JP2019211239A - レーザー距離計測装置 - Google Patents
レーザー距離計測装置 Download PDFInfo
- Publication number
- JP2019211239A JP2019211239A JP2018104948A JP2018104948A JP2019211239A JP 2019211239 A JP2019211239 A JP 2019211239A JP 2018104948 A JP2018104948 A JP 2018104948A JP 2018104948 A JP2018104948 A JP 2018104948A JP 2019211239 A JP2019211239 A JP 2019211239A
- Authority
- JP
- Japan
- Prior art keywords
- light
- measurement
- semiconductor lasers
- frequency
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measurement Of Optical Distance (AREA)
- Semiconductor Lasers (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
【課題】低コストと高精度とを両立させたレーザー距離計測装置を提供する。【解決手段】変調レーザー光生成手段と、出力光を分岐する光分岐器と、分岐された一方の光を測定対象物に照射して得られる反射光を測定光、分岐された他方の光を参照光とし、測定光と参照光との変調成分の位相差から測定対象物までの距離を求める測定回路と、を備え、変調レーザー光生成手段は、駆動電流値により発光周波数が変動する2つの半導体レーザーと、半導体レーザーを互いに異なる駆動電流値で駆動する駆動手段と、半導体レーザーの出力光を結合し、発光周波数の差に応じた周波数のビート信号が重畳された光を、変調されたレーザー光として出力する光結合器と、を有し、駆動手段は、ビート信号の周波数を出力する基準発振子と、この基準発振子の出力と測定光または参照光に含まれる変調成分との位相差に基づいて、2つの半導体レーザーの駆動電流を調整する手段と、を有する。【選択図】図1
Description
本発明は、レーザー距離計測装置に関する。
測定対象物にレーザー光を照射し、その反射光を受光して距離を測定するレーザー距離計測技術は、様々な分野で活用されている。特に、ファクトリーオートメーション(FA)の分野では従来から広く利用されており、さらに、最近では自動車の衝突安全回避用のレーザーレーダーが実用化され、さらなる需要の拡大が期待されている。
また、建設市場においても、ICT施工(情報化施工)の普及が促進され、工事現場の施工前、施工後の三次元データの計測が必要になり、建設用途向け三次元レーザースキャナーの需要が伸びている。三次元レーザースキャナーはまた、土木建築・建設分野に限らずその活用は多岐にわたり、工場やプラント、文化財調査保存、製品検査、リバースエンジニアリング、犯罪・事故現場捜査解析、森林調査、農業、バーチャルリアリティ等、様々な分野で利用されている。
レーザー距離計測技術のうち特に中長距離の距離計測には、大きく分類して2つの測距方式が用いられる。1つはTOF(Time Of Flight)方式であり、測定対象物に対してレーザーパルスを照射し、そのパルスが戻ってくるまでの時間を測ることで、距離を算出する方式である。もう1つは、位相差方式であり、変調(一般的には振幅変調)をかけたレーザー光の送信光と受信光の位相差から、対象までの距離を算出する方式である。
TOF方式と比較して、位相差方式のほうが、精度の面で優れていると言われている。しかし、単パルスで距離を求めることのできるTOF方式に対して、位相差方式では、レーザー照射時間を必要とする。このため、位相差方式では、長距離計測において高いパワーのレーザー出力を必要とする場合、精度と安全規格の両方を満たすことが難しくなる。ただし、現時点においては、光の到達時間を高精度で直接測定することが困難なため、高精度の測距においては、位相差法式が多く用いられている。
位相差方式も、大別すると2つの方式がある。1つはレーザー強度変調方式であり、もう1つはレーザー波長変調方式である。なかでもレーザー波長変調方式は、工業用途などでサブミクロンという非常に高い精度を実現している。しかし、強度変調と比較して高コストで、かつ、大型の装置になってしまう。
高精度を実現するうえでは、測距方式以外にも様々なパラメータが存在する。例えば、回路のS/N、照射光強度、戻り光強度とそれを実現するための光学系、照射レーザーのスポット系などである。そして、位相差方式においては、より高い周波数で変調をかけることと、より高いサンプリングレートのA/D(アナログ・ディジタル)コンバーターを用いることが、高精度化を実現するうえの大きなパラメータになる。このように、より高サンプリングレートのA/Dコンバーターを使用することは高精度化への近道であるが、その後処理も含めて、高コスト化の要因になる。しかしながら、多くのレーザー距離計測装置においては、ダウンコンバージョン(低い周波数への周波数変換)という手法が用いられ、比較的安価なA/Dコンバーターで高精度化の実現を可能としている。
照射するレーザー光に対してより高い周波数の変調をかけることは、位相差方式における高精度化において、非常に重要な要素になる。しかしながら、強度変調を用いる位相差方式において、現在流通する比較的安価な半導体レーザー、およびそれを駆動するためのドライバ回路を構成する半導体部品を用いた場合、せいぜい100MHz台の変調が限界になっており、それであっても数百万円の製品価格になってしまう。そのため、低コストでありながら高変調を実現することは、レーザー距離計測技術において、高い優位性を獲得することを意味する。
本発明は、安価でシンプルでありながらレーザー光に高度な変調を加えることを可能とし、低コストと高精度とを両立させたレーザー距離計測装置を提供することを目的とする。
本発明のレーザー距離計測装置は、変調されたレーザー光を生成する変調レーザー光生成手段と、変調レーザー光生成手段の出力光を分岐する光分岐器と、光分岐器により分岐された一方の光を測定対象物に照射して得られる反射光を測定光、光分岐器により分岐された他方の光を参照光とし、測定光と参照光との変調成分の位相差から測定対象物までの距離を求める測定回路と、を備え、変調レーザー光生成手段は、注入される駆動電流値により発光周波数が変動する2つの半導体レーザーと、この2つの半導体レーザーを互いに異なる駆動電流値で駆動する駆動手段と、2つの半導体レーザーの出力光を結合し、それらの出力光の発光周波数の差に応じた周波数のビート信号が重畳された光を、変調されたレーザー光として出力する光結合器と、を有し、駆動手段は、ビート信号の周波数として想定される周波数と同じ周波数を出力する基準発振子と、この基準発振子の出力と測定光または参照光に含まれる変調成分との位相差に基づいて、2つの半導体レーザーの駆動電流を調整する手段と、を有する、ことを特徴とする。
駆動手段は、2つの半導体レーザーを共通のパルス信号により駆動する構成であり、測定回路は、測定光と参照光とのパルスの時間差または位相差から、測定対象物までのおおよその距離を求める回路を有する構成とすることができる。
図1は、本発明の一実施形態のレーザー距離計測装置を示すブロック構成図である。
このレーザー距離計測装置は、変調されたレーザー光を生成する変調レーザー光生成手段として、駆動回路11、12、半導体レーザー13、14および光結合器15、基準発振子16、位相周波数比較器17、ループフィルター18を備える。また、このレーザー距離計測装置は、変調レーザー光生成手段の出力光を分岐する光分岐器21を備え、この光分岐器21により分岐された一方の光を、光サーキュレーター22および光学走査装置23を経由して測定対象物24に照射され、その拡散反射光の一部が戻り光となって、光学走査装置23および光サーキュレーター22により、測定光として抽出される。光分岐器21により分岐された他方の光は、参照光となる。光結合器15、光分岐器21としては、例えば光ファイバーカップラーが用いられる。
このレーザー距離計測装置はまた、参照光と測定光に重畳された変調成分の位相差から測定対象物24までの距離を求める測定回路として、光検出器31、32、増幅器33、34、A/Dコンバーター35、36および制御演算回路20を備える。光検出器31、32は、例えばアバランシェフォトダイオードであり、それぞれ、参照光および測定光を検出する。光検出器31、32の検出出力は、A/Dコンバーター35、36によりディジタル信号に変換され、制御演算回路37で処理される。制御演算回路37は、2つの信号をFFT解析し、変調信号の位相差を計算して、測定対象物34までの距離を求める。例えば三次元レーザースキャナーとして用いる場合、制御演算回路37としては、フィールドプログラマブルゲートアレイが用いられる。
半導体レーザー13、14は、例えば分布帰還型半導体レーザー(Distributed Feedback:DFB)であり、それぞれ、注入される駆動電流値により発光周波数が変動する。この2つの半導体レーザー13、14を互いに異なる駆動電流値で駆動し、それらの出力光を光結合器15により結合(合波)することで、それらの出力光の発光周波数の差に応じた周波数のビート信号が重畳された光、すなわちビート信号で変調されたレーザー光が得られる。
基準発振子16、位相周波数比較器17、およびループフィルター18は、2つの半導体レーザー13、14を互いに異なる駆動電流値で駆動する手段を構成する。すなわち、基準発振子16は、ビート信号の周波数として想定される周波数と同じ周波数を出力する。位相周波数比較器17は、基準発振子16の出力と測定光または参照光(図1に示す零では参照光)に含まれる変調成分との位相差を求める。この位相差出力を、ループフィルター18を介して駆動回路11、12の一方に供給し、その出力利得を制御する。駆動回路11、12は、制御演算回路37から供給される共通の駆動信号を増幅して、それぞれ半導体レーザー13、14に駆動電流を供給している。駆動回路11、12の一方の出力利得を制御することで、2つの半導体レーザー13、14の一方の駆動電流が調整される。
また、図1に示す実施形態では、制御演算回路37は、駆動回路11、12を介して、2つの半導体レーザー13、14を共通のパルス信号により駆動する構成であり、測定回路の一部として、測定光と参照光とのパルスの時間差または位相差から、測定対象物24までのおおよその距離を求めるTOF回路38を有する。
本発明では、半導体レーザー、特に分布帰還型半導体レーザーの発光波長が、駆動電流により変化することを利用する。例えば、分布帰還型半導体レーザーに駆動信号として矩形波を印加した場合、矩形波の電圧あるいは電流レベルの高低がレーザー光の強弱の高低として変調される際に、高と低とでレーザー光の周波数が変化する。これは光通信の世界では以前より知られていたが、ノイズのような不安定要素として捉えられており、抑制なり除去なりの対象であると理解されていた。本発明は、この揺らぎを積極的に利用して、高精度かつ長距離でのレーザー測距を実現しようとするものである。すなわち、2つの半導体レーザー13、14の駆動電流に僅か差異を生じさせ、それにより生じる発振周波数の差異を利用する。この動作の詳細について、以下に説明する。
2つの半導体レーザー13、14のそれぞれの駆動回路11、12に対して、制御演算回路37から、共通のパルス出力指令(パルス信号)を出力する。駆動回路11、12は、このパルス出力指令を増幅し、半導体レーザー13、14をパルス駆動する。このとき、駆動回路11、12の一方(図1の例では駆動回路12)には、ループフィルター18の出力が補正値として供給され、この補正値に応じて、出力利得が制御される。この結果、半導体レーザー13、14のそれぞれの駆動電流値に僅かな差異が生じ、出力されるレーザー光の波長(周波数)も僅かな差異を生じる。2つの半導体レーザー13、14の出力を光結合器15で合成する。
光結合器15で合成した光を、再び光分岐器21で2つに分岐し、その一方を、そのまま光検出器31に入力する。このとき、光結合器15で合成された2つのレーザー光の波長差に応じた周波数のビート信号が、光検出器31から出力されることになる。光検出器31から出力されたビート信号は、増幅器33を経て3つに分岐され、その1つはA/Dコンバーター35を経て制御演算回路37に入力される。制御演算回路37は、A/Dコンバーター35の出力するディジタル信号を高速フーリエ変換し、所定のビート信号の周波数の位相を求める。
ただし、このままでは、ビート信号が特定の単一周波数に定まらず、測定に必要となる十分な信号対雑音比を確保することはできない。そこで、光検出器31から出力されたビート信号(増幅器33を経て3つに分岐されたビート信号のひとつ)と、想定する変調周波数と同じ周波数を出力する基準発振子16の出力信号との位相差を、位相周波数比較器17を用いて差分出力し、ループフィルター18を介して、駆動回路12の出力利得にフィードバックする。その結果、半導体レーザー13、14から光結合器15を介して出力される2波長混合レーザー光の波長差が安定し、2波長間に生じる周波数差も一定になり、光検出器31から出力されるビート信号が特定単一周波数になることで、ビート信号に高い信号対雑音比を得ることができる。
光分岐器21で分岐したもう一方の2波長混合レーザー光は、光サーキュレーター22および光学走査装置23を経由して、測定対象物24に照射される。このレーザー光にも、その周波数差により、従来の強度変調では実現することが困難な高い変調が加えられていることになる。発明者らは、現在、2GHz程度の変調周波数を想定しているが、これを従来の強度変調で実現できるレーザーダイオードは、現時点では存在しない。
測定対象物24に照射されたレーザー光は、拡散反射し、その一部が光学走査装置23および光サーキュレーター22を通じて、光検出器32で受光される。このとき、光検出器32からは、上述した2波長混合レーザー光の波長差に応じた周波数のビート信号が出力される。光検出器32から出力された電気信号は、増幅器34を経て2つに分岐され、その1つはA/Dコンバーター36にてディジタル信号に変換され、制御演算回路37に入力される。制御演算回路37は、A/Dコンバーター36からのディジタル信号を高速フーリエ変換し、ビート信号の周波数の位相を求める。制御演算回路37はさらに、A/Dコンバーター35の出力の高速フーリエ変換から求めた特定ビート周波数の位相(すなわち参照光の位相)と、A/Dコンバーター36の出力の高速フーリエから求めた(同じく)特定ビート周波数の位相(すなわち測定光の位相)とから、その位相差情報を求め、測定対象物24までの距離を求めることができる。
増幅器33の出力を3分岐された3番目の信号、および増幅器34の出力を分岐したもう1つの信号は、TOF回路38に入力される。本発明では、高精度の測定を念頭に、高いビート信号の発生を想定している。例えばビート信号の周波数が1GHzであるとすると、その波長は30cmにすぎない。この場合、位相差から求められる距離は、15cmの範囲に限られてしまう。そこで、それ以上の距離を計測するために、TOF方式による測定を組み合わせる。TOF方式で±5cm程度の精度が出せれば、ビート信号を利用した位相差方式を組み合わせることで、長距離の測定と高精度の測定とを両立することが可能になる。
以上の説明では、参照光の受光出力を増幅して位相周波数比較器17に入力する構成とした。ビート信号の強度からはこの構成が望ましいが、増幅前の信号、あるいは測定光の受光出力またはそれを増幅した信号を位相周波数比較器17に入力する構成とすることもできる。
11、12 駆動回路
13、14 半導体レーザー
15 光結合器
16 基準発振子
17 位相周波数比較器
18 ループフィルター
21 光分岐器
22 光サーキュレーター
23 光学走査装置
31、32 光検出器
33、34 増幅器
35、36 A/Dコンバーター
37 制御演算回路
38 TOF回路
13、14 半導体レーザー
15 光結合器
16 基準発振子
17 位相周波数比較器
18 ループフィルター
21 光分岐器
22 光サーキュレーター
23 光学走査装置
31、32 光検出器
33、34 増幅器
35、36 A/Dコンバーター
37 制御演算回路
38 TOF回路
Claims (2)
- 変調されたレーザー光を生成する変調レーザー光生成手段と、
前記変調レーザー光生成手段の出力光を分岐する光分岐器と、
前記光分岐器により分岐された一方の光を測定対象物に照射して得られる反射光を測定光、前記光分岐器により分岐された他方の光を参照光とし、前記測定光と前記参照光との変調成分の位相差から前記測定対象物までの距離を求める測定回路と、
を備え、
前記変調レーザー光生成手段は、
注入される駆動電流値により発光周波数が変動する2つの半導体レーザーと、
この2つの半導体レーザーを互いに異なる駆動電流値で駆動する駆動手段と、
前記2つの半導体レーザーの出力光を結合し、それらの出力光の発光周波数の差に応じた周波数のビート信号が重畳された光を、前記変調されたレーザー光として出力する光結合器と、
を有し、
前記駆動手段は、
前記ビート信号の周波数として想定される周波数と同じ周波数を出力する基準発振子と、
この基準発振子の出力と前記測定光または前記参照光に含まれる変調成分との位相差に基づいて、前記2つの半導体レーザーの駆動電流を調整する手段と、
を有する、
ことを特徴とするレーザー距離計測装置。 - 請求項1記載のレーザー距離計測装置において、
前記駆動手段は、前記2つの半導体レーザーを共通のパルス信号により駆動する構成であり、
前記測定回路は、前記測定光と前記参照光とのパルスの時間差または位相差から、前記測定対象物までのおおよその距離を求める回路を有する、
ことを特徴とするレーザー距離計測装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018104948A JP2019211239A (ja) | 2018-05-31 | 2018-05-31 | レーザー距離計測装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018104948A JP2019211239A (ja) | 2018-05-31 | 2018-05-31 | レーザー距離計測装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019211239A true JP2019211239A (ja) | 2019-12-12 |
Family
ID=68845855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018104948A Pending JP2019211239A (ja) | 2018-05-31 | 2018-05-31 | レーザー距離計測装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019211239A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210101386A (ko) * | 2020-02-08 | 2021-08-19 | 주식회사 에스원 | 송수신 일체형 레이저 감지기에서 근거리 타겟 위치 검출 방법 및 이를 이용한 근거리 타겟 검출 시스템 |
KR20210121420A (ko) * | 2020-03-30 | 2021-10-08 | 한국과학기술원 | 준-주파수 변조를 이용하여 거리를 측정하는 실리콘 위상배열 기반 라이다 장치 |
-
2018
- 2018-05-31 JP JP2018104948A patent/JP2019211239A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210101386A (ko) * | 2020-02-08 | 2021-08-19 | 주식회사 에스원 | 송수신 일체형 레이저 감지기에서 근거리 타겟 위치 검출 방법 및 이를 이용한 근거리 타겟 검출 시스템 |
KR102346552B1 (ko) * | 2020-02-08 | 2021-12-31 | 주식회사 에스원 | 송수신 일체형 레이저 감지기에서 근거리 타겟 위치 검출 방법 및 이를 이용한 근거리 타겟 검출 시스템 |
KR20210121420A (ko) * | 2020-03-30 | 2021-10-08 | 한국과학기술원 | 준-주파수 변조를 이용하여 거리를 측정하는 실리콘 위상배열 기반 라이다 장치 |
KR102443656B1 (ko) * | 2020-03-30 | 2022-09-16 | 한국과학기술원 | 준-주파수 변조를 이용하여 거리를 측정하는 실리콘 위상배열 기반 라이다 장치 |
US11609330B2 (en) | 2020-03-30 | 2023-03-21 | Korea Advanced Institute Of Science And Technology | Silicon-opa-based lidar for measuring distance using quasi-frequency modulation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12038511B2 (en) | Precisely controlled chirped diode laser and coherent LIDAR system | |
US10578740B2 (en) | Coherent optical distance measurement apparatus and method | |
CN113841065B (zh) | 返回路径中具有光学放大器的lidar设备 | |
CN109425866A (zh) | 应用光电振荡器(oeo)的光测距雷达(lidar)和光频域反射计(ofdr)系统 | |
EP3605140B1 (en) | Laser radar device | |
WO2017187510A1 (ja) | 距離計測装置、距離計測方法、及び形状計測装置 | |
US11119218B2 (en) | Coherent lidar system with extended field of view | |
CN110596718B (zh) | 一种基于激光外差探测的相位测距装置及方法 | |
CN111025320A (zh) | 一种相位式激光测距系统及测距方法 | |
CN115210603B (zh) | 激光雷达及激光雷达控制方法 | |
JP2019211239A (ja) | レーザー距離計測装置 | |
CN108809420B (zh) | 基于激光器的无线频率传输系统及其传输装置和传输方法 | |
CN210155331U (zh) | 一种激光雷达 | |
CN114895318A (zh) | 激光雷达系统 | |
KR20220110016A (ko) | 전기 광학 주사방식을 이용한 주파수 변조 연속파 라이다 | |
US20050162637A1 (en) | Laser detection and ranging apparatus | |
CN116908875A (zh) | 一种面向远距离高并行性的激光成像方法及系统 | |
CN116106917A (zh) | 一种并行线性调频连续波激光雷达测距测速系统 | |
CN215932129U (zh) | 基于偏振调制光注入激光器的激光雷达 | |
Hanto et al. | Study on the time of flight optical ranging by using direct modulation of the laser diode | |
CN113721226A (zh) | 一种调频连续波激光雷达 | |
JP2019211238A (ja) | レーザー距離計測装置および光変調方法 | |
CN116601529A (zh) | 激光雷达装置和风计测方法 | |
US11867814B1 (en) | Techniques for driving a laser diode in a LIDAR system | |
US20240183954A1 (en) | Techniques for a laser driver circuit with analog mixer and offset |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20191030 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20191125 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20200120 |