JP2019203579A - High tensile strength bolt and manufacturing method thereof - Google Patents

High tensile strength bolt and manufacturing method thereof Download PDF

Info

Publication number
JP2019203579A
JP2019203579A JP2018100167A JP2018100167A JP2019203579A JP 2019203579 A JP2019203579 A JP 2019203579A JP 2018100167 A JP2018100167 A JP 2018100167A JP 2018100167 A JP2018100167 A JP 2018100167A JP 2019203579 A JP2019203579 A JP 2019203579A
Authority
JP
Japan
Prior art keywords
temperature
thread
tensile strength
bolt
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018100167A
Other languages
Japanese (ja)
Inventor
山田勝彦
Katsuhiko Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018100167A priority Critical patent/JP2019203579A/en
Publication of JP2019203579A publication Critical patent/JP2019203579A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

To provide a high tensile strength bolt having a novel screw shape, and a low-cost manufacturing method thereof.SOLUTION: A bolt is composed of two components: a high-strength shaft part 1 and a low-strength soft steel nut 2, which eliminates the problem of lower neck fracture. High-frequency heating, flaw detection, hot rolling, and controlled cooling are directly connected using low-cost hot-rolled wire as a material, and a large pitch low-tilt angle trapezoidal rough threaded rod wire with a metallographic structure of fine pearlite and tensile strength of 1100 MPa or more is formed with high efficiency by isothermal transformation, and cut to form a bolt shaft. A gap is provided between the shaft 1 and the nut 2 so that pre- or post-paint or grout is press-fitted reliably along a thread surface. It is excellent in delayed fracture resistance.SELECTED DRAWING: Figure 1

Description

本発明は耐遅れ破壊性に優れた高抗張力ボルトに関するものである。   The present invention relates to a high tensile strength bolt excellent in delayed fracture resistance.

通称高力ボルトの強度は1000MPa以上であり、一部には1400MPa級も使用されている。所定強度を得るため、ボルトに成形後焼入焼戻し処理により金属組織を焼戻しマルテンサイトとしている。当該組織の弱点は1100MPa以上(規格F11T)の強度で遅れ破壊が発生することである。遅れ破壊とは張力下にある鋼材が腐蝕の進行によってHに起因する局所脆化が発現し、施工数ヶ月〜十数年後に破断する現象である。腐食性環境では破断はより加速する。   The strength of the so-called high-strength bolt is 1000 MPa or more, and the 1400 MPa class is also used in part. In order to obtain a predetermined strength, the metal structure is tempered martensite by forming and quenching and tempering the bolt. The weak point of the structure is that delayed fracture occurs at a strength of 1100 MPa or more (standard F11T). Delayed fracture is a phenomenon in which a steel material under tension develops local embrittlement due to H due to the progress of corrosion and breaks after several months to ten years of construction. In a corrosive environment, breakage is more accelerated.

耐遅れ破壊性の改善のため全工程で諸対策が講じられる。製鋼では脱H精練、Hの有害性を緩和するV,Moの添加、破壊起点になる粗大な非金属介在物の低減、P,S等の不純物の低減、熱間圧延工程では同様に破壊起点になる表面キズの低減、加工工程では頭部割れや首部微小キズの発生防止、最終の熱処理工程では適正な金属組織を得るため厳密な条件管理が行われ、品質維持コストは相当なものである。   Various measures are taken in all processes to improve delayed fracture resistance. In steelmaking, de-H refining, addition of V and Mo to alleviate the harmfulness of H, reduction of coarse non-metallic inclusions that are the starting point of fracture, reduction of impurities such as P, S, etc. In the processing process, head cracks and neck flaws are prevented, and in the final heat treatment process, strict condition management is performed to obtain an appropriate metal structure, and the quality maintenance cost is considerable. .

破壊起点は多くの場合頭部と軸部の境界近辺いわゆる首下である。首下は圧造における塑性流れの変局点であり、キズや延伸した非金属介在物等の材料欠陥が開口し、応力集中点として新たな欠陥となり易い。又熱延材料には元々異方性があって、圧延方向に対して垂直方法は延靭性が低下する。首下では使用時の張力がその低下方向にも作用して不都合である。圧造によりボルト頭部を形成する現行の方法では避けられない弱点である。   In many cases, the fracture starting point is the so-called neck near the boundary between the head and the shaft. The neck is an inflection point of plastic flow in forging, and material defects such as scratches and stretched non-metallic inclusions are opened, and new defects tend to be formed as stress concentration points. Also, the hot-rolled material has anisotropy from the beginning, and the method perpendicular to the rolling direction reduces the ductility. Under the neck, it is inconvenient because the tension during use also acts in the decreasing direction. This is an inevitable weakness in the current method of forming bolt heads by forging.

特許文献1には耐遅れ破壊性の改善の一方法が開示されている。それによるとピアノ線材を使用し、パテンティング処理を施してパーライト組織とした後伸線加工し、その後切断・ねじ切りを加えボルトに仕上げる。パーライト組織を持つ鋼は従来の焼入焼戻し処理した鋼(以下調質鋼と称する)よりも耐遅れ破壊性に優れることは周知であるが冷間加工の附加により更に優れると説明されている。   Patent Document 1 discloses a method for improving delayed fracture resistance. According to this, a piano wire is used, a patenting treatment is performed to make a pearlite structure, and then a wire drawing process is performed, and then a bolt is finished by cutting and threading. It is well known that steel having a pearlite structure is more excellent in delayed fracture resistance than conventional quenched and tempered steel (hereinafter referred to as tempered steel), but it is described that it is further improved by the addition of cold working.

当方法の問題は、加工硬化した鋼線を圧造・転造しようとするので種々の無理が生ずる。両端ねじ切りとしなければならない。ねじ切り時の発熱が大きい。工具の摩耗が早い。細径製品には適用できても15mm径以上の場合は素材となる棒鋼のパテンティング処理とその後の引抜には特別の設備を要する等々実用的ではない。   The problem with this method is that various troubles occur because the work-hardened steel wire is forged and rolled. Both ends must be threaded. Heat generation during thread cutting is large. Tool wear is fast. Even if it can be applied to small diameter products, if the diameter is 15 mm or more, it is not practical to require special equipment for the patenting treatment of the steel bar as a raw material and the subsequent drawing.

特許文献2(先行例1とする)には耐遅れ破壊性改善の他の例が示されている。それによると破壊の原因となる拡散性Hの悪影響を抑制するにはV、Moの添加が極めて有効であると記されている。高価なレアメタルの多量添加は材料コスト上の問題が大きい。   Patent Document 2 (referred to as Prior Example 1) shows another example of improving delayed fracture resistance. According to this, it is stated that the addition of V and Mo is extremely effective in suppressing the adverse effect of diffusible H that causes destruction. Addition of a large amount of expensive rare metal has a significant problem in material cost.

非特許文献1にはパイル用、ポール用のPC(プレストレスト・コンクリート)鋼棒の遅れ破壊性が研究されている。鋼材表面のショットピーニング加工が耐遅れ破壊性を強化することが解明されている。張力下にある高強度鋼材は表面の腐蝕の進行によりいずれ遅れ破壊が生ずる。PC鋼棒の場合、鋼棒がコンクリートに密接して埋設されていて腐蝕が防止され従って遅れ破壊も防止されている。当該処理は密接が不完全の場合に遅れ破壊の危険性を軽減する。   Non-Patent Document 1 studies delayed fracture properties of PC (prestressed concrete) steel bars for piles and poles. It has been elucidated that shot peening of steel surfaces enhances delayed fracture resistance. High-strength steel under tension will eventually break with the progress of surface corrosion. In the case of PC steel bars, the steel bars are buried in close contact with the concrete to prevent corrosion and thus prevent delayed fracture. The treatment reduces the risk of delayed destruction if close contact is incomplete.

特許文献3には橋梁用の高強度PC鋼棒の製造方法が開示されている。それによると高炭素低合金鋼を材料にして熱間圧延後の制御冷却により大部分が緻密なパーライトから成る組織に誘導し抗張力1350MPaを得ている。16〜32mm径のねじ節棒鋼も製造されている。PC鋼棒の施工に当たって防蝕は不可欠要素であり、そのためグラウト・メカニズムが組み込まれている。ナット等から構成される両端の特殊な緊張・定着部材や鋼棒を所定長さに延長する特殊結合ナット及び数10mにもなる棒本体ともそれぞれグラウト(セメントと水から成る乳液状のアルカリ性被覆材)処理がなされる。その結果遅れ破壊は発生せず半永久的耐久性を持つ。当該技術が簡単な作業でボルトに転用できれば問題解決となろう。   Patent Document 3 discloses a method for producing a high-strength PC steel bar for bridges. According to this, a high-carbon low alloy steel is used as a material, and a tensile strength of 1350 MPa is obtained by induction into a structure composed mostly of dense pearlite by controlled cooling after hot rolling. Threaded bar steel with a diameter of 16 to 32 mm is also manufactured. Corrosion protection is an indispensable element in the construction of PC steel bars, so a grout mechanism is incorporated. Grout (milky alkaline covering material made of cement and water) for special tension / fixing members at both ends, consisting of nuts, etc., a special coupling nut that extends a steel rod to a predetermined length, and a rod body of several tens of meters ) Processing is done. As a result, delayed fracture does not occur and it has semi-permanent durability. If this technology can be diverted to bolts with simple work, the problem will be solved.

特許文献4(先行例2とする)には上記ねじ節PC鋼棒を高抗張力ボルトに展開した製品と定着工法が提案されている。強度・耐遅れ破壊性、首下破断等品質にはPC鋼棒の実績から申し分ない。ボルトの製造コストもレアメタルを含まず、且つ熱延製品であることから現行の高力ボルトと比較して格段に低い。防蝕に対しては、PC工法のグラウト処理を参考にして、ボルト軸とナット間に隙間を設けてグラウト処理を組み込み解決している。   Patent Document 4 (referred to as Prior Example 2) proposes a product and a fixing method in which the above-mentioned threaded joint PC steel bar is developed on a high tensile strength bolt. The strength such as delayed fracture resistance and fracture under the neck is perfect from the results of PC steel bars. The manufacturing cost of the bolt does not include a rare metal and is a hot-rolled product, so it is much lower than the current high-strength bolt. For corrosion protection, the grout process of the PC method is used as a reference, and a clearance is provided between the bolt shaft and the nut to solve the problem by incorporating the grout process.

当該方法の問題点を挙げる。ねじ節はねじ山が1周で2回欠落したもので、実質半周分しかないので二つの不利が生ずる。
1)ナットの必要結合長さが通常のねじの倍増となる。当然軸当該部も倍増する。
2)グラウト作業では比較的簡単なナット端面からの圧入であるが、ねじ山の間欠する圧延圧下側面の間隙が大きいので状況により流れが短絡し、ねじ面間に気泡が残存しグラウト不備が発生することである。
The problems of this method are listed. Since the screw knot is a screw thread missing twice in one round, and has only a substantial half round, there are two disadvantages.
1) The required coupling length of the nut is double that of a normal screw. Naturally, the axis is doubled.
2) In the grouting operation, it is relatively easy to press-fit from the end face of the nut, but due to the large gap on the rolling reduction side where the thread is intermittent, the flow may be short-circuited depending on the situation, and bubbles may remain between the screw faces, resulting in incomplete grout. It is to be.

市場面に関して、高力ボルトは致命的な多数の事故例から学会・業界の長い協同研究開発成果により耐遅れ破壊問題がほぼ解決され、JISにおいて『高力ボルト』が認定され、張力管理が適切になされ、寡占市場の現行品が協調されている。新規参入には問題が多々あるが、『高力』でなくても高強度のボルトやねじ棒にはそれなりの需要があり、本発明の名称も『高力』とはしなかった。今後海外で受け入れられる可能性がある。   In terms of the market, high strength bolts have been solved with the long-lasting collaborative research and development results of academia and industry from a number of fatal accident cases. The current products in the oligopolistic market are coordinated. Although there are many problems in new entry, there is a certain demand for high-strength bolts and screw rods even if they are not “high strength”, and the name of the present invention is not “high strength”. It may be accepted overseas in the future.

公開特許公報2002−337334Published Patent Publication 2002-337334 公開特許公報2006−219718Published Patent Publication 2006-219718 公開特許公報昭61−26730Published Patent Publication No. 61-26730 特許第4390157Patent No. 4390157 特許第4025851Patent No. 4025851

CAMP-ISIJ Vol.8(1995)-1507CAMP-ISIJ Vol.8 (1995) -1507

以上述べたように現行の1100MPa級以上の高力ボルト(先行例1)は調質鋼であって遅れ破壊の危険性があり、対策として多量のV,Moの添加により拡散性Hの悪影響を解決しているが材料コストが極めて高いという問題がある。
ねじ節PC鋼棒を軸として両ナット方式でボルトを構成し、ナット端面からのワンタッチのグラウトで防蝕する方法(先行例2)は、優れたPC鋼材としての性能と実績をボルトに転用したもので、上記遅れ破壊問題とコストの大幅低減をほぼ解決しているが、ねじ節(間欠ねじ山)に起因する軸・ナットの必要結合長さの倍増とグラウトがねじ欠落部を短絡してねじ面全周を覆いにくいと言う問題がある。
本発明はねじ節PC鋼棒の両優秀性(耐遅れ破壊と低コスト)を継承しつつ先行例2のボルトの問題、即ちねじ節に起因する必要結合長さの倍増問題とボルト軸とナット間のグラウト不備問題を解決すべき課題とする。
As described above, the current high-strength bolts of 1100 MPa class or higher (previous example 1) are tempered steel and there is a risk of delayed fracture. As a countermeasure, the addition of a large amount of V and Mo can adversely affect diffusibility H. Although it is solved, there is a problem that the material cost is extremely high.
Bolts are constructed with a double nut method using a screw-joint PC steel rod as a shaft, and the method of corrosion protection with a one-touch grout from the nut end face (Prior Example 2) is a conversion of the excellent performance and results of PC steel to bolts. The above-mentioned delayed fracture problem and significant cost reduction are almost solved, but the required coupling length of the shaft and nut due to the screw joint (intermittent thread) is doubled and the grout short-circuits the screw missing part. There is a problem that it is difficult to cover the entire surface.
The present invention inherits both superiority (delayed fracture resistance and low cost) of the screw joint PC steel rod, while the problem of the bolt of the preceding example 2, that is, the problem of doubling the required coupling length caused by the screw joint, the bolt shaft and the nut The problem of incomplete grout is to be solved.

上記問題解決のため以下の諸手段が適用される。
1) 耐遅れ破壊性の確保のため微細パーライトによる強靱化を踏襲する。
2) 同目的のため確実なグラウト又は塗装を適用する(公知)。
3) 橋梁用PC鋼棒として実績と信頼性のあるねじ節形状をさらに改良する(新規)。
4) 改良ねじ形状の成形困難性を解決する(新規)。
5) 高速ねじ成形(新規)と熱処理と不良部除去を一体化してコスト低減を図る(新規)。
The following means are applied to solve the above problems.
1) Follow toughening with fine pearlite to ensure delayed fracture resistance.
2) Apply a reliable grout or paint for the same purpose (known).
3) Further improve the screw node shape with a track record and reliability as a PC steel bar for bridges (new).
4) Solve the difficulty of forming the improved screw shape (new).
5) Cost reduction by integrating high-speed thread forming (new), heat treatment, and removal of defective parts (new).

第1発明は、熱間圧延丸棒鋼又は鋼線材の表層に熱間転造により下記形状の大ピッチ低傾斜角台形粗ねじを形成し、次いで制御冷却を施して主たる金属組織を微細パーライト、抗張力を1100MPa以上とした棒鋼を所定長さに切断してボルト軸部とし、該軸部の片端にナットを螺合してボルトを構成し、軸部と両ナットとの螺合面には接着剤又は塗料又はグラウト材を圧入することができる下記間隙を持つことを特徴とする高抗張力ボルトである。

ねじ高さ=(0.06〜0.07)×棒径
ねじピッチ=(0.5〜0.6)×棒径
ねじ山裾幅Bに対するねじ底幅Cの比C/B=1.1〜2.0
ねじ山傾斜=40〜50゜
対ナット軸方向間隙=(0.3〜0.5)mm
対ナット半径方向間隙=(0.2〜0.4)mm
The first invention is to form a large pitch low-tilt angle trapezoidal rough screw of the following shape by hot rolling on the surface layer of hot rolled round steel bar or steel wire, and then control cooling to make the main metal structure fine pearlite, tensile strength A steel bar having a thickness of 1100 MPa or more is cut into a predetermined length to form a bolt shaft portion, and a nut is screwed to one end of the shaft portion to form a bolt. An adhesive is attached to the screwing surface between the shaft portion and both nuts. Or it is a high tensile-strength bolt characterized by having the following gap into which a paint or grout material can be pressed.
Thread height = (0.06-0.07) × rod diameter Thread pitch = (0.5-0.6) × rod diameter Ratio of thread bottom width C to thread hem width B C / B = 1.1 ~ 2.0
Thread slope = 40-50 ° vs. nut axial clearance = (0.3-0.5) mm
Clearance against nut radial direction = (0.2-0.4) mm

第2発明は、第1発明に記載した高抗張力ボルトの軸部の製造方法であって、軸径が18mm以上51mm以下の所定径で所定成分の素材丸棒を棒軸方向に走行させ、高周波誘導コイルを貫通させ該コイルの出口部において表面温度が1050℃以上の基準値になるよう急速加熱し、測温記録し、中心温度が遅滞のまま直ちにロール状ダイスを持ち回転軸固定のねじ転造機に通して該棒を軸周りに回転させつつねじ山を形成し、次いで多段に設けた固定向心スプレイの中心を通過させて加速冷却し、所定温度の恒温変態に誘導し、その後前記表面温度の前記基準値からの偏り部をマーキングして後刻当該部を排除することを特徴とする高抗張力ボルトの製造方法である。   A second invention is a method of manufacturing a shaft portion of a high tensile strength bolt described in the first invention, wherein a round rod having a predetermined component having a shaft diameter of 18 mm or more and 51 mm or less is caused to travel in the direction of the rod axis. The induction coil is passed through and rapidly heated so that the surface temperature reaches a reference value of 1050 ° C. or more at the exit of the coil, and the temperature is recorded. A thread is formed while rotating the rod around the axis through a machine, and then accelerated and cooled by passing through the center of a fixed centripetal spray provided in multiple stages, and then induced to a constant temperature transformation at a predetermined temperature. It is a manufacturing method of a high tensile strength bolt characterized by marking a deviation portion of the temperature from the reference value and subsequently removing the portion.

第3発明は、第1発明に記載した高抗張力ボルトの軸部の製造方法であって、軸径が10mm以上15mm以下の所定径で所定成分の鋼線材を軸方向に直進させ、高周波誘導コイルを貫通させ該コイルの出口部において表面温度が1050℃以上の基準値になるよう急速加熱し、測温記録し、中心温度が遅滞のまま直ちにロール状ダイスを持ち該ダイスが自転公転するねじ転造機に通して所定形状のねじを形成し、次いで多段に設けた線軸回りに回転する向心スプレイの中心を通過させて加速冷却し、所定温度の恒温変態に誘導し、その後前記表面温度の前記基準値からの偏り部をマーキングして後刻当該部を排除することを特徴とする高抗張力ボルトの製造方法である。   A third invention is a method of manufacturing a shaft portion of a high strength bolt described in the first invention, wherein a steel wire having a predetermined diameter of 10 mm or more and 15 mm or less is linearly advanced in the axial direction, and a high frequency induction coil is provided. Through which the surface temperature reaches a reference value of 1050 ° C. or more at the outlet of the coil, and the temperature is recorded, and a roll die is immediately held while the center temperature is delayed, and the die rotates and revolves. Through a machine to form a screw of a predetermined shape, and then pass through the center of a centripetal spray rotating around a linear axis provided in multiple stages, accelerate cooling, induce a constant temperature transformation at a predetermined temperature, then the surface temperature of the said It is a method for manufacturing a high tensile strength bolt, characterized in that a portion that deviates from a reference value is marked and the portion is excluded later.

本発明の高抗張力ボルトは金属組織が微細パーライトであるので優れた耐遅れ破壊性を持つ。ねじ面の塗装やショットピーニング加工を追加すると一層優れる。先行例1のような焼戻しマルテンサイト組織では遅れ破壊が問題であり対策としてVやMoを含有する高価な鋼種が不可欠である。   The high tensile strength bolt of the present invention has excellent delayed fracture resistance because the metal structure is fine pearlite. It is even better if you add thread surface coating or shot peening. In the tempered martensite structure as in the preceding example 1, delayed fracture is a problem, and an expensive steel type containing V or Mo is indispensable as a countermeasure.

本発明の高抗張力ボルトは高強度の軸部と低強度の軟鋼のナットから構成され、いわゆる首下に特異な塑性加工流れが無く、圧造に伴う首下の耐遅れ破壊性の低下問題は解消される。   The high tensile strength bolt of the present invention is composed of a high strength shaft part and a low strength mild steel nut, so there is no peculiar plastic working flow under the neck, eliminating the problem of delayed fracture resistance under the neck due to forging. Is done.

本発明の高抗張力ボルトは連続ねじを持ち、先行例2のような間欠ねじ節を持つボルトと比較して軸とナットの結合部の必要長さが半減する。また適切なねじ間隙を持つので接着剤や塗料やグラウトの圧入に際してねじ節のようにねじ欠落部を短絡することがなく螺合面全周にそって確実に被覆が進む。防蝕・耐遅れ破壊の確実性が向上する。
さらに単なる連続ねじではなく、実績と信頼性のあるねじ節PC鋼棒の大ピッチ低傾斜台形粗ねじ節を連続化したものであって、先行例の無い特殊なねじを持つボルトである。
The high tensile strength bolt of the present invention has a continuous thread, and the required length of the joint between the shaft and the nut is halved as compared with the bolt having the intermittent thread joint as in the preceding example 2. In addition, since an appropriate screw gap is provided, the covering is surely advanced along the entire circumference of the screwing surface without short-circuiting the screw missing portion like the screw joint when the adhesive, paint or grout is press-fitted. The certainty of corrosion resistance and delayed fracture is improved.
Furthermore, it is not just a continuous thread, but a continuous and large pitch, low-inclined trapezoidal rough threaded section of a threaded PC steel bar with proven track record and reliability.

コスト比較では、現行の高力ボルトは高価なMo−V鋼の棒線を材料とし、焼鈍・酸洗・伸線・切断・圧造・転造・熱処理の長い工程を持ち高コストである。引用2のねじ節PC鋼棒を細分化したボルトでは著しくコスト低減がなされるが、前述した間欠ねじその他の問題がある。本発明では後者と同様の経済的な鋼種の棒線を材料にして、加熱・転造・冷却が1工程の中に組み込まれ引用1よりも圧倒的に有利である。中でも大ピッチ台形粗ねじは転造の能率を飛躍させ、急速加熱との直結が該転造を補助している。表面不良の部位がライン内で除去されコストと信頼性を強化する。   In cost comparison, the current high-strength bolts are made of expensive Mo-V steel rods and have a long process of annealing, pickling, wire drawing, cutting, forging, rolling, and heat treatment, and are expensive. Although the cost is significantly reduced with the bolt obtained by subdividing the screw knot PC steel rod of Citation 2, there are other problems such as the intermittent screw described above. In the present invention, an economical steel rod similar to the latter is used as a material, and heating, rolling, and cooling are incorporated in one process, which is overwhelmingly more advantageous than Reference 1. Among them, the large pitch trapezoidal coarse screw leaps in the efficiency of rolling, and the direct connection with rapid heating assists the rolling. Surface defects are removed in the line, enhancing cost and reliability.

本発明の大ピッチ低傾斜角台形粗ねじ高抗張力ボルトの形状を示す。The shape of the large pitch low inclination angle trapezoidal rough thread high tensile strength bolt of this invention is shown. 本発明のボルトの軸部となる粗ねじ棒鋼を製造する設備の概略図である。It is the schematic of the equipment which manufactures the rough threaded steel bar used as the axial part of the bolt of the present invention. Aは固定軸ねじ転造機を軸方向に見た図、Bは上から見た図である。A is a view of a fixed shaft screw rolling machine as viewed in the axial direction, and B is a view as seen from above. スプレイ装置の構成単位である固定環状スプレイ管を示す。The fixed annular spray pipe which is a structural unit of a spray apparatus is shown. 高周波誘導による急速加熱において芯部の温度を推定する図で、加熱直後の表面冷却線を無次元で示し、B図は縦軸を対数温度で示す。The figure which estimates the temperature of a core part in the rapid heating by a high frequency induction shows the surface cooling line immediately after a heating dimensionlessly, and B figure shows a vertical axis | shaft by logarithmic temperature. ボルトの軸部となる粗ねじ棒鋼を線材から製造する設備の概略図である。It is the schematic of the installation which manufactures the rough threaded steel bar used as the axial part of a bolt from a wire.

図1に本発明の高抗張力ボルトの形状を示す。ボルトは軸部1と該軸部に螺合する頭部ナット2とから構成される。軸部1は金属組織が微細パーライトであり、抗張力が1100MPa以上である所定径、所定形状の大ピッチ低傾斜角台形粗ねじ棒鋼を単純に所定長さに切断したものであって、ねじ形状は以下である。
ねじ高さh=(0.06〜0.07)×棒径D −−−(1)
ねじピッチp=(0.5〜0.6)×棒径D −−−(2)
ねじ山裾幅Bに対するねじ底幅Cの比C/B=1.1〜2.0 −−−(3)
ねじ山傾斜=40〜50゜ −−−(4)
対ナット軸方向間隙=(0.3〜0.5)mm −−−(5)
対ナット半径方向間隙=(0.2〜0.4)mm −−−(6)
FIG. 1 shows the shape of the high tensile strength bolt of the present invention. The bolt includes a shaft portion 1 and a head nut 2 that is screwed to the shaft portion. The shaft portion 1 is obtained by simply cutting a large pitch low-inclined angle trapezoidal rough threaded steel bar having a predetermined diameter and shape with a metal structure of fine pearlite and a tensile strength of 1100 MPa or more into a predetermined length. It is as follows.
Screw height h = (0.06-0.07) × rod diameter D --- (1)
Screw pitch p = (0.5 to 0.6) × rod diameter D --- (2)
Ratio of screw bottom width C to thread skirt width B C / B = 1.1 to 2.0 −−− (3)
Thread inclination = 40-50 ° --- (4)
Nut axial clearance = (0.3 to 0.5) mm --- (5)
Clearance against nut radial direction = (0.2 to 0.4) mm −−− (6)

上記の寸法関係は橋梁用として信頼性及び実績のあるねじ節PC鋼棒のねじ形状を踏襲し、従来全く製造されていない連続ねじに展開している。間欠ねじ節から連続ねじに変更された結果、螺合面の間隙形状が変化する。螺合において間隙は螺旋を描くが前者の間欠ねじ節ではねじ欠落部で間隙が螺旋を短絡する。そのため間隙の防蝕用グラウトの圧入に際して不完全が生ずる。連続台形ねじではねじ山・ねじ底・1斜面の3面が互いに平行隣接した螺旋間隙を形成し、グラウトやねじ面塗装の確実性が得られる。   The dimensional relationship described above follows the screw shape of a screw joint PC steel bar that has been proven and reliable for bridges, and has developed into a continuous screw that has never been manufactured. As a result of the change from the intermittent thread node to the continuous thread, the gap shape of the screwing surface changes. In screwing, the gap draws a helix, but in the former intermittent screw joint, the gap shorts the helix at the screw missing part. As a result, imperfections occur during the press-fitting of the anticorrosive grout in the gap. In the continuous trapezoidal screw, a spiral gap is formed in which the three surfaces of the thread, the screw bottom, and one inclined surface are parallel and adjacent to each other, and the reliability of grout and thread surface coating can be obtained.

『大ピッチ』とした理由は、1)ねじ節棒鋼の品質安定の実績を踏襲したこと、2)転造において成形速度(m/s)が効率的であることである。
『低傾斜角』とした理由は、1)前記同様にねじ節棒鋼の品質安定の実績を踏襲したこと、2)傾斜角の大きい通常の台形ねじに生ずる山裾部の応力集中を避けるためであり、 『台形』とした理由は、1)前記同様にねじ節棒鋼の品質安定の実績を踏襲したこと、2)圧延後の冷却に際してメートルねじでは頂部の過剰冷却が生ずるのを回避するためである。
『粗ねじ』とした理由は、ねじ形成は通常引抜により直径一定化後になされるが、素材である熱延棒鋼の寸法精度を許容するためである。結果としてナットとの間隙が大きくなり、いわゆる『ガタ』のあるねじであるがグラウトや塗料圧入に活用される。
間隙は圧入が可能となるよう0.2mm以上、ねじの強度面からは0.4mm以下が望ましい。間隙に対して軸方向間隙寸法は約√2倍になる。
金属組織や抗張力については従来水準を超えるものではない。また高力ボルトがしばしばショットピーニング加工されることから本発明においても該加工を付加することは有効である。該棒鋼の抗張力は遅れ破壊の危険性が増大する1100MPa以上と特定する。
The reason for “large pitch” is that 1) the quality stability of the threaded bar steel is followed, and 2) the forming speed (m / s) is efficient in rolling.
The reason for the “low inclination angle” is 1) to follow the results of the quality stability of the threaded bar steel in the same way as described above, and 2) to avoid stress concentration at the foot of the mountain that occurs in normal trapezoidal screws with a large inclination angle. The reason for the “trapezoidal shape” is to 1) follow the results of the quality stability of the threaded bar steel as described above, and 2) to avoid excessive cooling of the top of the metric screw when cooling after rolling. .
The reason for the “coarse thread” is to allow the dimensional accuracy of the hot-rolled steel bar, which is a raw material, although the thread is usually formed after the diameter is fixed by drawing. As a result, the gap between the nut and the nut increases, so that it is a screw with a so-called “backlash”, but it is used for grout and paint press-fitting.
The gap is preferably 0.2 mm or more so that it can be press-fitted, and 0.4 mm or less in terms of the strength of the screw. The axial gap dimension is approximately √2 times the gap.
The metal structure and tensile strength do not exceed conventional levels. Further, since high-strength bolts are often shot peened, it is effective to add the machining in the present invention. The tensile strength of the steel bar is specified as 1100 MPa or more, which increases the risk of delayed fracture.

図2は本発明の高抗張力ボルトの主要材料である軸部のねじ棒鋼の製造ライン(径19mm以上)の概要を示す。
素材である所定成分・所定棒径の熱延丸棒10が供給台12から処理パス11に送られ、該パス11に沿って回転送給装置13によって回転しつつ直進する。ソレノイド型の高周波コイル14に通して表面を1050℃以上の所定温度に急熱する。高周波故に表面が優先加熱される。中心部もオーステナイトへ変態させるが内部に大きな温度勾配が生ずる。コイル出口直近において放射式の温度センサー5を介して測温を記録する。
FIG. 2 shows an outline of a production line (diameter of 19 mm or more) of a threaded bar steel of a shaft portion which is a main material of the high tensile strength bolt of the present invention.
A hot-rolled round bar 10 having a predetermined component and a predetermined bar diameter, which is a raw material, is sent from the supply base 12 to the processing path 11, and advances straight along the path 11 while being rotated by the transfer transfer device 13. The surface is rapidly heated to a predetermined temperature of 1050 ° C. or higher through a solenoid type high frequency coil 14. Due to the high frequency, the surface is preferentially heated. Although the central part is also transformed into austenite, a large temperature gradient is generated inside. The temperature measurement is recorded through the radiation type temperature sensor 5 in the immediate vicinity of the coil exit.

このときほとんど知られていないが表面キズがあると表面温度は高温側に微妙にばらつき偏る。温度センサー15は探傷器の機能を果たす。本願発明では該現象を応用し、測温信号を制御器を介して後述の当該部のマーキングと排除に供する。測温位置が遅れると均熱化が進み温度異常を見失う。   At this time, although it is hardly known, if there is a surface flaw, the surface temperature varies slightly toward the high temperature side and is biased. The temperature sensor 15 functions as a flaw detector. In the present invention, this phenomenon is applied, and the temperature measurement signal is used for marking and exclusion of the part described later via a controller. If the temperature measurement position is delayed, soaking is progressed and the temperature abnormality is lost.

該コイル14に密接してねじ転造機16が後続し、温度勾配を持ったまま直ちに熱間ねじ転造がなされる。ねじ転造機16は図3に示すように、2本のロール型ダイス32の回転軸33が固定式であり、従って被処理材31は自軸の周りに回転する。該ダイス32の表面には製品のねじの形状の反転型のねじ山がその高さを傾斜的に増加して数周設けられ、1回転2回の圧下を数回転受けてねじ山が所定形状まで成長する。   A thread rolling machine 16 follows the coil 14 and immediately performs hot thread rolling with a temperature gradient. As shown in FIG. 3, in the screw rolling machine 16, the rotating shaft 33 of the two roll dies 32 is fixed, so that the workpiece 31 rotates around its own axis. On the surface of the die 32, a reverse thread of the shape of the product screw is provided with a plurality of turns with the height increasing in a slope, and the screw thread has a predetermined shape after being subjected to several rotations of one rotation twice. To grow up.

被処理材31は転造機16に後続して設けられたスプレイ装置17を通過し所定の冷却過程を経過させる。図4に示すように該スプレイ装置17は内側に向心ノズル42を設けた多段の環状スプレイ管44から成り、各個冷却強度が調整可能である。
冷却過程において適宜設けられた測温センサー18により表面温度を追跡し適切にスプレイ強度を調節し所定の恒温変態に誘導する。
The material 31 to be processed passes through a spray device 17 provided after the rolling machine 16 and passes through a predetermined cooling process. As shown in FIG. 4, the spray device 17 is composed of a multi-stage annular spray tube 44 provided with a centripetal nozzle 42 on the inner side, and the cooling strength of each can be adjusted.
In the cooling process, the surface temperature is tracked by a temperature sensor 18 provided as appropriate, the spray strength is appropriately adjusted, and a predetermined constant temperature transformation is induced.

後続して回転引抜装置18が設けられ、転造機16と同期して駆動され被処理材後端が転造機16を抜けた後も同一速度、同一回転数でパスを走行する。   Subsequently, a rotary drawing device 18 is provided, which is driven in synchronism with the rolling machine 16 and travels on the path at the same speed and at the same rotation speed even after the rear end of the workpiece has left the rolling machine 16.

後続して設けられたマーカー19により温度センサー15によって検出された温度異常部に塗料が吹き付けられる。正常材23とマークされた異常材22とは搬出台21で別方向にへ移送される。   The paint is sprayed on the temperature abnormal part detected by the temperature sensor 15 by the marker 19 provided subsequently. The abnormal material 22 marked as the normal material 23 is transferred in a different direction by the carry-out table 21.

以上工程全体を概説したが、重要工程の要点を説明する。
高周波加熱において表面キズが表面温度に微妙に影響する現象に関して、表皮だけを加熱する場合(例;表皮焼入)もあるが、断面全体を加熱する場合、正確な温度を把握するため通常温度センサーはコイル出口から離して均熱化後を測定する。そのため上記現象を見逃す。表面キズが表面温度を上昇させるプロセスとして、円断面内を周回する誘導電流は表皮効果により表層に集中しているが表層の最外層にあるキズが最外層の抵抗値を増加させて昇温し、さらに昇温による抵抗増加が重複するためと推測される。
なお当該部にキズが存在しない場合もある。細かく調査すると脱炭層が大きい場合に表面温度が細かく変動する。いずれにしても、不良部の排除に有効である。
The overall process has been outlined above, but the main points of the important process will be described.
Regarding the phenomenon that surface scratches affect the surface temperature in high frequency heating, there are cases where only the skin is heated (eg, skin quenching), but when heating the entire cross section, a normal temperature sensor is used to determine the exact temperature. Measure after soaking away from the coil outlet. Therefore, the above phenomenon is missed. As a process in which surface scratches increase the surface temperature, the induced current that circulates in the circular cross section is concentrated on the surface due to the skin effect, but scratches on the outermost layer increase the resistance value of the outermost layer and raise the temperature. Further, it is presumed that the resistance increase due to the temperature rise overlaps.
There may be no scratch in the part. Detailed investigation reveals that the surface temperature varies finely when the decarburized layer is large. In any case, it is effective for eliminating defective portions.

表面温度を1050℃以上と特定した理由の一つは中心部が十分なオーステナイト化に達する温度(約900℃)とするためである。
誘導加熱において被処理材の中心部をオーステナイトへ変態させるに際して、中心部の温度挙動を正確に推測する方法を以下に説明する。
丸棒をコイル内で加熱し、通電中での昇温と切電後での空冷時の表面温度の経過を追跡する。図5はその1例でありA図は冷却線(温度・時間とも無次元化)を示す。切電後急速に温度降下するがその後徐々に冷却速度が低下し滑らかな曲線になる。表面温度の急速降下は内部への熱伝導に起因する。均熱化が進み表層の出熱が空冷のみとなると緩慢な空冷冷却線となる。その遷移時が均熱状態であり中心部の最高温度を示す。
One of the reasons why the surface temperature is specified to be 1050 ° C. or higher is to make the temperature at which the central portion reaches sufficient austenitization (about 900 ° C.).
A method for accurately estimating the temperature behavior of the central portion when the central portion of the material to be treated is transformed into austenite by induction heating will be described below.
A round bar is heated in a coil, and the progress of temperature rise during energization and the surface temperature during air cooling after turning off are traced. FIG. 5 shows an example, and FIG. 5A shows a cooling line (both temperature and time are dimensionless). The temperature drops rapidly after turning off, but then the cooling rate gradually decreases and becomes a smooth curve. The rapid drop in surface temperature is due to heat conduction into the interior. When soaking is progressing and the heat output from the surface layer is only air cooling, it becomes a slow air cooling line. The transition time is a soaking state, indicating the maximum temperature in the center.

該遷移時を検出するにはA図の温度軸を対数(B図)にする。空冷部は正確に直線に乗るが切電直後の均熱へ向かう過程では勾配が異なり、変曲点を容易に把握することができる(図中の矢印)。なぜなら均熱状態では冷却式は以下となって、対数関数で記述されるからである。
logeθ=−k・t −−−−−(7)
k=4α/cρD
θ;温度 k;時定数 t;時間 α;熱伝達率 c;比熱 ρ;密度 D;棒径
In order to detect the transition time, the temperature axis in FIG. The air-cooled part rides on a straight line, but the gradient is different in the process of soaking immediately after turning off, and the inflection point can be easily grasped (arrow in the figure). This is because in the soaking state, the cooling equation is as follows and is described by a logarithmic function.
logeθ = −k · t −−−−− (7)
k = 4α / cρD
θ; temperature k; time constant t; time α; heat transfer coefficient c; specific heat ρ; density D;

ねじ転造について説明する。図1に示されるように形成されるねじ形状は現行のねじ節PC鋼棒を踏襲し、しかも特許文献5に開示されたねじ部の軽量化も含めた連続台形ねじになる。冷間で丸棒の端部のみに形成される正確なメートルねじと異なり、特徴はねじ高さhは同様であるが傾斜(α)は緩く、ねじ山頂(幅b)・ねじ底(幅C)とも平坦で長く、従ってねじピッチp(=山裾幅B+谷底幅C)が異常に大きくなってメートルねじの8〜9倍になる。軸方向に沿う連続転造の場合、ねじピッチが大きいと言うことは転造の難易は別として転造速度(m/s)が比例的に増大することを意味する。ねじ形状は既述[(1)〜(6)式]した。
棒径Dが与えられるとピッチp、山裾幅B、谷底幅Cが決まり、雌ねじの実効山幅(=ねじ山高さ中間値のねじ山幅)と雄ねじのそれとが幾何的に算出され、両者のねじ部厚さ比qが決まる。両者の材料の降伏強度比を該比qの逆数に設定すると両者とも必要材料寸法に無駄が無くなる。ナット材料強度からBの最適値を決定すれば良い。
The thread rolling will be described. The screw shape formed as shown in FIG. 1 follows the current screw node PC steel rod, and becomes a continuous trapezoidal screw including the weight reduction of the screw portion disclosed in Patent Document 5. Unlike an accurate metric screw that is formed only at the end of a round bar in the cold, the features are the same as the screw height h, but the slope (α) is loose, and the top of the screw thread (width b), the bottom of the screw (width C) ) Is flat and long, and therefore the screw pitch p (= mountain hem width B + valley bottom width C) becomes abnormally large and becomes 8 to 9 times that of the metric screw. In the case of continuous rolling along the axial direction, a large screw pitch means that the rolling speed (m / s) increases proportionally apart from the difficulty of rolling. The screw shape was already described [Equations (1) to (6)].
When the rod diameter D is given, the pitch p, the ridge width B, and the valley bottom width C are determined, and the effective thread width of the internal thread (= the thread width of the intermediate thread height) and the external thread are calculated geometrically. The thread thickness ratio q is determined. If the yield strength ratio of the two materials is set to the reciprocal of the ratio q, both of them eliminate the waste of necessary material dimensions. The optimum value of B may be determined from the nut material strength.

塑性加工により該台形ねじを形成する場合、圧延では間欠ねじ節となるが容易である。リーダーオーバルからねじ節円断面に圧下する際、圧下率を大きくするだけでカリバーねじ溝に材料が流れ込む。
メートルねじの転造ではダイスの溝幅(山々間)と溝深さ(山高さになる)はほぼ等しく且つ小さいので材料は盛り上がり易く、ねじ山の形成は困難ではない。
台形ねじでは溝幅が大きいので圧下面(ねじの谷底)から溝部への流れ込みは遅れる。転造ダイスを長くして反復加工を増加させなければならないと言う問題が生ずる。径が大きいとダイスが過大になってねじ形成はさらに困難になる。当該問題を解決すべく本発明は次の工夫を込める。
In the case of forming the trapezoidal screw by plastic working, it becomes easy to form an intermittent screw node in rolling. When rolling down from the leader oval to the thread nodal section, the material flows into the caliber thread groove simply by increasing the rolling reduction.
In the rolling of metric threads, the groove width (between mountains) and the groove depth (becomes peak height) of the dies are almost equal and small, so that the material is easily raised and the thread formation is not difficult.
In the trapezoidal screw, the groove width is large, so that the flow from the pressed surface (thread bottom) to the groove is delayed. The problem arises that the rolling dies must be lengthened to increase the repetitive machining. If the diameter is large, the die becomes excessive and screw formation becomes more difficult. In order to solve the problem, the present invention can be devised as follows.

転造促進に高周波誘導急速加熱を適用する。約1050℃以上、望ましくは1100℃以上に急熱するので表層はかなり軟化し下層は多少硬く、従って表層が流れ易い。さらに温度勾配により表層には圧縮応力が生じている。当2条件により転造に際して最初の圧下を大きく設定することができ(必要ダイス長が短縮される)、肉の盛り上がりが早く、広幅台形ねじの形成が促進される。これが誘導コイルと転造機とを密接配置する理由である。   Apply high-frequency induction rapid heating to promote rolling. Since it is heated rapidly to about 1050 ° C. or higher, preferably 1100 ° C. or higher, the surface layer is considerably softened and the lower layer is somewhat hard, and therefore the surface layer tends to flow. Furthermore, compressive stress is generated in the surface layer due to the temperature gradient. Under these two conditions, the initial reduction during rolling can be set large (required die length is shortened), the rise of the meat is quick, and the formation of a wide trapezoidal screw is promoted. This is the reason why the induction coil and the rolling machine are closely arranged.

冷却について説明する。転造加工により被処理材は自転し、向心ノズルは固定であるからスプレイ42はねじ面に沿って周回(螺旋状)するように吹き付けられ、原理的に被処理材は接線方向・軸方向とも均等に冷却される。被処理材は上流側では転造機によって、下流側では回転引抜装置によって支えられて宙づりであるから冷却条件を乱す接触物が無い。転造回転と固定スプレイは好都合な組み合わせである。
スプレイの冷却能(熱伝達率で示される)はほぼ水量密度(g/s・m2)に比例する。過大に設定すると制御精度が問題となる。中庸が使用し易い。また単なるスプレイよりも気水混合スプレイ(通称ミストスプレイ)が種々の点(例;目詰まりが少ない)で安定している。経験上熱伝達率は600(kcal/hm2℃)以下が望ましい。
The cooling will be described. The material to be processed rotates by rolling, and the centripetal nozzle is fixed, so the spray 42 is blown around the screw surface so as to circulate (spiral). In principle, the material to be processed is tangential and axial. Both are evenly cooled. Since the material to be treated is suspended by a rolling machine on the upstream side and by a rotary drawing device on the downstream side, there is no contact object that disturbs the cooling conditions. Rolling rotation and fixed spray are a convenient combination.
The spray cooling capacity (indicated by heat transfer coefficient) is approximately proportional to the water density (g / s · m 2). If it is set too large, control accuracy becomes a problem. It is easy to use a medium collar. In addition, the air / water mixed spray (commonly called mist spray) is more stable than various sprays at various points (eg, less clogging). From experience, it is desirable that the heat transfer coefficient is 600 (kcal / hm2 ° C.) or less.

本発明の冷却では恒温変態に誘導して微細パーライトを得る。そのためにはまず通常所望変態温度まで急冷し、その後当該温度に維持するよう冷却を調整する。冷却が強くない場合、断面内均熱と見なされるので冷却速度は棒径に反比例して低下するが、冷却が強くなると表面中心差が生じ棒径が大きいほど該差異は拡大する。その結果芯部は恒温変態からずれる。焼入性強化合金の添加は当該問題を緩和する。恒温変態に対しては棒径と冷却強度と焼入性の3要因を組み込んだ製造条件の設定が求められる。恒温変態温度とパーライトのラメラピッチと強度との関係は周知である。   In the cooling of the present invention, fine pearlite is obtained by inducing the isothermal transformation. For this purpose, the cooling is usually first adjusted to the desired transformation temperature and then maintained so as to maintain the temperature. When the cooling is not strong, it is regarded as soaking in the cross section, and the cooling rate decreases in inverse proportion to the rod diameter. However, when the cooling becomes strong, the surface center difference occurs and the difference increases as the rod diameter increases. As a result, the core part deviates from the isothermal transformation. Addition of hardenability strengthening alloys alleviates the problem. For isothermal transformation, it is necessary to set production conditions incorporating three factors: rod diameter, cooling strength, and hardenability. The relationship between isothermal transformation temperature, pearlite lamellar pitch and strength is well known.

芯部冷却遅れについて検討する。該遅れは無次元数であるビオー数Biによって推測することができる。固体から流体への1次元定常伝熱の場合、固体表面の熱の授受は等しいので、
λ(θa−θb)/d=α(θb−θc) −−−−(8)
λ;固体熱伝導率 θa;個体熱源温度 θb;境界温度 θc;流体温度
d;固体厚さ α;熱伝達率
上記式から次式が導かれる。
α×d/λ=(θa−θb)/(θb−θc) −−−−(9)
左辺はビオー数Biとして定義されている。Bi=1の場合、
θb=(θa+θc)/2 −−−(10)
表面温度は熱源冷媒間の中間値となる。Bi数が1より大きいと表面は中間値よりも低下し、0.1程度では逆に固体内均熱と見なして良い。
Consider the core cooling delay. The delay can be estimated from the Biot number Bi, which is a dimensionless number. In the case of one-dimensional steady heat transfer from solid to fluid, the transfer of heat on the solid surface is equal,
λ (θa−θb) / d = α (θb−θc) −−−− (8)
λ: Solid thermal conductivity θa: Solid heat source temperature θb: Boundary temperature θc: Fluid temperature d: Solid thickness α: Heat transfer coefficient From the above equation, the following equation is derived.
α × d / λ = (θa−θb) / (θb−θc) −−−− (9)
The left side is defined as the Biot number Bi. When Bi = 1
θb = (θa + θc) / 2 −−− (10)
The surface temperature is an intermediate value between the heat source refrigerants. If the Bi number is larger than 1, the surface is lower than the intermediate value, and if it is about 0.1, the surface may be regarded as soaking in the solid.

棒鋼の場合円柱の二次元定常伝熱を基準とする。中心を熱源と想定して表面積・質量を幾何的に修正すると(8)式、(10)式は以下となる。
λ(θa−θb)/d=4α(θb−θc) −−−(11)
θb=(θa+θc)/5 −−−(12)
上記式から境界温度は全温度差に対して、固体側1流体側4に分配される。具体的には、920℃の棒鋼を20℃のスプレイによりBi数=1の条件で冷却すると、表面温度が920℃から180℃低下して740℃になった時点で中心の冷却が始まり、中心と表面の温度差に対して表面と冷媒との温度差が1:4の比で冷却が進行する。
棒の平均冷却速度は棒径に反比例し熱伝達率に比例するものであるが、中心部の表面に対する遅れもまた棒径と熱伝達率に依存するので中心部は2重に遅れると言うことである。
In the case of steel bar, the standard is the two-dimensional steady heat transfer of the cylinder. When the surface area and mass are geometrically corrected assuming that the center is a heat source, equations (8) and (10) are as follows.
λ (θa−θb) / d = 4α (θb−θc) −−− (11)
θb = (θa + θc) / 5 −−− (12)
From the above equation, the boundary temperature is distributed to the solid side 1 fluid side 4 with respect to the total temperature difference. Specifically, when a steel bar of 920 ° C. is cooled under a condition of Bi number = 1 by spraying at 20 ° C., cooling of the center starts when the surface temperature decreases from 920 ° C. by 180 ° C. to 740 ° C. Cooling proceeds with a temperature difference between the surface and the refrigerant of 1: 4 with respect to the temperature difference between the surface and the surface.
The average cooling rate of the rod is inversely proportional to the rod diameter and proportional to the heat transfer coefficient, but the delay to the center surface also depends on the rod diameter and the heat transfer coefficient, so that the center portion is delayed twice. It is.

Bi数=1とはどの様な条件か試算する。棒径D=51mm、熱伝達率α=400
(kcal/m2h℃)、熱伝導率λ=20(kcal/mh℃)の場合、
Bi=400×0.05/20=1
該α値はかなり強力なミストスプレイだが十分実用範囲にある。
既述の冷却遅れを想定して中心部が所定恒温変態になるよう、鋼の変態を記述するTTT線図を比較検討し、且つ適正値を想定し、焼入性を増加させておかなければならない。具体的にはMn,Cr,Mo(微量),V(微量)等を増量又は新規に添加する。
棒径が20mmの場合、α値を下げても十分な冷却速度が得られ、且つBi数も小さく、従って冷却遅れは無視してもよい。この場合、α値をある程度強化して合金量を削減するのが賢明である。
Estimate under what conditions Bi number = 1. Rod diameter D = 51 mm, heat transfer coefficient α = 400
(Kcal / m2h ℃), thermal conductivity λ = 20 (kcal / mh ℃)
Bi = 400 × 0.05 / 20 = 1
The α value is a fairly strong mist spray but is in a practical range.
Comparing and examining TTT diagrams describing the transformation of steel so that the center part assumes a predetermined isothermal transformation assuming the cooling delay described above, and assuming an appropriate value and increasing the hardenability Don't be. Specifically, Mn, Cr, Mo (a trace amount), V (a trace amount), etc. are increased or newly added.
When the rod diameter is 20 mm, a sufficient cooling rate can be obtained even if the α value is lowered, and the Bi number is small, so that the cooling delay may be ignored. In this case, it is wise to reduce the alloy amount by strengthening the α value to some extent.

恒温変態の誘導に関して、Bi数が0.5以上(α値は既定、棒径大)では中心部冷却遅れを十分考慮し、表面温度を所望変態温度よりも多少低位に且つ速やかに誘導、その後冷却を停止して多少の昇温を待って以後所望温度を維持する。
Bi数が0.3以下であれば断面内均一と仮定して恒温変態に誘導する。
Regarding the induction of isothermal transformation, if the Bi number is 0.5 or more (α value is default, rod diameter is large), sufficiently consider the cooling delay at the center, and induce the surface temperature to be slightly lower than the desired transformation temperature and promptly. The cooling is stopped, and after waiting for some temperature increase, the desired temperature is maintained thereafter.
If the Bi number is 0.3 or less, it is assumed that the cross section is uniform, and the isothermal transformation is induced.

耐遅れ破壊性をより確実にするには棒鋼の表面にはショットピーニング加工を施す。当該処理はグラウト作業に局所的不備があった場合でも遅れ破壊を防止する安全策となる。表面のスケールは除去され灰白色の梨地状の光沢を示す。当表面性状におけるグラウト密着性はスケール付着の熱延鋼材よりも大きい。実施するには図2の製造ラインにおいて、制御冷却後、マーキング前に投射機を挿入(図示せず)する。注意点は処理時の棒鋼温度を500℃以下とする。以上では軟化により効果が減退する。
ショット加工直後に防蝕塗装を行うことも好ましい。低コストで且つ容易になすことができる。防蝕は耐遅れ破壊性を向上させる。ねじ面には十分な間隙があるので嵌合には何ら問題は生じない。
In order to ensure delayed fracture resistance, shot peening is applied to the surface of the steel bar. This treatment is a safety measure to prevent delayed destruction even when there is a local deficiency in the grout operation. The scale on the surface is removed to show a grayish white satin finish. The grout adhesion in this surface property is greater than that of hot-rolled steel with scale adhesion. To implement, in the production line of FIG. 2, a projector is inserted (not shown) after the controlled cooling and before marking. Note that the steel bar temperature during processing is 500 ° C or less. Above, the effect decreases due to softening.
It is also preferable to perform anticorrosion coating immediately after shot processing. This can be done easily at low cost. Corrosion protection improves delayed fracture resistance. Since there is a sufficient gap on the thread surface, there is no problem in fitting.

ナットの材料には通常の軟鋼が使用される。第1の理由は高強度ナットを使用すると棒鋼のねじ節の寸法精度は精密でないので嵌合部におけるねじ山の接触圧力が場所によりバラツキが生じ部分的に無理が生ずる危険性がある。軟鋼ではねじ山が適当にせん断変形して嵌合面に広く応力が分散し易いからである。第2の理由は2個使用するので低コストにするためである。   Ordinary mild steel is used for the material of the nut. The first reason is that if a high-strength nut is used, the dimensional accuracy of the threaded joint of the steel bar is not precise, so there is a risk that the contact pressure of the screw thread at the fitting portion varies depending on the location and is partially unreasonable. This is because in mild steel, the thread is appropriately shear-deformed and stress is easily dispersed on the fitting surface. The second reason is to reduce the cost because two are used.

ボルト径が15mm以下の場合、素材には線材を使用することができる。図6には線材を処理するラインを示す。要点を以下に記す。
1) 線材コイル61から線材を処理パス62に挿入しピンチロール63により伸直直進させる。
2) 加熱と測温は丸棒の場合と同様だが、転造機66はロール状ダイスは公転・自転式の構造を要する。線材は回転しない。
3) スプレイ冷却装置67は同様に多段だが、パス芯回りの回転式にしなければならない。構造はスイベル・ジョイントの内管にノズルを取り付ければよい。
4) 転造・熱処理後は直棒にしても良いし、コイル72にしても良い。後者の場合、コイル径は線径の200倍以上とする。表面応力が降伏応力以下となるので曲がり癖が残らない。
When the bolt diameter is 15 mm or less, a wire can be used as the material. FIG. 6 shows a line for processing the wire. The main points are described below.
1) A wire is inserted from the wire coil 61 into the processing path 62 and straightened and straightened by the pinch roll 63.
2) Heating and temperature measurement are the same as in the case of a round bar, but the rolling machine 66 requires a revolving / rotating structure for the roll die. The wire does not rotate.
3) The spray cooling device 67 is similarly multistage, but it must be of a rotary type around the path core. The structure can be achieved by attaching a nozzle to the inner tube of the swivel joint.
4) After rolling and heat treatment, it may be a straight bar or a coil 72. In the latter case, the coil diameter is 200 times or more of the wire diameter. Since the surface stress is less than the yield stress, no bending defects remain.

生産能率とコストを検討する。先行例2のねじ節PC鋼棒を細分化したボルトは市場で認知されていないので除外し、先行例1の現行高力ボルトと比較する。
現行の高力ボルト(F13T以上)は高価なMo−V鋼の棒線を材料とし、焼鈍・酸洗・伸線・圧造・転造・熱処理の長い工程を持ち高コストである。
本発明では先行例2と同様の経済的な鋼種の熱延棒線を材料に、加熱・転造・冷却が1工程の中に組み込まれ引用1よりも圧倒的に有利である。
熱延棒線の直径は多少精度を欠くが熱間転造による粗ねじの形成には問題ない。引抜等が省略される。
Consider production efficiency and cost. Bolts obtained by subdividing the screw joint PC steel bar of the preceding example 2 are not recognized in the market, so they are excluded and compared with the current high-strength bolt of the preceding example 1.
The current high-strength bolts (F13T or higher) are made of expensive Mo-V steel rods and have a long process of annealing, pickling, wire drawing, forging, rolling, and heat treatment, and are expensive.
In the present invention, heating, rolling, and cooling are incorporated in one process using an economical steel type hot-rolled bar wire similar to that in the preceding example 2, which is overwhelmingly advantageous over the reference 1.
The diameter of the hot-rolled bar wire is somewhat inaccurate, but there is no problem in the formation of a rough thread by hot rolling. Drawing or the like is omitted.

本発明の一連の工程において律速は誘導加熱能力(t/h)と転造機の回転数
(rpm)にある。加熱能力は生産計画に対応して事前に決定され設計される。転造機の能率P(t/h)は軸方向連続転造の場合以下になる。
P=πN×p×D2 ×ρ/4 −−−−(13)
N;回転数 p;ピッチ D;棒径 ρ;密度
棒径Dは23〜36mmのねじ節棒が市販されているが拡張して18〜51mmをも想定する。ピッチpは冷間転造のメートルねじと比較し8〜9倍である。従って原理的には能率飛躍は容易である。次に熱間加工であること、圧延と比較して1回の圧下量と圧下面積が著しく小さいので圧下荷重や動力については圧延機に比較し軽量である。転造機の能力強化(数t/h)に対する設備費用や設計には特に困難はない。
In the series of steps of the present invention, the rate-determining method is the induction heating capacity (t / h) and the rotational speed (rpm) of the rolling machine. The heating capacity is determined and designed in advance according to the production plan. The efficiency P (t / h) of the rolling machine is as follows in the case of continuous rolling in the axial direction.
P = πN × p × D 2 × ρ / 4 (13)
N: Rotational speed p; Pitch D; Rod diameter ρ; Density The rod diameter D is assumed to be 18 to 51 mm by expanding the screw node rod having a diameter of 23 to 36 mm. The pitch p is 8 to 9 times that of a cold rolled metric thread. Therefore, in principle, the efficiency leap is easy. Next, it is hot working, and the amount of rolling reduction and the area of rolling reduction are extremely small compared to rolling, so the rolling load and power are lighter than that of a rolling mill. There is no particular difficulty in equipment cost and design for the capacity enhancement (several t / h) of the rolling machine.

本発明の製品を本発明の製造方法によって製造する場合の具体的条件を整理する。表1は当該製品に適する鋼種を示す。現行のねじ節PC鋼棒とほぼ同様の成分範囲にある。棒径が大きいほど合金成分を増加させる。26mm以下ではMo,Vによる焼入性の強化は不要である。   Specific conditions when the product of the present invention is manufactured by the manufacturing method of the present invention will be summarized. Table 1 shows the steel types suitable for the product. The composition range is almost the same as that of the current screw-node PC steel bar. The larger the rod diameter, the greater the alloy composition. If it is 26 mm or less, strengthening of hardenability by Mo and V is unnecessary.

Figure 2019203579
Figure 2019203579

表2には現行の先行例1の高力ボルト、先行例2のねじ節PC鋼棒の細分化ボルトと本発明の大ピッチ低傾斜角台粗形ねじボルトの性状と処理条件を整理する。実施に特に困難は無い。   Table 2 summarizes the properties and processing conditions of the current high-strength bolts of the first example, the subdivided bolts of the screw-node PC steel rod of the first example, and the large pitch low-inclined angle base rough screw bolt of the present invention. There is no particular difficulty in implementation.

Figure 2019203579
Figure 2019203579

現行の高力ボルトに代替可能である。特に長身のボルトに適する。   It can replace the existing high strength bolt. Especially suitable for tall bolts.

1;軸部 2;頭部 10;丸棒 11;処理パス 12;供給台 13;回転送給装置 14;高周波コイル 15;温度センサー 16;転造機 17;スプレイ冷却装置 18;回転送給装置 19;マーカー 20;温度センサー 21;搬出台 22;異常材 23;正常材 31;処理材 32;転造ダイス 33;ダイス回転軸 41;処理材 42;スプレイ 43;スプレイノズル 44; スプレイ管 61;線材コイル 62;処理パス 63;ピンチロール 64;高周波コイル 65;温度センサー 66;転造機 67;スプレイ装置 68;ピンチロール 69;温度センサー 70;マーカー 71;製品コイル DESCRIPTION OF SYMBOLS 1; Shaft part 2; Head 10; Round bar 11; Processing path 12; Supply stand 13; Time transfer feeder 14; High-frequency coil 15; Temperature sensor 16; Rolling machine 17; Spray cooling device 18; Marker 20; Temperature sensor 21; Unloading table 22; Abnormal material 23; Normal material 31; Processing material 32; Rolling die 33; Die rotating shaft 41; Processing material 42; Spray 43; Spray nozzle 44; Coil 62; Processing path 63; Pinch roll 64; High frequency coil 65; Temperature sensor 66; Rolling machine 67; Spraying device 68; Pinch roll 69; Temperature sensor 70; Marker 71;

Claims (3)

熱間圧延丸棒鋼又は鋼線材の表層に熱間転造により下記形状の大ピッチ低傾斜角台形粗ねじを形成し、次いで制御冷却を施して主たる金属組織を微細パーライト、抗張力を1100MPa以上とした棒鋼を所定長さに切断してボルト軸部とし、該軸部の片端にナットを螺合してボルトを構成し、軸部と両ナットとの螺合面には接着剤又は塗料又はグラウト材を圧入することができる下記間隙を持つことを特徴とする高抗張力ボルト。

ねじ高さ=(0.06〜0.07)×棒径
ねじピッチ=(0.5〜0.6)×棒径
ねじ山裾幅Bに対するねじ底幅Cの比C/B=1.1〜2.0
ねじ山傾斜=40〜50゜
対ナット軸方向間隙=(0.3〜0.5)mm
対ナット半径方向間隙=(0.2〜0.4)mm
A hot-rolled round bar or steel wire surface layer is formed by hot rolling to form a large pitch low-tilt angle trapezoidal rough screw with the following shape, and then controlled cooling to make the main metal structure fine pearlite and tensile strength of 1100 MPa or more. A steel bar is cut into a predetermined length to form a bolt shaft portion, and a nut is screwed to one end of the shaft portion to form a bolt. An adhesive, paint, or grout material is formed on the screwed surface between the shaft portion and both nuts. A high tensile strength bolt characterized by having the following gaps that can be press-fitted.
Thread height = (0.06-0.07) × rod diameter Thread pitch = (0.5-0.6) × rod diameter Ratio of thread bottom width C to thread hem width B C / B = 1.1 ~ 2.0
Thread slope = 40-50 ° vs. nut axial clearance = (0.3-0.5) mm
Clearance against nut radial direction = (0.2-0.4) mm
請求項1に記載した高抗張力ボルトの軸部の製造方法であって、軸径が18mm以上51mm以下の所定径で所定成分の素材丸棒を棒軸方向に走行させ、高周波誘導コイルを貫通させ該コイルの出口部において表面温度が1050℃以上の基準値になるよう急速加熱し、測温記録し、中心温度が遅滞のまま直ちにロール状ダイスを持ち回転軸固定のねじ転造機に通して該棒を軸周りに回転させつつねじ山を形成し、次いで多段に設けた固定向心スプレイの中心を通過させて加速冷却し、所定温度の恒温変態に誘導し、その後前記表面温度の前記基準値からの偏り部をマーキングして後刻当該部を排除することを特徴とする高抗張力ボルトの製造方法。   A method of manufacturing a shaft portion of a high tensile strength bolt according to claim 1, wherein a round rod of a predetermined component having a shaft diameter of 18 mm or more and 51 mm or less is caused to travel in the rod axis direction, and the high-frequency induction coil is penetrated. The coil is rapidly heated so that the surface temperature becomes a reference value of 1050 ° C. or more at the exit of the coil, and the temperature is recorded, and the center temperature is kept delayed and immediately passed through a screw rolling machine with a rotating shaft fixed with a roll die. A thread is formed while rotating the rod around the axis, and then it is accelerated and cooled by passing through the center of a fixed centric spray provided in multiple stages, and then induced to a constant temperature transformation at a predetermined temperature, and then the reference value of the surface temperature. A method for manufacturing a high tensile strength bolt, characterized in that a portion of the bolt is marked to be removed later. 請求項1に記載した高抗張力ボルトの軸部の製造方法であって、軸径が10mm以上15mm以下の所定径で所定成分の鋼線材を軸方向に直進させ、高周波誘導コイルを貫通させ該コイルの出口部において表面温度が1050℃以上の基準値になるよう急速加熱し、測温記録し、中心温度が遅滞のまま直ちにロール状ダイスを持ち該ダイスが自転公転するねじ転造機に通して所定形状のねじを形成し、次いで多段に設けた線軸回りに回転する向心スプレイの中心を通過させて加速冷却し、所定温度の恒温変態に誘導し、その後前記表面温度の前記基準値からの偏り部をマーキングして後刻当該部を排除することを特徴とする高抗張力ボルトの製造方法。   A method of manufacturing a shaft portion of a high tensile strength bolt according to claim 1, wherein a steel wire having a predetermined component with a shaft diameter of 10 mm or more and 15 mm or less is linearly advanced in the axial direction, and the high-frequency induction coil is passed through the coil. The surface temperature is rapidly heated so that the surface temperature becomes a reference value of 1050 ° C. or more at the outlet portion, and the temperature is recorded and passed through a thread rolling machine in which a roll die is immediately held with the center temperature being delayed and the die rotates and revolves. Forming a screw having a shape, then passing through the center of a centric spray rotating about a line axis provided in multiple stages, accelerating cooling, inducing a constant temperature transformation at a predetermined temperature, and then the deviation of the surface temperature from the reference value A method of manufacturing a high tensile strength bolt, characterized by marking a part and removing the part later.
JP2018100167A 2018-05-25 2018-05-25 High tensile strength bolt and manufacturing method thereof Pending JP2019203579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018100167A JP2019203579A (en) 2018-05-25 2018-05-25 High tensile strength bolt and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018100167A JP2019203579A (en) 2018-05-25 2018-05-25 High tensile strength bolt and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2019203579A true JP2019203579A (en) 2019-11-28

Family

ID=68726595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018100167A Pending JP2019203579A (en) 2018-05-25 2018-05-25 High tensile strength bolt and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2019203579A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111842745A (en) * 2020-07-29 2020-10-30 杜海萍 Tool for preparing deformed steel bar and deformed steel bar preparation process
CN117245042A (en) * 2023-08-24 2023-12-19 泰州润伟机械有限公司 Screw production thread rolling machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111842745A (en) * 2020-07-29 2020-10-30 杜海萍 Tool for preparing deformed steel bar and deformed steel bar preparation process
CN117245042A (en) * 2023-08-24 2023-12-19 泰州润伟机械有限公司 Screw production thread rolling machine
CN117245042B (en) * 2023-08-24 2024-06-04 泰州润伟机械有限公司 Screw production thread rolling machine

Similar Documents

Publication Publication Date Title
US6880220B2 (en) Method of manufacturing cold worked, high strength seamless CRA PIPE
EP2028284B1 (en) High-strength seamless steel pipe for mechanical structure which has excellent toughness and weldability, and method for manufacture thereof
JP5523373B2 (en) Hollow steel rod for excavation and manufacturing method thereof
CN110052792B (en) Manufacturing method of cylinder barrel for hydraulic cylinder
JP6528860B2 (en) Steel wire for non-heat treatment machine parts and non-heat treatment machine parts
CN104089109B (en) A kind of 625MPa grades of UOE welded tube and its manufacture method
JP2019203579A (en) High tensile strength bolt and manufacturing method thereof
CN104894485A (en) Production method of nuclear power plant used high-temperature-resisting brittleness-resisting seamless steel tube with outer diameter of more than 508mm
CN107746916A (en) A kind of manufacture method of oil cylinder seamless steel pipe
JP3599551B2 (en) Wire with excellent drawability
CA2390054A1 (en) Method for manufacturing continuous sucker rod
CA2522274C (en) Method of manufacturing stainless steel pipe for use in piping systems
JP7173411B1 (en) Duplex stainless steel pipe and manufacturing method thereof
CN104404192B (en) A kind of production method of anchor bar steel
CN100423857C (en) Production facility and method for high-intensity packing steel belt
CN114055092A (en) Method for manufacturing air-hole ultrahigh-pressure pipe fitting by high-nickel alloy structural steel
CN109108531B (en) Roller surfacing repair pretreatment method
CN103658929A (en) Method for repairing and manufacturing bending roll in surfacing mode
JP4462440B2 (en) Method for producing hot-rolled bearing steel
CN110343986B (en) Construction method for compounding bushing at shaft end of galvanized sinking roller
CN110216420B (en) Manufacturing method of welded steel pipe for chord web arm of crawler crane
CN109648266B (en) Rectangular adjusting nut machining process
JP2009144230A (en) Steel wire rod, bolt, and method for manufacturing steel wire rod
RU2119858C1 (en) Method of making pump rods
RU2005120940A (en) METHOD FOR ROLLING SEAMLESS HOT-ROLLED CASING PIPES OF 12 mm SIZE ON 8-16 "TPA WITH PILGRIM STANTS WITH THRESHING THREAD" BATRESS "-" OTBT-426 "IN A USUAL AND COOL APPLICATION