-1, 16a-1' in the length direction of the strap Both ends 16a-2, 16a-2 'in the length direction of the positive strap Both ends 20a, 20a' in the length direction of the negative strap Two edge portions 20-1a and 20-1a ′ at the joint portion between the seat and the strap Two edge portions 20-2a and 20-2a ′ of the joint portion between the seat and the positive strap The two edge portions a and a ′ of the joint portion between the negative pole pole seat and the negative strap and the strap base and strap Distances a-1 and a-1 ′ from the two edge portions of the joint portion to the end portions in the length direction of the straps on the same side of the respective edge portions Joining of the positive pole column seat and the positive strap Distance a-2, a-2 ′ from the two edge portions of the portion to the end in the longitudinal direction of the positive electrode strap on the same side of each edge portion Joining of the negative electrode pole seat and the negative electrode strap The distance from the two edge portions of the portion to the end in the lengthwise direction of the negative strap present on the same side of each edge portion b Strap width b-1 Positive strap width b-2 Negative strap width c Strap thickness c-1 Positive strap thickness -2 The thickness of the negative electrode strap d The height of the electrode plate d-1 The height of the positive electrode plate d-2 The height of the negative electrode plate e The length e-1 of the junction between the pole column seat and the pole column The length e-2 of the joining portion between the seat and the positive pole column The length L of the joining portion between the seat of the negative pole column and the negative pole column The length L-1 of the positive strap L-2 The length L-2 of the positive strap Length of

Claims (3)

正極板と負極板とを隔離板を介して交互に積層した極板群、上記極板群の同極性同士の極板の耳部を連結したストラップ、及び、上記ストラップと極柱とを接続した極柱の座、を備える鉛蓄電池において、正極側の極柱の座と正極ストラップとの接合部分の二つのエッジ部から、夫々のエッジ部の同側に存在する、上記正極ストラップの長さ方向の端部までの距離(a−1,a−1’)が、0〜20mmであり、上記正極ストラップの幅(b−1)が、10〜25mmであり、かつ、上記正極ストラップの厚さ(c−1)が、5〜15mmであり、加えて、耳部と足部とを除く正極板の高さ(d−1)が180mm以上であることを特徴とする鉛蓄電池。 The electrode plate group in which the positive electrode plate and the negative electrode plate are alternately laminated via the separator plate, the strap connecting the ears of the electrode plates of the same polarity of the electrode plate group, and the strap and the pole column are connected. In a lead-acid battery including a pole pole seat, the length direction of the positive strap is present on the same side of each edge portion from two edge portions of a joint portion between the pole pole seat on the positive pole side and the positive strap. The distance (a-1, a-1 ′) to the end of the positive electrode strap is 0 to 20 mm, the width (b-1) of the positive electrode strap is 10 to 25 mm, and the thickness of the positive electrode strap (C-1) is 5 to 15 mm, and in addition, the height (d-1) of the positive electrode plate excluding the ears and the feet is 180 mm or more. 上記の正極側の極柱の座と正極極柱との接合部分の長さ(e−1)が、該正極極柱の長手方向に垂直な断面において、該正極極柱の断面の周の長さの60%以下である、請求項1記載の鉛蓄電池。 In the cross section perpendicular to the longitudinal direction of the positive electrode pole column, the length (e-1) of the joint between the positive electrode pole seat and the positive electrode column is the length of the circumference of the cross section of the positive electrode column. The lead acid battery of Claim 1 which is 60% or less of this length. 運用時の最大電流が、0.6C10アンペア(A)以下である、請求項1又は2記載の鉛蓄電池。 Maximum current during operation is at 0.6 C 10 amperes (A) hereinafter, Claim 1 or 2 lead-acid battery according.
JP2018104826A 2018-05-31 2018-05-31 Lead storage battery Active JP6522832B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018104826A JP6522832B1 (en) 2018-05-31 2018-05-31 Lead storage battery
CN201980002565.4A CN110870100B (en) 2018-05-31 2019-05-15 Lead-acid battery
PCT/JP2019/019268 WO2019230396A1 (en) 2018-05-31 2019-05-15 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018104826A JP6522832B1 (en) 2018-05-31 2018-05-31 Lead storage battery

Publications (2)

Publication Number Publication Date
JP6522832B1 JP6522832B1 (en) 2019-05-29
JP2019212381A true JP2019212381A (en) 2019-12-12

Family

ID=66655727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018104826A Active JP6522832B1 (en) 2018-05-31 2018-05-31 Lead storage battery

Country Status (3)

Country Link
JP (1) JP6522832B1 (en)
CN (1) CN110870100B (en)
WO (1) WO2019230396A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043863A (en) * 1999-08-02 2001-02-16 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JP2003288951A (en) * 2002-03-27 2003-10-10 Fuji Heavy Ind Ltd Charging method for lead storage battery
JP2003317711A (en) * 2001-10-19 2003-11-07 Shin Kobe Electric Mach Co Ltd Formation method of lead-acid battery
JP2003323881A (en) * 2002-04-26 2003-11-14 Japan Storage Battery Co Ltd Control valve lead-acid battery
JP2007059171A (en) * 2005-08-24 2007-03-08 Matsushita Electric Ind Co Ltd Lead-acid storage battery
JP2014164993A (en) * 2013-02-25 2014-09-08 Gs Yuasa Corp Control valve type lead-acid storage battery and using method thereof
JP2016181339A (en) * 2015-03-23 2016-10-13 日立化成株式会社 Strap formation method for lead acid battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329923A (en) * 1995-05-31 1996-12-13 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2004079423A (en) * 2002-08-21 2004-03-11 Japan Storage Battery Co Ltd Lead acid battery
TWI251365B (en) * 2004-04-02 2006-03-11 Matsushita Electric Ind Co Ltd Lead-acid battery
CN101826608A (en) * 2010-02-08 2010-09-08 湖南科霸汽车动力电池有限责任公司 Conductive part for connecting batteries, battery connecting method and battery pack
WO2011106682A1 (en) * 2010-02-25 2011-09-01 Johnson Controls Technology Company Secondary battery
CN203250825U (en) * 2013-01-16 2013-10-23 李付军 Valve control tubular type lead-acid storage battery
JP6935795B2 (en) * 2016-02-22 2021-09-15 株式会社Gsユアサ Lead-acid battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043863A (en) * 1999-08-02 2001-02-16 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JP2003317711A (en) * 2001-10-19 2003-11-07 Shin Kobe Electric Mach Co Ltd Formation method of lead-acid battery
JP2003288951A (en) * 2002-03-27 2003-10-10 Fuji Heavy Ind Ltd Charging method for lead storage battery
JP2003323881A (en) * 2002-04-26 2003-11-14 Japan Storage Battery Co Ltd Control valve lead-acid battery
JP2007059171A (en) * 2005-08-24 2007-03-08 Matsushita Electric Ind Co Ltd Lead-acid storage battery
JP2014164993A (en) * 2013-02-25 2014-09-08 Gs Yuasa Corp Control valve type lead-acid storage battery and using method thereof
JP2016181339A (en) * 2015-03-23 2016-10-13 日立化成株式会社 Strap formation method for lead acid battery

Also Published As

Publication number Publication date
WO2019230396A1 (en) 2019-12-05
CN110870100A (en) 2020-03-06
JP6522832B1 (en) 2019-05-29
CN110870100B (en) 2022-09-30

Similar Documents

Publication Publication Date Title
JPWO2021064772A1 (en) Liquid lead-acid battery
KR101155583B1 (en) A battery terminal system and manufacturing method thereof
US10211445B2 (en) Lead-acid battery
JP6456537B1 (en) Positive electrode grid for lead acid battery and lead acid battery
JP2019212381A (en) Lead storage battery
JPWO2012127789A1 (en) Lead acid battery
JP2009170129A (en) Lead storage battery and its manufacturing method
JP7065127B2 (en) Liquid lead-acid battery
JP7105258B2 (en) liquid lead acid battery
CN209822815U (en) Tightly assembled lead-acid storage battery
JP6058968B2 (en) Manufacturing method of secondary battery
JP6954879B2 (en) Lead-acid battery
JPWO2015159478A1 (en) Lead acid battery
JP7024177B2 (en) Lead-acid battery and current collector
JP7011025B2 (en) Liquid lead-acid battery
JP7090395B2 (en) Liquid lead-acid battery
JP6998441B2 (en) Liquid lead-acid battery
JP7011023B2 (en) Liquid lead-acid battery
JP2021068533A (en) Lead-acid battery
JP7002489B2 (en) Positive electrode plate for lead-acid batteries and liquid lead-acid batteries using them
JP2014149928A (en) Lead acid battery
JP2021111471A (en) Liquid type lead storage battery
JP4599914B2 (en) Method for producing lead-acid battery
JP2021163615A (en) Lead-acid battery
JP2021118171A (en) Liquid type lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181130

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181203

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190424

R150 Certificate of patent or registration of utility model

Ref document number: 6522832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150