JP2019200525A - Image processing system for visual inspection, and image processing method - Google Patents

Image processing system for visual inspection, and image processing method Download PDF

Info

Publication number
JP2019200525A
JP2019200525A JP2018093863A JP2018093863A JP2019200525A JP 2019200525 A JP2019200525 A JP 2019200525A JP 2018093863 A JP2018093863 A JP 2018093863A JP 2018093863 A JP2018093863 A JP 2018093863A JP 2019200525 A JP2019200525 A JP 2019200525A
Authority
JP
Japan
Prior art keywords
inspection object
light source
image
color tone
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018093863A
Other languages
Japanese (ja)
Other versions
JP7013321B2 (en
Inventor
小西 孝明
Takaaki Konishi
孝明 小西
亮介 小林
Ryosuke Kobayashi
亮介 小林
隆浩 長井
Takahiro Nagai
隆浩 長井
潤一郎 長沼
Junichiro Naganuma
潤一郎 長沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2018093863A priority Critical patent/JP7013321B2/en
Publication of JP2019200525A publication Critical patent/JP2019200525A/en
Application granted granted Critical
Publication of JP7013321B2 publication Critical patent/JP7013321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To improve the efficiency of a visual inspection process of a structure by correcting the color tone of a picked-up image to color tone which easily undergoes visual inspection.SOLUTION: An image processing system for visual inspection for performing color tone correction of a picked-up image of an imaging machine includes: an imaging machine for outputting a picked-up image obtained by imaging an inspection object; a light source for applying light to an imaging range of the imaging machine; an attenuation factor calculation unit for calculating a light attenuation factor in the vicinity of the inspection object on the basis of the picked-up image when the imaging machine and the light source are arranged substantially to face each other in the vicinity of the inspection object; a color tone attenuation factor calculation unit for calculating the color tone attenuation amount of each pixel of the inspection object in the picked-up image on the basis of the light attenuation factor, a distance between the imaging machine and the inspection object, a distance between the light source and the inspection object, a light source intensity, and a light reception intensity in the picked-up image in imaging the inspection object; and a color tone correction unit for correcting the color tone of each pixel of the inspection object in the picked-up image on the basis of the color tone attenuation amount of each pixel calculated by the color tone attenuation amount calculation unit.SELECTED DRAWING: Figure 1

Description

本発明は、構造物を目視検査する際に使用する画像を加工処理する画像処理装置、および、その画像処理装置で用いる画像処理方法に関する。   The present invention relates to an image processing apparatus that processes an image used when a structure is visually inspected, and an image processing method used in the image processing apparatus.

トンネルや橋などの社会インフラ構造物や、発電プラントなどの建築物の健全性を検査する方法の一つとして目視検査がある。目視検査は、検査員が検査対象領域を、直接視認したり、カメラ等の撮像機が撮像した映像を間接的に視認したりして、欠陥の有無を判定するものである。検査対象領域が、高所や狭隘部分、または、液中や高温や高放射線環境等の過酷環境にあり、検査対象を直接視認することが難しい場合には、ドローン等の遠隔操作移動体に搭載した撮像機が撮像した映像を、離れた場所にいる検査員が液晶ディスプレイなどを介して間接的に視認することで目視検査を行うことが多い。   Visual inspection is one of the methods for inspecting the soundness of social infrastructure structures such as tunnels and bridges and buildings such as power plants. In visual inspection, an inspector directly views an inspection target area or indirectly visually recognizes an image captured by an imaging device such as a camera to determine the presence or absence of a defect. When the inspection target area is in a high place or narrow area, or in a harsh environment such as in liquid, high temperature, or high radiation environment, it is difficult to see the inspection target directly. In many cases, a visual inspection is performed by an inspector at a distant place indirectly viewing an image captured by the image pickup device through a liquid crystal display or the like.

このように、検査員が間接的な目視検査を行う場合は、欠陥判断しやすい視認性の高い映像を検査員に提供する必要があり、特に、検査対象領域の色調を正確に再現した映像を提供することが、欠陥の有無を適切に判断する上で重要である。例えば、検査対象領域の本来の色調に対し、特定の波長の光が減衰し撮像機に入射した場合は、映像においては特定の波長の光強度が弱く記録され、検査対象領域が本来の色調と異なる様子で液晶ディスプレイ等に表示されるため、検査員が欠陥の有無の判断を誤る可能性がある。   Thus, when an inspector performs an indirect visual inspection, it is necessary to provide the inspector with a high-visibility image that is easy to determine defects, and in particular, an image that accurately reproduces the color tone of the inspection target area. Providing it is important in properly determining the presence or absence of defects. For example, when light of a specific wavelength is attenuated and enters the imaging device with respect to the original color tone of the inspection target area, the light intensity of the specific wavelength is recorded weakly in the image, and the inspection target area has the original color tone. Since it is displayed on the liquid crystal display or the like in a different manner, there is a possibility that the inspector may mistakenly determine whether there is a defect.

このような問題を解決する技術として、例えば、特許文献1の提案がある。この文献の要約書には、「色についての知識をそれ程必要とせず、手間がかからずに色補正をして、正確な欠陥査が行える表面検査装置を提供する」ための手段として、「被検査物(半導体ウエハW)の表面に光を照射して被撮影画像を観察する表面検査装置であって、前記被撮影画像の色調特性を標準画像の色調特性に合わせて表示する表示部を備える」と記載されており、予め撮像した標準画像の色調特性を参照値として取得画像の色調を補正する装置について述べられている。   As a technique for solving such a problem, for example, there is a proposal of Patent Document 1. In the abstract of this document, as a means for “providing a surface inspection apparatus that does not require much knowledge about color, corrects color without much trouble, and can accurately inspect defects”, A surface inspection apparatus for irradiating light on the surface of an object to be inspected (semiconductor wafer W) and observing an image to be imaged, comprising a display unit that displays the color tone characteristics of the image to be imaged in accordance with the color tone characteristics of a standard image A device that corrects the color tone of an acquired image using a color tone characteristic of a standard image captured in advance as a reference value.

特開2008−89424号公報JP 2008-89424 A

社会インフラ構造物や建築物を目視検査する環境では、環境中の空間媒質の状態や撮像時の照明装置、撮像装置配置等の条件が大きく変動するため、撮像した映像の色調が大きく変動する可能性がある。しかしながら、特許文献1は、同文献の要約書の図面等からも明らかなように、照明、カメラ等の配置を固定した工場内のような環境下で半導体ウエハの表面を検査するものであり、標準画像を取得したある一定条件における色調補正方法は考慮されるが、条件変動に対応した大幅な色調補正までは考慮されていない。   In an environment in which social infrastructure structures and buildings are visually inspected, the conditions of the spatial medium in the environment and the conditions such as the illumination device and the arrangement of the imaging device during imaging vary greatly, so the color tone of the captured image can vary greatly. There is sex. However, Patent Document 1 is to inspect the surface of a semiconductor wafer under an environment such as a factory where the arrangement of lighting, cameras, etc. is fixed, as is apparent from the drawings of the abstract of the same document, Although a color tone correction method under a certain condition in which a standard image is acquired is considered, a significant color tone correction corresponding to a change in conditions is not considered.

本発明は、このような事情に鑑みなされたものであって、その目的は、撮像条件の大きく変動しうる環境下で撮像した検査対象領域の映像を、検査員が目視検査により欠陥判定しやすい色調に補正する画像処理装置、および、画像処理方法を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to allow an inspector to easily determine a defect by visual inspection of an image of a region to be inspected under an environment in which imaging conditions can vary greatly. An object of the present invention is to provide an image processing apparatus and an image processing method for correcting color tone.

上記課題を解決するために、本発明の目視検査用の画像処理システムは、撮像機の撮像画像を色調補正するものであって、検査対象物を撮像した撮像画像を出力する撮像機と、該撮像機の撮像範囲に光を照射する光源と、前記撮像機と前記光源を前記検査対象物の近傍で略対向配置させたときの撮像画像に基づいて前記検査対象物の近傍での光減衰率を求める減衰率算出部と、前記光減衰率と、前記撮像機と前記検査対象物の距離と、前記光源と前記検査対象物の距離と、光源強度と、前記検査対象物を撮像したときの撮像画像中の受光強度と、に基づいて、前記撮像画像中の前記検査対象物の各画素の色調減衰量を算出する色調減衰量算出部と、該色調減衰量算出部が算出した各画素の色調減衰量に基づいて前記撮像画像中の前記検査対象物の各画素の色調を補正する色調補正部と、を備えるものとした。   In order to solve the above problems, an image processing system for visual inspection according to the present invention corrects a color tone of an image captured by an image capturing device, and outputs an image captured by capturing an inspection object; A light source that irradiates light to an imaging range of an imaging device, and an optical attenuation factor in the vicinity of the inspection object based on a captured image when the imaging device and the light source are disposed substantially opposite to each other in the vicinity of the inspection object An attenuation rate calculation unit for obtaining the light attenuation rate, the distance between the imaging device and the inspection object, the distance between the light source and the inspection object, the light source intensity, and the image of the inspection object Based on the received light intensity in the captured image, a hue attenuation amount calculation unit that calculates the color tone attenuation amount of each pixel of the inspection object in the captured image, and for each pixel calculated by the color tone attenuation amount calculation unit The inspection object in the captured image based on a color tone attenuation amount A color correction unit for correcting the color tone of each pixel of and intended to comprise a.

本発明によれば、検査対象領域の映像が撮像条件の大きく変動しうる環境下で撮像された場合であっても、検査員が目視検査により欠陥判定しやすい色調に補正することが可能となる。   According to the present invention, even when an image of a region to be inspected is imaged in an environment in which the imaging conditions can vary greatly, it is possible to correct the color tone so that an inspector can easily determine a defect by visual inspection. .

実施例1の画像処理システムの概略図。1 is a schematic diagram of an image processing system according to Embodiment 1. FIG. 実施例1の画像処理方法を示すフローチャート。3 is a flowchart illustrating an image processing method according to the first exemplary embodiment. 図2の減衰率算出処理の詳細を示すフローチャート。The flowchart which shows the detail of the attenuation factor calculation process of FIG. 実施例1の減衰率算出時の機器配置を示す斜視図。FIG. 3 is a perspective view illustrating an arrangement of devices when calculating an attenuation factor according to the first embodiment. 実施例1の減衰率算出時の機器配置を示す側面図。FIG. 3 is a side view showing device arrangement when calculating an attenuation factor according to the first embodiment. 実施例1の減衰率算出時の撮像画像の一例を示した図。FIG. 4 is a diagram illustrating an example of a captured image when calculating an attenuation rate according to the first embodiment. 実施例1の色調減衰量算出時の機器配置を示す斜視図。FIG. 3 is a perspective view illustrating a device arrangement when calculating a color tone attenuation amount according to the first exemplary embodiment. 実施例2の画像処理システムの概略図。FIG. 3 is a schematic diagram of an image processing system according to a second embodiment. 実施例2の画像処理方法を示すフローチャート。9 is a flowchart illustrating an image processing method according to the second embodiment. 実施例2の光源距離算出時の機器配置を示す斜視図。The perspective view which shows the apparatus arrangement | positioning at the time of the light source distance calculation of Example 2. FIG. 実施例2の光源距離算出時の機器配置を示す上面図。FIG. 10 is a top view illustrating an arrangement of devices when calculating a light source distance according to the second embodiment. 実施例2の光源距離算出時の撮像画像の一例を示した図。FIG. 10 is a diagram illustrating an example of a captured image when calculating a light source distance according to the second embodiment. 実施例2の光源距離算出時の撮像画像の一例を示した図。FIG. 10 is a diagram illustrating an example of a captured image when calculating a light source distance according to the second embodiment. 実施例2の撮像機距離算出時の機器配置を示す上面図。FIG. 6 is a top view illustrating an apparatus arrangement when calculating an imager distance according to the second embodiment. 実施例2の撮像機距離算出時の撮像画像の一例を示した図。FIG. 6 is a diagram illustrating an example of a captured image when calculating an imager distance according to the second embodiment. 実施例2の撮像機距離算出時の機器配置を示す上面図。FIG. 6 is a top view illustrating an apparatus arrangement when calculating an imager distance according to the second embodiment. 実施例2の撮像機距離算出時の撮像画像の一例を示した図。FIG. 6 is a diagram illustrating an example of a captured image when calculating an imager distance according to the second embodiment.

以下、本発明の実施例を、図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1から図7を用いて、本発明の実施例1に係る画像処理システムおよび画像処理方法を説明する。   The image processing system and the image processing method according to the first embodiment of the present invention will be described with reference to FIGS.

図1は、実施例1の画像処理システムを検査対象領域1とともに示した概略図である。ここに示す検査対象領域1は検査員が目視検査を行う社会インフラ構造物や建築物の表面であり、また、本実施例の画像処理システムは、主に、検査対象物の検査対象領域1の一部を撮像範囲2aとする撮像機2と、検査対象領域1の一部を照射範囲3aとする光源3と、撮像機2の撮像画像2cを目視検査し易い色調に補正する画像処理装置4と、色調補正された補正画像2dを検査員に提供する表示装置5と、から構成されたものである。また、撮像機2には前方障害物までの距離を測定する撮像機位置測定器2bが取り付けられており、光源3にも前方障害物までの距離を測定する光源位置測定器3bが取り付けられている。これらの位置測定器は、例えばレーザー距離計であるが、前方障害物との距離を測定できるものであれば他種のセンサを用いても良い。   FIG. 1 is a schematic diagram illustrating an image processing system according to a first embodiment together with an inspection target region 1. The inspection target area 1 shown here is a surface of a social infrastructure structure or building where an inspector performs a visual inspection, and the image processing system of the present embodiment mainly has the inspection target area 1 of the inspection target. An image pickup device 2 having a part of the image pickup range 2a, a light source 3 having a part of the inspection target region 1 as an irradiation range 3a, and an image processing device 4 for correcting the picked-up image 2c of the image pickup device 2 to a color tone that is easy to visually inspect. And the display device 5 that provides the inspector with the corrected image 2d subjected to the color tone correction. In addition, an image pickup device position measuring device 2b for measuring the distance to the front obstacle is attached to the image pickup device 2, and a light source position measuring device 3b for measuring the distance to the front obstacle is also attached to the light source 3. Yes. These position measuring devices are, for example, laser distance meters, but other types of sensors may be used as long as they can measure the distance to the front obstacle.

撮像機2と光源3は、画像処理装置4の指令に従って検査対象領域1の近傍を自由に移動する遠隔操作移動体に搭載されている。この遠隔操作移動体は、例えば、検査対象領域1が高所にあればドローンであり、検査対象領域1が水中にあれば潜水艇である。以下では、別々の移動体に撮像機2と光源3を分けて搭載した構成を例に説明するが、一台の移動体が備える二本の可動アームの夫々に撮像機2と光源3を設置し、両可動アームを個々に制御することによって両者の配置を個別に制御できるようにしても良い。   The imaging device 2 and the light source 3 are mounted on a remote control moving body that freely moves in the vicinity of the inspection target region 1 in accordance with a command from the image processing device 4. The remote control moving body is, for example, a drone if the inspection target area 1 is at a high place, and a submersible craft if the inspection target area 1 is underwater. In the following, a configuration in which the image pickup device 2 and the light source 3 are separately mounted on separate moving bodies will be described as an example. However, the image pickup device 2 and the light source 3 are installed on each of two movable arms provided in one moving body. However, the arrangement of both the movable arms may be individually controlled by individually controlling both the movable arms.

画像処理装置4は、撮像機2、撮像機位置測定器2b、光源位置測定器3bの出力信号を受信し、それらに基づいて撮像機2の撮像画像2cに本実施例の画像処理を施すものであり、その実現のため、減衰率算出部4a、記憶部4b、色調算出画像取得部4c、色調減衰量算出部4d、色調算出部4e、画像色調補正部4f、を有している。なお、画像処理装置4は、具体的には、CPU等の演算装置、半導体メモリ等の主記憶装置、ハードディスク等の補助記憶装置(記憶部4b)、および、通信装置などのハードウェアを備えたパソコンなどの計算機であり、主記憶装置にロードされたプログラムを演算装置が実行することで、上述した各機能を実現するものであるが、以下では、このような周知技術を適宜省略しながら説明する。   The image processing apparatus 4 receives the output signals of the image pickup device 2, the image pickup device position measuring device 2b, and the light source position measuring device 3b, and applies the image processing of the present embodiment to the picked-up image 2c of the image pickup device 2 based on them. In order to realize this, an attenuation rate calculation unit 4a, a storage unit 4b, a color tone calculation image acquisition unit 4c, a color tone attenuation amount calculation unit 4d, a color tone calculation unit 4e, and an image color tone correction unit 4f are included. Specifically, the image processing apparatus 4 includes hardware such as an arithmetic device such as a CPU, a main storage device such as a semiconductor memory, an auxiliary storage device (storage unit 4b) such as a hard disk, and a communication device. A computer, such as a personal computer, that implements each of the functions described above by executing a program loaded in the main storage device. The following description will be made while omitting such well-known techniques as appropriate. To do.

次に、図2から図7を用いて、画像処理装置4で実行される画像処理の詳細を、各処理の実行主体を明らかにしながら説明する。
<減衰率算出部4aによるステップS2の処理>
図2は、本実施例の画像処理装置4で実施する画像処理方法のフローチャートである。目視検査用の画像処理を開始すると(ステップS1)、先ず、減衰率算出部4aは、色調補正を行うための基礎データである、距離あたりの光の減衰量(減衰率A)を算出し、算出した減衰率Aと光源強度を記憶部4bに記憶する(ステップS2)。
Next, the details of the image processing executed by the image processing apparatus 4 will be described with reference to FIGS. 2 to 7 while clarifying the execution subject of each processing.
<Processing of Step S2 by Decay Rate Calculation Unit 4a>
FIG. 2 is a flowchart of an image processing method performed by the image processing apparatus 4 of the present embodiment. When image processing for visual inspection is started (step S1), the attenuation rate calculation unit 4a first calculates the attenuation amount (attenuation rate A) of light per distance, which is basic data for performing color tone correction, The calculated attenuation rate A and light source intensity are stored in the storage unit 4b (step S2).

図3は、ステップS2の詳細を説明するフローチャートである。減衰率算出部4aが減衰率算出処理(ステップS2)を開始すると、先ず、撮像機2を搭載した移動体と光源3を搭載した移動体を、減衰率Aを算出するための基準位置に移動させる(ステップS21)。そして、両移動体が基準位置に到達すると(ステップS22)、その位置での撮像機2の撮像画像2cを取得し(ステップS23)、光源3の光源強度(光源発光量L)も取得しておく(ステップS24)。そして、取得した光源強度(光源発光量L)、撮像画像2c中の光源3の明るさ(撮像機受光量B)、および、基準位置における撮像機2と光源3の距離Dに基づいて、距離あたりの光の減衰量(減衰率A)を算出する。   FIG. 3 is a flowchart for explaining details of step S2. When the attenuation factor calculation unit 4a starts the attenuation factor calculation process (step S2), first, the moving object equipped with the image pickup device 2 and the moving object equipped with the light source 3 are moved to a reference position for calculating the attenuation factor A. (Step S21). When both moving bodies reach the reference position (step S22), the captured image 2c of the image pickup device 2 at that position is acquired (step S23), and the light source intensity (light source emission amount L) of the light source 3 is also acquired. (Step S24). Then, based on the acquired light source intensity (light source emission amount L), brightness of the light source 3 in the captured image 2c (image pickup light reception amount B), and the distance D between the image pickup device 2 and the light source 3 at the reference position. The amount of light attenuation (attenuation rate A) is calculated.

次に、図4から図6を用いて、ステップS2における減衰率Aの算出方法をより詳細に説明する。図4は、減衰率算出位置(基準位置)に到達した撮像機2と光源3が略対向しているステップS22時の状態を示す斜視図であり、このときの撮像機2と光源3の間隔を距離Dとしている。なお、減衰率Aを算出するステップS2は、検査対象領域1の撮像画像2cを目視検査し易い色調に補正するための基礎データを取得する処理であるため、ステップS22の減衰率算出位置(基準位置)は、検査対象領域1の近傍と同質の環境下である必要がある。ここで、「同質の環境」とは、例えば、検査対象領域1の近傍の空間媒質の種別(空気、真水、海水)、圧力、温度、媒質密度、粒子密度、粒子径、等の諸条件が略同質である環境であり、具体的には、検査対象領域1が濁った水中にある場合は、同程度に濁った水中の環境、より望ましくは、検査対象領域1の近傍の環境である。   Next, the calculation method of the attenuation factor A in step S2 will be described in more detail with reference to FIGS. FIG. 4 is a perspective view showing a state at step S22 in which the image pickup device 2 and the light source 3 that have reached the attenuation rate calculation position (reference position) are substantially opposed to each other, and the distance between the image pickup device 2 and the light source 3 at this time. Is the distance D. Note that step S2 for calculating the attenuation rate A is a process of acquiring basic data for correcting the captured image 2c of the inspection target region 1 to a color tone that is easy to visually inspect, and therefore the attenuation rate calculation position (reference) in step S22. The position) needs to be in the same quality environment as the vicinity of the inspection target region 1. Here, the “homogeneous environment” means, for example, various conditions such as the type (air, fresh water, seawater), pressure, temperature, medium density, particle density, particle diameter, etc. of the spatial medium in the vicinity of the inspection target region 1. Specifically, when the inspection target region 1 is in turbid water, it is an environment in the same amount of turbid water, and more preferably in the vicinity of the inspection target region 1.

撮像機2と光源3が基準位置に到達すると、減衰率算出部4aは、両者間の距離Dを測定する。この測定は、撮像機位置測定器2bまたは光源位置測定器3bによって相方までの距離を距離Dとするものであっても良いし、減衰率算出部4aが規定距離を隔てるように撮像機2と光源3を搭載した各移動体に指令を出している場合は、その規定距離を距離Dとしても良い。また、撮像機2の撮像画像2cに基づいて距離Dを算出しても良い。   When the image pickup device 2 and the light source 3 reach the reference position, the attenuation rate calculation unit 4a measures the distance D between them. In this measurement, the distance to the other side may be set to the distance D by the image pickup device position measuring device 2b or the light source position measuring device 3b, or the image pickup device 2 may be separated from the image pickup device 2 so that the attenuation rate calculating unit 4a is separated from the specified distance. When a command is issued to each moving body on which the light source 3 is mounted, the specified distance may be the distance D. Further, the distance D may be calculated based on the captured image 2c of the imaging device 2.

ここで、図5、図6を用いて、撮像機2の撮像画像2cから距離Dを算出する方法を説明する。図5は、基準位置に到達した撮像機2と光源3の側面図であり、図中のfは光源出射端における光束幅、θは光源の広がり角である。また、図6は、基準位置における撮像機2の撮像画像2cと、その撮像画像2c中の光源入射領域3cを示す図であり、図中のRは光源入射領域3cの実空間における入射領域幅である。なお、図5、図6の例では、光源3の光束形状を円形としたが、光束幅f、広がり角θ、入射領域幅Rが求まる形状であれば他の光束形状であっても良く、例えば矩形であっても良い。   Here, a method for calculating the distance D from the captured image 2c of the imaging device 2 will be described with reference to FIGS. FIG. 5 is a side view of the image pickup device 2 and the light source 3 that have reached the reference position, where f is a light beam width at the light source exit end, and θ is a light source spread angle. FIG. 6 is a diagram showing a captured image 2c of the image pickup device 2 at the reference position and a light source incident area 3c in the captured image 2c, where R in the figure is an incident area width in real space of the light source incident area 3c. It is. In the examples of FIGS. 5 and 6, the light beam shape of the light source 3 is circular. However, other light beam shapes may be used as long as the light beam width f, the spread angle θ, and the incident region width R are obtained. For example, it may be a rectangle.

このとき、距離Dは(式1)で表される。   At this time, the distance D is expressed by (Expression 1).

Figure 2019200525
Figure 2019200525

また、減衰率算出部4aは、撮像画像2c中の光源入射領域3cに対応する画素領域の輝度値に基づいて撮像機受光量Bを算出する。そして、以上の処理により取得した、距離D、光源発光量L、撮像機受光量Bに基づいて、検査対象領域1の近傍と略同質の環境である基準位置における光の減衰率Aを求める。なお、減衰率Aは、(式2)で表される。   In addition, the attenuation rate calculation unit 4a calculates the image sensor received light amount B based on the luminance value of the pixel region corresponding to the light source incident region 3c in the captured image 2c. Then, based on the distance D, the light source emission amount L, and the imaging device received light amount B acquired by the above processing, the light attenuation rate A at the reference position, which is an environment substantially the same as the vicinity of the inspection target region 1, is obtained. The attenuation rate A is expressed by (Expression 2).

Figure 2019200525
Figure 2019200525

以上より、減衰率Aが求められ、減衰率データとして記憶部4bに記憶される。
<色調算出画像取得部4cによるステップS3〜S6の処理>
ステップS2で減衰率Aと光源強度(光源発光量L)を取得すると、色調算出画像取得部4cは、撮像機2と光源3を搭載した両移動体に検査対象領域1の近傍への移動を指令する。そして、撮像機2が検査対象領域1を撮像できる位置に移動し、また、光源3が撮像範囲2aに光を照射できる位置に移動すると(ステップS4)、撮像機位置測定器2bと光源位置測定器3bを用いて、撮像機2から検査対象領域1までの距離Dと、光源3から検査対象領域1までの距離Dを測定するとともに(ステップS5)、撮像機2と光源3を制御して光が照射された検査対象領域1の画像を撮像する(ステップS6)。
<色調減衰量算出部4d等によるステップS7〜S9の処理>
その後、色調減衰量算出部4dは、上述の処理により取得した、減衰率データ(減衰率A)、光源強度データ(光源発光量L)、距離データ(距離D、距離D)、撮像画像データ(撮像画像2c)を用いて、色調減衰量を算出し(ステップS7)、色調算出部4eでは、色調減衰率に基づいて色調情報を算出する(ステップS8)。さらに、画像色調補正部4fでは、色調情報を用いて撮像画像2cの色調を補正し、補正画像2dを生成する(ステップS9)。
As described above, the attenuation rate A is obtained and stored as attenuation rate data in the storage unit 4b.
<Processing of Steps S3 to S6 by Color Tone Calculation Image Acquisition Unit 4c>
When the attenuation rate A and the light source intensity (the light source emission amount L) are acquired in step S2, the color tone calculation image acquisition unit 4c moves the moving object in which the imaging device 2 and the light source 3 are mounted to the vicinity of the inspection target region 1. Command. Then, when the image pickup device 2 moves to a position where the inspection target area 1 can be imaged and the light source 3 moves to a position where the image pickup range 2a can be irradiated with light (step S4), the image pickup device position measuring device 2b and the light source position measurement are performed. with vessel 3b, the distance D 1 of the from the imaging device 2 to the inspection area 1, (step S5) while measuring a distance D 2 from the light source 3 to the inspection object area 1, controls the imaging unit 2 and the light source 3 Then, an image of the inspection target region 1 irradiated with light is taken (step S6).
<Processes of Steps S7 to S9 by Color Tone Attenuation Calculation Unit 4d>
Thereafter, the color tone attenuation amount calculation unit 4d acquires the attenuation rate data (attenuation rate A), light source intensity data (light source emission amount L), distance data (distance D 1 , distance D 2 ), and captured image acquired by the above-described processing. Using the data (captured image 2c), a color tone attenuation amount is calculated (step S7), and the color tone calculation unit 4e calculates color tone information based on the color tone attenuation rate (step S8). Further, the image tone correction unit 4f corrects the tone of the captured image 2c using the tone information, and generates a corrected image 2d (step S9).

次に、図7に示す状況を例に、ステップS7〜S9の処理の詳細を説明する。ステップS6を終えた時点で、本実施例の画像処理装置4は、減衰率データ(減衰率A)、光源強度データ(光源発光量L)、距離データ(距離D、距離D)、撮像画像データ(撮像画像2c)を取得済みである。この場合、現在の撮像画像データ2cから求めた現在の撮像機受光量B’、および、既知の、光源発光光量L、距離D、D、減衰率Aに基づいて、検査対象表面の色調によって決まる、分光反射率特性による光量減衰量LDを算出することができる。検査対象表面の色調による光量減衰量LDは、撮像画像2cの画素ごとに計算され、(式3)で表される。 Next, details of the processing of steps S7 to S9 will be described by taking the situation shown in FIG. 7 as an example. When step S6 is completed, the image processing apparatus 4 according to the present exemplary embodiment has the attenuation rate data (attenuation rate A), light source intensity data (light source emission amount L), distance data (distance D 1 , distance D 2 ), and imaging. Image data (captured image 2c) has been acquired. In this case, the color tone of the surface to be inspected based on the current imaging device received light amount B ′ obtained from the current captured image data 2c, and the known light source emission light amount L, distances D 1 and D 2 , and attenuation factor A. It is possible to calculate the light amount attenuation amount LD determined by the spectral reflectance characteristic. The light amount attenuation amount LD due to the color tone of the surface to be inspected is calculated for each pixel of the captured image 2c and is expressed by (Equation 3).

Figure 2019200525
Figure 2019200525

すなわち、光量減衰量LDは、光源強度(光源発光量L)と撮像機受光量(現在の撮像機受光量B’)の差から、更に、距離由来の減衰量(A・(D+D))を差し引いた値となる。検査対象表面の色調による光量減衰量LDは、検査対象表面の色調情報によって決まる分光反射特性により一意に決まるものであり、この値から、検査対象領域の表面の色調情報を算出する。以上の方法により、撮像画像2c中の検査対象領域表面の各画素について、各々本来の色調が算出される。なお、ここでは、特定の1波長の光による減衰率を求める方法について述べているが、複数の波長の光を切り替えて各々の減衰率を求め、次に示す撮像画像色調補正ステップS13において合成して補正しても良い。例えば、光の3原色である赤、緑、青に対応する3つの波長の光を切り替える光源3を備え、それぞれの減衰率A、A、Aを求めて合成することで、色調を補正した補正画像2dを得るものとしても良い。このとき、光の波長選択は、目的とする画像が得られるように複数波長で自由に選択することができ、また、可視波長範囲に限らない。また、光源の切替方法について、複数の波長が切り替えられる手段であれば良く、例えば複数の光源を用いても良いし、波長フィルタを用いて切り替えるなど、目的とする波長が切り替えられる手段であればこれに限らない。 That is, the light amount attenuation amount LD is further calculated from the difference between the light source intensity (light source light emission amount L) and the image pickup device received light amount (current image pickup device received light amount B ′), and the attenuation amount derived from the distance (A · (D 1 + D 2). )) Is subtracted. The light amount attenuation amount LD due to the color tone of the surface to be inspected is uniquely determined by the spectral reflection characteristic determined by the color tone information of the surface to be inspected, and the color tone information of the surface of the area to be inspected is calculated from this value. By the above method, the original color tone is calculated for each pixel on the surface of the inspection target area in the captured image 2c. Here, the method for obtaining the attenuation rate due to light of one specific wavelength is described. However, the respective attenuation factors are obtained by switching light of a plurality of wavelengths and synthesized in the captured image color tone correction step S13 shown below. May be corrected. For example, the light source 3 that switches light of three wavelengths corresponding to the three primary colors of light, red, green, and blue, is provided, and the color tone is adjusted by obtaining and combining the respective attenuation factors A R , A G , and A B. A corrected image 2d may be obtained. At this time, the wavelength selection of light can be freely selected at a plurality of wavelengths so as to obtain a target image, and is not limited to the visible wavelength range. The light source switching method may be any means capable of switching a plurality of wavelengths. For example, a plurality of light sources may be used, or any means capable of switching a target wavelength, such as switching using a wavelength filter. Not limited to this.

ステップS7〜ステップS9が終了し、検査対象領域の一部の撮像および撮像画像2cの補正処理が完了すると、全領域検査完了判定ステップS14において、計画した全ての検査領域の撮像が完了したかどうかを判定する。そして、他にも検査対象領域が残っている場合は、再びステップS3に戻り、次の検査対象領域1の近傍まで撮像機2と光源3を移動させてから(ステップS3、S4)、当該の検査対象領域1での画像取得から色調補正までの処理を実行する。すべての検査対象領域1の撮像等が完了した場合は、ステップS11に進み、目視検査用の画像処理を終了する。   When Step S7 to Step S9 are completed and the imaging of a part of the inspection target region and the correction processing of the captured image 2c are completed, whether or not the imaging of all planned inspection regions is completed in the all region inspection completion determination step S14. Determine. If there are other areas to be inspected, the process returns to step S3 again, and after moving the image pickup device 2 and the light source 3 to the vicinity of the next area to be inspected 1 (steps S3 and S4), Processing from image acquisition to tone correction in the inspection target area 1 is executed. When imaging of all the inspection target areas 1 is completed, the process proceeds to step S11, and the image processing for visual inspection is ended.

以上の画像処理方法によって得られた補正画像2dは、画像処理装置4から表示装置5に送られ、欠陥判定に用いる検査画像として表示される。このようにして表示装置5に表示された補正画像2dは、検査対象領域1の撮像環境の相違に拘わらず、目視検査し易い色調に補正されているため、検査員は異なる環境下の検査対象領域1を目視検査する際も、安定した欠陥判定を実現することが可能となる。   The corrected image 2d obtained by the above image processing method is sent from the image processing device 4 to the display device 5 and displayed as an inspection image used for defect determination. In this way, the corrected image 2d displayed on the display device 5 is corrected to a color tone that is easy to visually inspect regardless of the difference in the imaging environment of the inspection target region 1. Even when the region 1 is visually inspected, stable defect determination can be realized.

次に、図8から図18を用いて、本発明の実施例2の画像処理システムおよび画像処理方法を説明する。なお、実施例1との共通点は重複説明を省略するものとする。   Next, an image processing system and an image processing method according to the second embodiment of the present invention will be described with reference to FIGS. Note that common explanation with the first embodiment is omitted.

実施例1の画像処理システムでは、撮像機位置測定器2bと光源位置測定器3bを利用して距離D、Dを測定したが、本実施例では、これらの位置測定器を省略した代わりに、撮像画像2cを利用して距離D、Dに相当する距離を算出するステップを設けたものである。 In the image processing system according to the first embodiment, the distances D 1 and D 2 are measured using the imaging device position measuring device 2b and the light source position measuring device 3b. However, in this embodiment, these position measuring devices are omitted. Further, a step of calculating a distance corresponding to the distances D 1 and D 2 using the captured image 2c is provided.

図8は、本実施例の画像処理システムを検査対象構造物とともに示す概略図である。ここに示すように、本実施例の画像処理装置4は、実施例1の図1と比較し、距離算出画像取得部4g、照明距離算出部4h、撮像距離算出部4i、光源切替部4jを追加したものである。   FIG. 8 is a schematic view showing the image processing system of this embodiment together with the structure to be inspected. As shown here, the image processing apparatus 4 according to the present embodiment includes a distance calculation image acquisition unit 4g, an illumination distance calculation unit 4h, an imaging distance calculation unit 4i, and a light source switching unit 4j, as compared with FIG. 1 of the first embodiment. It is added.

また、図9は、本実施例の画像処理方法のフローチャートである。この画像処理方法は、実施例1の図2と比較し、位置測定器を利用して距離測定するステップS5に代え、撮像画像2cに基づいて距離を検出するための、距離算出画像取得ステップS5a、距離算出ステップS5b、光源切替ステップS5cを設けたものである。以下、図10から図17を用いながら、ステップ5a〜5cの詳細を説明する。
<ステップS5a>
ステップS5aでは、先ず、距離算出画像取得部4gからの指令により、光源3から、図10の斜視図に示す、二本の光束からなる構造化照明パターン3dを照射する。この構造化照明パターン3dは、図11の上面図に示すように、一方が水平方向の光束幅LWの平行光であり、他方が水平方向の光束幅LW、広がり角θの広がり光である。なお、ここでは、説明簡略化のため、構造化照明パターン3dの一方を平行光としたが、双方を広がり角の異なる広がり光としても良い。
FIG. 9 is a flowchart of the image processing method of this embodiment. Compared with FIG. 2 of the first embodiment, this image processing method replaces the step S5 of measuring the distance using the position measuring device, and the distance calculation image acquisition step S5a for detecting the distance based on the captured image 2c. , Distance calculation step S5b, and light source switching step S5c are provided. Hereinafter, the details of Steps 5a to 5c will be described with reference to FIGS.
<Step S5a>
In step S5a, first, a structured illumination pattern 3d composed of two light beams as shown in the perspective view of FIG. The structured illumination pattern 3d, as shown in the top view of FIG. 11, one is collimated light beam width LW 1 in the horizontal direction, beam width LW 2 of the other horizontal spread angle theta 2 of the spread light It is. Here, for simplicity of explanation, one of the structured illumination patterns 3d is parallel light, but both may be spread light having different divergence angles.

このような構造化照明パターン3dを用いる場合、撮像機2の撮像画像2cには、光源3と検査対象領域1の距離に応じて見え方が変化する構造化照明パターン3dが記録される。例えば、検査対象領域1が図11の検査対象領域1の位置にある場合、撮像機2の撮像画像2cには図12に示す構造化照明パターン3dが撮像され、検査対象領域1が図11の検査対象領域1の位置にある場合、撮像機2の撮像画像2cには図13に示す構造化照明パターン3dが撮像される。すなわち、一方の光束幅Wは距離に拘わらず一定であるが、他方の光束幅Wは距離に比例することが分かる。
<ステップS5b>
このような性質を利用して、ステップ5bでは、照明距離算出部4hは、撮像画像2cに基づいて、図11に示す、光源3から検査対象領域1の中心位置までの距離Dを、(式4)により算出する。なお、W、Wは検査対象領域1に照射された各光束の実際の幅である。
When such a structured illumination pattern 3d is used, a structured illumination pattern 3d whose appearance changes according to the distance between the light source 3 and the inspection target region 1 is recorded in the captured image 2c of the imaging device 2. For example, the inspection when the target region 1 is in the position of the inspection area 1 A of FIG. 11, the captured image 2c of the imaging device 2 structured illumination pattern 3d shown in FIG. 12 is captured, the inspection target region 1 is 11 If there in the position of the inspection area 1 B, the captured image 2c of the imaging device 2 structured illumination pattern 3d shown in FIG. 13 is captured. That is, one beam width W 1 is constant regardless of the distance, the other beam width W 2 is proportional to the distance.
<Step S5b>
By utilizing such properties, in step 5b, the illumination distance calculating section 4h, based upon the pickup image 2c, shown in Figure 11, the distance D 3 from the light source 3 to the center position of the inspection area 1, ( Calculated by equation 4). W 1 and W 2 are actual widths of the respective light beams irradiated on the inspection target region 1.

Figure 2019200525
Figure 2019200525

これにより、光源3から検査対象領域1までの距離Dを算出する。また、このときの構造化照明パターン3dの高さ方向の広がり角をθとすると、図11に示す光源3の配置角度φは、(式5)により算出する。 Thus, to calculate the distance D 3 from the light source 3 to the inspection object area 1. Also, when the spread angle in the height direction of the structured illumination pattern 3d in this case the theta 3, the arrangement angle phi 2 of the light source 3 shown in Figure 11 is calculated by (Equation 5).

Figure 2019200525
Figure 2019200525

次に、撮像距離算出部4iによる、撮像機2から検査対象領域1までの距離Dの算出方法を、図14から図17を用いて説明する。 Then, according to the imaging distance calculation unit 4i, a method of calculating the distance D 4 from the imaging device 2 to the inspection area 1 will be described with reference to FIGS. 14 to 17.

図14の上面図に示すように、撮像機2が検査対象領域1と正対している場合、撮像機2からは図15に示す撮像画像2cが得られる。このとき、撮像距離Dは、撮像機焦点距離Fを用いて、(式6)により算出する。 As shown in the top view of FIG. 14, when the imaging device 2 faces the inspection target region 1, a captured image 2 c shown in FIG. 15 is obtained from the imaging device 2. At this time, the imaging distance D 4, by using the imager focal length F, is calculated by (Equation 6).

Figure 2019200525
Figure 2019200525

また、図16の上面図に示すように、撮像機2が検査対象領域1に対してφの角度を持つ場合、撮像機2からは図17に示す撮像画像2cが得られる。このとき、撮像距離Dは、(式7)により算出し、φは、(式8)により算出する。 As shown in the top view of FIG. 16, when the imaging device 2 has an angle of φ 3 with respect to the inspection target region 1, a captured image 2 c shown in FIG. 17 is obtained from the imaging device 2. At this time, the imaging distance D 4 is calculated by (Expression 7), and φ 3 is calculated by (Expression 8).

Figure 2019200525
Figure 2019200525

Figure 2019200525
Figure 2019200525

これにより、位置測定器を省略した構成であっても、撮像画像2cに基づいて、撮像機2から検査対象領域1までの距離D、および、光源3から検査対象領域1までの距離Dを求めることができる。
<ステップS5c>
次に、ステップS5cについて説明する。ステップS5a以降で光源3が照射した構造化照明パターン3dは、撮像範囲2aの全体を照射するものではなく、検査用の画像を撮像するには適さないものである。そのため、光源切替部4jからの指令に従って、検査用の撮像画像2cを取得するステップS6の前に、光源3の照射パターンを撮像範囲2a全体を照射可能なものに切り替える。なお、切り替える照明パターンは、全撮像範囲を照射するように複数のパターンを切り替えても良く、例えば、構造化照明パターン3dにおいて照射されていない領域を補間するようなパターンを投影しても良い。その場合、構造化照明パターン3dの照射時に撮像した画像と、光源切替後に撮像した画像を、合成して撮像画像2cを生成しても良い。
Thus, even in a configuration in which omit the position measuring device, based on the captured image 2c, the distance D 4 from the imaging device 2 to the inspection area 1, and a distance D 3 from the light source 3 to the inspection object area 1 Can be requested.
<Step S5c>
Next, step S5c will be described. The structured illumination pattern 3d irradiated by the light source 3 after step S5a does not irradiate the entire imaging range 2a, and is not suitable for capturing an image for inspection. Therefore, in accordance with a command from the light source switching unit 4j, the irradiation pattern of the light source 3 is switched to one that can irradiate the entire imaging range 2a before step S6 of acquiring the captured image 2c for inspection. The illumination pattern to be switched may be switched between a plurality of patterns so as to illuminate the entire imaging range. For example, a pattern that interpolates a region that is not illuminated in the structured illumination pattern 3d may be projected. In that case, the captured image 2c may be generated by combining the image captured when the structured illumination pattern 3d is irradiated and the image captured after the light source is switched.

以上で説明した本実施例の構成によれば、位置測定器を省略した構成であっても、撮像画像2cに基づいて、撮像機2から検査対象領域1までの距離D、および、光源3から検査対象領域1までの距離Dを求めることができ、これらを用いて、実施例1と同様に、目視検査による欠陥検出に適した色調補正を施した補正画像2dを生成することができ、検査員は表示装置を介して安定した欠陥判定を実施することが可能となる。 According to the configuration of the present embodiment described above, even if the position measuring device is omitted, the distance D 4 from the imaging device 2 to the inspection target region 1 and the light source 3 based on the captured image 2c. from it is possible to obtain the distance D 3 to the inspection object area 1, using these in the same manner as in example 1, it is possible to generate a corrected image 2d subjected to color correction suitable for the defect detection by visual inspection The inspector can perform a stable defect determination via the display device.

1 検査対象領域、
2 撮像機、
2a 撮像範囲、
2b 撮像機位置測定器、
2c 撮像画像、
2d 補正画像、
3 光源、
3a 照射範囲、
3b 光源位置測定器、
3c 光源入射領域、
3d 構造化照明パターン、
4 画像処理装置、
4a 減衰率算出部、
4b 記憶部、
4c 色調算出画像取得部、
4d 色調減衰量算出部、
4e 色調算出部、
4f 画像色調補正部、
4g 距離算出画像取得部、
4h 照明距離算出部、
4i 撮像距離算出部、
4j 光源切替部、
5 表示装置
1 inspection area,
2 imaging machine,
2a imaging range,
2b Imager position measuring device,
2c captured image,
2d corrected image,
3 Light source,
3a Irradiation range,
3b Light source position measuring device,
3c light source incident area,
3d structured lighting pattern,
4 image processing device,
4a Attenuation rate calculation unit,
4b storage unit,
4c color tone calculation image acquisition unit,
4d tone attenuation calculation unit,
4e color tone calculation unit,
4f Image color tone correction unit,
4g distance calculation image acquisition unit,
4h Illumination distance calculation unit,
4i imaging distance calculation unit,
4j light source switching unit,
5 display devices

Claims (6)

撮像機の撮像画像を色調補正する目視検査用の画像処理システムであって、
検査対象物を撮像した撮像画像を出力する撮像機と、
該撮像機の撮像範囲に光を照射する光源と、
前記撮像機と前記光源を前記検査対象物の近傍で略対向配置させたときの撮像画像に基づいて前記検査対象物の近傍での光減衰率を求める減衰率算出部と、
前記光減衰率と、前記撮像機と前記検査対象物の距離と、前記光源と前記検査対象物の距離と、光源強度と、前記検査対象物を撮像したときの撮像画像中の受光強度と、に基づいて、前記撮像画像中の前記検査対象物の各画素の色調減衰量を算出する色調減衰量算出部と、
該色調減衰量算出部が算出した各画素の色調減衰量に基づいて前記撮像画像中の前記検査対象物の各画素の色調を補正する色調補正部と、
を備えることを特徴とする目視検査用の画像処理システム。
An image processing system for visual inspection that corrects a color tone of a captured image of an imager,
An imaging device that outputs a captured image obtained by imaging the inspection object;
A light source that irradiates light to an imaging range of the imaging device;
An attenuation rate calculation unit for obtaining a light attenuation rate in the vicinity of the inspection object based on a captured image when the imaging device and the light source are disposed substantially opposite to each other in the vicinity of the inspection object;
The light attenuation rate, the distance between the imaging device and the inspection object, the distance between the light source and the inspection object, the light source intensity, and the received light intensity in the captured image when the inspection object is imaged, A color tone attenuation amount calculating unit that calculates a color tone attenuation amount of each pixel of the inspection object in the captured image;
A color tone correction unit that corrects the color tone of each pixel of the inspection object in the captured image based on the color tone attenuation amount of each pixel calculated by the color tone attenuation amount calculation unit;
An image processing system for visual inspection, comprising:
前記撮像機と前記検査対象物の距離を測定する撮像機位置測定器と、
前記光源と前記検査対象物の距離を測定する光源位置測定器と、
を備えることを特徴とする、請求項1に記載の目視検査用の画像処理システム。
An imager position measuring device for measuring a distance between the imager and the inspection object;
A light source position measuring device for measuring a distance between the light source and the inspection object;
The image processing system for visual inspection according to claim 1, comprising:
前記撮像機と前記検査対象物の距離、および、前記光源と前記検査対象物の距離を、前記検査対象物を撮像した撮像画像に基づいて算出する距離算出処理部を更に備えることを特徴とする、請求項1に記載の目視検査用の画像処理システム。   It further comprises a distance calculation processing unit that calculates a distance between the imaging device and the inspection object and a distance between the light source and the inspection object based on a captured image obtained by imaging the inspection object. The image processing system for visual inspection according to claim 1. 前記撮像機が前記距離算出処理部による距離算出に提供する撮像画像を撮像する際に、前記光源は、2つ以上の異なる光拡がり角度を持つ光分布パターンを照射することを特徴とする、請求項3に記載の目視検査用の画像処理システム。   The light source emits a light distribution pattern having two or more different light divergence angles when the image pickup device picks up a picked-up image provided for distance calculation by the distance calculation processing unit. Item 4. The image processing system for visual inspection according to Item 3. 前記光源は、2つ以上の波長の光を切り替えて照射するものであり、
前記色調補正部は、波長毎の色調補正画像を合成するものであることを特徴とする、請求項1から請求項4の何れか一項に記載の目視検査用の画像処理システム。
The light source switches and irradiates light of two or more wavelengths,
The image processing system for visual inspection according to any one of claims 1 to 4, wherein the color correction unit synthesizes a color correction image for each wavelength.
撮像画像を色調補正する目視検査用の画像処理方法であって、
撮像機と光源を検査対象物の近傍で略対向配置させたときの撮像画像に基づいて前記検査対象物の近傍での光減衰率を求め、
前記検査対象物に光を照射し、
前記検査対象物を撮像し、
前記光減衰率と、前記撮像機と前記検査対象物の距離と、前記光源と前記検査対象物の距離と、光源強度と、前記検査対象物を撮像したときの撮像画像中の受光強度と、に基づいて、前記撮像画像中の前記検査対象物の各画素の色調減衰量を算出し、
算出した各画素の色調減衰量に基づいて前記撮像画像中の前記検査対象物の各画素の色調を補正する、
ことを特徴とする目視検査用の画像処理方法。
An image processing method for visual inspection for correcting a color tone of a captured image,
Obtaining the light attenuation factor in the vicinity of the inspection object based on the captured image when the imaging device and the light source are arranged substantially opposite each other in the vicinity of the inspection object,
Irradiating the inspection object with light,
Imaging the inspection object,
The light attenuation rate, the distance between the imaging device and the inspection object, the distance between the light source and the inspection object, the light source intensity, and the received light intensity in the captured image when the inspection object is imaged, On the basis of the color tone attenuation amount of each pixel of the inspection object in the captured image,
Correcting the color tone of each pixel of the inspection object in the captured image based on the calculated color tone attenuation amount of each pixel;
An image processing method for visual inspection characterized by the above.
JP2018093863A 2018-05-15 2018-05-15 Image processing system for visual inspection and image processing method Active JP7013321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018093863A JP7013321B2 (en) 2018-05-15 2018-05-15 Image processing system for visual inspection and image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018093863A JP7013321B2 (en) 2018-05-15 2018-05-15 Image processing system for visual inspection and image processing method

Publications (2)

Publication Number Publication Date
JP2019200525A true JP2019200525A (en) 2019-11-21
JP7013321B2 JP7013321B2 (en) 2022-01-31

Family

ID=68613178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018093863A Active JP7013321B2 (en) 2018-05-15 2018-05-15 Image processing system for visual inspection and image processing method

Country Status (1)

Country Link
JP (1) JP7013321B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281759A (en) * 1997-04-03 1998-10-23 Japan Steel Works Ltd:The Infrared image processing distance measuring system
JP2003222598A (en) * 2001-11-26 2003-08-08 Omron Corp Surface state inspection method of curved-surface body and board inspection method
JP2011137753A (en) * 2009-12-28 2011-07-14 Canon Inc Measuring system, image correction method, and computer program
WO2015133098A1 (en) * 2014-03-06 2015-09-11 日本電気株式会社 Image-processing device, image-capturing device, image-processing method, and storage medium for storing program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281759A (en) * 1997-04-03 1998-10-23 Japan Steel Works Ltd:The Infrared image processing distance measuring system
JP2003222598A (en) * 2001-11-26 2003-08-08 Omron Corp Surface state inspection method of curved-surface body and board inspection method
JP2011137753A (en) * 2009-12-28 2011-07-14 Canon Inc Measuring system, image correction method, and computer program
WO2015133098A1 (en) * 2014-03-06 2015-09-11 日本電気株式会社 Image-processing device, image-capturing device, image-processing method, and storage medium for storing program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
藤井 めぐみ MEGUMI FUJII: "光の減衰を考慮した水中画像の色合い補正 Color Registration of Underwater Images with Consideration o", 映像情報メディア学会技術報告 VOL.30 NO.17 ITE TECHNICAL REPORT, vol. 第30巻, JPN6021052769, 3 April 2006 (2006-04-03), JP, pages 25 - 28, ISSN: 0004679047 *

Also Published As

Publication number Publication date
JP7013321B2 (en) 2022-01-31

Similar Documents

Publication Publication Date Title
US8483444B2 (en) Apparatus for inspecting and measuring object to be measured
US10163213B2 (en) 3D point clouds
AU2015250746B2 (en) Underwater surveys
JP6205465B2 (en) Shallow water observation system
JP6940843B2 (en) Underwater observation system
JP5133626B2 (en) Surface reflection characteristic measuring device
JP6989444B2 (en) Work terminal, oil leak detection device, and oil leak detection method
WO2017138210A1 (en) Image pickup apparatus, image pickup method, and image pickup system
JP2008014882A (en) Three-dimensional measuring device
JP2005258622A (en) Three-dimensional information acquiring system and three-dimensional information acquiring method
CN105277558B (en) Multi-step method for studying surface and corresponding equipment
KR100903346B1 (en) Method for optical visual examination of three-dimensional shape
JP4313322B2 (en) Defective particle measuring apparatus and defective particle measuring method
JP7013321B2 (en) Image processing system for visual inspection and image processing method
JP2019215364A (en) Water-bottom observation system
JP7436656B2 (en) Shooting system, shooting method, shooting program, and information acquisition method
JP6781963B1 (en) Measuring device and measuring method
WO2022202042A1 (en) Visual inspection method and visual inspection device
JP2017138787A (en) Imaging system, imaging apparatus, and imaging method
KR101269128B1 (en) Surface roughness measurement apparatus and method having intermediate view generator
Bodenmann et al. 3D colour reconstruction of a hydrothermally active area using an underwater robot
JP2014089156A (en) Visual inspection method
JP2021067588A (en) Surface inspection device for object to be inspected and surface inspection method for object to be inspected
JP6676910B2 (en) Inspection device
KR102204449B1 (en) Confomal coating thickness measurement apparatus using light interference method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220119

R150 Certificate of patent or registration of utility model

Ref document number: 7013321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150