JP2019201443A - Non-contact power supply device - Google Patents

Non-contact power supply device Download PDF

Info

Publication number
JP2019201443A
JP2019201443A JP2018092814A JP2018092814A JP2019201443A JP 2019201443 A JP2019201443 A JP 2019201443A JP 2018092814 A JP2018092814 A JP 2018092814A JP 2018092814 A JP2018092814 A JP 2018092814A JP 2019201443 A JP2019201443 A JP 2019201443A
Authority
JP
Japan
Prior art keywords
power
power receiving
core
power transmission
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018092814A
Other languages
Japanese (ja)
Other versions
JP6832886B2 (en
Inventor
亮輔 岡嶋
Ryosuke Okajima
亮輔 岡嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oi Electric Co Ltd
Original Assignee
Oi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oi Electric Co Ltd filed Critical Oi Electric Co Ltd
Priority to JP2018092814A priority Critical patent/JP6832886B2/en
Publication of JP2019201443A publication Critical patent/JP2019201443A/en
Application granted granted Critical
Publication of JP6832886B2 publication Critical patent/JP6832886B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To increase magnetic flux which is generated from a non-contact power supply device and is interlinked with a power reception coil of a power reception device.SOLUTION: A non-contact power supply device 1 comprises a power transmission coil 14 and a power transmission core 12 to which a conductor forming the power transmission coil 14 is wound. The power transmission core 12 comprises: a freely movable moving portion 16; and a body being the other portion. A power reception device 2 comprises: a power reception coil 22; and a power reception core 24 to which a conductor forming the power reception coil 22 is wound. When the power reception device 2 is arranged, the moving portion 16 is detached from a body of the power transmission core 12 by force applied from the power reception device 2, and the power reception core 24 is inserted into a region where the moving portion 16 has existed.SELECTED DRAWING: Figure 1

Description

本発明は、非接触給電装置に関し、送電コイルが設けられるコアの構造に関する。   The present invention relates to a non-contact power feeding device, and relates to a core structure provided with a power transmission coil.

非接触給電装置が広く用いられている。非接触給電装置は、受電装置に配線接続されない状態で受電装置に電力を供給する。一般に、非接触給電装置は送電コイルを備え、受電装置は受電コイルを備えている。非接触給電装置には、電磁誘導によって受電装置に電力を供給する電磁誘導方式のものがある。この場合、送電コイルは、受電コイルとの間の磁気的な結合によって受電コイルに誘導起電力を発生させて、受電装置に電力を供給する。   Non-contact power feeding devices are widely used. The non-contact power feeding device supplies power to the power receiving device without being connected to the power receiving device by wiring. In general, the non-contact power supply device includes a power transmission coil, and the power reception device includes a power reception coil. Some non-contact power feeding devices are of an electromagnetic induction type that supplies power to a power receiving device by electromagnetic induction. In this case, the power transmission coil generates an induced electromotive force in the power receiving coil by magnetic coupling with the power receiving coil, and supplies power to the power receiving device.

受電装置には、携帯情報端末、ゲーム機器、電動歯ブラシ、電動シェーバー等がある。一般に、これらの装置は繰り返し充放電が可能な二次電池を備えており、二次電池が非接触給電装置によって充電される。充電の際には受電装置が非接触給電装置の所定の位置に配置され、非接触給電装置から受電装置の二次電池に充電電力が供給される。   Examples of the power receiving device include a portable information terminal, a game machine, an electric toothbrush, and an electric shaver. Generally, these devices include a secondary battery that can be repeatedly charged and discharged, and the secondary battery is charged by a non-contact power feeding device. During charging, the power receiving device is disposed at a predetermined position of the non-contact power feeding device, and charging power is supplied from the non-contact power feeding device to the secondary battery of the power receiving device.

以下の特許文献1には、非接触給電技術(ワイヤレス給電技術)に関する記載がある。   Patent Document 1 below describes a non-contact power feeding technology (wireless power feeding technology).

特開2016−144383号公報JP 2006-144383 A

非接触給電装置では、送電コイルの構造や送電コイルの位置によっては、受電コイルに鎖交しない漏れ磁束が増加することがある。また、非接触給電装置には、複数の受電装置に同時に電力を供給することが可能なものがある。このような非接触給電装置では、複数の受電装置のそれぞれにおける受電コイルが互いに磁気的に影響を及ぼし合い、各受電コイルに鎖交しない漏れ磁束が増加することがある。漏れ磁束が増加した場合、非接触給電装置から受電装置に十分な電力を送電することが困難となってしまう場合がある。   In the non-contact power supply apparatus, depending on the structure of the power transmission coil and the position of the power transmission coil, leakage magnetic flux that does not link to the power reception coil may increase. Some non-contact power feeding devices can supply power to a plurality of power receiving devices at the same time. In such a non-contact power feeding device, the power receiving coils in each of the plurality of power receiving devices may magnetically affect each other, and the leakage magnetic flux that does not interlink with each power receiving coil may increase. When the leakage magnetic flux increases, it may be difficult to transmit sufficient power from the non-contact power feeding device to the power receiving device.

本発明は、非接触給電装置から発生し、受電装置の受電コイルに鎖交する磁束を増加させることを目的とする。   An object of the present invention is to increase a magnetic flux generated from a non-contact power feeding device and interlinked with a power receiving coil of a power receiving device.

本発明は、送電コイルと、前記送電コイルを形成する導線が巻かれた送電コアとを備える非接触給電装置において、前記送電コアは、移動自在となっている移動部分を含み、受電装置が配置されたときに、当該受電装置から与えられる力によって前記移動部分が前記送電コアのその他の部分から離れ、前記受電装置が備える受電コアであって、前記受電装置が備える受電コイルを形成する導線が巻かれた受電コアが、前記移動部分が存在していた領域に挿入されることを特徴とする。   The present invention relates to a non-contact power supply apparatus including a power transmission coil and a power transmission core wound with a conductive wire forming the power transmission coil, wherein the power transmission core includes a movable part that is movable, and the power reception apparatus is disposed. When the power is received, the moving part is separated from the other parts of the power transmission core by the force applied from the power receiving device, and the power receiving core included in the power receiving device is a conductor that forms a power receiving coil included in the power receiving device. The wound power receiving core is inserted into a region where the moving part was present.

望ましくは、前記送電コアはループ形状を有し、前記送電コアの第1の区間に前記移動部分が設けられており、前記非接触給電装置は、前記移動部分と、前記第1の区間に対向する第2の区間との間に設けられた付勢部材を備える。   Preferably, the power transmission core has a loop shape, the moving portion is provided in a first section of the power transmission core, and the non-contact power feeding device is opposed to the moving section and the first section. A biasing member provided between the second section and the second section.

本発明によれば、非接触給電装置から発生し、受電装置の受電コイルに鎖交する磁束を増加させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the magnetic flux which generate | occur | produces from a non-contact electric power feeder and is linked to the receiving coil of a receiving device can be increased.

非接触給電システムを示す図である。It is a figure which shows a non-contact electric power feeding system. 非接触給電装置の変形例を示す図である。It is a figure which shows the modification of a non-contact electric power feeder.

図1には、本発明の実施形態に係る非接触給電システムが示されている。非接触給電システムは、非接触給電装置1および受電装置2を備えている。非接触給電装置1は、受電装置2に磁気的に結合し、非接触給電によって受電装置2に電力を供給する。非接触給電装置1は、複数の受電装置2に同時に電力を供給してもよい。図1には、4台の受電装置2に電力が供給可能な非接触給電装置1が例示されている。   FIG. 1 shows a non-contact power feeding system according to an embodiment of the present invention. The non-contact power feeding system includes a non-contact power feeding device 1 and a power receiving device 2. The non-contact power feeding device 1 is magnetically coupled to the power receiving device 2 and supplies power to the power receiving device 2 by non-contact power feeding. The non-contact power feeding device 1 may supply power to the plurality of power receiving devices 2 at the same time. FIG. 1 illustrates a non-contact power feeding device 1 that can supply power to four power receiving devices 2.

非接触給電装置1は、電力発生回路10、送電コア12、送電コイル14、バネ18および送電側筐体20を備えている。送電コア12は、磁性体材料によって形成されている。磁性体材料としては、鉄、ケイ素鋼、パーマロイ等が用いられる。図1に示された受電コア24は、矩形状に周回するループ形状を有している。なお、以下の説明における「上」「下」「左」「右」の用語は、図面における上下左右を示し、非接触給電装置1が用いられる際の姿勢を限定するものではない。   The non-contact power feeding device 1 includes a power generation circuit 10, a power transmission core 12, a power transmission coil 14, a spring 18, and a power transmission side housing 20. The power transmission core 12 is made of a magnetic material. As the magnetic material, iron, silicon steel, permalloy or the like is used. The power receiving core 24 shown in FIG. 1 has a loop shape that circulates in a rectangular shape. Note that the terms “upper”, “lower”, “left”, and “right” in the following description indicate up, down, left, and right in the drawings, and do not limit the posture when the non-contact power feeding device 1 is used.

送電コア12は、左側において上下方向に延びる左側縦辺区間、右側において上下方向に延びる右側縦辺区間、上側において横方向に延びる上側横辺区間、および、下側において横方向に延びる下側横辺区間を備えている。下側横辺区間には導線が巻き付けられており、この導線によって送電コイル14が形成されている。電力発生回路10には送電コイル14の両端が接続されている。   The power transmission core 12 includes a left vertical side section extending in the vertical direction on the left side, a right vertical side section extending in the vertical direction on the right side, an upper horizontal side section extending in the horizontal direction on the upper side, and a lower horizontal side extending in the horizontal direction on the lower side. It has a side section. A conducting wire is wound around the lower lateral side section, and a power transmission coil 14 is formed by this conducting wire. Both ends of a power transmission coil 14 are connected to the power generation circuit 10.

送電コア12は、上下方向に移動自在な移動部分16と、その他の部分である送電コア12の本体とを含んでいる。図1には、送電コア12の上側横辺区間に4つの移動部分16が設けられた例が示されている。各移動部分16の下方には、下側横辺区間との間にバネ18が設けられている。バネ18は移動部分16を上方向に付勢する。バネ18には、例えば、つるまきバネが用いられる。送電コア12の本体と共にループ形状を形成する移動部分16は、下方向への移動によって送電コア12の本体から離れる。また、送電コア12の本体から離れた移動部分16は、上方向への移動によって送電コア12のループ上に戻る。   The power transmission core 12 includes a moving portion 16 that is movable in the vertical direction, and a main body of the power transmission core 12 that is the other portion. FIG. 1 shows an example in which four moving parts 16 are provided in the upper side section of the power transmission core 12. A spring 18 is provided below each moving portion 16 and between the lower lateral section. The spring 18 biases the moving part 16 upward. For example, a helical spring is used as the spring 18. The moving portion 16 that forms a loop shape with the main body of the power transmission core 12 moves away from the main body of the power transmission core 12 by moving downward. Moreover, the moving part 16 away from the main body of the power transmission core 12 returns to the loop of the power transmission core 12 by the upward movement.

このように、本実施形態における送電コア12は矩形のループ形状を有し、送電コア12の第1の辺を形成する区間である上側横辺区間(第1の区間)に移動部分16が設けられている。移動部分16と、第1の辺に対向する第2の辺を形成する区間である下側横辺区間(第2の区間)との間に、付勢部材としてのバネ18が設けられている。送電コア12は、矩形の他、矩形以外の多角形、楕円等のループ形状を有していてもよい。   As described above, the power transmission core 12 in the present embodiment has a rectangular loop shape, and the moving portion 16 is provided in the upper horizontal side section (first section) that is a section forming the first side of the power transmission core 12. It has been. A spring 18 as an urging member is provided between the moving portion 16 and a lower horizontal side section (second section) that is a section that forms a second side facing the first side. . The power transmission core 12 may have a loop shape such as a polygon other than a rectangle or an ellipse in addition to a rectangle.

送電側筐体20は、電力発生回路10、送電コイル14、送電コア12およびバネ18を収容している。送電側筐体20は、底板201、底板201の周辺から上方向に広がる側壁202、および、側壁202に囲まれた領域を上側から覆う天井板203から構成されている。天井板203には、送電コア12に含まれる各移動部分16に対向する位置に、受け入れ穴32が設けられている。   The power transmission side housing 20 accommodates the power generation circuit 10, the power transmission coil 14, the power transmission core 12, and the spring 18. The power transmission side housing 20 includes a bottom plate 201, a side wall 202 that extends upward from the periphery of the bottom plate 201, and a ceiling plate 203 that covers a region surrounded by the side wall 202 from above. The ceiling plate 203 is provided with a receiving hole 32 at a position facing each moving portion 16 included in the power transmission core 12.

受電装置2は、受電コイル22、受電コア24、整流回路26、負荷回路28および受電側筐体30を備えている。受電コア24は、棒状の磁性体材料によって形成されている。受電コア24を形成する磁性体材料としては、送電コア12と同様、鉄、ケイ素鋼、パーマロイ等が用いられる。受電コア24には導線が巻き付けられており、この導線が受電コイル22を形成している。受電コイル22の両端には整流回路26が接続されている。整流回路26には負荷回路28が接続されている。負荷回路28は、充電および放電を繰り返して行うことが可能な二次電池を含んでいてもよい。受電コイル22、受電コア24、整流回路26および負荷回路28は、受電側筐体30に収容されている。   The power receiving device 2 includes a power receiving coil 22, a power receiving core 24, a rectifier circuit 26, a load circuit 28, and a power receiving side housing 30. The power receiving core 24 is made of a rod-shaped magnetic material. As the magnetic material forming the power receiving core 24, iron, silicon steel, permalloy or the like is used as in the power transmitting core 12. A conducting wire is wound around the power receiving core 24, and the conducting wire forms a power receiving coil 22. A rectifier circuit 26 is connected to both ends of the power receiving coil 22. A load circuit 28 is connected to the rectifier circuit 26. The load circuit 28 may include a secondary battery that can be repeatedly charged and discharged. The power receiving coil 22, the power receiving core 24, the rectifier circuit 26 and the load circuit 28 are accommodated in the power receiving side housing 30.

非接触給電システムの動作について説明する。非接触給電装置1は、送電側筐体20の受け入れ穴32に受電装置2が挿入されることで、受電装置2に磁気的に結合する。非接触給電装置1および受電装置2が磁気的に結合した状態で、非接触給電装置1は受電装置2に電力を供給する。図1の左側の受電装置2は、送電側筐体20の受け入れ穴32に挿入される前の状態にあり、左から2番目の受電装置2は、送電側筐体20の受け入れ穴32に挿入された状態にある。二点鎖線(想像線)で示された受電装置2は、左側の2台の受電装置2に加えて、更に2台の受電装置2に電力を供給可能であることを示すものである。   The operation of the non-contact power supply system will be described. The non-contact power feeding device 1 is magnetically coupled to the power receiving device 2 by inserting the power receiving device 2 into the receiving hole 32 of the power transmission side housing 20. The contactless power feeding device 1 supplies power to the power receiving device 2 in a state where the contactless power feeding device 1 and the power receiving device 2 are magnetically coupled. The power receiving device 2 on the left side of FIG. 1 is in a state before being inserted into the receiving hole 32 of the power transmission side housing 20, and the second power receiving device 2 from the left is inserted into the receiving hole 32 of the power transmission side housing 20. It is in the state that was done. The power receiving device 2 indicated by a two-dot chain line (imaginary line) indicates that power can be supplied to two power receiving devices 2 in addition to the two power receiving devices 2 on the left side.

送電側筐体20の受け入れ穴32に受電装置2が挿入されていないときは、移動部分16はバネ18から上方向に力が与えられており、送電コア12のループ上に配置された状態にある。受け入れ穴32に受電装置2が上方向から挿入されると、受け入れ穴32の下方にある移動部分16に受電装置2が接触する。受電装置2は、自らの重みによって移動部分16に下方向の力を与え、移動部分16は受電装置2と共に下方向に移動する。バネ18が完全に収縮した状態で受電装置2および移動部分16は停止する。あるいは、バネ18から移動部分16に上方向に与えられる力と、受電装置2および移動部分16の重みとが釣り合う状態で、受電装置2および移動部分16は停止する。これによって、移動部分16は送電コア12の本体から離れ、受電装置2における受電コア24は、送電コア12において移動部分16が存在していた領域に挿入される。すなわち、受電コア24は、送電コア12において移動部分16が欠落した欠落領域に挿入される。   When the power receiving device 2 is not inserted into the receiving hole 32 of the power transmission side housing 20, the moving portion 16 is applied with an upward force from the spring 18 and is placed on the loop of the power transmission core 12. is there. When the power receiving device 2 is inserted into the receiving hole 32 from above, the power receiving device 2 contacts the moving portion 16 below the receiving hole 32. The power receiving device 2 applies a downward force to the moving portion 16 by its own weight, and the moving portion 16 moves downward together with the power receiving device 2. With the spring 18 completely contracted, the power receiving device 2 and the moving portion 16 are stopped. Alternatively, the power receiving device 2 and the moving portion 16 stop in a state where the force applied upward from the spring 18 to the moving portion 16 and the weight of the power receiving device 2 and the moving portion 16 are balanced. As a result, the moving part 16 is separated from the main body of the power transmission core 12, and the power receiving core 24 in the power receiving device 2 is inserted into the region where the moving part 16 was present in the power transmission core 12. That is, the power receiving core 24 is inserted into a missing region where the moving part 16 is missing in the power transmitting core 12.

図1では、左から2番目に描かれている受電装置2が、左から2番目の受け入れ穴32に挿入された例が示されている。受電装置2が備える受電コア24は、送電コア12の上側横辺区間に生じた欠落領域に挿入され、移動部分16が欠落した上側横辺区間および受電コア24が直線状に配置される。送電コア12の下側横辺区間、左側縦辺区間、移動部分16が欠落した上側横辺区間、受電コア24、および右側縦辺区間は、磁束が集中する磁束経路を形成する。   FIG. 1 shows an example in which the power receiving device 2 drawn second from the left is inserted into the second receiving hole 32 from the left. The power receiving core 24 included in the power receiving device 2 is inserted into a missing region generated in the upper lateral section of the power transmitting core 12, and the upper lateral section in which the moving portion 16 is missing and the power receiving core 24 are linearly arranged. The lower horizontal section, the left vertical section, the upper horizontal section in which the moving portion 16 is missing, the power receiving core 24, and the right vertical section form a magnetic flux path where magnetic flux concentrates.

電力発生回路10は送電コイル14に交流電圧を出力する。これによって、送電コイル14からは、送電コア12および受電コア24が形成する磁束経路を通り、受電コイル22に鎖交する磁束Φが発生する。送電コイル14から発せられ、受電コイル22に鎖交する磁束によって、受電コイル22に誘導起電力が発生する。   The power generation circuit 10 outputs an AC voltage to the power transmission coil 14. As a result, a magnetic flux Φ interlinked with the power receiving coil 22 is generated from the power transmitting coil 14 through a magnetic flux path formed by the power transmitting core 12 and the power receiving core 24. An induced electromotive force is generated in the power receiving coil 22 by the magnetic flux emitted from the power transmitting coil 14 and interlinked with the power receiving coil 22.

受電コイル22に発生した誘導起電力は整流回路26に印加される。整流回路26は、交流電圧である誘導起電力を整流し、負荷回路28に直流電圧を出力する。負荷回路28は、整流回路26から出力された電圧に基づいて動作する。負荷回路28は、二次電池を備える場合には二次電池を充電する。   The induced electromotive force generated in the power receiving coil 22 is applied to the rectifier circuit 26. The rectifier circuit 26 rectifies the induced electromotive force that is an AC voltage, and outputs a DC voltage to the load circuit 28. The load circuit 28 operates based on the voltage output from the rectifier circuit 26. When the load circuit 28 includes a secondary battery, the load circuit 28 charges the secondary battery.

このような構成によれば、受電装置2が非接触給電装置1における所定の位置に配置されたときには、受電装置2から与えられる力によって、送電コア12の移動部分16が送電コア12の本体から離れる。そして、移動部分16が存在していた領域に受電コア24が挿入され、送電コア12および受電コア24が磁束経路を形成する。非接触給電装置1が発生し、受電コイル22に鎖交する磁束は、送電コア12および受電コア24が形成する磁束経路に集中する。これによって、送電コア12および受電コア24による磁束経路がない場合に比べて、受電コイル22に鎖交する磁束が増加する。また、複数の受電装置2が非接触給電装置1に配置された場合であっても、複数の受電装置2における受電コア24のそれぞれと送電コア12が磁束経路を形成する。したがって、1つの受電装置2が他の受電装置2に対して磁気的に及ぼす影響が小さくなって漏れ磁束が低減され、高効率で各受電装置2に電力が供給される。   According to such a configuration, when the power receiving device 2 is disposed at a predetermined position in the non-contact power feeding device 1, the moving portion 16 of the power transmission core 12 is moved from the main body of the power transmission core 12 by the force applied from the power receiving device 2. Leave. Then, the power receiving core 24 is inserted into the region where the moving part 16 was present, and the power transmitting core 12 and the power receiving core 24 form a magnetic flux path. The magnetic flux generated by the non-contact power feeding device 1 and interlinked with the power receiving coil 22 is concentrated on the magnetic flux path formed by the power transmitting core 12 and the power receiving core 24. As a result, the magnetic flux linked to the power receiving coil 22 increases as compared with the case where there is no magnetic flux path by the power transmitting core 12 and the power receiving core 24. Even when the plurality of power receiving devices 2 are arranged in the non-contact power feeding device 1, each of the power receiving cores 24 and the power transmitting core 12 in the plurality of power receiving devices 2 form a magnetic flux path. Accordingly, the influence of one power receiving device 2 on the other power receiving devices 2 is reduced, the leakage magnetic flux is reduced, and power is supplied to each power receiving device 2 with high efficiency.

図2には、変形例に係る非接触給電装置3が示されている。図1に示されている構成要素と同一の構成要素については同一の符号を付してその説明を省略する。非接触給電装置3では、移動部分16が揺動付勢機構34によって送電コア12の本体に取り付けられている。図2の搖動付勢機構34は、その構造を概念的に示したものである。搖動付勢機構34は、送電コア12のループ上に配置される位置と、送電コア12の本体から離れた位置との間で、移動部分16を搖動自在とする。搖動付勢機構34は、送電コア12のループ上に配置される位置に向けて移動部分16を付勢する。搖動付勢機構34は、例えば、スプリングヒンジを用いて構成される。   FIG. 2 shows a non-contact power feeding device 3 according to a modification. The same components as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. In the non-contact power feeding device 3, the moving part 16 is attached to the main body of the power transmission core 12 by the swing biasing mechanism 34. The peristaltic urging mechanism 34 in FIG. 2 conceptually shows the structure. The swing urging mechanism 34 allows the moving portion 16 to swing between a position where it is arranged on the loop of the power transmission core 12 and a position away from the main body of the power transmission core 12. The peristaltic urging mechanism 34 urges the moving part 16 toward a position where it is arranged on the loop of the power transmission core 12. The swing urging mechanism 34 is configured using, for example, a spring hinge.

送電側筐体20の受け入れ穴32に受電装置2が挿入されていないときは、移動部分16は搖動付勢機構34から上方向に力が与えられており、送電コア12のループ上に配置された状態にある。受け入れ穴32に受電装置2が上方向から挿入されると、受け入れ穴32の下方にある移動部分16に受電装置2が接触する。受電装置2は、自らの重みによって移動部分16に下方向の力を与え、移動部分16は受電装置2と共に下方向に移動し、搖動付勢機構34の側を軸中心として回転する。搖動付勢機構34が移動部分16の下方向への移動を抑止する状態となったときに、受電装置2および移動部分16は停止する。あるいは、搖動付勢機構34から移動部分16に上方向に与えられる力と、受電装置2および移動部分16の重みとが釣り合う状態で、受電装置2および移動部分16は停止する。これによって、移動部分16は送電コア12の本体から離れ、受電装置2における受電コア24は、送電コア12の欠落領域に挿入される。   When the power receiving device 2 is not inserted into the receiving hole 32 of the power transmission side housing 20, the moving portion 16 is applied with an upward force from the peristaltic biasing mechanism 34 and is disposed on the loop of the power transmission core 12. It is in the state. When the power receiving device 2 is inserted into the receiving hole 32 from above, the power receiving device 2 contacts the moving portion 16 below the receiving hole 32. The power receiving device 2 applies a downward force to the moving portion 16 by its own weight, and the moving portion 16 moves downward together with the power receiving device 2 and rotates around the side of the peristaltic biasing mechanism 34. When the peristaltic biasing mechanism 34 enters a state in which the movement portion 16 is prevented from moving downward, the power receiving device 2 and the movement portion 16 are stopped. Alternatively, the power receiving device 2 and the moving portion 16 stop in a state where the force applied upward from the peristaltic biasing mechanism 34 to the moving portion 16 and the weight of the power receiving device 2 and the moving portion 16 are balanced. As a result, the moving portion 16 is separated from the main body of the power transmission core 12, and the power reception core 24 in the power reception device 2 is inserted into the missing region of the power transmission core 12.

図2では、左側に描かれている受電装置2が、左側の受け入れ穴32に挿入された例が示されている。受電装置2が備える受電コア24は、送電コア12の欠落領域に挿入される。これによって、送電コア12の下側横辺区間、左側縦辺区間、移動部分16が欠落した上側横辺区間、受電コア24、および右側縦辺区間は、磁束が集中する磁束経路を形成する。この状態において、非接触給電装置3は、図1に示された非接触給電装置1と同様の動作によって、受電装置2に電力を供給する。   FIG. 2 shows an example in which the power receiving device 2 depicted on the left side is inserted into the left receiving hole 32. The power receiving core 24 included in the power receiving device 2 is inserted into the missing region of the power transmitting core 12. As a result, the lower horizontal section, the left vertical section, the upper horizontal section in which the moving part 16 is missing, the power receiving core 24, and the right vertical section form a magnetic flux path where magnetic flux concentrates. In this state, the non-contact power feeding device 3 supplies power to the power receiving device 2 by the same operation as the non-contact power feeding device 1 shown in FIG.

このような構成によれば、受電装置2が非接触給電装置3における所定の位置に配置されたときには、受電装置2から与えられる力によって、送電コア12の移動部分16が送電コア12の本体から離れる。そして、受電コア24は、送電コア12の欠落領域に挿入され、送電コア12および受電コア24が磁束経路を形成する。非接触給電装置3が発生し、受電コイル22に鎖交する磁束は、送電コア12および受電コア24が形成する磁束経路に集中する。これによって、送電コア12および受電コア24による磁束経路がない場合に比べて、受電コイル22に鎖交する磁束が増加する。また、複数の受電装置2が非接触給電装置3に配置された場合であっても、複数の受電装置2における受電コア24のそれぞれと送電コア12が磁束経路を形成する。したがって、1つの受電装置2が他の受電装置2に対して磁気的に及ぼす影響が小さくなって漏れ磁束が低減され、高効率で各受電装置2に電力が供給される。   According to such a configuration, when the power receiving device 2 is disposed at a predetermined position in the non-contact power feeding device 3, the moving portion 16 of the power transmission core 12 is moved from the main body of the power transmission core 12 by the force applied from the power receiving device 2. Leave. The power receiving core 24 is inserted into the missing region of the power transmission core 12, and the power transmission core 12 and the power reception core 24 form a magnetic flux path. The magnetic flux generated by the non-contact power feeding device 3 and interlinked with the power receiving coil 22 is concentrated on the magnetic flux path formed by the power transmitting core 12 and the power receiving core 24. As a result, the magnetic flux linked to the power receiving coil 22 is increased as compared with the case where there is no magnetic flux path by the power transmitting core 12 and the power receiving core 24. Even when the plurality of power receiving devices 2 are arranged in the non-contact power feeding device 3, each of the power receiving cores 24 and the power transmitting core 12 in the plurality of power receiving devices 2 form a magnetic flux path. Accordingly, the influence of one power receiving device 2 on the other power receiving devices 2 is reduced, the leakage magnetic flux is reduced, and power is supplied to each power receiving device 2 with high efficiency.

1,3 非接触給電装置、2 受電装置、10 電力発生回路、12 送電コア、14 送電コイル、16 移動部分、18 バネ、20 送電側筐体、201 底板、202 側壁、203 天井板、22 受電コイル、24 受電コア、26 整流回路、28 負荷回路、30 受電側筐体、32 受け入れ穴、34 搖動付勢機構。   DESCRIPTION OF SYMBOLS 1,3 Non-contact electric power feeder, 2 Power receiving apparatus, 10 Electric power generation circuit, 12 Power transmission core, 14 Power transmission coil, 16 Moving part, 18 Spring, 20 Power transmission side housing, 201 Bottom plate, 202 Side wall, 203 Ceiling plate, 22 Coil, 24 power receiving core, 26 rectifier circuit, 28 load circuit, 30 power receiving side housing, 32 receiving hole, 34 peristaltic biasing mechanism.

Claims (2)

送電コイルと、前記送電コイルを形成する導線が巻かれた送電コアとを備える非接触給電装置において、
前記送電コアは、移動自在となっている移動部分を含み、
受電装置が配置されたときに、当該受電装置から与えられる力によって前記移動部分が前記送電コアのその他の部分から離れ、
前記受電装置が備える受電コアであって、前記受電装置が備える受電コイルを形成する導線が巻かれた受電コアが、前記移動部分が存在していた領域に挿入されることを特徴とする非接触給電装置。
In a non-contact power feeding device including a power transmission coil and a power transmission core wound with a conductive wire forming the power transmission coil,
The power transmission core includes a moving part that is movable,
When the power receiving device is arranged, the moving part is separated from the other part of the power transmission core by the force applied from the power receiving device,
A power receiving core provided in the power receiving device, wherein the power receiving core around which a conductive wire forming a power receiving coil provided in the power receiving device is wound is inserted into a region where the moving portion was present. Power supply device.
請求項1に記載の非接触給電装置において、
前記送電コアはループ形状を有し、
前記送電コアの第1の区間に前記移動部分が設けられており、
前記非接触給電装置は、
前記移動部分と、前記第1の区間に対向する第2の区間との間に設けられた付勢部材を備えることを特徴とする非接触給電装置。
The contactless power supply device according to claim 1,
The power transmission core has a loop shape;
The moving portion is provided in a first section of the power transmission core;
The non-contact power feeding device is:
A non-contact power feeding apparatus comprising: an urging member provided between the moving part and a second section facing the first section.
JP2018092814A 2018-05-14 2018-05-14 Non-contact power supply device Active JP6832886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018092814A JP6832886B2 (en) 2018-05-14 2018-05-14 Non-contact power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018092814A JP6832886B2 (en) 2018-05-14 2018-05-14 Non-contact power supply device

Publications (2)

Publication Number Publication Date
JP2019201443A true JP2019201443A (en) 2019-11-21
JP6832886B2 JP6832886B2 (en) 2021-02-24

Family

ID=68612361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018092814A Active JP6832886B2 (en) 2018-05-14 2018-05-14 Non-contact power supply device

Country Status (1)

Country Link
JP (1) JP6832886B2 (en)

Also Published As

Publication number Publication date
JP6832886B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
EP1368815B1 (en) Inductive coupling system with capacitive parallel compensation of the mutual self-inductance between the primary and the secondary windings
US20170256990A1 (en) Receiver Coil Arrangements for Inductive Wireless Power Transfer for Portable Devices
US11056918B2 (en) System for inductive wireless power transfer for portable devices
US9929596B2 (en) Wireless power transmission device
WO2012039245A1 (en) Coil module for contactless electric power transfer, and battery pack and charging device provided with same
JP2002199598A (en) Contactless battery charger
KR20140053248A (en) Power relay
US10593468B2 (en) Inductive power transfer assembly
US9531213B2 (en) Wireless power transmission device
TW201411979A (en) Wireless charging system
JP2013110954A (en) Wireless chargeable portable electronic device and charger combined therewith
EP2705520A1 (en) Method and apparatus for wireless charging
US20180062441A1 (en) Segmented and Longitudinal Receiver Coil Arrangements for Wireless Power Transfer
JP2015077021A (en) Power reception device and power transmission unit and power supply system
JP2014017920A (en) Battery pack
JP4900525B1 (en) Non-contact charging module, transmitting-side non-contact charging device and receiving-side non-contact charging device provided with the same
JP6609232B2 (en) Non-contact power transmission device
CN108886270B (en) Contactless power supply device and contactless power transmission device
JP2019201443A (en) Non-contact power supply device
KR20120008632A (en) Apparatus for wireless charging battery with package chip and system thereof
KR20110124578A (en) Protecting cover for mobile phone with contact-less charger
JP2002231545A (en) Noncontact power unit
JP3766295B2 (en) Contactless charger
KR20150007207A (en) Non-contact power feeding mechanism and electromagnetic induction coil for non-contact power feeding device
JP2019122149A (en) Non-contact power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210202

R150 Certificate of patent or registration of utility model

Ref document number: 6832886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250