JP2019211009A - Dynamic damper - Google Patents

Dynamic damper Download PDF

Info

Publication number
JP2019211009A
JP2019211009A JP2018107793A JP2018107793A JP2019211009A JP 2019211009 A JP2019211009 A JP 2019211009A JP 2018107793 A JP2018107793 A JP 2018107793A JP 2018107793 A JP2018107793 A JP 2018107793A JP 2019211009 A JP2019211009 A JP 2019211009A
Authority
JP
Japan
Prior art keywords
mass body
pair
peripheral surface
axis
dynamic damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018107793A
Other languages
Japanese (ja)
Inventor
喜之 瀬野
Yoshiyuki Seno
喜之 瀬野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd, Toyo Tire Corp filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2018107793A priority Critical patent/JP2019211009A/en
Publication of JP2019211009A publication Critical patent/JP2019211009A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a dynamic damper improved in a degree of freedom in natural frequency while preventing falling of a mass body.SOLUTION: A dynamic damper includes a cylindrical member, a projecting portion, a mass body, an elastic connecting portion, and a fastening member, and an inner peripheral surface of the mass body includes a pair of first opposite faces opposed to each other in a first direction through a shaft center of the cylindrical member, and a pair of second opposite faces opposed to each other in a second direction orthogonal to the first direction through the shaft center. An interval in the second direction, of the pair of second opposite faces is larger than an interval in the first direction of the pair of first opposite faces, and a part of the projecting portion is positioned at an outer side in a direction perpendicular to an axis, of the pair of first opposite faces at any position of the relative rotation of the mass body to the cylindrical member about the shaft center, in an axial view of the cylindrical member.SELECTED DRAWING: Figure 1

Description

本発明はダイナミックダンパに関し、特に質量体の脱落を防止しつつ、固有振動数の自由度を向上できるダイナミックダンパに関するものである。   The present invention relates to a dynamic damper, and more particularly to a dynamic damper that can improve the degree of freedom of the natural frequency while preventing the mass body from falling off.

自動車等の車両や産業機械等においては、エンジン等の振動や走行時(作動時)に生じる共振等の多くの有害振動が存在していることから、それら有害振動を抑制するためにダイナミックダンパが組み込まれることがある。ダイナミックダンパには、例えば、振動を抑制する対象である相手側部材に取り付けられる円筒状の筒部材と、筒部材を同軸状に取り囲む円筒状の質量体とを、ゴム状弾性体から構成される弾性連結部で連結したものがある(特許文献1)。   In vehicles such as automobiles and industrial machines, there are many harmful vibrations such as engine vibrations and resonances that occur during running (operation). Therefore, dynamic dampers are used to suppress these harmful vibrations. May be incorporated. The dynamic damper includes, for example, a cylindrical cylindrical member attached to a mating member that is a target for suppressing vibration, and a cylindrical mass body that coaxially surrounds the cylindrical member, and is configured from a rubber-like elastic body. There exists what was connected with the elastic connection part (patent document 1).

特許文献1の技術は、筒部材を相手側部材に取り付けるためのボルトの頭部の外径よりも、質量体の内径を小さくすることで、弾性連結部の破断等による質量体の脱落を防止している。ダイナミックダンパの固有振動数を決定するパラメータである弾性連結部のばね定数を設定するためには、質量体の内径を調整して、弾性連結部の軸直角方向寸法を調整することが考えられる。   The technology of Patent Document 1 prevents the mass body from falling off due to the breakage of the elastic connecting portion by making the inner diameter of the mass body smaller than the outer diameter of the head of the bolt for attaching the cylindrical member to the counterpart member. doing. In order to set the spring constant of the elastic connecting portion, which is a parameter for determining the natural frequency of the dynamic damper, it is conceivable to adjust the axial perpendicular direction dimension of the elastic connecting portion by adjusting the inner diameter of the mass body.

実公平4−35255号公報Japanese Utility Model Publication 4-35255

しかしながら、上記従来の技術では、ボルトの頭部の外径よりも質量体の内径を小さくして質量体の脱落を防止するので、例えば規格化されたボルトの頭部の大きさに質量体の内径が制約を受ける。即ち、頭部の大きさに対してダイナミックダンパの固有振動数の設定の自由度が低い。   However, in the above prior art, the mass body has an inner diameter smaller than the outer diameter of the bolt head to prevent the mass body from falling off. For example, the mass body has a standardized bolt head size. The inner diameter is limited. That is, the degree of freedom in setting the natural frequency of the dynamic damper is low with respect to the size of the head.

本発明は上述した問題点を解決するためになされたものであり、質量体の脱落を防止しつつ、固有振動数の設定の自由度を向上できるダイナミックダンパを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a dynamic damper capable of improving the degree of freedom in setting the natural frequency while preventing the mass body from falling off.

この目的を達成するために本発明のダイナミックダンパは、軸方向の第1端部および第2端部を有する筒部材と、前記第1端部において前記筒部材の軸直角方向外側へ張り出す張出部と、内周面が前記筒部材の外周面と所定間隔をあけて配置されると共に前記張出部の前記第2端部側に配置される筒状の質量体と、前記質量体の内周面と前記筒部材の外周面とを連結するゴム状弾性体から構成される弾性連結部と、前記筒部材に挿入されて前記筒部材の前記第2端部を相手側部材に締結する締結部材と、を備え、前記質量体の内周面は、前記筒部材の軸心を間に挟んで第1方向に互いに対向する一対の第1対向面と、前記軸心を間に挟み、前記第1方向と直交する第2方向に互いに対向する一対の第2対向面と、を備え、前記一対の第2対向面の前記第2方向の間隔は、前記一対の第1対向面の前記第1方向の間隔よりも大きく、前記筒部材の軸方向視において、前記筒部材に対して前記質量体を前記軸心まわりに相対回転させたいずれの位置においても前記一対の第1対向面の軸直角方向の外側に前記張出部の一部が位置する。   In order to achieve this object, a dynamic damper according to the present invention includes a cylindrical member having a first end portion and a second end portion in the axial direction, and a tension projecting outward in a direction perpendicular to the axial direction of the cylindrical member at the first end portion. A protruding mass, a cylindrical mass disposed on the second end side of the projecting portion, the inner circumferential surface being arranged at a predetermined interval from the outer circumferential surface of the cylindrical member, and the mass An elastic connecting portion composed of a rubber-like elastic body that connects the inner peripheral surface and the outer peripheral surface of the cylindrical member, and the second end portion of the cylindrical member that is inserted into the cylindrical member and fastened to the counterpart member A fastening member, and an inner circumferential surface of the mass body sandwiches the shaft center between a pair of first opposing surfaces facing each other in a first direction with the shaft center of the cylindrical member interposed therebetween, A pair of second facing surfaces facing each other in a second direction orthogonal to the first direction, and the pair of second facing surfaces The distance in the second direction is greater than the distance in the first direction between the pair of first opposing surfaces, and the mass body is rotated around the axis with respect to the cylinder member when viewed in the axial direction of the cylinder member. In any of the positions rotated relative to each other, a part of the protruding portion is located outside the pair of first opposing surfaces in the direction perpendicular to the axis.

請求項1記載のダイナミックダンパによれば、質量体の内周面は、対向方向(第1方向)の間隔が比較的小さい一対の第1対向面と、対向方向(第2方向)の間隔が比較的大きい一対の第2対向面とを備える。筒部材の軸方向視において、筒部材に対して質量体を筒部材の軸心周りに相対回転させたいずれの位置においても、間隔が比較的小さい一対の第1対向面の軸直角方向の外側に張出部の一部が位置する。これにより、弾性連結部の破断等による筒部材からの質量体の脱落を防止できる。   According to the dynamic damper of claim 1, the inner peripheral surface of the mass body has a pair of first opposing surfaces having a relatively small interval in the opposing direction (first direction) and an interval in the opposing direction (second direction). A relatively large pair of second opposing surfaces. As viewed in the axial direction of the cylindrical member, the outer side of the pair of first opposed surfaces in the direction perpendicular to the axis is relatively small at any position where the mass body is rotated relative to the cylindrical member around the axial center of the cylindrical member. A part of the overhanging part is located in As a result, it is possible to prevent the mass body from falling off the cylindrical member due to breakage of the elastic connecting portion or the like.

また、張出部の大きさ等に応じて設定される一対の第1対向面の間隔と無関係に、一対の第2対向面の間隔を設定できる。即ち、一対の第2対向面の間隔を比較的自由に設定できるので、弾性連結部の第2方向のばね定数の自由度を向上できる。これらの結果、質量体の脱落を防止しつつ、ダイナミックダンパの固有振動数の設定の自由度を向上できる。   Further, the interval between the pair of second opposing surfaces can be set regardless of the interval between the pair of first opposing surfaces set according to the size of the overhanging portion or the like. That is, since the distance between the pair of second opposing surfaces can be set relatively freely, the degree of freedom of the spring constant in the second direction of the elastic connecting portion can be improved. As a result, it is possible to improve the degree of freedom in setting the natural frequency of the dynamic damper while preventing the mass body from falling off.

請求項2記載のダイナミックダンパによれば、軸心を含むいずれの断面においても、軸方向の全長に亘って質量体の内周面の外形線と軸心とが平行である。これにより、質量体の内周面の軸方向の一部に凹凸などが設けられる場合に比べて、質量体の内周面を形成し易くできると共に、振動時に質量体の内周面から弾性連結部に作用する力を予測し易くできる。その結果、請求項1の効果に加え、質量体を成形し易くできると共に、ダイナミックダンパの固有振動数を設定し易くできる。   According to the dynamic damper of claim 2, in any cross section including the shaft center, the outline of the inner peripheral surface of the mass body and the shaft center are parallel over the entire length in the axial direction. This makes it easier to form the inner circumferential surface of the mass body than when a portion of the inner circumferential surface of the mass body is provided with an irregularity, and elastically connects from the inner circumferential surface of the mass body during vibration. The force acting on the part can be easily predicted. As a result, in addition to the effect of the first aspect, the mass body can be easily molded and the natural frequency of the dynamic damper can be easily set.

請求項3記載のダイナミックダンパによれば、質量体の内周面の第1方向の間隔は、軸方向視において、一対の第1対向面の第1方向の最大間隔の位置から第2方向へ離れるにつれて次第に小さくなる。これにより、質量体の内周面の周方向の一部に凹凸などが設けられる場合に比べて、質量体の内周面を形成し易くできると共に、振動時に質量体の内周面から弾性連結部に作用する力を予測し易くできる。その結果、請求項1又は2の効果に加え、質量体を成形し易くできると共に、ダイナミックダンパの固有振動数を設定し易くできる。   According to the dynamic damper of claim 3, the interval in the first direction of the inner peripheral surface of the mass body is from the position of the maximum interval in the first direction of the pair of first opposing surfaces in the second direction when viewed in the axial direction. It gets smaller gradually with distance. This makes it easier to form the inner circumferential surface of the mass body and provides elastic connection from the inner circumferential surface of the mass body during vibration compared to the case where unevenness or the like is provided on a part of the inner circumferential surface of the mass body. The force acting on the part can be easily predicted. As a result, in addition to the effect of the first or second aspect, the mass body can be easily formed and the natural frequency of the dynamic damper can be easily set.

請求項4記載のダイナミックダンパによれば、一対の第1対向面の第1方向の間隔が第2方向の全長に亘って一定であるので、質量体を成形し易くできる。さらに、一対の第1対向面の第1方向の間隔が一定なので、筒部材に対して質量体が第2方向に振動するとき、一対の第1対向面から弾性連結部に第2方向の力を作用し難くできる。その結果、請求項1から3のいずれかの効果に加え、ダイナミックダンパの第2方向の固有振動数を設定し易くできる。   According to the dynamic damper of the fourth aspect, since the distance in the first direction between the pair of first opposing surfaces is constant over the entire length in the second direction, the mass body can be easily formed. Further, since the distance between the pair of first opposing surfaces in the first direction is constant, when the mass body vibrates in the second direction with respect to the cylindrical member, the force in the second direction from the pair of first opposing surfaces to the elastic connecting portion. Can be made difficult to act. As a result, in addition to the effect of any one of claims 1 to 3, it is possible to easily set the natural frequency in the second direction of the dynamic damper.

第1実施形態におけるダイナミックダンパの断面図である。It is sectional drawing of the dynamic damper in 1st Embodiment. (a)は質量体の側面図である。(b)は第2実施形態における質量体の側面図である。(A) is a side view of a mass body. (B) is a side view of the mass body in 2nd Embodiment. (a)は第3実施形態における質量体の側面図である。(b)は第4実施形態における質量体の側面図である。(A) is a side view of the mass body in a 3rd embodiment. (B) is a side view of the mass body in 4th Embodiment.

以下、好ましい実施の形態について、添付図面を参照して説明する。まず、図1を参照して、第1実施形態におけるダイナミックダンパ1について説明する。図1は、筒部材10の軸心Cを含むダイナミックダンパ1の断面図である。本明細書では、軸心C方向を軸方向と称し、軸心Cと直交する方向を軸直角方向と称して説明する。   Hereinafter, preferred embodiments will be described with reference to the accompanying drawings. First, the dynamic damper 1 in the first embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view of the dynamic damper 1 including the axis C of the cylindrical member 10. In the present specification, the direction of the axis C is referred to as an axial direction, and the direction orthogonal to the axis C is referred to as an axis perpendicular direction.

図1に示すように、ダイナミックダンパ1は、自動車等の車両や産業機械等におけるエンジン等の振動や走行時(作動時)に生じる共振等の有害振動を抑制するための装置である。ダイナミックダンパ1は、振動する相手側部材2に取り付けられる。相手側部材2は、例えば、エンジンマウントのブラケットであって板状の部材である。   As shown in FIG. 1, the dynamic damper 1 is a device for suppressing harmful vibrations such as vibrations generated during running (operation) of vibrations of an engine or the like in a vehicle such as an automobile or an industrial machine. The dynamic damper 1 is attached to a counterpart member 2 that vibrates. The counterpart member 2 is, for example, an engine mount bracket and a plate-like member.

ダイナミックダンパ1は、筒部材10と、内周面21が筒部材10の外周面13と所定間隔をあけて配置される筒状の質量体20と、質量体20と筒部材10とを連結する弾性連結部40と、筒部材10を相手側部材2に締結する締結部材50と、を備える。   The dynamic damper 1 connects the cylindrical member 10, the cylindrical mass body 20 in which the inner peripheral surface 21 is arranged with a predetermined interval from the outer peripheral surface 13 of the cylindrical member 10, and the mass body 20 and the cylindrical member 10. The elastic connection part 40 and the fastening member 50 which fastens the cylindrical member 10 to the other party member 2 are provided.

筒部材10は、軸心Cを中心とした円筒状の金属製の部材である。筒部材10は、軸方向の第1端部11及び第2端部12を備える。質量体20は、筒部材10を同軸状に取り囲む肉厚の筒状の金属製の部材である。質量体20の軸心と筒部材10の軸心Cとは同一である。   The cylindrical member 10 is a cylindrical metal member centered on the axis C. The tubular member 10 includes a first end portion 11 and a second end portion 12 in the axial direction. The mass body 20 is a thick cylindrical metal member that surrounds the cylindrical member 10 coaxially. The axis of the mass body 20 and the axis C of the cylindrical member 10 are the same.

軸心Cを含むいずれの断面においても、軸方向の全長に亘って質量体20の内周面21の外形線と軸心Cとが平行である。なお、本明細書における質量体20の軸方向の全長とは、質量体20の軸方向両端側に面取りが施されている場合、その面取り部分を除いた軸方向の全長を示す。   In any cross section including the axis C, the outline of the inner peripheral surface 21 of the mass body 20 and the axis C are parallel over the entire length in the axial direction. In addition, when the chamfering is given to the axial direction both ends of the mass body 20 with the axial direction full length in this specification, the axial direction full length except the chamfer part is shown.

弾性連結部40は、ゴム状弾性体から構成される部材である。弾性連結部40は、質量体20の内周面21と筒部材10の外周面13とにそれぞれ加硫接着され、内周面21と外周面13とを連結する。   The elastic connection part 40 is a member comprised from a rubber-like elastic body. The elastic connecting portion 40 is vulcanized and bonded to the inner peripheral surface 21 of the mass body 20 and the outer peripheral surface 13 of the cylindrical member 10 to connect the inner peripheral surface 21 and the outer peripheral surface 13.

弾性連結部40との一体成形品である弾性膜43で質量体20の外周面および軸方向両端面が覆われる。質量体20を弾性膜43で覆うことで、質量体20が振動して相手側部材2等に衝突したときの衝撃音を低減できる。   The outer peripheral surface and both end surfaces in the axial direction of the mass body 20 are covered with an elastic film 43 that is an integrally molded product with the elastic connecting portion 40. By covering the mass body 20 with the elastic film 43, it is possible to reduce an impact sound when the mass body 20 vibrates and collides with the counterpart member 2 or the like.

弾性膜43で覆われた質量体20の軸方向寸法は、筒部材10の軸方向寸法よりも小さく設定される。そして、筒部材10の第1端部11及び第2端部12よりも軸方向内側に、弾性膜43で覆われた質量体20が位置する。これにより、相手側部材2や締結部材50と弾性膜43との接触を抑制できる。これにより、その接触に起因して、筒部材10に対する質量体20の軸直角方向の振動が妨げられることを抑制できる。   The axial dimension of the mass body 20 covered with the elastic film 43 is set smaller than the axial dimension of the cylindrical member 10. The mass body 20 covered with the elastic film 43 is located on the inner side in the axial direction than the first end portion 11 and the second end portion 12 of the cylindrical member 10. Thereby, the contact with the other party member 2 or the fastening member 50, and the elastic film 43 can be suppressed. Thereby, it can suppress that the vibration of the axis-perpendicular direction of the mass body 20 with respect to the cylinder member 10 resulting from the contact is prevented.

締結部材50は、フランジボルト51と、ナット55とを備える。フランジボルト51は、軸方向視において六角形状の頭部52と、頭部52の軸方向一端側に設けられる円板状の張出部(フランジ)53と、頭部52との間に張出部53を挟んで張出部53から軸方向に突出する軸部54とを備える。張出部53は、頭部52よりも軸直角方向外側へ所定量張り出す円板状の部位である。張出部53は、筒部材10の第1端部11において筒部材10の外周面13よりも軸直角方向外側へ張り出す。   The fastening member 50 includes a flange bolt 51 and a nut 55. The flange bolt 51 includes a hexagonal head 52 as viewed in the axial direction, a disk-shaped protruding portion (flange) 53 provided on one end of the head 52 in the axial direction, and a protruding portion between the head 52. A shaft portion 54 that protrudes in the axial direction from the overhang portion 53 with the portion 53 interposed therebetween is provided. The overhang portion 53 is a disk-shaped portion that protrudes a predetermined amount outward from the head 52 in the direction perpendicular to the axis. The overhang portion 53 projects outward in the direction perpendicular to the axis from the outer peripheral surface 13 of the tubular member 10 at the first end portion 11 of the tubular member 10.

筒部材10を相手側部材2に取り付けるには、まず、第1端部11側から筒部材10に軸部54を挿入して、第2端部12から出た軸部54を、相手側部材2を板厚方向に貫通する貫通孔2aに挿入する。この相手側部材2の貫通孔2aに挿入された軸部54にナット55を取り付けることによって、相手側部材2と張出部53とで筒部材10が軸方向に挟まれ、締結部材50により筒部材10が相手側部材2に締結される。そして、張出部53の第2端部12側に質量体20が配置される。   In order to attach the tubular member 10 to the mating member 2, first, the shaft portion 54 is inserted into the tubular member 10 from the first end portion 11 side, and the shank portion 54 coming out from the second end portion 12 is replaced with the mating member. 2 is inserted into a through hole 2a penetrating in the plate thickness direction. By attaching a nut 55 to the shaft portion 54 inserted into the through hole 2 a of the counterpart member 2, the cylindrical member 10 is sandwiched in the axial direction by the counterpart member 2 and the overhang portion 53, and the cylindrical member 10 is clamped by the fastening member 50. The member 10 is fastened to the counterpart member 2. The mass body 20 is disposed on the second end 12 side of the overhang portion 53.

次に図1に加え図2(a)を参照して、質量体20の内周面21と張出部53との関係について説明する。図2(a)は質量体20の側面図である。図2(a)には、張出部53の外形線が二点鎖線で図示される。   Next, the relationship between the inner peripheral surface 21 of the mass body 20 and the overhang portion 53 will be described with reference to FIG. FIG. 2A is a side view of the mass body 20. In FIG. 2A, the outline of the overhang portion 53 is shown by a two-dot chain line.

図2(a)に示すように、質量体20の内周面21は、軸方向視において楕円形状に形成されている。内周面21は、軸心C(筒部材10)を間に挟んで第1方向Aに互いに対向する一対の第1対向面22と、軸心Cを間に挟んで第2方向Bに互いに対向する一対の第2対向面23とを備える。なお、第1方向A及び第2方向Bは、軸直角方向のうち互いに直交する方向である。   As shown in FIG. 2A, the inner peripheral surface 21 of the mass body 20 is formed in an elliptical shape when viewed in the axial direction. The inner peripheral surface 21 has a pair of first opposing surfaces 22 facing each other in the first direction A with the axis C (tubular member 10) interposed therebetween, and a pair of first opposing surfaces 22 in the second direction B with the axis C interposed therebetween. A pair of second opposing surfaces 23 facing each other. The first direction A and the second direction B are directions orthogonal to each other in the direction perpendicular to the axis.

一対の第1対向面22の第1方向Aの間隔L1よりも、一対の第2対向面23の第2方向Bの間隔L2が大きい。一対の第1対向面22の第1方向Aの最大間隔L11(短径)は、軸心Cを通って第1方向Aに平行な直線(短軸)上の間隔L1である。一対の第2対向面23の第2方向Bの最大間隔L21(長径)は、軸心Cを通って第2方向Bに平行な直線(長軸)上の間隔L2である。   The distance L2 in the second direction B between the pair of second facing surfaces 23 is larger than the distance L1 in the first direction A between the pair of first facing surfaces 22. The maximum distance L11 (minor axis) in the first direction A of the pair of first opposing surfaces 22 is an interval L1 on a straight line (minor axis) that passes through the axis C and is parallel to the first direction A. The maximum distance L21 (major axis) in the second direction B of the pair of second facing surfaces 23 is an interval L2 on a straight line (major axis) that passes through the axis C and is parallel to the second direction B.

一対の第1対向面22の最大間隔L11は、張出部53の外径R1よりも小さい。そして、楕円形状の内周面21の長軸と短軸との交点が軸心Cである。そのため、軸方向視において、筒部材10(図1参照)に関して質量体20を軸心Cまわりに相対回転させたいずれの位置においても、間隔L2に比べて間隔L1が小さい一対の第1対向面22の軸直角方向の外側に張出部53の一部が位置する。図1及び図2(a)に示すように、このような張出部53の第2端部12側に質量体20が位置するので、弾性連結部40の破断等によって筒部材10から質量体20が脱落することを防止できる。   The maximum distance L11 between the pair of first opposing surfaces 22 is smaller than the outer diameter R1 of the overhang portion 53. The intersection of the major axis and the minor axis of the elliptical inner peripheral surface 21 is the axis C. Therefore, when viewed in the axial direction, the pair of first opposing surfaces having a distance L1 smaller than the distance L2 at any position where the mass body 20 is relatively rotated around the axis C with respect to the cylindrical member 10 (see FIG. 1). A part of the overhanging portion 53 is located on the outside in the direction perpendicular to the axis 22. As shown in FIGS. 1 and 2A, since the mass body 20 is located on the second end portion 12 side of the overhang portion 53, the mass body is separated from the cylindrical member 10 due to the breakage of the elastic connecting portion 40 or the like. It is possible to prevent 20 from falling off.

ここで、内径が略一定である質量体を用いる場合には、筒部材10からの質量体の脱落を防止するため、質量体の内径の全体が張出部53の外形R1より小さくなるように設定する必要がある。しかし、JIS等により規格されたフランジボルト51を用いる場合には、そのフランジボルト51の張出部(フランジ)53の大きさ(外径R1)や形状に質量体の内径が制約を受ける。   Here, in the case of using a mass body having an approximately constant inner diameter, the entire inner diameter of the mass body is made smaller than the outer shape R1 of the overhanging portion 53 in order to prevent the mass body from falling off the cylindrical member 10. Must be set. However, when the flange bolt 51 standardized by JIS or the like is used, the inner diameter of the mass body is restricted by the size (outer diameter R1) and shape of the overhang portion (flange) 53 of the flange bolt 51.

また、ダイナミックダンパ等に以前から使用していた規格外の張出部53を流用する場合にも、その張出部53の大きさや形状に質量体の内径が制約を受ける。そうすると、質量体の内径を調整して、弾性連結部40の軸直角方向寸法を変化させ、弾性連結部40のばね定数を変化させることが必ずしも自由にできない。即ち、張出部53の大きさや形状に対してダイナミックダンパの固有振動数の設定の自由度が低くなる。   Further, even when a non-standard overhang 53 that has been used for a dynamic damper or the like is used, the inner diameter of the mass body is restricted by the size and shape of the overhang 53. Then, it is not always possible to freely change the spring constant of the elastic connecting part 40 by adjusting the inner diameter of the mass body to change the dimension of the elastic connecting part 40 in the direction perpendicular to the axis. That is, the degree of freedom in setting the natural frequency of the dynamic damper is low with respect to the size and shape of the overhang portion 53.

これに対して、本実施形態では、張出部53の大きさや形状に応じて設定される一対の第1対向面22の間隔L1と無関係に、一対の第2対向面23の間隔L2を設定できる。即ち、間隔L2を比較的自由に設定できるので、第2対向面23と筒部材10との間の弾性連結部40の第2方向Bの寸法の自由度を向上できる。その結果、弾性連結部40の第2方向Bのばね定数の自由度を向上できるので、ダイナミックダンパ1の固有振動数の設定の自由度を向上できる。   In contrast, in the present embodiment, the interval L2 between the pair of second opposing surfaces 23 is set regardless of the interval L1 between the pair of first opposing surfaces 22 set according to the size and shape of the overhanging portion 53. it can. That is, since the distance L2 can be set relatively freely, the degree of freedom in the dimension in the second direction B of the elastic connecting portion 40 between the second facing surface 23 and the cylindrical member 10 can be improved. As a result, the degree of freedom of the spring constant of the elastic connecting portion 40 in the second direction B can be improved, so that the degree of freedom in setting the natural frequency of the dynamic damper 1 can be improved.

以上のように、互いに比較して間隔L1が小さい一対の第1対向面22、及び、間隔L2が大きい一対の第2対向面23によって、質量体20の脱落の防止と、張出部53の大きさや形状に対するダイナミックダンパ1の固有振動数の設定の自由度の向上とを両立できる。これらの両立が、例えばJIS等により規格された張出部53や、以前から使用していた規格外の張出部53を用いる場合であっても可能なので、新たに規格外の張出部53を製造する場合に比べて、張出部53にかかるコストを低減できる。   As described above, the pair of first opposing surfaces 22 having a small interval L1 and the pair of second opposing surfaces 23 having a large interval L2 prevent the mass body 20 from falling off and It is possible to achieve both improvement in the degree of freedom in setting the natural frequency of the dynamic damper 1 with respect to the size and shape. These coexistences are possible even when, for example, the overhanging portion 53 standardized by JIS or the like, or the non-standard overhanging portion 53 that has been used before, is newly used. Compared with the case of manufacturing, the cost for the overhanging portion 53 can be reduced.

ダイナミックダンパ1の第2方向Bの固有振動数を比較的自由に設定し易いので、ダイナミックダンパ1の主振動方向を第2方向Bに設定することが好ましい。これにより、質量体20の脱落を防止しつつ、ダイナミックダンパ1の主振動方向の固有振動数を設定し易くできる。   Since the natural frequency in the second direction B of the dynamic damper 1 is easily set relatively freely, it is preferable to set the main vibration direction of the dynamic damper 1 in the second direction B. Thereby, it is possible to easily set the natural frequency of the dynamic damper 1 in the main vibration direction while preventing the mass body 20 from falling off.

ダイナミックダンパ1の固有振動数は、内周面21への弾性連結部40の拘束のされ方、即ち、振動時に弾性連結部40へ力を加える内周面21の形状にも依存する。質量体20の内周面21の第1方向Aの間隔は、軸方向視において最大間隔L11の位置から第2方向Bに離れるにつれて次第に小さくなる。内周面21が楕円形状なので言い換えると、質量体20の内周面21の第2方向Bの間隔は、軸方向視において最大間隔L21の位置から第1方向Aに離れるにつれて次第に小さくなる。これにより、内周面21の周方向の一部に凹凸などが設けられる場合と比べて、振動時に内周面21から弾性連結部40に作用する力を予測し易くできる。その結果、ダイナミックダンパ1の固有振動数を設定し易くできる。   The natural frequency of the dynamic damper 1 also depends on how the elastic connecting portion 40 is constrained to the inner peripheral surface 21, that is, the shape of the inner peripheral surface 21 that applies force to the elastic connecting portion 40 during vibration. The distance in the first direction A of the inner peripheral surface 21 of the mass body 20 gradually decreases as the distance from the position of the maximum distance L11 in the second direction B increases when viewed in the axial direction. In other words, since the inner peripheral surface 21 is elliptical, the interval in the second direction B of the inner peripheral surface 21 of the mass body 20 gradually decreases as it moves away from the position of the maximum interval L21 in the first direction A as viewed in the axial direction. Thereby, compared with the case where an unevenness | corrugation etc. are provided in a part of the circumferential direction of the internal peripheral surface 21, it can be easy to estimate the force which acts on the elastic connection part 40 from the internal peripheral surface 21 at the time of a vibration. As a result, the natural frequency of the dynamic damper 1 can be easily set.

また、軸心Cを含むいずれの断面においても、軸方向の全長に亘って内周面21の外形線と軸心Cとが平行である。これにより、内周面21の軸方向の一部に凹凸などが設けられる場合と比べて、振動時の内周面21から弾性連結部40に作用する力を予測し易くできる。その結果、ダイナミックダンパ1の固有振動数を設定し易くできる。   Moreover, in any cross section including the axis C, the outline of the inner peripheral surface 21 and the axis C are parallel over the entire axial length. Thereby, compared with the case where an unevenness | corrugation etc. are provided in a part of axial direction of the internal peripheral surface 21, the force which acts on the elastic connection part 40 from the internal peripheral surface 21 at the time of a vibration can be estimated easily. As a result, the natural frequency of the dynamic damper 1 can be easily set.

ここで、質量体20の成形方法について説明する。まず、鋳造や鍛造、切削などによっておおよその形状の質量体20を形成する。その後、ダイナミックダンパ1の固有振動数が適切な設定値になるように、内周面21に切削加工や研削加工を施して、内周面21の形状を詳細に調整し、質量体20を成形する。   Here, a method for forming the mass body 20 will be described. First, the mass body 20 having an approximate shape is formed by casting, forging, cutting, or the like. Thereafter, the inner peripheral surface 21 is cut or ground so that the natural frequency of the dynamic damper 1 becomes an appropriate set value, the shape of the inner peripheral surface 21 is adjusted in detail, and the mass body 20 is formed. To do.

上述したように、内周面21の第1方向Aの間隔は、軸方向視において最大間隔L11の位置から第2方向Bに離れるにつれて次第に小さくなる。また、軸心Cを含むいずれの断面においても、軸方向の全長に亘って内周面21の外形線と軸心Cとが平行である。これらの場合、内周面21の一部に凹凸などが設けられる場合と比べて、特に内周面21の調整のための切削加工や研削加工をし易くでき、質量体20の成形を容易にできる。   As described above, the interval in the first direction A of the inner peripheral surface 21 gradually decreases as the distance from the position of the maximum interval L11 in the second direction B increases when viewed in the axial direction. Moreover, in any cross section including the axis C, the outline of the inner peripheral surface 21 and the axis C are parallel over the entire axial length. In these cases, compared to the case where unevenness or the like is provided on a part of the inner peripheral surface 21, it is particularly easy to perform cutting or grinding for adjusting the inner peripheral surface 21, and the mass body 20 can be easily formed. it can.

また、切削加工や研削加工により内周面21の形状を調整するので、内周面21を滑らかにできる。これにより、筒部材10の外周面13と質量体20の内周面21との間の軸直角方向寸法の設計値からのばらつきを小さくして、弾性連結部40のばね定数のばらつきを小さくできる。また、内周面21が滑らかなので、振動時に内周面21から弾性連結部40に作用する力のばらつきを小さくできる。これらの結果、ダイナミックダンパ1の固有振動数のばらつきを抑制し易くできる。   Moreover, since the shape of the inner peripheral surface 21 is adjusted by cutting or grinding, the inner peripheral surface 21 can be made smooth. Thereby, the dispersion | variation from the design value of the axial perpendicular direction dimension between the outer peripheral surface 13 of the cylinder member 10 and the inner peripheral surface 21 of the mass body 20 can be made small, and the dispersion | variation in the spring constant of the elastic connection part 40 can be made small. . Moreover, since the inner peripheral surface 21 is smooth, it is possible to reduce variations in the force that acts on the elastic connecting portion 40 from the inner peripheral surface 21 during vibration. As a result, variations in the natural frequency of the dynamic damper 1 can be easily suppressed.

第2方向Bがダイナミックダンパ1の主振動方向であれば、一対の第2対向面23の滑らかさが、ダイナミックダンパ1の主振動方向の固有振動数に大きな影響を与える。そのため、一対の第2対向面23に切削加工や研削加工を施して第2対向面23を滑らかにし、その他の内周面21を切削加工や研削加工しなくても、ダイナミックダンパ1の固有振動数のばらつきを十分に抑制できる。よって、ダイナミックダンパ1の主振動方向の固有振動数のばらつきを抑制するための切削量を少なくできる。   If the second direction B is the main vibration direction of the dynamic damper 1, the smoothness of the pair of second opposing surfaces 23 greatly affects the natural frequency of the dynamic damper 1 in the main vibration direction. Therefore, the natural vibration of the dynamic damper 1 can be obtained without subjecting the pair of second opposing surfaces 23 to cutting or grinding to smooth the second opposing surfaces 23 and cutting or grinding the other inner peripheral surface 21. The variation in the number can be sufficiently suppressed. Therefore, the amount of cutting for suppressing variation in the natural frequency of the dynamic damper 1 in the main vibration direction can be reduced.

次に図2(b)を参照して第2実施形態について説明する。第1実施形態では、軸方向視において質量体20の内周面21が楕円形状である場合について説明した。これに対し第2実施形態では、軸方向視において質量体60の内周面61が長円形状である場合について説明する。なお、第1実施形態と同一の部分については、同一の符号を付して以下の説明を省略する。   Next, a second embodiment will be described with reference to FIG. In the first embodiment, the case where the inner peripheral surface 21 of the mass body 20 is elliptical when viewed in the axial direction has been described. On the other hand, 2nd Embodiment demonstrates the case where the internal peripheral surface 61 of the mass body 60 is an oval shape seeing in an axial direction. In addition, about the part same as 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted.

第2実施形態におけるダイナミックダンパは、第1実施形態におけるダイナミックダンパ1に対して、質量体60の内周面61の形状が異なるだけで、その他の構成は同一である。図2(b)は、第2実施形態における質量体60の側面図である。図2(b)には、張出部53の外形線が二点鎖線で図示される。   The dynamic damper according to the second embodiment is the same as the dynamic damper 1 according to the first embodiment except that the shape of the inner peripheral surface 61 of the mass body 60 is different. FIG. 2B is a side view of the mass body 60 in the second embodiment. In FIG. 2B, the outline of the overhang portion 53 is shown by a two-dot chain line.

図2(b)に示すように、第2実施形態におけるダイナミックダンパの質量体60の内周面61は、軸方向視において長円形状に形成されている。内周面61は、軸心C(筒部材10)を間に挟んで第1方向Aに互いに対向する一対の第1対向面62と、軸心Cを間に挟んで第2方向Bに互いに対向する一対の第2対向面63とを備える。   As shown in FIG. 2B, the inner peripheral surface 61 of the mass body 60 of the dynamic damper in the second embodiment is formed in an oval shape when viewed in the axial direction. The inner circumferential surface 61 has a pair of first opposing surfaces 62 facing each other in the first direction A with the axis C (tubular member 10) interposed therebetween, and a pair of first opposing surfaces 62 in the second direction B with the axis C interposed therebetween. A pair of opposing second opposing surfaces 63.

一対の第1対向面62の第1方向Aの間隔L3よりも、一対の第2対向面63の第2方向Bの間隔L4が大きい。間隔L3は、第2方向Bの全長に亘って一定である。即ち、一対の第1対向面62の第1方向Aの最大間隔が間隔L3である。この間隔L3は、張出部53の外径R1よりも小さい。そのため、軸方向視において、筒部材10に関して質量体60を軸心Cまわりに相対回転させたいずれの位置においても一対の第1対向面62の軸直角方向の外側に張出部53の一部が位置する。   The distance L4 in the second direction B between the pair of second facing surfaces 63 is larger than the distance L3 in the first direction A between the pair of first facing surfaces 62. The interval L3 is constant over the entire length in the second direction B. That is, the maximum interval in the first direction A between the pair of first opposing surfaces 62 is the interval L3. The interval L3 is smaller than the outer diameter R1 of the overhang portion 53. Therefore, when viewed in the axial direction, a part of the protruding portion 53 is formed outside the pair of first opposing surfaces 62 in the direction perpendicular to the axis at any position where the mass body 60 is relatively rotated around the axis C with respect to the cylindrical member 10. Is located.

これにより、第1実施形態と同様に、弾性連結部40の破断等によって筒部材10から質量体60が脱落することを防止できる。さらに、張出部53の大きさや形状に応じて設定される一対の第1対向面62の間隔L3と無関係に、一対の第2対向面63の間隔L4を比較的自由に設定できるので、質量体60を有するダイナミックダンパの固有振動数の設定の自由度を向上できる。   Thereby, similarly to 1st Embodiment, it can prevent that the mass body 60 falls from the cylinder member 10 by the fracture | rupture etc. of the elastic connection part 40. FIG. Furthermore, since the distance L4 between the pair of second facing surfaces 63 can be set relatively freely regardless of the distance L3 between the pair of first facing surfaces 62 set according to the size and shape of the overhang portion 53, the mass The degree of freedom in setting the natural frequency of the dynamic damper having the body 60 can be improved.

内周面61の第1方向Aの間隔は、軸方向視において第1対向面62(間隔L3の位置)から第2方向Bに離れるにつれて次第に小さくなる。また、一対の第1対向面62の間隔L3が第2方向Bの全長に亘って一定である。さらに、軸心Cを含むいずれの断面においても、軸方向の全長に亘って内周面61の外形線と軸心Cとが平行である。これらの場合、第1実施形態で説明したように、内周面61の一部に凹凸などが設けられる場合と比べて、質量体60を成形し易くできると共に、質量体60を有するダイナミックダンパの固有振動数を設定し易くできる。   The interval in the first direction A of the inner peripheral surface 61 gradually decreases as it moves away from the first facing surface 62 (position of the interval L3) in the second direction B when viewed in the axial direction. Further, the distance L3 between the pair of first opposing surfaces 62 is constant over the entire length in the second direction B. Further, in any cross section including the axial center C, the outline of the inner peripheral surface 61 and the axial center C are parallel over the entire length in the axial direction. In these cases, as described in the first embodiment, the mass body 60 can be easily formed and the dynamic damper having the mass body 60 can be formed as compared with the case where unevenness is provided on a part of the inner peripheral surface 61. It is easy to set the natural frequency.

特に、間隔L3が第2方向Bの全長に亘って一定なので、筒部材10に対して質量体60が第2方向Bに振動するとき、一対の第1対向面62から弾性連結部40に第2方向Bの力を作用し難くできる。その結果、質量体60を有するダイナミックダンパの第2方向Bの固有振動数をより設定し易くできる。   In particular, since the distance L3 is constant over the entire length in the second direction B, when the mass body 60 vibrates in the second direction B with respect to the cylindrical member 10, the pair of first opposing surfaces 62 are connected to the elastic connecting portion 40. The force in the two directions B can be made difficult to act. As a result, the natural frequency in the second direction B of the dynamic damper having the mass body 60 can be set more easily.

さらに、一対の第1対向面62の間隔L3が第2方向Bの全長に亘って一定なので、一対の第1対向面62と筒部材10との間の軸直角寸法を設定し易くできる。これにより、弾性連結部40の第1方向Aのばね定数を設定し易くできるので、質量体60を有するダイナミックダンパの第1方向Aの固有振動数をより設定し易くできる。   Furthermore, since the distance L3 between the pair of first opposing surfaces 62 is constant over the entire length in the second direction B, it is possible to easily set the axis perpendicular dimension between the pair of first opposing surfaces 62 and the cylindrical member 10. Thereby, since the spring constant of the elastic connecting part 40 in the first direction A can be easily set, the natural frequency in the first direction A of the dynamic damper having the mass body 60 can be set more easily.

次に図3(a)を参照して第3実施形態について説明する。第1実施形態では、軸方向視において質量体20の内周面21が楕円形状である場合について説明した。これに対し第3実施形態では、軸方向視において質量体70の内周面71が長方形状である場合について説明する。なお、第1実施形態と同一の部分については、同一の符号を付して以下の説明を省略する。   Next, a third embodiment will be described with reference to FIG. In the first embodiment, the case where the inner peripheral surface 21 of the mass body 20 is elliptical when viewed in the axial direction has been described. On the other hand, 3rd Embodiment demonstrates the case where the internal peripheral surface 71 of the mass body 70 is rectangular shape seeing to an axial direction. In addition, about the part same as 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted.

第3実施形態におけるダイナミックダンパは、第1実施形態におけるダイナミックダンパ1に対して、質量体70の内周面71の形状と、張出部74の外形形状とが異なるだけで、その他の構成は同一である。図3(a)は、第3実施形態における質量体70の側面図である。図3(a)には、張出部74の外形線が二点鎖線で図示される。   The dynamic damper in the third embodiment is different from the dynamic damper 1 in the first embodiment only in the shape of the inner peripheral surface 71 of the mass body 70 and the outer shape of the overhanging portion 74, and the other configurations are as follows. Are the same. Fig.3 (a) is a side view of the mass body 70 in 3rd Embodiment. In FIG. 3A, the outline of the overhang portion 74 is shown by a two-dot chain line.

図3(a)に示すように、第3実施形態におけるダイナミックダンパの質量体70の内周面71は、軸方向視において長方形状に形成されている。内周面71は、軸心C(筒部材10)を間に挟んで第1方向Aに互いに対向する一対の第1対向面72と、軸心Cを間に挟んで第2方向Bに互いに対向する一対の第2対向面73とを備える。第1対向面72及び第2対向面73は、それぞれ長方形の1辺である。   As shown in FIG. 3A, the inner peripheral surface 71 of the mass body 70 of the dynamic damper in the third embodiment is formed in a rectangular shape when viewed in the axial direction. The inner peripheral surface 71 has a pair of first opposing surfaces 72 facing each other in the first direction A with the axis C (tubular member 10) interposed therebetween, and a pair of first opposing surfaces 72 in the second direction B with the axis C interposed therebetween. A pair of opposing second opposing surfaces 73. The first facing surface 72 and the second facing surface 73 are each one side of a rectangle.

一対の第1対向面72の第1方向Aの間隔L5よりも、一対の第2対向面73の第2方向Bの間隔L6が大きい。間隔L5は、第2方向Bの全長に亘って一定である。間隔L6は、第1方向Aの全長に亘って一定である。   The distance L6 in the second direction B between the pair of second facing surfaces 73 is larger than the distance L5 in the first direction A between the pair of first facing surfaces 72. The interval L5 is constant over the entire length in the second direction B. The interval L6 is constant over the entire length in the first direction A.

張出部74は、軸方向視において正六角形状に形成されている。この張出部74の内接円の直径R2は、一対の第1対向面72の間隔L5よりも大きい。そのため、軸方向視において、筒部材10に関して質量体70を軸心Cまわりに相対回転させたいずれの位置においても一対の第1対向面72の軸直角方向の外側に張出部74の一部が位置する。   The overhanging portion 74 is formed in a regular hexagonal shape when viewed in the axial direction. The diameter R2 of the inscribed circle of the overhanging portion 74 is larger than the distance L5 between the pair of first opposing surfaces 72. Therefore, when viewed in the axial direction, a part of the overhanging portion 74 is formed outside the pair of first opposing surfaces 72 in the direction perpendicular to the axis at any position where the mass body 70 is relatively rotated around the axis C with respect to the cylindrical member 10. Is located.

これにより、第1実施形態と同様に、弾性連結部40の破断等によって筒部材10から質量体70が脱落することを防止できる。さらに、張出部73の大きさ(内接円の直径R2)や形状に応じて設定される一対の第1対向面72の間隔L5と無関係に、一対の第2対向面73の間隔L6を比較的自由に設定できるので、質量体70を有するダイナミックダンパの固有振動数の設定の自由度を向上できる。   Thereby, similarly to 1st Embodiment, it can prevent that the mass body 70 falls from the cylinder member 10 by the fracture | rupture etc. of the elastic connection part 40. FIG. Furthermore, regardless of the distance L5 between the pair of first opposing surfaces 72 set according to the size (diameter R2 of the inscribed circle) and the shape of the overhanging portion 73, the interval L6 between the pair of second opposing surfaces 73 is set. Since it can be set relatively freely, the degree of freedom in setting the natural frequency of the dynamic damper having the mass body 70 can be improved.

一対の第1対向面72の間隔L5が第2方向Bの全長に亘って一定である。また、一対の第2対向面73の間隔L6が第1方向Aの全長に亘って一定である。さらに、軸心Cを含むいずれの断面においても、軸方向の全長に亘って内周面71の外形線と軸心Cとが平行である。これらの場合、第1実施形態で説明したように、内周面71の一部に凹凸などが設けられる場合と比べて、質量体70を成形し易くできると共に、質量体70を有するダイナミックダンパの固有振動数を設定し易くできる。   The distance L5 between the pair of first opposing surfaces 72 is constant over the entire length in the second direction B. Further, the distance L6 between the pair of second facing surfaces 73 is constant over the entire length in the first direction A. Further, in any cross section including the axial center C, the outline of the inner peripheral surface 71 and the axial center C are parallel over the entire length in the axial direction. In these cases, as described in the first embodiment, the mass body 70 can be easily formed and the dynamic damper having the mass body 70 can be formed as compared with the case where unevenness is provided on a part of the inner peripheral surface 71. It is easy to set the natural frequency.

特に、間隔L5が第2方向Bの全長に亘って一定なので、筒部材10に対して質量体70が第2方向Bに振動するとき、一対の第1対向面72から弾性連結部40に第2方向Bの力を作用し難くできる。その結果、質量体70を有するダイナミックダンパの第2方向Bの固有振動数を設定し易くできる。同様に、間隔L6が第1方向Aの全長に亘って一定なので、質量体70を有するダイナミックダンパの第1方向Aの固有振動数を設定し易くできる。   In particular, since the distance L5 is constant over the entire length in the second direction B, when the mass body 70 vibrates in the second direction B with respect to the cylindrical member 10, the pair of first opposing surfaces 72 are connected to the elastic connecting portion 40. The force in the two directions B can be made difficult to act. As a result, the natural frequency in the second direction B of the dynamic damper having the mass body 70 can be easily set. Similarly, since the distance L6 is constant over the entire length in the first direction A, the natural frequency in the first direction A of the dynamic damper having the mass body 70 can be easily set.

さらに、一対の第1対向面72の間隔L5が第2方向Bの全長に亘って一定なので、一対の第1対向面72と筒部材10との軸直角寸法を設定し易くできる。これにより、弾性連結部40の第1方向Aのばね定数を設定し易くできるので、質量体70を有するダイナミックダンパの第1方向Aの固有振動数を設定し易くできる。同様に、一対の第2対向面73の間隔L6が第1方向Aの全長に亘って一定なので、質量体70を有するダイナミックダンパの第2方向Bの固有振動数を設定し易くできる。   Furthermore, since the distance L5 between the pair of first opposing surfaces 72 is constant over the entire length in the second direction B, it is possible to easily set the axis perpendicular dimension between the pair of first opposing surfaces 72 and the cylindrical member 10. Thereby, the spring constant in the first direction A of the elastic coupling portion 40 can be easily set, so that the natural frequency in the first direction A of the dynamic damper having the mass body 70 can be easily set. Similarly, since the distance L6 between the pair of second facing surfaces 73 is constant over the entire length in the first direction A, the natural frequency in the second direction B of the dynamic damper having the mass body 70 can be easily set.

次に図3(b)を参照して第4実施形態について説明する。第1実施形態では、軸方向視において質量体20の内周面21が楕円形状である場合について説明した。これに対し第4実施形態では、軸方向視において質量体80の内周面81が六角形状である場合について説明する。なお、第1実施形態と同一の部分については、同一の符号を付して以下の説明を省略する。   Next, a fourth embodiment will be described with reference to FIG. In the first embodiment, the case where the inner peripheral surface 21 of the mass body 20 is elliptical when viewed in the axial direction has been described. On the other hand, 4th Embodiment demonstrates the case where the internal peripheral surface 81 of the mass body 80 is hexagonal shape seeing to an axial direction. In addition, about the part same as 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted.

第4実施形態におけるダイナミックダンパは、第1実施形態におけるダイナミックダンパ1に対して、質量体80の内周面81の形状が異なるだけで、その他の構成は同一である。図3(b)は、第4実施形態における質量体80の側面図である。図3(b)には、張出部53の外形線が二点鎖線で図示される。   The dynamic damper in the fourth embodiment is the same as the dynamic damper 1 in the first embodiment except that the shape of the inner peripheral surface 81 of the mass body 80 is different. FIG. 3B is a side view of the mass body 80 in the fourth embodiment. In FIG. 3B, the outline of the overhang portion 53 is shown by a two-dot chain line.

図3(b)に示すように、第4実施形態におけるダイナミックダンパの質量体80の内周面81は、軸方向視において、第2方向Bに延びた六角形状に形成されている。内周面81は、軸心C(筒部材10)を間に挟んで第1方向Aに互いに対向する一対の第1対向面82と、軸心Cを間に挟んで第2方向Bに互いに対向する一対の第2対向面83とを備える。第1対向面82は、六角形の1辺である。第2対向面83は、六角形の隣り合う2辺である。   As shown in FIG. 3B, the inner peripheral surface 81 of the mass body 80 of the dynamic damper in the fourth embodiment is formed in a hexagonal shape extending in the second direction B when viewed in the axial direction. The inner peripheral surface 81 has a pair of first opposing surfaces 82 facing each other in the first direction A with the axis C (tubular member 10) interposed therebetween, and a pair of first opposing surfaces 82 in the second direction B with the axis C interposed therebetween. A pair of opposing second opposing surfaces 83 is provided. The first facing surface 82 is one side of a hexagon. The second facing surface 83 is two adjacent hexagonal sides.

一対の第1対向面82の第1方向Aの間隔L7よりも、一対の第2対向面63の第2方向Bの間隔L8が大きい。間隔L7は、第2方向Bの全長に亘って一定である。この間隔L7は、張出部53の外径R1よりも小さい。そのため、軸方向視において、筒部材10に関して質量体80を軸心Cまわりに相対回転させたいずれの位置においても一対の第1対向面82の軸直角方向の外側に張出部53の一部が位置する。   The distance L8 in the second direction B between the pair of second facing surfaces 63 is larger than the distance L7 in the first direction A between the pair of first facing surfaces 82. The interval L7 is constant over the entire length in the second direction B. The interval L7 is smaller than the outer diameter R1 of the overhang portion 53. Therefore, when viewed in the axial direction, a part of the protruding portion 53 is formed outside the pair of first opposing surfaces 82 in the direction perpendicular to the axis at any position where the mass body 80 is relatively rotated around the axis C with respect to the cylindrical member 10. Is located.

これにより、第1実施形態と同様に、弾性連結部40の破断等によって筒部材10から質量体80が脱落することを防止できる。さらに、張出部53の大きさや形状に応じて設定される一対の第1対向面82の間隔L7と無関係に、一対の第2対向面83の間隔L8を比較的自由に設定できるので、質量体80を有するダイナミックダンパの固有振動数の設定の自由度を向上できる。   Thereby, similarly to 1st Embodiment, it can prevent that the mass body 80 falls from the cylinder member 10 by the fracture | rupture of the elastic connection part 40, etc. FIG. Furthermore, since the distance L8 between the pair of second facing surfaces 83 can be set relatively freely regardless of the distance L7 between the pair of first facing surfaces 82 set according to the size and shape of the overhang portion 53, the mass The degree of freedom in setting the natural frequency of the dynamic damper having the body 80 can be improved.

内周面81の第1方向Aの間隔は、軸方向視において第1対向面82(間隔L7の位置)から第2方向Bに離れるにつれて次第に小さくなる。また、一対の第1対向面82の間隔L7が第2方向Bの全長に亘って一定である。さらに、軸心Cを含むいずれの断面においても、軸方向の全長に亘って内周面81の外形線と軸心Cとが平行である。これらの場合、第1実施形態で説明したように、内周面81の一部に凹凸などが設けられる場合と比べて、質量体80を成形し易くできると共に、質量体80を有するダイナミックダンパの固有振動数を設定し易くできる。   The interval in the first direction A of the inner peripheral surface 81 gradually decreases as the distance from the first facing surface 82 (position of the interval L7) in the second direction B increases when viewed in the axial direction. Further, the distance L7 between the pair of first opposing surfaces 82 is constant over the entire length in the second direction B. Further, in any cross section including the axial center C, the outline of the inner peripheral surface 81 and the axial center C are parallel over the entire length in the axial direction. In these cases, as described in the first embodiment, the mass body 80 can be easily formed and the dynamic damper having the mass body 80 can be formed as compared with the case where unevenness is provided on a part of the inner peripheral surface 81. It is easy to set the natural frequency.

以上、実施形態に基づき説明したが、本発明は上記実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、筒部材10や弾性連結部40、締結部材50等の形状は一例であり、種々の形状を採用することは当然である。筒部材10の外周面13と質量体20,60,70,80の内周面21,61,71,81との間の弾性連結部40に、軸方向端面から軸方向に凹ませたすぐりを設けても良い。   Although the present invention has been described above based on the embodiments, the present invention is not limited to the above-described embodiments, and various improvements and modifications can be easily made without departing from the spirit of the present invention. It is. For example, the shapes of the cylindrical member 10, the elastic coupling portion 40, the fastening member 50, and the like are examples, and it is natural to adopt various shapes. A tick that is dented in the axial direction from the axial end surface to the elastic connecting portion 40 between the outer peripheral surface 13 of the cylindrical member 10 and the inner peripheral surfaces 21, 61, 71, 81 of the mass bodies 20, 60, 70, 80. It may be provided.

また、軸方向視において、筒部材10に関して質量体を軸心Cまわりに相対回転させたいずれの位置においても、質量体の内周面のうち第1方向Aに対向する一対の第1対向面の軸直角方向の外側に張出部の一部が位置すれば、質量体の内周面や張出部の外形形状を適宜変更しても良い。なお、上記のように一対の第1対向面と張出部との関係を満たしつつ、軸心C(筒部材10)を間に挟んで第1方向Aに第1対向面が対向し、第2方向Bに第2対向面が対向していれば、第1対向面と第2対向面との境界を適宜設定しても良い。また、第1対向面と第2対向面とが周方向に連続してなくても良い。   In addition, when viewed from the axial direction, the pair of first facing surfaces facing the first direction A among the inner circumferential surfaces of the mass body at any position where the mass body is relatively rotated around the axis C with respect to the cylindrical member 10. As long as a part of the overhanging part is located outside the direction perpendicular to the axis, the outer peripheral shape of the mass body and the overhanging part may be appropriately changed. In addition, while satisfying the relationship between the pair of first opposed surfaces and the overhanging portion as described above, the first opposed surface is opposed to the first direction A across the axis C (tubular member 10), and the first If the second facing surface faces the two directions B, the boundary between the first facing surface and the second facing surface may be set as appropriate. Further, the first facing surface and the second facing surface may not be continuous in the circumferential direction.

上記第1実施形態では、フランジボルト51のフランジが張出部53である場合について説明したが、必ずしもこれに限られるものではない。例えば、筒部材の第1端部11にフランジを設け、その筒部材の一部であるフランジを張出部としても良い。また、筒部材10の第1端部11に接触するボルト(締結部材50の一部)の頭部を張出部としたり、そのボルトと第1端部11との間に設けたワッシャを張出部としたりしても良い。   In the first embodiment, the case where the flange of the flange bolt 51 is the overhang portion 53 has been described, but the present invention is not necessarily limited thereto. For example, a flange may be provided at the first end portion 11 of the cylindrical member, and a flange that is a part of the cylindrical member may be used as the overhang portion. Further, the head of a bolt (a part of the fastening member 50) that contacts the first end portion 11 of the tubular member 10 is used as an overhang portion, or a washer provided between the bolt and the first end portion 11 is stretched. It may be used as an exit.

上記各実施形態では、軸心Cを含むいずれの断面においても、軸方向の全長に亘って質量体20,60,70,80の内周面21,61,71,81の外形線と軸心Cとが平行である場合について説明したが、必ずしもこれに限られるものではない。軸心Cを含む断面において、軸心Cに対して質量体の内周面の外形線を傾けたり、その外形線に凹凸を設けたりしても良い。   In each of the above-described embodiments, in any cross section including the axis C, the outline and the axis of the inner peripheral surfaces 21, 61, 71, 81 of the mass bodies 20, 60, 70, 80 extend over the entire length in the axial direction. Although the case where C is parallel is described, the present invention is not necessarily limited thereto. In the cross section including the axis C, the outline of the inner peripheral surface of the mass body may be inclined with respect to the axis C, or the outline may be provided with irregularities.

1 ダイナミックダンパ
2 相手側部材
10 筒部材
11 第1端部
12 第2端部
13 外周面
20,60,70,80 質量体
21,61,71,81 内周面
22,62,72,82 第1対向面
23,63,73,83 第2対向面
40 弾性連結部
50 締結部材
53,74 張出部
A 第1方向
B 第2方向
C 軸心
DESCRIPTION OF SYMBOLS 1 Dynamic damper 2 Opposite member 10 Cylinder member 11 1st end part 12 2nd end part 13 Outer peripheral surface 20, 60, 70, 80 Mass body 21, 61, 71, 81 Inner peripheral surface 22, 62, 72, 82 1st 1 opposing surface 23,63,73,83 2nd opposing surface 40 elastic connection part 50 fastening member 53,74 overhang | projection part A 1st direction B 2nd direction C axial center

Claims (4)

軸方向の第1端部および第2端部を有する筒部材と、
前記第1端部において前記筒部材の軸直角方向外側へ張り出す張出部と、
内周面が前記筒部材の外周面と所定間隔をあけて配置されると共に前記張出部の前記第2端部側に配置される筒状の質量体と、
前記質量体の内周面と前記筒部材の外周面とを連結するゴム状弾性体から構成される弾性連結部と、
前記筒部材に挿入されて前記筒部材の前記第2端部を相手側部材に締結する締結部材と、を備え、
前記質量体の内周面は、前記筒部材の軸心を間に挟んで第1方向に互いに対向する一対の第1対向面と、
前記軸心を間に挟み、前記第1方向と直交する第2方向に互いに対向する一対の第2対向面と、を備え、
前記一対の第2対向面の前記第2方向の間隔は、前記一対の第1対向面の前記第1方向の間隔よりも大きく、
前記筒部材の軸方向視において、前記筒部材に対して前記質量体を前記軸心まわりに相対回転させたいずれの位置においても前記一対の第1対向面の軸直角方向の外側に前記張出部の一部が位置することを特徴とするダイナミックダンパ。
A cylindrical member having a first end and a second end in the axial direction;
A projecting portion projecting outward in the direction perpendicular to the axis of the cylindrical member at the first end;
A cylindrical mass disposed on the second end side of the projecting portion, with an inner circumferential surface disposed at a predetermined interval from the outer circumferential surface of the tubular member;
An elastic connecting portion composed of a rubber-like elastic body connecting the inner peripheral surface of the mass body and the outer peripheral surface of the cylindrical member;
A fastening member that is inserted into the tubular member and fastens the second end of the tubular member to the counterpart member;
The inner peripheral surface of the mass body includes a pair of first opposing surfaces that face each other in the first direction with the axis of the cylindrical member interposed therebetween,
A pair of second opposing surfaces sandwiching the axis therebetween and opposing each other in a second direction orthogonal to the first direction,
The distance between the pair of second facing surfaces in the second direction is larger than the distance between the pair of first facing surfaces in the first direction,
As seen in the axial direction of the cylindrical member, the protrusion extends outwardly in the direction perpendicular to the axis of the pair of first opposing surfaces at any position where the mass body is rotated relative to the cylindrical member around the axial center. Dynamic damper characterized in that a part of the part is located.
前記軸心を含むいずれの断面においても、軸方向の全長に亘って前記質量体の内周面の外形線と前記軸心とが平行であることを特徴とする請求項1記載のダイナミックダンパ。   2. The dynamic damper according to claim 1, wherein, in any cross section including the axis, the outline of the inner peripheral surface of the mass body and the axis are parallel over the entire length in the axial direction. 前記質量体の内周面の前記第1方向の間隔は、軸方向視において、前記一対の第1対向面の前記第1方向の最大間隔の位置から前記第2方向へ離れるにつれて次第に小さくなることを特徴とする請求項1又は2に記載のダイナミックダンパ。   The interval in the first direction of the inner peripheral surface of the mass body gradually decreases as it moves away from the position of the maximum interval in the first direction of the pair of first opposing surfaces in the second direction when viewed in the axial direction. The dynamic damper according to claim 1, wherein: 前記一対の第1対向面の前記第1方向の間隔が前記第2方向の全長に亘って一定であることを特徴とする請求項1から3のいずれかに記載のダイナミックダンパ。
4. The dynamic damper according to claim 1, wherein a distance between the pair of first opposing surfaces in the first direction is constant over an entire length in the second direction. 5.
JP2018107793A 2018-06-05 2018-06-05 Dynamic damper Pending JP2019211009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018107793A JP2019211009A (en) 2018-06-05 2018-06-05 Dynamic damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018107793A JP2019211009A (en) 2018-06-05 2018-06-05 Dynamic damper

Publications (1)

Publication Number Publication Date
JP2019211009A true JP2019211009A (en) 2019-12-12

Family

ID=68846639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018107793A Pending JP2019211009A (en) 2018-06-05 2018-06-05 Dynamic damper

Country Status (1)

Country Link
JP (1) JP2019211009A (en)

Similar Documents

Publication Publication Date Title
JP5225603B2 (en) Vibration isolator
US20120298832A1 (en) Vibration-damping device
JP2005180574A (en) Dynamic damper
CN110541909A (en) Dynamic damper for vehicle
JP3858908B2 (en) Engine mount
JPH06272727A (en) Vibration proofing pad
JP6783135B2 (en) Cylindrical anti-vibration device
WO2015166923A1 (en) Vibration-damping device
JP2019211009A (en) Dynamic damper
JP7094199B2 (en) Anti-vibration bush
US10508706B2 (en) Stopper and antivibration unit
CN108167376B (en) Dynamic vibration absorber
WO2019131512A1 (en) Arrangement structure for vibration damping devices for electric automobiles
JP4885770B2 (en) Vibration isolator
WO2022202187A1 (en) Anti-vibration device
JP2008267535A (en) Vibration absorbing bush
JPH07167259A (en) Damper pulley
JP3552770B2 (en) Torsion damper
JP2023135328A (en) Cylindrical anti-vibration device
JP2004225757A (en) Rubber bushing
JP4432710B2 (en) Vibration isolator
JP2001248688A (en) Dynamic damper
JP4426601B2 (en) Vibration isolator
JP6297387B2 (en) Vibration isolator
JP2005220956A (en) Vibration isolator