JP2019203737A - Capacitance sensor - Google Patents

Capacitance sensor Download PDF

Info

Publication number
JP2019203737A
JP2019203737A JP2018097739A JP2018097739A JP2019203737A JP 2019203737 A JP2019203737 A JP 2019203737A JP 2018097739 A JP2018097739 A JP 2018097739A JP 2018097739 A JP2018097739 A JP 2018097739A JP 2019203737 A JP2019203737 A JP 2019203737A
Authority
JP
Japan
Prior art keywords
electrode
detection
electrode surface
capacitance sensor
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018097739A
Other languages
Japanese (ja)
Inventor
佐藤 秀夫
Hideo Sato
秀夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AI TECH CO Ltd
Ai Technology
AI TECHNOLOGY CO Ltd
AI Technology
Original Assignee
AI TECH CO Ltd
Ai Technology
AI TECHNOLOGY CO Ltd
AI Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AI TECH CO Ltd, Ai Technology, AI TECHNOLOGY CO Ltd, AI Technology filed Critical AI TECH CO Ltd
Priority to JP2018097739A priority Critical patent/JP2019203737A/en
Publication of JP2019203737A publication Critical patent/JP2019203737A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lock And Its Accessories (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

To provide a capacitance sensor which can lower the detection accuracy of one electrode surface of a detection electrode without involving reduction in the detection accuracy of the other electrode surface.SOLUTION: A capacitance sensor 10 includes: a detection electrode 20 having a first electrode surface 21 as a front surface and a second electrode surface 22 as a back surface; a non-grounded electrode 30 facing the second electrode surface 22 across a space; a control circuit 40 for supplying pulse signals SG1, SG2 with the same phase to each of the detection electrode 20 and the non-grounded electrode 30; and a detection circuit 50 for outputting an output signal which changes according to changes in the capacitance formed between the first electrode surface 21 and a human body.SELECTED DRAWING: Figure 1

Description

本発明は、静電容量センサに関わる。   The present invention relates to a capacitance sensor.

車両のドアの施解錠を行うための機構として、ユーザがドアハンドルの内側に接触したことをユーザと検出電極との間の静電容量の変化を通じて検出する静電容量センサを用いる機構が知られている。この種の静電容量センサでは、検出電極の両面(例えば、ドアハンドルの内側を向く電極面及び外側を向く電極面)に感度を有するため、ドアの施解錠をする意思のないユーザがドアハンドルの外側に接触するときでも、ユーザと検出電極との間の静電容量の変化を検出し、ドアを誤って施解錠してしまう虞がある。このような事情に鑑み、特許3614789号公報は、静電容量センサの検出電極の両面のうちドアハンドルの外側を向く電極面の検出感度を下げるための接地電極を備えるドアハンドルを提案している。   As a mechanism for locking and unlocking a door of a vehicle, a mechanism using a capacitance sensor that detects that a user has contacted the inside of a door handle through a change in capacitance between the user and a detection electrode is known. ing. In this type of capacitance sensor, since there is sensitivity on both sides of the detection electrode (for example, the electrode surface facing the inside of the door handle and the electrode surface facing the outside), a user who does not intend to lock and unlock the door can handle the door handle. Even when the outer side of the door is touched, a change in electrostatic capacitance between the user and the detection electrode may be detected, and the door may be erroneously locked and unlocked. In view of such circumstances, Japanese Patent No. 3614789 proposes a door handle including a ground electrode for lowering the detection sensitivity of the electrode surface facing the outside of the door handle out of both surfaces of the detection electrode of the capacitance sensor. .

特許3614789号公報Japanese Patent No. 3614789

しかし、このような接地電極を設けると、静電容量センサの検出電極の両面のうちドアハンドルの内側を向く電極面の検出感度も低下してしまうという問題が生じる。   However, when such a ground electrode is provided, there is a problem that the detection sensitivity of the electrode surface facing the inside of the door handle out of both surfaces of the detection electrode of the capacitance sensor is also lowered.

そこで、本発明は、このような問題を解決し、検出電極の両面のうち一方の電極面の検出感度を下げることなく、他方の電極面の検出感度を下げることのできる静電容量センサを提案することを課題とする。   Accordingly, the present invention proposes a capacitance sensor that solves such a problem and can lower the detection sensitivity of the other electrode surface without lowering the detection sensitivity of one of the detection electrodes. The task is to do.

上述の課題を解決するため、本発明に関わる静電容量センサは、第1の電極面及びその裏面である第2の電極面を有する検出電極と、第2の電極面に対向するように間隔を空けて配置されている非接地電極と、検出電極及び非接地電極のそれぞれに同相のパルス信号を供給する制御回路と、第1の電極面と人体との間に形成される静電容量の変化に応じて変化する出力信号を出力する検出回路とを備える。   In order to solve the above-described problem, a capacitance sensor according to the present invention includes a detection electrode having a first electrode surface and a second electrode surface that is the back surface of the first electrode surface, and a distance so as to face the second electrode surface. A non-grounded electrode disposed with a gap therebetween, a control circuit for supplying a pulse signal having the same phase to each of the detection electrode and the non-grounded electrode, and a capacitance formed between the first electrode surface and the human body And a detection circuit that outputs an output signal that changes in accordance with the change.

本発明に関わる静電容量センサによれば、検出電極の両面のうち第1の電極面の検出感度を下げることなく、第2の電極面の検出感度を下げることができる。   According to the capacitance sensor according to the present invention, the detection sensitivity of the second electrode surface can be lowered without lowering the detection sensitivity of the first electrode surface of both surfaces of the detection electrode.

本発明の実施形態に関わる静電容量センサの概略構成図である。It is a schematic block diagram of the electrostatic capacitance sensor in connection with embodiment of this invention. 本発明の実施形態に関わる静電容量センサの回路図である。It is a circuit diagram of a capacitance sensor according to an embodiment of the present invention. 本発明の実施形態に関わるパルス信号と検出電極の電位との関係を示すグラフである。It is a graph which shows the relationship between the pulse signal in connection with embodiment of this invention, and the electric potential of a detection electrode. 本発明の実施形態に関わる出力信号のグラフである。It is a graph of the output signal concerning embodiment of this invention. 本発明の実施形態に関わる検出電極の電位と出力信号との関係を示すグラフである。It is a graph which shows the relationship between the electric potential of the detection electrode in connection with embodiment of this invention, and an output signal. 本発明の実施形態に関わる検出電極の電位と出力信号との関係を示すグラフである。It is a graph which shows the relationship between the electric potential of the detection electrode in connection with embodiment of this invention, and an output signal. 本実施形態に関わる静電容量センサの検出感度と従来の静電容量センサの検出感度との比較実験の結果を示すグラフである。It is a graph which shows the result of the comparison experiment of the detection sensitivity of the electrostatic capacitance sensor in connection with this embodiment, and the detection sensitivity of the conventional electrostatic capacitance sensor. 本実施形態に関わる静電容量センサにおける、第1の電極面の検出感度と第2の電極面の検出感度との比較結果を示すグラフである。It is a graph which shows the comparison result of the detection sensitivity of the 1st electrode surface, and the detection sensitivity of the 2nd electrode surface in the capacitance sensor concerning this embodiment.

以下、図面を参照しながら本発明の実施形態について説明する。ここで、同一符号は同一の構成要素を示すものとし、重複する説明は省略する。
図1は本発明の実施形態に関わる静電容量センサ10の概略構成図である。静電容量センサ10は、検出電極20と、非接地電極30と、制御回路40と、検出回路50とを備えている。検出電極20は、第1の電極面21及びその裏面である第2の電極面22を有している。ここで、第1の電極面21は、人体との間に形成される静電容量の変化の検出に用いられる電極面であり、検出面と呼ぶこともできる。一方、第2の電極面22は、人体との間に形成される静電容量の変化の検出には用いられない電極面であり、非検出面と呼ぶこともできる。車両のドアの施解錠を行うための機構として静電容量センサ10を用いる場合、第1の電極面21を、例えば、ドアハンドルの内側を向くように位置決めし、第2の電極面22を、例えば、ドアハンドルの外側を向くように位置決めしてもよい。非接地電極30は、第2の電極面22に対向するように、第2の電極面22との間に間隔を空けて平行に配置されている。制御回路40は、検出電極20にパルス信号SG1を供給するとともに、非接地電極30にパルス信号SG2を供給する。検出回路50は、第1の電極面21と人体との間に形成される静電容量の変化に応じて変化する出力信号V1を出力する。制御回路40は、出力信号V1に基づいて、第1の電極面21への人体の接近を検出する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, the same code | symbol shall show the same component, and the overlapping description is abbreviate | omitted.
FIG. 1 is a schematic configuration diagram of a capacitance sensor 10 according to an embodiment of the present invention. The capacitance sensor 10 includes a detection electrode 20, a non-grounded electrode 30, a control circuit 40, and a detection circuit 50. The detection electrode 20 has a first electrode surface 21 and a second electrode surface 22 which is the back surface thereof. Here, the 1st electrode surface 21 is an electrode surface used for the detection of the change of the electrostatic capacitance formed between human bodies, and can also be called a detection surface. On the other hand, the second electrode surface 22 is an electrode surface that is not used for detecting a change in capacitance formed between the body and the human body, and can also be referred to as a non-detection surface. When using the capacitance sensor 10 as a mechanism for locking and unlocking the door of the vehicle, the first electrode surface 21 is positioned so as to face the inside of the door handle, for example, and the second electrode surface 22 is For example, you may position so that it may face the outer side of a door handle. The non-grounded electrode 30 is arranged in parallel with a gap between the non-ground electrode 30 and the second electrode surface 22 so as to face the second electrode surface 22. The control circuit 40 supplies the pulse signal SG1 to the detection electrode 20 and supplies the pulse signal SG2 to the non-grounded electrode 30. The detection circuit 50 outputs an output signal V1 that changes according to a change in capacitance formed between the first electrode surface 21 and the human body. The control circuit 40 detects the approach of the human body to the first electrode surface 21 based on the output signal V1.

なお、制御回路40は、パルス信号SG1,SG2を出力する出力端子OUTと、出力信号V1を入力する入力端子INと、制御端子CTLとを備えている。制御端子CTLの機能については後述する。   The control circuit 40 includes an output terminal OUT that outputs the pulse signals SG1 and SG2, an input terminal IN that receives the output signal V1, and a control terminal CTL. The function of the control terminal CTL will be described later.

図2は静電容量センサ10の回路図である。出力端子OUTからの信号線S1は、ダイオード素子D及び検出回路50を通じて、検出電極20に接続している。信号線S2は、ダイオード素子Dのアノード側において、信号線S1から分岐して非接地電極30に接続している。信号線S1を通じて検出電極20に供給されるパルス信号SG1の位相と、信号線S2を通じて非接地電極30に供給されるパルス信号SG2の位相は同じである。検出回路50は、抵抗素子Rと容量素子Cとを備えている。抵抗素子Rの一端は、ダイオード素子Dのカソード側において、信号線S1に分岐接続しており、その他端は、容量素子Cの一端に接続している。容量素子Cの他端は、フレームグランド(例えば、車体)に接続している。入力端子INからの信号線S3及び制御端子CTLからの信号線S4は、抵抗素子Rと容量素子Cとの接続点に接続している。   FIG. 2 is a circuit diagram of the capacitance sensor 10. The signal line S1 from the output terminal OUT is connected to the detection electrode 20 through the diode element D and the detection circuit 50. The signal line S2 branches from the signal line S1 and is connected to the non-ground electrode 30 on the anode side of the diode element D. The phase of the pulse signal SG1 supplied to the detection electrode 20 through the signal line S1 is the same as the phase of the pulse signal SG2 supplied to the non-grounded electrode 30 through the signal line S2. The detection circuit 50 includes a resistance element R and a capacitance element C. One end of the resistor element R is branched and connected to the signal line S1 on the cathode side of the diode element D, and the other end is connected to one end of the capacitor element C. The other end of the capacitive element C is connected to a frame ground (for example, a vehicle body). A signal line S3 from the input terminal IN and a signal line S4 from the control terminal CTL are connected to a connection point between the resistance element R and the capacitance element C.

なお、検出電極20と非接地電極30との間に形成される静電容量をCpとし、検出電極20の第1の電極面21とシグナルグランドとの間に形成される静電容量をCst1とし、検出電極20の第1の電極面21と人体との間に形成される静電容量をCst2とし、検出電極20の電荷量をQとし、検出電極20の電位をV0とし、パルス信号SG1,SG2のハイレベル時の電圧をVとし、ダイオード素子Dのオン電圧をVfとする。また、出力信号V1は、抵抗素子Rと容量素子Cとの接続点の電位を示すものとする。   The capacitance formed between the detection electrode 20 and the non-ground electrode 30 is Cp, and the capacitance formed between the first electrode surface 21 of the detection electrode 20 and the signal ground is Cst1. The capacitance formed between the first electrode surface 21 of the detection electrode 20 and the human body is Cst2, the charge amount of the detection electrode 20 is Q, the potential of the detection electrode 20 is V0, and the pulse signal SG1, The voltage at the high level of SG2 is V, and the ON voltage of the diode element D is Vf. The output signal V1 indicates the potential at the connection point between the resistance element R and the capacitance element C.

次に、図3乃至図6を参照しながら、静電容量センサ10の動作について説明する。
図3は、パルス信号SG1と電位V0との関係を示すグラフである。このグラフの横軸は時間を示し、縦軸は電位を示す。パルス信号SG1がハイレベル(例えば、3V)のとき、検出電極20に電荷Qが充電されるとともに、抵抗素子Rを通じて容量素子Cが充電される。このとき、非接地電極30に供給されるパルス信号SG2もハイレベルであり、検出電極20と非接地電極30との間の電圧はVfに等しいため、これらの電極間の静電容量に充電される電荷量(Cp×Vf)は、Qと比較して無視できる程度に少ない。このため、Qは(1)式のように近似することができる。
Next, the operation of the capacitance sensor 10 will be described with reference to FIGS. 3 to 6.
FIG. 3 is a graph showing the relationship between the pulse signal SG1 and the potential V0. The horizontal axis of this graph represents time, and the vertical axis represents potential. When the pulse signal SG1 is at a high level (for example, 3V), the detection electrode 20 is charged with the charge Q, and the capacitive element C is charged through the resistance element R. At this time, the pulse signal SG2 supplied to the non-ground electrode 30 is also at a high level, and the voltage between the detection electrode 20 and the non-ground electrode 30 is equal to Vf, so that the electrostatic capacitance between these electrodes is charged. The amount of charge (Cp × Vf) is negligibly small compared to Q. For this reason, Q can be approximated as in equation (1).

Q=(V−Vf)×(Cst1+Cst2)…(1) Q = (V−Vf) × (Cst1 + Cst2) (1)

パルス信号SG1がハイレベルからローレベル(例えば、0V)に変化すると、電荷Qの一部が検出電極20と非接地電極30との間の静電容量に移動し、電位V0が低下する。このときの電位V0は(2)式により求めることができる。   When the pulse signal SG1 changes from a high level to a low level (for example, 0 V), a part of the charge Q moves to the capacitance between the detection electrode 20 and the non-grounded electrode 30, and the potential V0 decreases. The potential V0 at this time can be obtained from the equation (2).

V0=Q/(Cst1+Cst2+Cp)…(2) V0 = Q / (Cst1 + Cst2 + Cp) (2)

Cst1及びCpは一定であると見做してよいため、検出電極20の第1の電極面21と人体との間に形成される静電容量Cst2の変化に応じて、電位V0が変化する。例えば、図3において、V0(接近)は、人体が検出電極20の第1の電極面21に接近したときの電位V0を示し、V0(非接近)は、人体が検出電極20の第1の電極面21に接近していないときの電位V0を示している。   Since Cst1 and Cp may be considered to be constant, the potential V0 changes according to the change in the capacitance Cst2 formed between the first electrode surface 21 of the detection electrode 20 and the human body. For example, in FIG. 3, V0 (approach) indicates the potential V0 when the human body approaches the first electrode surface 21 of the detection electrode 20, and V0 (non-approach) indicates the first electric potential of the detection electrode 20 by the human body. The electric potential V0 when not approaching the electrode surface 21 is shown.

図4は、出力信号V1のグラフである。このグラフの横軸は時間を示し、縦軸は電位を示す。抵抗素子Rと容量素子Cとの接続点の電位と電位V0との大小関係に応じて容量素子Cの充放電が行われる。これにより、検出電極20の第1の電極面21と人体との間に形成される静電容量Cst2の変化に応じて、出力信号V1が変化する。例えば、図4において、V1(接近)は、人体が検出電極20の第1の電極面21に接近したときの出力信号V1を示し、V1(非接近)は、人体が検出電極20の第1の電極面21に接近していないときの出力信号V1を示している。V1(接近)とV1(非接近)との差分をΔVとすると、ΔVが大きい程、検出感度は高い。制御回路40は、例えば、ΔVと閾値とを比較して、その大小関係に基づいて人体の接近の有無を検出することができる。   FIG. 4 is a graph of the output signal V1. The horizontal axis of this graph represents time, and the vertical axis represents potential. Charging / discharging of the capacitive element C is performed according to the magnitude relationship between the potential at the connection point between the resistance element R and the capacitive element C and the potential V0. As a result, the output signal V1 changes according to the change in the capacitance Cst2 formed between the first electrode surface 21 of the detection electrode 20 and the human body. For example, in FIG. 4, V <b> 1 (approach) indicates an output signal V <b> 1 when the human body approaches the first electrode surface 21 of the detection electrode 20, and V <b> 1 (non-approach) indicates the first of the detection electrode 20. The output signal V1 when not approaching the electrode surface 21 is shown. If the difference between V1 (approach) and V1 (non-approach) is ΔV, the detection sensitivity is higher as ΔV is larger. For example, the control circuit 40 compares ΔV with a threshold value, and can detect whether or not a human body is approaching based on the magnitude relationship.

図5及び図6は、電位V0と出力信号V1との関係を示すグラフである。図5に示すように、出力信号V1よりも電位V0が高電位のときには、検出電極20から容量素子Cに充電電流が流れる。一方、図6に示すように、出力信号V1よりも電位V0が低電位のときには、容量素子Cから検出電極20に放電電流が流れる。このようにして、出力信号V1は、Cst2に比例する値に収束する。なお、検出電極20に供給されるパルス信号SG1のパルス数が所定数に達したときに、容量素子Cの電荷を、制御端子CTLを通じて放電してもよい。   5 and 6 are graphs showing the relationship between the potential V0 and the output signal V1. As shown in FIG. 5, when the potential V0 is higher than the output signal V1, a charging current flows from the detection electrode 20 to the capacitive element C. On the other hand, as shown in FIG. 6, when the potential V0 is lower than the output signal V1, a discharge current flows from the capacitive element C to the detection electrode 20. In this way, the output signal V1 converges to a value proportional to Cst2. Note that the charge of the capacitor C may be discharged through the control terminal CTL when the number of pulses of the pulse signal SG1 supplied to the detection electrode 20 reaches a predetermined number.

図7は、本実施形態に関わる静電容量センサ10の検出感度の指標となるΔVと、従来の静電容量センサの検出感度検出感度の指標となるΔVとの比較実験の結果を示す。従来の静電容量センサは、非接地電極30に替えて、接地電極を備えており、この接地電極には、同相のパルス信号は供給されないものとする。この実験では、非接地電極30として、20mm×84mmの銅テープを用いた。また、従来の静電容量センサの接地電極として、非接地電極30と同じサイズ及び同じ材質のものを用いた。   FIG. 7 shows the result of a comparison experiment between ΔV that is an index of detection sensitivity of the capacitance sensor 10 according to the present embodiment and ΔV that is an index of detection sensitivity detection sensitivity of the conventional capacitance sensor. The conventional capacitance sensor is provided with a ground electrode instead of the non-ground electrode 30, and a pulse signal having the same phase is not supplied to the ground electrode. In this experiment, a 20 mm × 84 mm copper tape was used as the ungrounded electrode 30. In addition, as the ground electrode of the conventional capacitance sensor, the same size and the same material as the non-ground electrode 30 were used.

図7の横軸は、検出電極20と指との間の距離を示し、縦軸は、ΔVを示す。符号701〜703は、本実施形態に関わる静電容量センサ10のΔVを示す。特に、符号701は、検出電極20と非接地電極30との間の距離を1mmに設定したときに、検出電極20と指との間の距離に応じて変化するΔVを示す。符号702は、検出電極20と非接地電極30との間の距離を2mmに設定したときに、検出電極20と指との間の距離に応じて変化するΔVを示す。符号703は、検出電極20と非接地電極30との間の距離を3mmに設定したときに、検出電極20と指との間の距離に応じて変化するΔVを示す。   The horizontal axis in FIG. 7 indicates the distance between the detection electrode 20 and the finger, and the vertical axis indicates ΔV. Reference numerals 701 to 703 denote ΔV of the capacitance sensor 10 according to the present embodiment. In particular, reference numeral 701 indicates ΔV that changes according to the distance between the detection electrode 20 and the finger when the distance between the detection electrode 20 and the non-grounded electrode 30 is set to 1 mm. Reference numeral 702 indicates ΔV that changes according to the distance between the detection electrode 20 and the finger when the distance between the detection electrode 20 and the non-grounded electrode 30 is set to 2 mm. Reference numeral 703 indicates ΔV that changes according to the distance between the detection electrode 20 and the finger when the distance between the detection electrode 20 and the non-grounded electrode 30 is set to 3 mm.

一方、符号704〜706は、従来の静電容量センサのΔVを示す。特に、符号704は、検出電極20と接地電極との間の距離を1mmに設定したときに、検出電極20と指との間の距離に応じて変化するΔVを示す。符号705は、検出電極20と接地電極との間の距離を2mmに設定したときに、検出電極20と指との間の距離に応じて変化するΔVを示す。符号706は、検出電極20と接地電極との間の距離を3mmに設定したときに、検出電極20と指との間の距離に応じて変化するΔVを示す。なお、符号707は、非接地電極30も接地電極も備えていない従来の静電容量センサのΔVを示す。   On the other hand, reference numerals 704 to 706 denote ΔV of the conventional capacitance sensor. In particular, reference numeral 704 indicates ΔV that changes according to the distance between the detection electrode 20 and the finger when the distance between the detection electrode 20 and the ground electrode is set to 1 mm. Reference numeral 705 indicates ΔV that changes according to the distance between the detection electrode 20 and the finger when the distance between the detection electrode 20 and the ground electrode is set to 2 mm. Reference numeral 706 indicates ΔV that changes in accordance with the distance between the detection electrode 20 and the finger when the distance between the detection electrode 20 and the ground electrode is set to 3 mm. Reference numeral 707 denotes ΔV of a conventional capacitance sensor that does not include the non-ground electrode 30 and the ground electrode.

図7に示す実験結果から、本実施形態に関わる静電容量センサ10の検出感度は、接地電極を備える従来の静電容量センサの検出感度よりも高いことが分かる。   From the experimental results shown in FIG. 7, it can be seen that the detection sensitivity of the capacitance sensor 10 according to the present embodiment is higher than the detection sensitivity of a conventional capacitance sensor including a ground electrode.

図8は、本実施形態に関わる静電容量センサ10における、第1の電極面21の検出感度の指標となるΔVと、第2の電極面22の検出感度の指標となるΔVとの比較結果を示す。   FIG. 8 shows a comparison result between ΔV that is an index of detection sensitivity of the first electrode surface 21 and ΔV that is an index of detection sensitivity of the second electrode surface 22 in the capacitance sensor 10 according to this embodiment. Indicates.

図8の横軸は、検出電極20と指との間の距離を示し、縦軸は、ΔVを示す。符号801〜803は、第1の電極面21の検出感度の指標となるΔVを示す。特に、符号801は、検出電極20と非接地電極30との間の距離を1mmに設定したときに、一本の人差し指と第1の電極面21との間の距離に応じて変化するΔVを示す。符号802は、検出電極20と非接地電極30との間の距離を2mmに設定したときに、一本の人差し指と第1の電極面21との間の距離に応じて変化するΔVを示す。符号803は、検出電極20と非接地電極30との間の距離を3mmに設定したときに、一本の人差し指と第1の電極面21との間の距離に応じて変化するΔVを示す。   The horizontal axis in FIG. 8 indicates the distance between the detection electrode 20 and the finger, and the vertical axis indicates ΔV. Reference numerals 801 to 803 denote ΔV that is an index of detection sensitivity of the first electrode surface 21. In particular, reference numeral 801 denotes ΔV that changes according to the distance between one index finger and the first electrode surface 21 when the distance between the detection electrode 20 and the non-grounded electrode 30 is set to 1 mm. Show. Reference numeral 802 indicates ΔV that changes according to the distance between one index finger and the first electrode surface 21 when the distance between the detection electrode 20 and the non-grounded electrode 30 is set to 2 mm. Reference numeral 803 indicates ΔV that changes in accordance with the distance between one index finger and the first electrode surface 21 when the distance between the detection electrode 20 and the non-ground electrode 30 is set to 3 mm.

一方、符号804〜806は、第2の電極面22の検出感度の指標となるΔVを示す。特に、符号804は、検出電極20と非接地電極30との間の距離を1mmに設定したときに、親指を除く4本の指と第2の電極面22との間の距離に応じて変化するΔVを示す。符号805は、検出電極20と非接地電極30との間の距離を2mmに設定したときに、親指を除く4本の指と第2の電極面22との間の距離に応じて変化するΔVを示す。符号806は、検出電極20と非接地電極30との間の距離を3mmに設定したときに、親指を除く4本の指と第2の電極面22との間の距離に応じて変化するΔVを示す。   On the other hand, reference numerals 804 to 806 denote ΔV that is an index of detection sensitivity of the second electrode surface 22. In particular, reference numeral 804 changes according to the distance between the four fingers excluding the thumb and the second electrode surface 22 when the distance between the detection electrode 20 and the non-grounded electrode 30 is set to 1 mm. ΔV to be shown. Reference numeral 805 denotes ΔV that changes according to the distance between the four fingers excluding the thumb and the second electrode surface 22 when the distance between the detection electrode 20 and the non-ground electrode 30 is set to 2 mm. Indicates. Reference numeral 806 denotes ΔV that changes according to the distance between the four fingers excluding the thumb and the second electrode surface 22 when the distance between the detection electrode 20 and the non-ground electrode 30 is set to 3 mm. Indicates.

図8に示す実験結果から、親指を除く4本の指に対する非検出面22の検出感度よりも、一本の人差し指に対する検出面21の検出感度の方が十分に高いことが分かる。これにより、第1の電極面21の検出感度を下げることなく、第2の電極面22の検出感度を実用上十分な程度に低下させることが可能であることが分かる。   From the experimental results shown in FIG. 8, it can be seen that the detection sensitivity of the detection surface 21 for one index finger is sufficiently higher than the detection sensitivity of the non-detection surface 22 for four fingers excluding the thumb. Thus, it can be seen that the detection sensitivity of the second electrode surface 22 can be lowered to a practically sufficient level without reducing the detection sensitivity of the first electrode surface 21.

本発明の実施形態に関わる静電容量センサ10によれば、検出電極20及び非接地電極30のそれぞれに同相のパルス信号SG1,SG2を供給し、第1の電極面21と人体との間に形成される静電容量の変化に応じて変化する出力信号を得ることにより、第1の電極面21の検出感度を下げることなく、非接地電極30に対向する第2の電極面22の検出感度を実用上十分な程度に下げることができる。   According to the capacitance sensor 10 according to the embodiment of the present invention, in-phase pulse signals SG1 and SG2 are supplied to the detection electrode 20 and the non-grounded electrode 30, respectively, and between the first electrode surface 21 and the human body. By obtaining an output signal that changes in accordance with a change in the capacitance that is formed, the detection sensitivity of the second electrode surface 22 that faces the non-grounded electrode 30 is reduced without reducing the detection sensitivity of the first electrode surface 21. Can be lowered to a practically sufficient level.

なお、本実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。例えば、制御回路40の機能と検出回路50の機能とを有する単一の回路を制御回路40及び検出回路50に替えて用いてもよい。   Note that this embodiment is intended to facilitate understanding of the present invention and is not intended to limit the present invention. The present invention can be changed / improved without departing from the spirit thereof, and the present invention includes equivalents thereof. For example, a single circuit having the function of the control circuit 40 and the function of the detection circuit 50 may be used in place of the control circuit 40 and the detection circuit 50.

10…静電容量センサ 20…検出電極 21…第1の電極面 22…第2の電極面 30…非接地電極 40…制御回路 50…検出回路 DESCRIPTION OF SYMBOLS 10 ... Capacitance sensor 20 ... Detection electrode 21 ... 1st electrode surface 22 ... 2nd electrode surface 30 ... Ungrounded electrode 40 ... Control circuit 50 ... Detection circuit

Claims (1)

第1の電極面及びその裏面である第2の電極面を有する検出電極と、
前記第2の電極面に対向するように間隔を空けて配置されている非接地電極と、
前記検出電極及び前記非接地電極のそれぞれに同相のパルス信号を供給する制御回路と、
前記第1の電極面と人体との間に形成される静電容量の変化に応じて変化する出力信号を出力する検出回路と、
を備える静電容量センサ。
A detection electrode having a first electrode surface and a second electrode surface which is the back surface thereof;
A non-grounded electrode disposed at a distance so as to face the second electrode surface;
A control circuit for supplying in-phase pulse signals to each of the detection electrode and the non-grounded electrode;
A detection circuit that outputs an output signal that changes in accordance with a change in capacitance formed between the first electrode surface and the human body;
A capacitance sensor comprising:
JP2018097739A 2018-05-22 2018-05-22 Capacitance sensor Pending JP2019203737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018097739A JP2019203737A (en) 2018-05-22 2018-05-22 Capacitance sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018097739A JP2019203737A (en) 2018-05-22 2018-05-22 Capacitance sensor

Publications (1)

Publication Number Publication Date
JP2019203737A true JP2019203737A (en) 2019-11-28

Family

ID=68726673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018097739A Pending JP2019203737A (en) 2018-05-22 2018-05-22 Capacitance sensor

Country Status (1)

Country Link
JP (1) JP2019203737A (en)

Similar Documents

Publication Publication Date Title
JP4356003B2 (en) Capacitance detection device
US10790822B2 (en) Switching arrangement and method for a capacitive sensor
JP4310695B2 (en) Capacitance change detection device
KR102267365B1 (en) Multi-step incremental switching scheme
JP4531469B2 (en) Capacitive proximity sensor
EP3331165B1 (en) Analog elimination of ungrounded conductive objects in capacitive sensing
US8283934B2 (en) Capacitance sensor for detecting a charge voltage of a multi-capacitor circuit
US10003334B2 (en) Capacitative sensor system
US20130154992A1 (en) Touch sense interface circuit
US11327100B2 (en) Electrostatic sensor and door handle
US20090045821A1 (en) Capacitive sensor with alternating current power immunity
US20140347310A1 (en) Non-linear feedback capacitance sensing
KR20220032628A (en) capacitance detection device
CN105844273A (en) Fingerprint Sensing Device
JP2019203737A (en) Capacitance sensor
JP2018096883A (en) Electrostatic capacitance sensor
JP5964152B2 (en) Capacitance detection device
US7683637B2 (en) Touch sensor with electrostatic immunity and sensing method thereof
KR101507137B1 (en) System and Method for Recogniging of Touch Signals
JP5441181B2 (en) MEASUREMENT DEVICE, CAPACITANCE SENSOR, AND MEASUREMENT METHOD
US10883858B2 (en) Vehicle human detection device
JP5559017B2 (en) Touch sensor
CN113892233A (en) Presence detection sensor and apparatus
KR101507138B1 (en) System and Method for Recogniging of Touch Signals
JP2020107933A (en) Proximity sensor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190926

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210426