JP2019210587A - Sizing agent-coated carbon fiber bundle and manufacturing method therefor - Google Patents

Sizing agent-coated carbon fiber bundle and manufacturing method therefor Download PDF

Info

Publication number
JP2019210587A
JP2019210587A JP2019097040A JP2019097040A JP2019210587A JP 2019210587 A JP2019210587 A JP 2019210587A JP 2019097040 A JP2019097040 A JP 2019097040A JP 2019097040 A JP2019097040 A JP 2019097040A JP 2019210587 A JP2019210587 A JP 2019210587A
Authority
JP
Japan
Prior art keywords
carbon fiber
sizing agent
fiber bundle
coated
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019097040A
Other languages
Japanese (ja)
Inventor
規真 鈴木
Norimasa Suzuki
規真 鈴木
知久 野口
Tomohisa Noguchi
知久 野口
久文 水田
Hisafumi Mizuta
久文 水田
祐貴 佐道
Yuki Sado
祐貴 佐道
末岡 雅則
Masanori Sueoka
雅則 末岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2019210587A publication Critical patent/JP2019210587A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

To provide a sizing agent-coated carbon fiber bundle exhibiting high adhesiveness to a thermoplastic resin and exhibiting good openability in an opening process during process to a composite material.SOLUTION: There is provided a sizing agent-coated carbon fiber bundle in which a sizing agent containing a water soluble compound (A) having an amino group or an amide group, and a non-ionic smoothing agent (B) is applied to a carbon fiber bundle, satisfying all of following (i) to (iv). (i) total amount of the water soluble compound (A) and the non-ionic smoothing agent (B) is 50 pts.mass or more based on 100 pts.mass of total amount of the sizing agent. (ii) drape value at 25°C is 4 to 8 cm. (iii) friction coefficient between fiber-fiber is 0.30 or less. (iv) friction coefficient between fiber-metal is 0.35 or less.SELECTED DRAWING: None

Description

本発明は、熱可塑性樹脂に対し高接着性を示し、サイジング剤塗布炭素繊維束の開繊工程において良好な開繊性を示すサイジング剤を塗布したサイジング剤塗布炭素繊維束、およびサイジング剤塗布炭素繊維束の製造方法に関するものである。   The present invention relates to a sizing agent-coated carbon fiber bundle coated with a sizing agent and a sizing agent-coated carbon, which has a high adhesiveness to a thermoplastic resin and is coated with a sizing agent that exhibits good opening properties in the opening process of the sizing agent-coated carbon fiber bundle. The present invention relates to a method for manufacturing a fiber bundle.

炭素繊維は、軽量でありながら、強度および弾性率に優れるため、種々のマトリックス樹脂と組み合わせた複合材料として、航空機部材、宇宙機部材、自動車部材、船舶部材、土木建築材およびスポーツ用品等の多くの分野に用いられている。炭素繊維を用いた複合材料の代表的な形態として、プリプレグを積層して得られるプリフォームをプレス成形(加圧力の下で脱泡し、賦形する成形方法)した成形品が挙げられる。このプリプレグは、連続した炭素繊維束を一方向に配列させた炭素繊維基材に樹脂を含浸して製造する方法が一般的である。複雑な形状への形状追従性に優れ、短時間成形可能な不連続な炭素繊維(チョップド、ウェブ等)を用いた複合材料も提案されているが、比強度、比剛性などの力学特性や特性の安定性において、構造材としての実用性能はプリプレグが優れている。   Carbon fiber is lightweight and excellent in strength and elastic modulus, so as a composite material combined with various matrix resins, many of aircraft members, spacecraft members, automobile members, ship members, civil engineering building materials, sports equipment, etc. Used in the field. As a typical form of the composite material using carbon fiber, a molded product obtained by press-molding a preform obtained by laminating prepregs (a molding method in which defoaming and shaping are performed under pressure) can be given. The prepreg is generally manufactured by impregnating a carbon fiber base material in which continuous carbon fiber bundles are arranged in one direction with a resin. Composite materials using discontinuous carbon fibers (chopped, web, etc.) that have excellent shape following capability to complex shapes and can be molded in a short time have been proposed, but mechanical properties and characteristics such as specific strength and specific rigidity are also proposed. In terms of stability, prepreg is superior in practical performance as a structural material.

近年、炭素繊維複合材料では、成形性、取扱い性、得られる成形品の力学特性に優れた成形材料が要求されるようになり、工業的にもより高い経済性、生産性が必要になってきている。その要求に対する答えの一つとして、マトリックス樹脂に熱可塑性樹脂を用いたプリプレグの開発が進められている。   In recent years, carbon fiber composite materials have demanded molding materials that are excellent in moldability, handleability, and mechanical properties of the resulting molded products, and industrially higher economic efficiency and productivity have become necessary. ing. As one of the answers to this requirement, development of a prepreg using a thermoplastic resin as a matrix resin is being promoted.

炭素繊維の優れた特性を活かすには、炭素繊維とマトリックス樹脂との接着性を高めることが重要である。炭素繊維束とマトリックス樹脂との界面接着性を向上させるため、通常、炭素繊維束に気相酸化や液相酸化等の酸化処理を施し、炭素繊維表面に酸素含有官能基を導入する方法が行われている。例えば、特許文献1では炭素繊維束に電解処理を施すことにより、界面接着性の指標である層間せん断強度を向上させる方法が提案されている。   In order to make use of the excellent properties of carbon fibers, it is important to improve the adhesion between the carbon fibers and the matrix resin. In order to improve the interfacial adhesion between the carbon fiber bundle and the matrix resin, there is usually a method in which the carbon fiber bundle is subjected to oxidation treatment such as gas phase oxidation or liquid phase oxidation, and oxygen-containing functional groups are introduced to the carbon fiber surface. It has been broken. For example, Patent Document 1 proposes a method for improving the interlaminar shear strength, which is an index of interfacial adhesion, by subjecting a carbon fiber bundle to electrolytic treatment.

炭素繊維の表面改質のみでは十分な界面接着性が得られない場合、サイジング処理を追加する試みがなされる。例えば、特許文献2〜4には、エポキシ基を有する化合物をサイジング剤として用いることで界面接着性を向上させる手法が提案されている。また、特許文献5、6では、アミノ基、アミド基を有するサイジング剤を用いることでサイジング剤を塗布した炭素繊維束とマトリックス樹脂である熱可塑性樹脂との相溶性を向上させる手法が提案されている。   If sufficient interfacial adhesion cannot be obtained by surface modification of the carbon fiber alone, an attempt is made to add a sizing treatment. For example, Patent Documents 2 to 4 propose a technique for improving the interfacial adhesion by using a compound having an epoxy group as a sizing agent. Patent Documents 5 and 6 propose a technique for improving the compatibility between a carbon fiber bundle coated with a sizing agent and a thermoplastic resin as a matrix resin by using a sizing agent having an amino group or an amide group. Yes.

また、炭素繊維束は、耐炎化処理や炭化処理を効率よく行ってコストを下げるために、単繊維数が5000〜50000本といった太い繊維束として製造される傾向にある。一方、プリプレグに加工するときには、そのような太い繊維束を薄く拡げ、単繊維間に樹脂が均一に含浸されるようにする必要がある。繊維束を拡げる方法としては、空気中や水中においてガイドや金属バーに擦過させて拡げる方法(以下、空気中で拡げる方法を乾式機械開繊方式、水中で拡げる方法を湿式機械開繊方式と記す)に加え、加熱によって繊維束を軟化させる方法、加振によって繊維束を拡げる方法、気体を吹き付けて繊維束を拡げる方法などがあるが、装置の単純さから乾式機械開繊方式や乾式機械開繊方式と湿式機械開繊方式を組み合わせた方法が採用されることが多い。また、開繊された炭素繊維束に樹脂を含浸させる方法としては、樹脂フィルムで挟み込む方法、溶融した樹脂中に繊維束を通過させる方法、樹脂粉末を懸濁させた液体に繊維束を通過させる方法(以下、スラリー含浸方式と記す)などがあるが、繊維束に熱可塑性樹脂を均一に含浸させることができる点から、スラリー含浸方式が好ましく用いられる。   Carbon fiber bundles tend to be manufactured as thick fiber bundles having a single fiber count of 5000 to 50000 in order to efficiently perform flameproofing treatment and carbonization treatment to reduce costs. On the other hand, when processing into a prepreg, it is necessary to spread such a thick fiber bundle thinly so that the resin is uniformly impregnated between single fibers. As a method of expanding the fiber bundle, a method of expanding by rubbing on a guide or a metal bar in the air or underwater (hereinafter, a method of expanding in the air is referred to as a dry mechanical opening method, and a method of expanding in the water is referred to as a wet mechanical opening method). In addition to the method of softening the fiber bundle by heating, the method of expanding the fiber bundle by vibration, the method of expanding the fiber bundle by blowing gas, etc., the dry machine opening method and the dry machine opening method are possible because of the simplicity of the device. In many cases, a combination of a fiber method and a wet mechanical opening method is employed. In addition, as a method of impregnating the opened carbon fiber bundle with resin, there are a method of sandwiching with a resin film, a method of passing the fiber bundle in the molten resin, and passing the fiber bundle through a liquid in which resin powder is suspended. Although there is a method (hereinafter referred to as a slurry impregnation method), the slurry impregnation method is preferably used because the fiber bundle can be uniformly impregnated with the thermoplastic resin.

乾式機械開繊方式および湿式機械開繊方式においては炭素繊維束の単繊維切れが起こり易く、毛羽が発生することが課題となる。そのため、サイジング剤を付与して耐擦過性を向上させることが重要となるが、サイジング剤を付与すると開繊性が低下しやすい傾向があり、耐擦過性と開繊性の両立は難しい。特に、接着性の高いサイジング剤を塗布した炭素繊維束は、機械開繊方式での耐擦過性または開繊性が低下しやすい傾向があり、接着性と開繊性の両立は非常に難易度が高い。   In the dry mechanical opening method and the wet mechanical opening method, the single fiber breakage of the carbon fiber bundle is likely to occur, and generation of fluff becomes a problem. For this reason, it is important to improve the scratch resistance by applying a sizing agent. However, if the sizing agent is applied, the opening property tends to decrease, and it is difficult to achieve both the scratch resistance and the opening property. In particular, carbon fiber bundles coated with a sizing agent with high adhesiveness tend to decrease the scratch resistance or opening property in the mechanical opening method, and it is very difficult to achieve both adhesiveness and opening property. Is expensive.

特開平4−361619号公報JP-A-4-361619 特開昭63−14114号公報JP-A-63-14114 特開平7−279040号公報JP-A-7-279040 特開平8−113876号公報JP-A-8-113876 特開2013−166922号公報JP2013-166922A 特開2006−89734号公報JP 2006-89734 A

以上のように、熱可塑性樹脂を用いたプリプレグの分野においては、接着性および開繊性の向上が重要となるが、それらを両立する炭素繊維束の実現は困難であった。   As described above, in the field of prepreg using a thermoplastic resin, it is important to improve adhesiveness and spreadability, but it has been difficult to realize a carbon fiber bundle that achieves both.

本発明は、熱可塑性樹脂に対し高いレベルでの接着性を示し、かつ乾式機械開繊方式および湿式機械開繊方式での開繊工程において良好な開繊性を示すサイジング剤塗布炭素繊維束を提供することを目的とする。   The present invention provides a sizing agent-coated carbon fiber bundle that exhibits a high level of adhesion to a thermoplastic resin and that exhibits good openability in the opening process in the dry mechanical opening method and the wet mechanical opening method. The purpose is to provide.

上述した課題を解決するための本発明は、アミノ基またはアミド基を有する水溶性化合物(A)および非イオン性平滑剤(B)を含むサイジング剤が炭素繊維束に塗布されてなるサイジング剤塗布炭素繊維束であって、下記(i)〜(iv)の全てを満たすサイジング剤塗布炭素繊維束である。
(i)サイジング剤全量100質量部に対する水溶性化合物(A)および非イオン性平滑剤(B)の総量が50質量部以上である。
(ii)25℃におけるドレープ値が4〜8cmである。
(iii)繊維−繊維間摩擦係数が0.30以下である。
(iv)繊維−金属間摩擦係数が0.35以下である。
The present invention for solving the above-described problems is a sizing agent coating in which a sizing agent containing a water-soluble compound (A) having an amino group or an amide group and a nonionic smoothing agent (B) is applied to a carbon fiber bundle. A carbon fiber bundle that is a sizing agent-coated carbon fiber bundle that satisfies all of the following (i) to (iv).
(I) The total amount of the water-soluble compound (A) and the nonionic smoothing agent (B) with respect to 100 parts by mass of the sizing agent is 50 parts by mass or more.
(Ii) The drape value at 25 ° C. is 4 to 8 cm.
(Iii) The fiber-fiber friction coefficient is 0.30 or less.
(Iv) The fiber-metal friction coefficient is 0.35 or less.

また、本発明のサイジング剤塗布炭素繊維束の製造方法は、サイジング剤を炭素繊維束に塗布する工程を経た後に、接触式乾燥手段によってサイジング剤を塗布した炭素繊維束を乾燥させる予備乾燥工程、および、非接触式乾燥手段によってサイジング剤を塗布した炭素繊維束を乾燥させる第2乾燥工程を有し、第2乾燥工程での乾燥温度が100℃以上180℃以下、または180℃より大きく240℃以下、乾燥時間が60秒以上であることを特徴とする。   In addition, the method for producing a sizing agent-coated carbon fiber bundle of the present invention includes a step of applying a sizing agent to the carbon fiber bundle, and then drying the carbon fiber bundle coated with the sizing agent by contact-type drying means. And a second drying step of drying the carbon fiber bundle coated with the sizing agent by a non-contact type drying means, and the drying temperature in the second drying step is 100 ° C. or higher and 180 ° C. or lower, or greater than 180 ° C. and 240 ° C. Hereinafter, the drying time is 60 seconds or more.

本発明によれば、熱可塑性樹脂に対し高い接着性を示し、かつ複合材料への加工時の開繊工程において良好な開繊性を示すサイジング剤塗布炭素繊維束を得ることができる。その結果、熱可塑性樹脂成形体中に繊維を均一に配置することが可能となり、成形体の力学特性が向上する。   ADVANTAGE OF THE INVENTION According to this invention, the sizing agent application | coating carbon fiber bundle which shows high adhesiveness with respect to a thermoplastic resin, and shows the favorable opening property in the opening process at the time of the process to a composite material can be obtained. As a result, it becomes possible to arrange | position a fiber uniformly in a thermoplastic resin molded object, and the mechanical characteristic of a molded object improves.

図1は、ドレープ値測定に使用するサンプルの準備方法を示す図である。FIG. 1 is a diagram illustrating a method for preparing a sample used for drape value measurement. 図2は、ドレープ値の測定方法を示す図である。FIG. 2 is a diagram illustrating a drape value measurement method.

以下において、本発明を実施するための形態について説明する。   Hereinafter, modes for carrying out the present invention will be described.

本発明のサイジング剤塗布炭素繊維束は、アミノ基またはアミド基を有する水溶性化合物(A)および非イオン性平滑剤(B)を含むサイジング剤が炭素繊維束に塗布されてなるサイジング剤塗布炭素繊維束であって、下記(i)〜(iv)の全てを満たすサイジング剤塗布炭素繊維束である。
(i)サイジング剤全量100質量部に対する水溶性化合物(A)および非イオン性平滑剤(B)の総量が50質量部以上である。
(ii)25℃におけるドレープ値が4〜8cmである。
(iii)繊維−繊維間摩擦係数が0.30以下である。
(iv)繊維−金属間摩擦係数が0.35以下である。
The sizing agent-coated carbon fiber bundle of the present invention is a sizing agent-coated carbon obtained by applying a sizing agent containing a water-soluble compound (A) having an amino group or an amide group and a nonionic smoothing agent (B) to the carbon fiber bundle. A sizing agent-coated carbon fiber bundle satisfying all of the following (i) to (iv).
(I) The total amount of the water-soluble compound (A) and the nonionic smoothing agent (B) with respect to 100 parts by mass of the sizing agent is 50 parts by mass or more.
(Ii) The drape value at 25 ° C. is 4 to 8 cm.
(Iii) The fiber-fiber friction coefficient is 0.30 or less.
(Iv) The fiber-metal friction coefficient is 0.35 or less.

本発明者らの検討により、マトリックス樹脂との相互作用が強く、接着性が高い化合物をサイジング剤に用いた場合、サイジング剤塗布炭素繊維束の開繊性が低下しやすく、プリプレグ作製時の含浸ムラやボイド発生が起こることで成形体の力学特性が低下しやすいという課題があることが分かった。本課題に対して、マトリックス樹脂との接着性が高い化合物をサイジング剤に用いた場合であっても、サイジング剤塗布炭素繊維束のドレープ値と摩擦係数を制御することで、高い接着性と高い開繊性を両立可能であることを見いだした。   According to the study by the present inventors, when a compound having a strong interaction with the matrix resin and a high adhesive property is used for the sizing agent, the opening property of the sizing agent-coated carbon fiber bundle is likely to be lowered, and impregnation at the time of prepreg preparation It has been found that there is a problem that the mechanical properties of the molded body are likely to deteriorate due to the occurrence of unevenness and voids. For this problem, even when a compound with high adhesion to the matrix resin is used for the sizing agent, by controlling the drape value and coefficient of friction of the sizing agent-coated carbon fiber bundle, high adhesion and high I found that it was possible to achieve both spreadability.

本発明を構成するサイジング剤は、アミノ基またはアミド基を有する水溶性化合物(A)を含むことが必要である。本発明における水溶性化合物とは、化合物10gを水100gと混合し、80℃で3時間加熱攪拌したのち、25℃に冷却して観察した際に、目視で完全に溶解したことが確認できる化合物である。   The sizing agent constituting the present invention needs to contain a water-soluble compound (A) having an amino group or an amide group. The water-soluble compound in the present invention is a compound in which 10 g of a compound is mixed with 100 g of water, heated and stirred at 80 ° C. for 3 hours, then cooled to 25 ° C. and observed to be completely dissolved visually. It is.

アミノ基またはアミド基を有する水溶性化合物(A)を含むサイジング剤を塗布した炭素繊維束は熱可塑性樹脂との優れた接着性を発現する。その結果、そのサイジング剤が塗布された炭素繊維束を用いた熱可塑性樹脂成形体の力学特性が向上する。そのメカニズムは明確ではないが、アミノ基やアミド基は極性が高く、炭素繊維束表面や樹脂中のカルボキシル基、水酸基等の極性の高い酸素含有構造と水素結合等の強い相互作用をすることで、優れた接着性を発現すると考えられる。また、水溶性を有することにより、サイジング剤の付着量が少ない場合においても、炭素繊維束表面に均一に塗布することが出来るため、その性能を発揮しやすいと考えられる。   A carbon fiber bundle coated with a sizing agent containing a water-soluble compound (A) having an amino group or an amide group exhibits excellent adhesiveness with a thermoplastic resin. As a result, the mechanical properties of the thermoplastic resin molded article using the carbon fiber bundle coated with the sizing agent are improved. The mechanism is not clear, but amino groups and amide groups are highly polar, and have strong interactions such as hydrogen bonds with highly polar oxygen-containing structures such as the carbon fiber bundle surface and carboxyl groups and hydroxyl groups in the resin. It is thought that excellent adhesiveness is expressed. Moreover, since it has water solubility, even when there is little adhesion amount of a sizing agent, since it can apply | coat to the carbon fiber bundle surface uniformly, it is thought that the performance is easy to be exhibited.

水溶性化合物(A)としては、脂肪族アミン化合物、芳香族アミン化合物、脂肪族アミド化合物、芳香族アミド系化合物が挙げられる。中でも、高接着性を示す観点から脂肪族アミン化合物が好ましい。脂肪族アミン化合物の接着性が高い理由として、他のアミノ基およびアミド基を有する化合物と比較して極性や水溶性が非常に高いことが考えられる。   Examples of the water-soluble compound (A) include aliphatic amine compounds, aromatic amine compounds, aliphatic amide compounds, and aromatic amide compounds. Among these, an aliphatic amine compound is preferable from the viewpoint of exhibiting high adhesiveness. The reason why the adhesiveness of the aliphatic amine compound is high may be that the polarity and water solubility are very high as compared with other compounds having an amino group and an amide group.

本発明を構成するサイジング剤は、水溶性化合物(A)に加え、非イオン性平滑剤(B)を含むことが必要である。非イオン性平滑剤(B)を含むサイジング剤を塗布した炭素繊維束は水溶性化合物(A)と傾斜構造をつくることで接着性を保ちながら、繊維−繊維間および繊維−金属間の摩擦を低減することで開繊性を向上させることができる。   The sizing agent constituting the present invention needs to contain a nonionic smoothing agent (B) in addition to the water-soluble compound (A). A carbon fiber bundle coated with a sizing agent containing a nonionic smoothing agent (B) has a slanted structure with the water-soluble compound (A), while maintaining adhesion, while maintaining friction between fibers and fibers and between fibers and metals. By reducing it, the spreadability can be improved.

非イオン性平滑剤(B)とは、水に溶解後もイオン性を示さない平滑剤のことである。非イオン性平滑剤(B)としては、ポリオキシエチレン基や水酸基を有する平滑剤が挙げられ、スルホン酸塩、カルボン酸塩などアニオン性を示す官能基や、第4級アンモニウム塩等のカチオン性を示す官能基を持たないことを特徴とする。非イオン性平滑剤(B)は水溶性化合物(A)との静電相互作用が非常に低いため、アニオン系平滑剤やカチオン性平滑剤と比較して均一な傾斜構造を形成することができる。   A nonionic smoothing agent (B) is a smoothing agent which does not show ionicity after melt | dissolving in water. Examples of the nonionic smoothing agent (B) include a smoothing agent having a polyoxyethylene group or a hydroxyl group, an anionic functional group such as a sulfonate or carboxylate, or a cationic property such as a quaternary ammonium salt. It does not have the functional group which shows. Since the nonionic smoothing agent (B) has a very low electrostatic interaction with the water-soluble compound (A), a uniform gradient structure can be formed as compared with an anionic smoothing agent and a cationic smoothing agent. .

本発明を構成するサイジング剤においては、溶媒を除いたサイジング剤全量100質量部に対して、水溶性化合物(A)および非イオン性平滑剤(B)の総量を50質量部以上含むことが必要である。50質量部以上含むことで水溶性化合物(A)による接着性の向上の効果と非イオン性平滑剤(B)による開繊性の向上の効果が発現する。それを用いた熱可塑性樹脂組成物の物性も向上する。水溶性化合物(A)および非イオン性平滑剤(B)の総量を60質量部以上含むことが好ましく、80質量部以上含むことがさらに好ましい。   In the sizing agent constituting the present invention, the total amount of the water-soluble compound (A) and the nonionic smoothing agent (B) needs to be 50 parts by mass or more with respect to 100 parts by mass of the sizing agent excluding the solvent. It is. By including 50 parts by mass or more, the effect of improving the adhesiveness by the water-soluble compound (A) and the effect of improving the spreadability by the nonionic smoothing agent (B) are exhibited. The physical properties of the thermoplastic resin composition using the same are also improved. The total amount of the water-soluble compound (A) and the nonionic smoothing agent (B) is preferably 60 parts by mass or more, and more preferably 80 parts by mass or more.

本発明のサイジング剤塗布炭素繊維束は、25℃におけるドレープ値が4cm以上8cm以下であることが必要である。ドレープ値とは炭素繊維束の硬さを表す値であり、次の方法で測定する。具体的には、図1に示すように、50cmにカットされた炭素繊維束2に対し、温度25℃の雰囲気下で重り3を0.0375[g/tex]の比率でぶら下げ、30分以上放置して撚り癖をとく。それを30cmの長さに切断し、図2に示すように、角が90°の長方形の水平台4から炭素繊維束が25cmはみ出るように、炭素繊維束2が折れないように支えながら置き、水平台4上の炭素繊維束2をテープで固定する。その後、水平台4からはみ出た炭素繊維束2の支えを取り除いて垂れ下がらせ、1秒後に支点からの水平距離Lの長さを測定し、n数5回の平均値をドレープ値とする。ドレープ値が大きいほど炭素繊維束が硬い特性を示す。   The sizing agent-coated carbon fiber bundle of the present invention needs to have a drape value at 25 ° C. of 4 cm or more and 8 cm or less. The drape value is a value representing the hardness of the carbon fiber bundle, and is measured by the following method. Specifically, as shown in FIG. 1, a weight 3 is hung at a rate of 0.0375 [g / tex] in an atmosphere at a temperature of 25 ° C. with respect to a carbon fiber bundle 2 cut to 50 cm, for 30 minutes or more. Leave it to break the twist. Cut it into a length of 30 cm, and place it while supporting the carbon fiber bundle 2 so that it does not break so that the carbon fiber bundle protrudes 25 cm from the rectangular horizontal base 4 with a 90 ° angle, as shown in FIG. The carbon fiber bundle 2 on the horizontal table 4 is fixed with a tape. Thereafter, the support of the carbon fiber bundle 2 protruding from the horizontal table 4 is removed and the carbon fiber bundle 2 is hung down, and after 1 second, the length of the horizontal distance L from the fulcrum is measured. The larger the drape value, the harder the carbon fiber bundle.

ドレープ値が4cm未満の場合、繊維束が柔らかいため、複合材料の製造時にボビンから引き出した糸条を引き揃えることを目的としたコーム等のガイドで折れ曲がりや撚りが発生しやすくなる。折れ曲がりや撚りが発生すると、その部分は開繊され難くなり、開繊ムラが生じるため好ましくない。また、ドレープ値が8cmより大きい場合、繊維束が硬いため、形態保持性が大きくなりすぎて開繊性が低下する。   When the drape value is less than 4 cm, since the fiber bundle is soft, bending or twisting is likely to occur with a guide such as a comb for the purpose of aligning the yarn drawn from the bobbin when the composite material is manufactured. If bending or twisting occurs, it is difficult to open the portion, and unevenness in opening occurs, which is not preferable. On the other hand, when the drape value is larger than 8 cm, the fiber bundle is hard, so that the form retainability becomes too high and the spreadability is lowered.

本発明のサイジング剤塗布炭素繊維束は、繊維−繊維間摩擦係数が0.30以下であることが必要である。0.30以下では炭素繊維束内の単糸間の摩擦力が低減するため、開繊性が向上する。0.25以下がより好ましい。繊維−繊維間摩擦係数は、炭素繊維表面のラフネス、サイジング剤に含まれる平滑成分の種類、量、サイジング剤の付着量等により制御できる。繊維−繊維間摩擦係数は以下の手順で求めることができる。回転しないように固定されたボビン上に厚みが均一となるよう5〜10mm厚、巻密度0.9〜1.4g/cmの範囲で巻き付けたサイジング剤塗布炭素繊維束の表面に、巻状物と同じ炭素繊維束を接触角3π(rad)になるよう円周上に重ならないよう巻きつける。巻き付けた炭素繊維束の一方の端部に錘(T1=0.19g/tex)をつけて、反対端をばねばかりで1m/minの速度で引っ張り、巻き付けた炭素繊維束が動き出す際の張力をT2として、下記式から繊維−繊維間摩擦係数を算出する。測定は2回おこない、その平均値を繊維−繊維間摩擦係数とする。なお、測定ボビンは測定2時間以上前に測定雰囲気温湿度条件(測定条件:23±3℃/60±5%)に置いたものを使用する。 The sizing agent-coated carbon fiber bundle of the present invention is required to have a fiber-fiber friction coefficient of 0.30 or less. When it is 0.30 or less, the frictional force between the single yarns in the carbon fiber bundle is reduced, so that the opening property is improved. 0.25 or less is more preferable. The fiber-fiber friction coefficient can be controlled by the roughness of the carbon fiber surface, the type and amount of the smooth component contained in the sizing agent, the amount of sizing agent attached, and the like. The fiber-fiber friction coefficient can be determined by the following procedure. On the surface of a sizing agent-coated carbon fiber bundle wound in a range of 5 to 10 mm thick and a winding density of 0.9 to 1.4 g / cm 3 so that the thickness is uniform on a bobbin fixed so as not to rotate. The same carbon fiber bundle as that of the object is wound so as not to overlap the circumference so as to have a contact angle of 3π (rad). A weight (T1 = 0.19 g / tex) is attached to one end of the wound carbon fiber bundle, and the opposite end is pulled with a spring alone at a speed of 1 m / min. The tension at which the wound carbon fiber bundle starts moving As T2, the fiber-fiber friction coefficient is calculated from the following equation. The measurement is performed twice, and the average value is defined as the fiber-fiber friction coefficient. In addition, the measurement bobbin used in the measurement atmosphere temperature and humidity condition (measurement condition: 23 ± 3 ° C./60±5%) 2 hours or more before the measurement is used.

繊維−繊維間摩擦係数=ln(T2/T1)/θ
T2:炭素繊維束が動き出す際の張力(=ばねばかりの指示値)
T1:錘重量(=0.19g/tex)
θ:巻状物と巻きつけた糸との合計接触角(=3πrad)。
Fiber-fiber friction coefficient = ln (T2 / T1) / θ
T2: Tension when the carbon fiber bundle starts to move (= indicated value of spring only)
T1: Weight of weight (= 0.19 g / tex)
θ: Total contact angle between the wound product and the wound yarn (= 3π rad).

本発明のサイジング剤塗布炭素繊維束は、繊維−金属間摩擦係数が0.35以下であることが必要である。炭素繊維束の開繊は、炭素繊維束を緊張下に金属製のガイドと接触させることによって行うことが多いが、繊維−金属間摩擦係数が0.35以下である場合、金属製のガイド上で単糸が滑りやすくなるため、開繊性が向上する。0.30以下がより好ましい。繊維−金属間摩擦係数は、炭素繊維表面のラフネス、サイジング剤に含まれる平滑成分の種類、量、サイジング剤塗布炭素繊維束の付着量等により制御できる。繊維−金属間摩擦係数は以下の手順で求めることができる。直径が50mm、表面粗さRmaxが0.3μmである金属バー2本を、150mm間隔、かつ、炭素繊維束が金属バーに合計で0.785π(rad)の角度で接触しながら通過するように上下方向に配置する。そして、金属バーに炭素繊維束を掛け渡し、パッケージからの解舒張力を800gに設定し、駆動ロールで牽引して金属バーを通過させ、下記式から繊維−金属間摩擦係数を算出する。上記の評価において使用する金属バーは、
評価中に摩耗や変形によって摩擦係数に影響を与えない程度の硬度があれば十分であり、素材は特に限定されない。また、表面粗さの制御のために金属メッキを実施しても良いが、摩耗や変形を起こしやすいポリマーでのコーティングは好ましくない。
The sizing agent-coated carbon fiber bundle of the present invention needs to have a fiber-metal friction coefficient of 0.35 or less. The opening of the carbon fiber bundle is often performed by bringing the carbon fiber bundle into contact with a metal guide under tension, but when the fiber-metal friction coefficient is 0.35 or less, Since the single yarn becomes slippery, the openability is improved. 0.30 or less is more preferable. The fiber-metal friction coefficient can be controlled by the roughness of the carbon fiber surface, the type and amount of the smoothing component contained in the sizing agent, the amount of adhesion of the sizing agent-coated carbon fiber bundle, and the like. The fiber-metal friction coefficient can be determined by the following procedure. Two metal bars having a diameter of 50 mm and a surface roughness Rmax of 0.3 μm are passed while being in contact with the metal bars at an interval of 150 mm and a total angle of 0.785π (rad). Arrange vertically. Then, the carbon fiber bundle is passed over the metal bar, the unwinding tension from the package is set to 800 g, pulled by the drive roll and passed through the metal bar, and the fiber-metal friction coefficient is calculated from the following formula. The metal bar used in the above evaluation is
It is sufficient if there is a hardness that does not affect the coefficient of friction due to wear or deformation during the evaluation, and the material is not particularly limited. Moreover, although metal plating may be performed for controlling the surface roughness, coating with a polymer that easily causes wear or deformation is not preferable.

繊維−金属間摩擦係数=ln(T4/T3)/θ
T4:金属バーの出側における炭素繊維束の張力
T3:金属バーの入側における炭素繊維束の張力(=800g)
θ:炭素繊維束と金属バーの合計接触角(=0.785πrad)。
Fiber-metal friction coefficient = ln (T4 / T3) / θ
T4: Tension of the carbon fiber bundle on the exit side of the metal bar T3: Tension of the carbon fiber bundle on the entry side of the metal bar (= 800 g)
θ: Total contact angle of carbon fiber bundle and metal bar (= 0.785π rad).

本発明を構成するサイジング剤においては、水溶性化合物(A)の質量Wと非イオン性平滑剤(B)の質量Wが以下の式(a)を満たすことが好ましい。0.1以上であると、非イオン性平滑剤(B)の比率が大きくなり、繊維間の摩擦が低減し、開繊性が向上するため好ましい。0.2以上がより好ましい。0.5以下であると水溶性化合物(A)の比率が大きくなり、接着性が向上するため、好ましい。0.3以下がより好ましい。 In the sizing agent constituting the present invention, it is preferable that the mass W A nonionic leveling agent of a water-soluble compound (A) Weight W B of (B) satisfies the formula (a) below. When it is 0.1 or more, the ratio of the nonionic smoothing agent (B) is increased, the friction between fibers is reduced, and the openability is improved. 0.2 or more is more preferable. The ratio of 0.5 or less is preferable because the ratio of the water-soluble compound (A) increases and the adhesiveness is improved. 0.3 or less is more preferable.

0.1≦W/(W+W)≦0.5・・・式(a)。 0.1 ≦ W B / (W A + W B) ≦ 0.5 ··· formula (a).

また、接着性と開繊性を両立するためには、水溶性化合物(A)の質量Wと非イオン性平滑剤(B)の質量Wが式(a)を満たし、かつ、本発明における非イオン性平滑剤(B)が溶媒を除いたサイジング剤全量100質量部に対して、10質量部以上含み、水溶性化合物(A)が溶媒を除いたサイジング剤全量100質量部に対して、40質量部以上含む範囲とすることが好ましい。また、本発明における非イオン性平滑剤(B)は溶媒を除いたサイジング剤全量100質量部に対して、25質量部以上含むことで開繊性がさらに向上するため、25質量部以上がより好ましい。 Further, in order to achieve both adhesion and spreadability, the mass W A nonionic leveling agent of a water-soluble compound (A) Weight W B of (B) satisfy the formula (a), and the present invention The nonionic smoothing agent (B) contains 10 parts by mass or more with respect to 100 parts by mass of the sizing agent excluding the solvent, and the water-soluble compound (A) with respect to 100 parts by mass of the sizing agent excluding the solvent. , 40 parts by mass or more is preferable. Moreover, since the nonionic smoothing agent (B) in this invention contains 25 mass parts or more with respect to 100 mass parts of sizing agents whole quantity except a solvent, since a fiber opening property improves further, 25 mass parts or more are more. preferable.

本発明を構成するサイジング剤において、非イオン性平滑剤(B)は親水親油バランス(HLB)が10以上であることが好ましい。本発明で規定されるHLBは、「新・界面活性剤入門」,128頁,(1992)に記載された、グリフィンの方法に基づき、分子構造から算出した値である。通常、サイジング剤は溶液を用いて炭素繊維束に塗布され、使用環境の安全性の面から、溶媒として水を使用することが一般的である。化合物(B)のHLBが10以上であると、水溶液中で均一に溶解するため、炭素繊維束上に均一に塗布することができ、炭素繊維束上のサイジング剤の付着ムラを低減する。これにより開繊性が向上するため、好ましい。また、HLBが大きすぎると、水溶性化合物(A)と傾斜構造を形成し難くなることがある。そのため、HLBは13以上18以下であることがさらに好ましい。   In the sizing agent constituting the present invention, the nonionic smoothing agent (B) preferably has a hydrophilic / lipophilic balance (HLB) of 10 or more. The HLB defined in the present invention is a value calculated from the molecular structure based on the Griffin method described in “Introduction to New Surfactants”, page 128, (1992). Usually, the sizing agent is applied to the carbon fiber bundle using a solution, and water is generally used as a solvent from the viewpoint of safety in the use environment. When the HLB of the compound (B) is 10 or more, it is uniformly dissolved in the aqueous solution, so that it can be applied uniformly on the carbon fiber bundle, and uneven adhesion of the sizing agent on the carbon fiber bundle is reduced. This is preferable because the spreadability is improved. Moreover, when HLB is too large, it may become difficult to form a gradient structure with a water-soluble compound (A). Therefore, HLB is more preferably 13 or more and 18 or less.

本発明を構成するサイジング剤において、水溶性化合物(A)と非イオン性平滑剤(B)のSP値の差が0.5〜4.0(J/cm0.5であることが好ましい。ここで、SP値は、一般に知られている溶解性パラメータのことであり、溶解性および極性の指標となる。本発明で規定されるSP値は、Polym.Eng.Sci.,14(2),147−154(1974)に記載された、Fedorsの方法に基づき、分子構造から算出した値である。SP値の差が0.5以上であると、水溶性化合物(A)と非イオン性平滑剤(B)の極性差が大きく、傾斜構造を形成する。1.0(J/cm0.5以上であることが好ましく、2.0(J/cm0.5以上であることがさらに好ましい。4.0(J/cm0.5以下であると、水溶性化合物(A)と非イオン性平滑剤(B)の相溶性が増加するため、サイジング剤中の各成分のドメイン化が抑制され、水溶性化合物(A)と非イオン性平滑剤(B)の均一な傾斜構造が形成され、接着性、開繊性が向上するため、好ましい。3.5(J/cm0.5以下であることがさらに好ましい。 In the sizing agent constituting the present invention, the difference in SP value between the water-soluble compound (A) and the nonionic smoothing agent (B) is 0.5 to 4.0 (J / cm 3 ) 0.5. preferable. Here, the SP value is a generally known solubility parameter, and is an indicator of solubility and polarity. The SP value defined in the present invention is Polym. Eng. Sci. , 14 (2), 147-154 (1974), and calculated from the molecular structure based on the Fedors method. When the difference in SP value is 0.5 or more, the polarity difference between the water-soluble compound (A) and the nonionic smoothing agent (B) is large, and an inclined structure is formed. 1.0 (J / cm 3 ) is preferably 0.5 or more, and more preferably 2.0 (J / cm 3 ) 0.5 or more. 4.0 (J / cm 3 ) If it is 0.5 or less, the compatibility of the water-soluble compound (A) and the nonionic smoothing agent (B) increases, so that the domaining of each component in the sizing agent It is preferable because it is suppressed and a uniform gradient structure of the water-soluble compound (A) and the nonionic smoothing agent (B) is formed, and the adhesiveness and the fiber opening property are improved. 3.5 (J / cm 3 ) More preferably, it is 0.5 or less.

本発明のサイジング剤塗布炭素繊維束は、サイジング剤がサイジング剤塗布炭素繊維束全量100質量部に対して0.1質量部以上0.3質量部以下の割合で付着されていることが好ましい。サイジング剤の付着量を0.1質量部以上とすることで、サイジング剤を炭素繊維束の表面に均一に付着させやすくなり、水溶性化合物(A)による接着性向上効果と非イオン性平滑剤(B)による開繊性向上効果を安定して発現させることができる。一方、サイジング剤の付着量を0.3質量部以下とすることで、炭素繊維間に存在するサイジング剤の存在量を少なくし、繊維間の拘束を弱めやすくなるため、外力による繊維の開繊が容易となり均一に繊維束を拡幅することができる。   In the sizing agent-coated carbon fiber bundle of the present invention, the sizing agent is preferably attached at a ratio of 0.1 parts by mass or more and 0.3 parts by mass or less with respect to 100 parts by mass of the total amount of the sizing agent-coated carbon fiber bundle. By making the adhesion amount of the sizing agent 0.1 mass part or more, the sizing agent can be easily adhered uniformly to the surface of the carbon fiber bundle, and the adhesion improving effect by the water-soluble compound (A) and the nonionic smoothing agent The effect of improving the spreadability by (B) can be stably expressed. On the other hand, by making the amount of sizing agent adhering to 0.3 parts by mass or less, the amount of sizing agent present between carbon fibers is reduced and it becomes easy to weaken the constraints between fibers. Becomes easy, and the fiber bundle can be uniformly widened.

次に、本発明で用いるサイジング剤塗布炭素繊維束を構成する成分について説明する。   Next, the component which comprises the sizing agent application | coating carbon fiber bundle used by this invention is demonstrated.

本発明で用いられる炭素繊維束としては特に制限は無いが、力学特性の観点からは、ポリアクリロニトリル系炭素繊維が好ましく用いられる。本発明に用いられるポリアクリロニトリル系炭素繊維束は、ポリアクリロニトリル系重合体からなる炭素繊維前駆体繊維を酸化性雰囲気中で最高温度200〜300℃で耐炎化処理した後、不活性下雰囲気下中、最高温度500〜1200℃で予備炭化処理を行い、次いで不活性雰囲気中、最高温度1200〜2000℃で炭化処理することで得られる。   The carbon fiber bundle used in the present invention is not particularly limited, but polyacrylonitrile-based carbon fibers are preferably used from the viewpoint of mechanical properties. The polyacrylonitrile-based carbon fiber bundle used in the present invention is obtained by subjecting a carbon fiber precursor fiber made of a polyacrylonitrile-based polymer to flame resistance treatment at a maximum temperature of 200 to 300 ° C. in an oxidizing atmosphere, and then in an inert atmosphere. It is obtained by performing a preliminary carbonization treatment at a maximum temperature of 500 to 1200 ° C. and then performing a carbonization treatment at a maximum temperature of 1200 to 2000 ° C. in an inert atmosphere.

本発明において、炭素繊維束と熱可塑性樹脂との接着性を向上させるため、炭素繊維束に酸化処理を施すことで酸素含有官能基を表面に導入することが好ましい。酸化処理方法としては、気相酸化、液相酸化および液相電解酸化が用いられるが、生産性が高く、均一処理ができるという観点から、液相電解酸化が好ましく用いられる。   In the present invention, in order to improve the adhesion between the carbon fiber bundle and the thermoplastic resin, it is preferable to introduce an oxygen-containing functional group to the surface by subjecting the carbon fiber bundle to an oxidation treatment. As the oxidation treatment method, vapor phase oxidation, liquid phase oxidation, and liquid phase electrolytic oxidation are used. From the viewpoint of high productivity and uniform treatment, liquid phase electrolytic oxidation is preferably used.

本発明において、液相電解酸化で用いられる電解液としては、酸性電解液およびアルカリ性電解液が挙げられる。酸性電解液としては、例えば、硫酸、硝酸、塩酸、燐酸、ホウ酸、および炭酸等の無機酸、酢酸、酪酸、シュウ酸、アクリル酸、およびマレイン酸等の有機酸、または硫酸アンモニウムや硫酸水素アンモニウム等の塩が挙げられる。なかでも、強酸性を示す硫酸と硝酸が好ましく用いられる。アルカリ性電解液としては、具体的には、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムおよび水酸化バリウム等の水酸化物の水溶液、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウムおよび炭酸アンモニウム等の炭酸塩の水溶液、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素バリウムおよび炭酸水素アンモニウム等の炭酸水素塩の水溶液、アンモニア、水酸化テトラアルキルアンモニウムおよびヒドラジンの水溶液等が挙げられる。   In the present invention, examples of the electrolytic solution used in the liquid phase electrolytic oxidation include an acidic electrolytic solution and an alkaline electrolytic solution. Examples of the acidic electrolyte include inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, boric acid, and carbonic acid, organic acids such as acetic acid, butyric acid, oxalic acid, acrylic acid, and maleic acid, or ammonium sulfate and ammonium hydrogen sulfate. And the like. Of these, sulfuric acid and nitric acid exhibiting strong acidity are preferably used. Specific examples of the alkaline electrolyte include aqueous solutions of hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide and barium hydroxide, sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, Aqueous solutions of carbonates such as barium carbonate and ammonium carbonate, aqueous solutions of bicarbonates such as sodium bicarbonate, potassium bicarbonate, magnesium bicarbonate, calcium bicarbonate, barium bicarbonate and ammonium bicarbonate, ammonia, tetraalkylammonium hydroxide And an aqueous solution of hydrazine.

次に、本発明にかかるサイジング剤塗布炭素繊維束の製造方法について述べる。   Next, the manufacturing method of the sizing agent application | coating carbon fiber bundle concerning this invention is described.

まず、本発明を構成するサイジング剤の炭素繊維束への塗布(付与)手段について述べる。   First, the means for applying (applying) the sizing agent constituting the present invention to the carbon fiber bundle will be described.

本発明において、サイジング剤は溶媒で希釈し、均一な溶液として用いることが好ましい。このような溶媒としては、例えば、水、メタノール、エタノール、2−プロパノール、アセトン、メチルエチルケトン、ジメチルホルムアミド、およびジメチルアセトアミド等が挙げられるが、なかでも、取扱いが容易であり、安全性の観点から有利であることから、水が好ましく用いられる。   In the present invention, the sizing agent is preferably diluted with a solvent and used as a uniform solution. Examples of such a solvent include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, dimethylformamide, and dimethylacetamide. Among them, handling is easy and advantageous from the viewpoint of safety. Therefore, water is preferably used.

塗布手段としては、例えば、ローラーを介してサイジング剤溶液に炭素繊維束を浸漬する方法、サイジング剤溶液の付着したローラーに炭素繊維束を接する方法、サイジング剤溶液を霧状にして炭素繊維束に吹き付ける方法等があるが、本発明のサイジング剤塗布炭素繊維束を製造する上では、ローラーを介してサイジング剤溶液に炭素繊維束を浸漬する方法が好ましく用いられる。また、サイジング剤の付与手段は、バッチ式と連続式いずれでもよいが、生産性がよくバラツキが小さくできる連続式が好ましく用いられる。また、サイジング剤付与時に、炭素繊維束を超音波で加振させることも好ましい態様である。   As the application means, for example, a method of immersing the carbon fiber bundle in a sizing agent solution via a roller, a method of contacting the carbon fiber bundle with a roller to which the sizing agent solution is attached, a sizing agent solution being atomized into a carbon fiber bundle Although there is a method of spraying, etc., in producing the sizing agent-coated carbon fiber bundle of the present invention, a method of immersing the carbon fiber bundle in a sizing agent solution via a roller is preferably used. Further, the sizing agent applying means may be either a batch type or a continuous type, but a continuous type capable of improving productivity and reducing variation is preferably used. Moreover, it is also a preferable aspect that the carbon fiber bundle is vibrated with ultrasonic waves when the sizing agent is applied.

本発明において、サイジング剤溶液を塗布した後、接触式乾燥手段によって、例えば、加熱したローラーに炭素繊維束を接触させることによりサイジング剤塗布炭素繊維束を得ることが好ましい。加熱したローラーに導入された炭素繊維束は、張力によって加熱したローラーに押し付けられ、急速に乾燥されるため加熱したローラーで拡幅された炭素繊維束の扁平な形態がサイジング剤によって固定されやすい。扁平な形態となった炭素繊維束は、単繊維間の接触面積が小さくなるため、開繊性が高くなりやすい。   In this invention, after apply | coating a sizing agent solution, it is preferable to obtain a sizing agent application | coating carbon fiber bundle by making a carbon fiber bundle contact a heated roller, for example by a contact-type drying means. The carbon fiber bundle introduced into the heated roller is pressed against the heated roller by tension and dried rapidly, so that the flat form of the carbon fiber bundle widened by the heated roller is easily fixed by the sizing agent. The flat carbon fiber bundle has a small contact area between the single fibers, and therefore the openability tends to be high.

また、本発明において、予備乾燥工程として加熱したローラーを通過させた後、第2乾燥工程としてさらに熱処理を加えても良い。該第2乾燥工程としての熱処理には、高温での熱処理を実施し易い非接触方式の加熱方式が好ましい。該熱処理を行うことでサイジング剤に残存している希釈溶媒を更に除去し、サイジング剤の粘度を安定化することができるため、安定して開繊性を高めることができる。また、該熱処理を行うことで、水溶性化合物(A)と非イオン性平滑剤(B)の相分離を促進し、より効果的な傾斜構造を形成させることができるため、開繊性を向上させることができる。熱処理温度としては、100℃以上180℃以下、または180℃より大きく240℃以下の温度範囲が好ましい。180℃より大きい場合、水溶性化合物(A)と非イオン性平滑剤(B)の相分離を促進し易く、乾式開繊工程を用いた際に、開繊性を高めやすく均一に樹脂を含浸させることが可能になる。また、熱処理温度の上限を240℃以下とすることで、サイジング剤成分の熱劣化や自己重合による架橋・増粘を抑制することができ開繊性を高めやすい。一方、熱処理温度が100℃以上180℃以下の場合、サイジング剤成分中の親水性官能基の熱による分解やサイジング成分の酸化重合による増粘が抑制されることから、湿式機械開繊方式を用いた際に、繊維が水中で均一にばらけやすくなり、その後のスラリー含浸方式による樹脂含浸工程において繊維間に樹脂を均一に含浸させることができる。また、熱処理時間としては、60秒以上が好ましい。60秒以上の場合、水溶性化合物(A)と非イオン性平滑剤(B)の相分離が効果的に進み、開繊性を高めやすい。   Moreover, in this invention, after letting the roller heated as a preliminary drying process pass, you may add heat processing as a 2nd drying process. The heat treatment as the second drying step is preferably a non-contact heating method that facilitates heat treatment at a high temperature. By performing the heat treatment, the diluting solvent remaining in the sizing agent can be further removed and the viscosity of the sizing agent can be stabilized, so that the opening property can be stably improved. In addition, by performing the heat treatment, the phase separation of the water-soluble compound (A) and the nonionic smoothing agent (B) can be promoted, and a more effective gradient structure can be formed. Can be made. As the heat treatment temperature, a temperature range of 100 ° C. or higher and 180 ° C. or lower, or higher than 180 ° C. and 240 ° C. or lower is preferable. When the temperature is higher than 180 ° C., it is easy to promote phase separation between the water-soluble compound (A) and the nonionic smoothing agent (B), and when using the dry-type opening process, the opening property is easily improved and the resin is uniformly impregnated. It becomes possible to make it. Further, by setting the upper limit of the heat treatment temperature to 240 ° C. or less, it is possible to suppress thermal deterioration of the sizing agent component and crosslinking / thickening due to self-polymerization, and it is easy to improve the opening property. On the other hand, when the heat treatment temperature is 100 ° C. or higher and 180 ° C. or lower, decomposition of the hydrophilic functional group in the sizing agent component due to heat and thickening due to oxidative polymerization of the sizing component are suppressed. The fibers are easily dispersed uniformly in water, and the resin can be uniformly impregnated between the fibers in the subsequent resin impregnation step by the slurry impregnation method. The heat treatment time is preferably 60 seconds or longer. In the case of 60 seconds or more, the phase separation of the water-soluble compound (A) and the nonionic smoothing agent (B) proceeds effectively, and the openability is easily improved.

また、前記熱処理は、マイクロ波照射および/または赤外線照射で行うことも可能である。   The heat treatment can also be performed by microwave irradiation and / or infrared irradiation.

次に、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により制限されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not restrict | limited by these Examples.

<サイジング付着量の測定方法>
2.0±0.5gのサイジング塗布炭素繊維束を秤量(W)(少数第4位まで読み取り)した後、50ミリリットル/分の窒素気流中、450℃の温度に設定した電気炉(容量120cm)に15分間放置し、サイジング剤を完全に熱分解させた。そして、20リットル/分の乾燥窒素気流中の容器に移し、15分間冷却した後の炭素繊維束を秤量(W)(少数第4位まで読み取り)して、W−Wによりサイジング付着量を求めた。このサイジング付着量を炭素繊維束100質量部に対する質量部に換算した値(小数点第3位を四捨五入)を、付着したサイジング剤の付着量(質量部)とした。測定は2回おこない、その平均値をサイジング剤の付着量とした。
<Measurement method of sizing adhesion amount>
An electric furnace (capacity) set to a temperature of 450 ° C. in a nitrogen stream of 50 ml / min after weighing 2.0 ± 0.5 g of a sizing-coated carbon fiber bundle (W 1 ) (reading to the fourth decimal place) The sizing agent was completely pyrolyzed by leaving it at 120 cm 3 ) for 15 minutes. Then, the carbon fiber bundle after being transferred to a container in a dry nitrogen stream at 20 liters / minute and cooled for 15 minutes is weighed (W 2 ) (read to the fourth decimal place), and sized by W 1 -W 2 The amount was determined. The value obtained by converting this sizing adhesion amount into mass parts with respect to 100 mass parts of the carbon fiber bundle (rounded off to the third decimal place) was defined as the adhesion amount (mass part) of the adhering sizing agent. The measurement was performed twice, and the average value was defined as the amount of sizing agent deposited.

<乾式開繊方式における拡がり幅の測定方法>
直径が50mm、表面粗さRmaxが0.3μmである金属バー(ステンレス製)2本を、150mm間隔、かつ、炭素繊維束が金属バーに合計で0.785π(rad)の角度で接触しながら通過するように上下方向に配置した。そして、金属バーに炭素繊維束を掛け渡し、パッケージからの解舒張力を800gに設定し、駆動ロールで牽引して金属バーを通過させ、2本目の金属バーを通過後の炭素繊維束の幅をノギスを用いて5秒おきに100点測定し、その単純平均値をもって拡がり幅とした。
<Measurement method of spread width in dry fiber opening method>
While two metal bars (made of stainless steel) having a diameter of 50 mm and a surface roughness Rmax of 0.3 μm are in contact with each other at an interval of 150 mm and a carbon fiber bundle at a total angle of 0.785π (rad). Arranged vertically to pass. Then, the carbon fiber bundle is passed over the metal bar, the unwinding tension from the package is set to 800 g, pulled by the drive roll, passed through the metal bar, and the width of the carbon fiber bundle after passing through the second metal bar 100 points were measured every 5 seconds using a caliper, and the simple average value was taken as the spread width.

本発明において、下記の基準で乾式開繊方式における拡がり幅の好ましい範囲を4段階で評価し、◎と○を合格とした。   In the present invention, the preferred range of the spread width in the dry fiber opening method was evaluated in four stages according to the following criteria, and ◎ and ○ were accepted.

◎: 拡がり幅が8.5mmより大きい
○: 拡がり幅が7.5mm以上かつ8.5mm以下
△: 拡がり幅が7.0mm以上かつ7.5mm未満
×: 拡がり幅が7.0mm未満。
A: The spreading width is greater than 8.5 mm. O: The spreading width is 7.5 mm or more and 8.5 mm or less. Δ: The spreading width is 7.0 mm or more and less than 7.5 mm. X: The spreading width is less than 7.0 mm.

<水中分散性の測定方法>
湿式機械開繊方式における開繊性の測定方法として、容量が100mLガラス製ビーカーに濃度が0.05質量%の界面活性剤(花王(株)製“エマルゲン108”)水溶液を100mL入れ、長さ5mmに切断した炭素繊維束を入れた。マグネチックスターラーを用いて、25℃、200rpmで30秒間攪拌を行い界面活性剤水溶液に炭素繊維を分散させた。分散液を11cm径のろ紙を用いて吸引ろ過し、ろ紙上に残った炭素繊維を観察した。水中での分散性が良いものは単繊維どうしが完全に離れて分散するのに対し、分散性が悪いものは数本から数十本の炭素繊維がサイジング剤成分により接着し、束となった状態となる。本発明において、繊維束が接着し束になった部分(繊維固着部)の個数を測定し、下記の基準で湿式開繊方式における水中分散性の好ましい範囲を3段階で評価し、◎と○を合格とした。
<Measurement method of dispersibility in water>
As a method for measuring the spreadability in the wet mechanical opening method, 100 mL of a surfactant (“Emulgen 108” manufactured by Kao Corporation) solution having a concentration of 0.05% by mass is placed in a 100 mL glass beaker, and the length A carbon fiber bundle cut into 5 mm was placed. Using a magnetic stirrer, carbon fiber was dispersed in the surfactant aqueous solution by stirring at 25 ° C. and 200 rpm for 30 seconds. The dispersion was suction filtered using an 11 cm diameter filter paper, and the carbon fibers remaining on the filter paper were observed. Those with good dispersibility in water disperse the single fibers completely apart from each other, while those with poor dispersibility have several to tens of carbon fibers bonded together by the sizing agent component to form a bundle. It becomes a state. In the present invention, the number of portions where the fiber bundles are bonded to form a bundle (fiber fixing portion) is measured, and the preferred range of water dispersibility in the wet fiber opening method is evaluated in three stages according to the following criteria. Was passed.

◎:繊維固着部の個数が0個
○:繊維固着部の個数が1個以上かつ40個以下
△:繊維固着部の個数が41個以上かつ80個以下
×:繊維固着部の個数が81個より多い。
A: The number of fiber fixing parts is 0. ○: The number of fiber fixing parts is 1 or more and 40 or less. Δ: The number of fiber fixing parts is 41 or more and 80 or less. X: The number of fiber fixing parts is 81. is more than.

<界面せん断強度の測定方法>
炭素繊維束から単糸を抜き出し、厚み0.4mm以上になるように積層した樹脂フィルムで上下方向から挟み、熱プレス装置にて、加熱加圧した後、加圧状態を維持しながら、常温まで冷却し、炭素繊維単糸を埋め込んだ成形板を得た。この成形板からSD型レバー裁断機を用いて、ダンベル形状のIFSS測定用試験片を打ち抜いた。
<Measurement method of interfacial shear strength>
A single yarn is extracted from the carbon fiber bundle, sandwiched from above and below with a resin film laminated so that the thickness is 0.4 mm or more, heated and pressurized with a hot press device, and then maintained at a normal temperature while maintaining the pressurized state. It cooled and obtained the molding board which embedded the carbon fiber single yarn. A dumbbell-shaped test piece for IFSS measurement was punched out from this molded plate using an SD-type lever cutter.

ダンベル形状の試料の両端部を挟み、繊維軸方向(長手方向)に引張力を与え、2.0mm/分の速度で歪みを12%生じさせた。その後、試験片中央部20mmを切り取り、ホットプレート上にガラス板間に挟んだ状態で熱可塑性樹脂の融点以上まで加熱した。加熱により透明化させた試料内部の断片化された繊維長を顕微鏡で観察した。さらに平均破断繊維長laから臨界繊維長lcを、lc(μm)=(4/3)×la(μm)の式により計算した。ストランド引張強度σと炭素繊維単糸の直径dを測定し、炭素繊維と樹脂界面の接着強度の指標である界面せん断強度(IFSS)を、次式で算出した。実施例では、測定数n=5の平均を試験結果とした。   Both ends of the dumbbell-shaped sample were sandwiched, a tensile force was applied in the fiber axis direction (longitudinal direction), and a strain of 12% was generated at a speed of 2.0 mm / min. Then, 20 mm of test piece center parts were cut off, and it heated to more than melting | fusing point of a thermoplastic resin in the state pinched | interposed between the glass plates on the hotplate. The fragmented fiber length inside the sample made transparent by heating was observed with a microscope. Further, the critical fiber length lc was calculated from the average breaking fiber length la by the formula lc (μm) = (4/3) × la (μm). The strand tensile strength σ and the diameter d of the carbon fiber single yarn were measured, and the interfacial shear strength (IFSS), which is an index of the bond strength between the carbon fiber and the resin interface, was calculated by the following equation. In the examples, the average of the number of measurements n = 5 was used as the test result.

IFSS(MPa)=σ(MPa)×d(μm)/(2×lc)(μm)。   IFSS (MPa) = σ (MPa) × d (μm) / (2 × lc) (μm).

本発明において、下記の樹脂ごとに異なる基準でIFSSの好ましい範囲を3段階で評価し、○を合格とした。   In this invention, the preferable range of IFSS was evaluated in three steps on the basis of different standards for each of the following resins, and ◯ was regarded as acceptable.

・樹脂:ポリエーテルエーテルケトン
○: IFSSが40より大きい
△: IFSSが35以上かつ40以下
×: IFSSが35未満。
Resin: Polyetheretherketone ○: IFSS is greater than 40 Δ: IFSS is 35 or more and 40 or less ×: IFSS is less than 35

・樹脂:ポリフッ化ビニリデン
○: IFSSが18より大きい
△: IFSSが15以上かつ18以下
×: IFSSが15未満。
Resin: Polyvinylidene fluoride ○: IFSS is greater than 18 Δ: IFSS is 15 or more and 18 or less ×: IFSS is less than 15.

各実施例および各比較例で用いた材料と成分は下記の通りである。   The materials and components used in each example and each comparative example are as follows.

(A)成分
A−1:ポリエチレンイミン
(BASFジャパン(株)製 “Lupasol(登録商標)”G20Waterfree)
A−2:変性ポリアミド
(東レ(株)製 “AQナイロン(登録商標)”P−70)。
(A) Component A-1: Polyethyleneimine ("Lupasol (registered trademark)" G20 Waterfree, manufactured by BASF Japan Ltd.)
A-2: Modified polyamide (“AQ nylon (registered trademark)” P-70 manufactured by Toray Industries, Inc.).

(B)成分
B−1:PEGジステアリン酸エステル
(HLB=17.0)
(三洋化成工業(株)製“イオネット(登録商標)”DS4000)
B−2:PEGモノオレイン酸エステル
(HLB=13.7)
(三洋化成工業(株)製“イオネット(登録商標)”MO600)
B−3:PEGジオレイン酸エステル
(HLB=10.4)
(三洋化成工業(株)製“イオネット(登録商標)”DO600)
B−4:ポリエチレングリコール
(HLB=20)
(三洋化成工業(株)製 PEG−4000S)。
(B) Component B-1: PEG distearic acid ester (HLB = 17.0)
("IONET (registered trademark)" DS4000 manufactured by Sanyo Chemical Industries, Ltd.)
B-2: PEG monooleate (HLB = 13.7)
("IONET (registered trademark)" MO600 manufactured by Sanyo Chemical Industries, Ltd.)
B-3: PEG dioleic acid ester (HLB = 10.4)
("IONET (registered trademark)" DO600 manufactured by Sanyo Chemical Industries, Ltd.)
B-4: Polyethylene glycol (HLB = 20)
(PEG-4000S manufactured by Sanyo Chemical Industries, Ltd.).

(C)成分:熱可塑性樹脂
C−1:ポリエーテルエーテルケトン
(ヴィクトレックス(株)製“ヴィクトレックス(登録商標)”450G)
C−2:ポリフッ化ビニリデン
(ソルベイスペシャルティポリマーズジャパン(株)製 “ソレフ(登録商標)”9009)。
Component (C): Thermoplastic resin C-1: Polyetheretherketone (“Victorex (registered trademark)” 450G manufactured by Victorex Co., Ltd.)
C-2: Polyvinylidene fluoride ("Solef (registered trademark)" 9009 manufactured by Solvay Specialty Polymers Japan Co., Ltd.).

(実施例1)
本実施例は、次の第1〜4の工程からなる。
(Example 1)
This example includes the following first to fourth steps.

・第1の工程:原料となる炭素繊維束を製造する工程
アクリロニトリル共重合体を紡糸し、焼成し、総フィラメント数12,000本、総繊度800テックス、ストランド引張強度5.1GPa、ストランド引張弾性率240GPaの炭素繊維束を得た。次いで、その炭素繊維束を、炭酸水素アンモニウム水溶液を電解液として、電気量を炭素繊維束1g当たり80クーロンで電解表面処理した。この電解表面処理を施された炭素繊維束を続いて水洗し、加熱空気中で乾燥し、原料となる炭素繊維束を得た。
-1st process: The process of manufacturing the carbon fiber bundle used as a raw material A acrylonitrile copolymer is spun and baked, the total number of filaments is 12,000, the total fineness is 800 tex, the strand tensile strength is 5.1 GPa, and the strand tensile elasticity is A carbon fiber bundle having a rate of 240 GPa was obtained. Next, the carbon fiber bundle was subjected to an electrolytic surface treatment with an aqueous ammonium hydrogen carbonate solution as an electrolyte and an electric quantity of 80 coulomb per 1 g of the carbon fiber bundle. The carbon fiber bundle subjected to the electrolytic surface treatment was subsequently washed with water and dried in heated air to obtain a carbon fiber bundle as a raw material.

・第2の工程:サイジング剤を炭素繊維束に付着させる工程
化合物(A)として(A−1)、化合物(B)として(B−1)を表1の組成で混合し、水を加えて、(A−1)、(B−1)が均一に溶解した約0.6質量%の水溶液を得た。この水溶液をサイジング剤水溶液として用い、浸漬法によりサイジング剤を表面処理された炭素繊維束に塗布した後、予備乾燥工程としてホットローラーで120℃の温度で15秒熱処理をし、続いて、第2乾燥工程として210℃の温度の加熱空気中で90秒間熱処理をして、サイジング剤塗布炭素繊維束を得た。サイジング剤の付着量は、表面処理されたサイジング剤塗布炭素繊維束全量100質量部に対して、0.2質量部となるように調整した。
-2nd process: The process of attaching a sizing agent to a carbon fiber bundle (A-1) as a compound (A), (B-1) as a compound (B) are mixed with the composition of Table 1, and water is added. , (A-1) and (B-1) were uniformly dissolved to obtain an aqueous solution of about 0.6% by mass. Using this aqueous solution as a sizing agent aqueous solution, the sizing agent was applied to the surface-treated carbon fiber bundle by a dipping method, followed by a heat treatment at a temperature of 120 ° C. for 15 seconds with a hot roller as a preliminary drying step. As a drying process, heat treatment was performed in heated air at a temperature of 210 ° C. for 90 seconds to obtain a sizing agent-coated carbon fiber bundle. The adhesion amount of the sizing agent was adjusted to 0.2 parts by mass with respect to 100 parts by mass of the total surface-treated sizing agent-coated carbon fiber bundle.

・第3の工程:拡がり幅の評価
前記第2工程で得られた炭素繊維束を用いて、拡がり幅の評価方法に基づいて乾式開繊方式における開繊性を評価した。その結果、拡がり幅は9.2mmであり、開繊性が非常に高いことが分かった。
-Third step: Evaluation of spread width Using the carbon fiber bundle obtained in the second step, the spreadability in the dry-type spread method was evaluated based on the evaluation method of the spread width. As a result, the spreading width was 9.2 mm, and it was found that the spreadability was very high.

・第4の工程:IFSS測定用試験片の作製および評価
前工程で得られた炭素繊維束と、熱可塑性樹脂(C)として(C−1)および(C−2)を用いて、界面せん断強度の測定方法に基づき、IFSS測定用試験片を作製した。
-Fourth step: Production and evaluation of test piece for IFSS measurement Interfacial shear using the carbon fiber bundle obtained in the previous step and (C-1) and (C-2) as the thermoplastic resin (C) Based on the strength measurement method, a test piece for IFSS measurement was produced.

続いて、得られたIFSS測定用試験片を用いて、IFSSを測定した。その結果、(C−1)使用時のIFSSが42MPa、(C−2)使用時のIFSSが20MPaであり、いずれにおいても接着性が十分に高いことがわかった。以上の結果を表1にまとめた。   Then, IFSS was measured using the obtained test piece for IFSS measurement. As a result, the IFSS when using (C-1) was 42 MPa, and the IFSS when using (C-2) was 20 MPa. The above results are summarized in Table 1.

Figure 2019210587
Figure 2019210587

(実施例2〜7)
第2の工程におけるサイジング剤の組成および付着量を表1に示す通りに変更した以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得て、各種評価を行った。結果は表1にまとめた通りであり、開繊性が非常に高く、接着性が十分に高い炭素繊維束が得られた。
(Examples 2 to 7)
A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 1 except that the composition and adhesion amount of the sizing agent in the second step were changed as shown in Table 1, and various evaluations were performed. The results are summarized in Table 1, and a carbon fiber bundle having very high fiber opening and sufficiently high adhesion was obtained.

(実施例8、9)
第2の工程におけるサイジング剤の組成および付着量を表1に示す通りに変更した以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得て、各種評価を行った。結果は表1にまとめた通りであり、開繊性が高く、接着性が十分に高い炭素繊維束が得られた。
(Examples 8 and 9)
A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 1 except that the composition and adhesion amount of the sizing agent in the second step were changed as shown in Table 1, and various evaluations were performed. The results are as summarized in Table 1, and a carbon fiber bundle having high fiber opening and sufficiently high adhesion was obtained.

(実施例10)
第2の工程において第2乾燥工程の温度を250℃と変更した以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得て、各種評価を行った。結果は表1にまとめた通りであり、開繊性が高く、接着性が十分に高い炭素繊維束が得られた。
(Example 10)
A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 1 except that the temperature of the second drying step was changed to 250 ° C. in the second step, and various evaluations were performed. The results are as summarized in Table 1, and a carbon fiber bundle having high fiber opening and sufficiently high adhesion was obtained.

(実施例11)
第2の工程におけるサイジング剤の組成および付着量を表1に示す通りに変更した以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得て、各種評価を行った。結果は表1にまとめた通りであり、開繊性が高く、接着性が十分に高い炭素繊維束が得られた。
(Example 11)
A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 1 except that the composition and adhesion amount of the sizing agent in the second step were changed as shown in Table 1, and various evaluations were performed. The results are as summarized in Table 1, and a carbon fiber bundle having high fiber opening and sufficiently high adhesion was obtained.

(比較例1〜5)
第2の工程におけるサイジング剤の組成および付着量を表2に示す通りに変更した以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得て、各種評価を行った。結果は表2にまとめた通りであり、接着性は十分に高いが、開繊性が不十分であった。
(Comparative Examples 1-5)
A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 1 except that the composition and adhesion amount of the sizing agent in the second step were changed as shown in Table 2, and various evaluations were performed. The results are as summarized in Table 2. Adhesiveness was sufficiently high, but the spreadability was insufficient.

Figure 2019210587
Figure 2019210587

(比較例6)
第2の工程におけるサイジング剤の組成および付着量を表2に示す通りに変更した以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得て、各種評価を行った。結果は表2にまとめた通りであり、開繊性は非常に高いが、接着性が不十分であった。
(Comparative Example 6)
A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 1 except that the composition and adhesion amount of the sizing agent in the second step were changed as shown in Table 2, and various evaluations were performed. The results are summarized in Table 2. The fiber opening property was very high, but the adhesion was insufficient.

(比較例7)
第2の工程におけるサイジング剤の組成および付着量を表2に示す通りに変更した以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得て、各種評価を行った。結果は表2にまとめた通りであり、接着性は十分に高いが、開繊性が不十分であった。
(Comparative Example 7)
A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 1 except that the composition and adhesion amount of the sizing agent in the second step were changed as shown in Table 2, and various evaluations were performed. The results are as summarized in Table 2. Adhesiveness was sufficiently high, but the spreadability was insufficient.

Figure 2019210587
Figure 2019210587

(実施例12)
第2の工程において第2乾燥工程の温度を120℃と変更し、第5の工程として、水中分散性の測定方法に従って、湿式開繊方式における繊維束の水中での分散性を評価した以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得て、各種評価を行った。結果は表3にまとめた通りであり、開繊性が高く、水中分散性が非常に高く、接着性が十分に高い炭素繊維束が得られた。
(Example 12)
In the second step, the temperature of the second drying step was changed to 120 ° C., and as the fifth step, according to the measurement method of dispersibility in water, the dispersibility in water of the fiber bundle in the wet opening method was evaluated. A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 1, and various evaluations were performed. The results are summarized in Table 3, and a carbon fiber bundle having high fiber spreadability, very high dispersibility in water, and sufficiently high adhesion was obtained.

(実施例13)
第2の工程において第2乾燥工程の温度を150℃と変更し、第5の工程として、水中分散性の測定方法に従って、湿式開繊方式における繊維束の水中での分散性を評価した以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得て、各種評価を行った。結果は表3にまとめた通りであり、開繊性が高く、水中分散性が非常に高く、接着性が十分に高い炭素繊維束が得られた。
(Example 13)
In the second step, the temperature of the second drying step was changed to 150 ° C., and as the fifth step, according to the measurement method of dispersibility in water, the dispersibility in water of the fiber bundle in the wet opening method was evaluated. A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 1, and various evaluations were performed. The results are summarized in Table 3, and a carbon fiber bundle having high fiber spreadability, very high dispersibility in water, and sufficiently high adhesion was obtained.

(実施例14)
第2の工程において第2乾燥工程の温度を180℃と変更し、第5の工程として、水中分散性の測定方法に従って、湿式開繊方式における繊維束の水中での分散性を評価した以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得て、各種評価を行った。結果は表3にまとめた通りであり、開繊性が高く、水中分散性が高く、接着性が十分に高い炭素繊維束が得られた。
(Example 14)
In the second step, the temperature of the second drying step was changed to 180 ° C., and as the fifth step, according to the measurement method of dispersibility in water, the dispersibility in water of the fiber bundle in the wet fiber opening method was evaluated. A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 1, and various evaluations were performed. The results are summarized in Table 3, and a carbon fiber bundle having high fiber-opening property, high dispersibility in water, and sufficiently high adhesion was obtained.

(実施例15)
第2の工程におけるサイジング剤の付着量を表3に示す通りに変更し、第5の工程として、水中分散性の測定方法に従って、湿式開繊方式における繊維束の水中での分散性を評価した以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得て、各種評価を行った。結果は表3にまとめた通りであり、水中分散性は不十分であるが、開繊性が高く、接着性が十分に高い炭素繊維束が得られた。
(Example 15)
The adhesion amount of the sizing agent in the second step was changed as shown in Table 3, and as the fifth step, the dispersibility in water of the fiber bundle in the wet opening method was evaluated according to the measurement method of dispersibility in water. Except for the above, a sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 1, and various evaluations were performed. The results are summarized in Table 3, and although the dispersibility in water is insufficient, a carbon fiber bundle with high fiber opening and sufficiently high adhesion was obtained.

(実施例16)
第2の工程において第2乾燥工程の温度を250℃と変更し、第5の工程として、水中分散性の測定方法に従って、湿式開繊方式における繊維束の水中での分散性を評価した以外は、実施例1と同様にしてサイジング剤塗布炭素繊維束を得て、各種評価を行った。結果は表3にまとめた通りであり、水中分散性が低いが、開繊性が高く、接着性が十分に高い炭素繊維束が得られた。
(Example 16)
In the second step, the temperature of the second drying step was changed to 250 ° C., and as the fifth step, according to the measurement method of dispersibility in water, the dispersibility in water of the fiber bundle in the wet opening method was evaluated. A sizing agent-coated carbon fiber bundle was obtained in the same manner as in Example 1, and various evaluations were performed. The results are summarized in Table 3. A carbon fiber bundle having low dispersibility in water but high fiber opening and sufficiently high adhesion was obtained.

1:固定バー
2:炭素繊維束
3:重り
4:水平台
1: Fixing bar 2: Carbon fiber bundle 3: Weight 4: Horizontal stand

本発明によれば、熱可塑性樹脂に対し高い接着性を示し、複合材料への加工時の開繊工程において良好な開繊性を示すサイジング剤塗布炭素繊維束を提供することができる。本発明を使用した熱可塑性樹脂複合体は、軽量でありながら強度に優れることから、航空機部材、宇宙機部材、自動車部材、船舶部材、土木建築材およびスポーツ用品等の多くの分野に好適に用いることができる。
ADVANTAGE OF THE INVENTION According to this invention, the sizing agent application | coating carbon fiber bundle which shows high adhesiveness with respect to a thermoplastic resin, and shows favorable opening property in the opening process at the time of the process to a composite material can be provided. Since the thermoplastic resin composite using the present invention is lightweight and excellent in strength, it is suitably used in many fields such as aircraft members, spacecraft members, automobile members, ship members, civil engineering and building materials, and sports equipment. be able to.

Claims (7)

アミノ基またはアミド基を有する水溶性化合物(A)および非イオン性平滑剤(B)を含むサイジング剤が炭素繊維束に塗布されてなるサイジング剤塗布炭素繊維束であって、下記(i)〜(iv)の全てを満たすサイジング剤塗布炭素繊維束。
(i)サイジング剤全量100質量部に対する水溶性化合物(A)および非イオン性平滑剤(B)の総量が50質量部以上である。
(ii)25℃におけるドレープ値が4〜8cmである。
(iii)繊維−繊維間摩擦係数が0.30以下である。
(iv)繊維−金属間摩擦係数が0.35以下である。
A sizing agent-coated carbon fiber bundle in which a sizing agent containing a water-soluble compound (A) having an amino group or an amide group and a nonionic smoothing agent (B) is applied to a carbon fiber bundle, the following (i) to A sizing agent-coated carbon fiber bundle satisfying all of (iv).
(I) The total amount of the water-soluble compound (A) and the nonionic smoothing agent (B) with respect to 100 parts by mass of the sizing agent is 50 parts by mass or more.
(Ii) The drape value at 25 ° C. is 4 to 8 cm.
(Iii) The fiber-fiber friction coefficient is 0.30 or less.
(Iv) The fiber-metal friction coefficient is 0.35 or less.
水溶性化合物(A)の質量Wと非イオン性平滑剤(B)の質量Wが式(a)を満たす、請求項1に記載のサイジング剤塗布炭素繊維束。
0.1≦W/(W+W)≦0.5・・・式(a)
Weight W B of the mass W A nonionic leveling agent of a water-soluble compound (A) (B) satisfies the formula (a), a sizing agent coating the carbon fiber bundle according to claim 1.
0.1 ≦ W B / (W A + W B ) ≦ 0.5 Formula (a)
非イオン性平滑剤(B)の親水親油バランス(HLB)が10以上である請求項1または2に記載のサイジング剤塗布炭素繊維束。 The sizing agent-coated carbon fiber bundle according to claim 1 or 2, wherein the hydrophilic / lipophilic balance (HLB) of the nonionic smoothing agent (B) is 10 or more. 水溶性化合物(A)と非イオン性平滑剤(B)のSP値の差が0.5〜4.0(J/cm0.5である請求項1〜3のいずれかに記載のサイジング剤塗布炭素繊維束。 The difference in SP value between the water-soluble compound (A) and the nonionic smoothing agent (B) is 0.5 to 4.0 (J / cm 3 ) 0.5 . Sizing agent coated carbon fiber bundle. サイジング剤の付着量が、サイジング剤塗布炭素繊維束100質量部に対して、0.1〜0.3質量部である、請求項1〜4のいずれかに記載のサイジング剤塗布炭素繊維束。 The sizing agent application | coating carbon fiber bundle in any one of Claims 1-4 whose adhesion amount of a sizing agent is 0.1-0.3 mass part with respect to 100 mass parts of sizing agent application | coating carbon fiber bundles. 請求項1〜5のいずれかに記載のサイジング剤塗布炭素繊維束の製造方法であって、サイジング剤を炭素繊維束に塗布する工程を経た後に、接触式乾燥手段によってサイジング剤を塗布した炭素繊維束を乾燥させる予備乾燥工程、および、非接触式乾燥手段によってサイジング剤を塗布した炭素繊維束を乾燥させる第2乾燥工程を有し、第2乾燥工程での乾燥温度が180℃より大きく240℃以下、乾燥時間が60秒以上である、サイジング剤塗布炭素繊維束の製造方法。 It is a manufacturing method of the sizing agent application | coating carbon fiber bundle in any one of Claims 1-5, Comprising: After passing through the process of apply | coating a sizing agent to a carbon fiber bundle, the carbon fiber which apply | coated the sizing agent by the contact-type drying means A pre-drying step for drying the bundle, and a second drying step for drying the carbon fiber bundle coated with the sizing agent by a non-contact type drying means. The drying temperature in the second drying step is higher than 180 ° C and 240 ° C. Hereinafter, a method for producing a sizing agent-coated carbon fiber bundle having a drying time of 60 seconds or more. 請求項1〜5のいずれかに記載のサイジング剤塗布炭素繊維束の製造方法であって、サイジング剤を炭素繊維束に塗布する工程を経た後に、接触式乾燥手段によってサイジング剤を塗布した炭素繊維束を乾燥させる予備乾燥工程、および、非接触式乾燥手段によってサイジング剤を塗布した炭素繊維束を乾燥させる第2乾燥工程を有し、第2乾燥工程での乾燥温度が100℃以上180℃以下、乾燥時間が60秒以上である、サイジング剤塗布炭素繊維束の製造方法。
It is a manufacturing method of the sizing agent application | coating carbon fiber bundle in any one of Claims 1-5, Comprising: After passing through the process of apply | coating a sizing agent to a carbon fiber bundle, the carbon fiber which apply | coated the sizing agent by the contact-type drying means A pre-drying step for drying the bundle, and a second drying step for drying the carbon fiber bundle coated with the sizing agent by a non-contact type drying means, and the drying temperature in the second drying step is 100 ° C. or higher and 180 ° C. or lower. A method for producing a sizing agent-coated carbon fiber bundle, wherein the drying time is 60 seconds or more.
JP2019097040A 2018-05-30 2019-05-23 Sizing agent-coated carbon fiber bundle and manufacturing method therefor Pending JP2019210587A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018103124 2018-05-30
JP2018103124 2018-05-30

Publications (1)

Publication Number Publication Date
JP2019210587A true JP2019210587A (en) 2019-12-12

Family

ID=68844902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019097040A Pending JP2019210587A (en) 2018-05-30 2019-05-23 Sizing agent-coated carbon fiber bundle and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2019210587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114901903A (en) * 2020-01-22 2022-08-12 东丽株式会社 Carbon fiber bundle coated with sizing agent and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264383A (en) * 2004-03-19 2005-09-29 Toray Ind Inc Carbon fiber bundle and method for opening the same
JP2013166921A (en) * 2012-01-20 2013-08-29 Toray Ind Inc Fiber-reinforced polypropylene-based resin composition
JP2014177733A (en) * 2013-02-14 2014-09-25 Toray Ind Inc Carbon fiber bundle for aqueous processing
JP2015007300A (en) * 2013-06-26 2015-01-15 東レ株式会社 Sizing agent-coated carbon fibers, method for producing the same, and carbon fiber-reinforced composite material
JP2015048549A (en) * 2013-09-02 2015-03-16 東レ株式会社 Method of producing carbon fiber bundle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264383A (en) * 2004-03-19 2005-09-29 Toray Ind Inc Carbon fiber bundle and method for opening the same
JP2013166921A (en) * 2012-01-20 2013-08-29 Toray Ind Inc Fiber-reinforced polypropylene-based resin composition
JP2014177733A (en) * 2013-02-14 2014-09-25 Toray Ind Inc Carbon fiber bundle for aqueous processing
JP2015007300A (en) * 2013-06-26 2015-01-15 東レ株式会社 Sizing agent-coated carbon fibers, method for producing the same, and carbon fiber-reinforced composite material
JP2015048549A (en) * 2013-09-02 2015-03-16 東レ株式会社 Method of producing carbon fiber bundle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114901903A (en) * 2020-01-22 2022-08-12 东丽株式会社 Carbon fiber bundle coated with sizing agent and method for producing same
EP4047126A4 (en) * 2020-01-22 2024-01-10 Toray Industries Sizing-agent-coated carbon fiber bundle and method for manufacturing same

Similar Documents

Publication Publication Date Title
CA1229267A (en) Glass fibers to reinforce polymeric materials
WO2013118689A1 (en) Carbon fiber composite material
JP6175936B2 (en) Carbon fiber coated with sizing agent and production method thereof, carbon fiber reinforced composite material
JP2015517932A (en) Thermoplastic resin molding preform
JPWO2013133421A1 (en) Carbon fiber bundle and manufacturing method thereof
US20130143025A1 (en) Thermoplastic resin impregnated tape
WO2022009796A1 (en) Carbon fiber bundle with adhered sizing agent
JP6108240B2 (en) Carbon fiber nonwoven fabric
JP2006291377A (en) Carbon fiber strand for reinforcing thermoplastic resin
JP7363091B2 (en) Sizing agent-coated carbon fiber bundle and its manufacturing method, thermoplastic resin composition, molded article
JP5112973B2 (en) Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same
JP5251342B2 (en) Carbon fiber web manufacturing method
JP2019210587A (en) Sizing agent-coated carbon fiber bundle and manufacturing method therefor
JP2008095222A (en) Carbon fiber strand and prepreg
TWI769513B (en) Carbon fiber manufacturing method and carbon fiber using the same
JP2014173053A (en) Prepreg for press molding and fiber reinforced composite material
JP6384121B2 (en) Prepreg, method for producing the same, and carbon fiber reinforced composite material
JP2005264383A (en) Carbon fiber bundle and method for opening the same
JP2005256226A (en) Sizing-coated carbon fiber and method for producing the same
JP2020139260A (en) Sizing agent-coated carbon fiber bundles
JP4457747B2 (en) Carbon fiber bundle
US20220403587A1 (en) Sizing-agent-coated carbon fiber bundle and method for manufacturing same
JP2020158595A (en) Manufacturing method of thermoplastic matrix resin fused carbon fiber tape, manufacturing method of composite material
JP7267792B2 (en) Carbon fiber bundle with sizing agent
JP2006188782A (en) Carbon fiber strand and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231031