JP2019197245A - Information processing apparatus, quality related formula generation method and quality related formula generation program - Google Patents

Information processing apparatus, quality related formula generation method and quality related formula generation program Download PDF

Info

Publication number
JP2019197245A
JP2019197245A JP2018089122A JP2018089122A JP2019197245A JP 2019197245 A JP2019197245 A JP 2019197245A JP 2018089122 A JP2018089122 A JP 2018089122A JP 2018089122 A JP2018089122 A JP 2018089122A JP 2019197245 A JP2019197245 A JP 2019197245A
Authority
JP
Japan
Prior art keywords
candidate
coefficient
value
quality
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018089122A
Other languages
Japanese (ja)
Other versions
JP7144676B2 (en
Inventor
克樹 白井
Katsuki Shirai
克樹 白井
満 久保
Mitsuru Kubo
満 久保
歓 時
Huan Shi
歓 時
小林 泰山
Taisan Kobayashi
泰山 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2018089122A priority Critical patent/JP7144676B2/en
Publication of JP2019197245A publication Critical patent/JP2019197245A/en
Application granted granted Critical
Publication of JP7144676B2 publication Critical patent/JP7144676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

To improve a specific accuracy of a factor that affects a quality.SOLUTION: An information processing apparatus 10 generates a plurality of candidate formulas and sets each of the plurality of candidate formulas as an evaluation target. The information processing apparatus 10 determines a coefficient value of a coefficient of a candidate formula that is an evaluation target based on a measured value. The information processing apparatus 10 calculates a matching coefficient indicating an adaption degree of the candidate formula for item to the measured value. The information processing apparatus 10 calculates a correlation coefficient between a coefficient value for item of the candidate formula of the evaluation target and a quality value. The information processing apparatus 10 calculates a score value of the candidate formula of the evaluation target based on the matching coefficient of the candidate formula of the evaluation target and the correlation coefficient. Then the information processing apparatus 10 identifies a quality related formula including a coefficient related to qualities of the plurality of items among the plurality of candidate formulas based on each of score value of the plurality of candidate formulas.SELECTED DRAWING: Figure 1

Description

本発明は、情報処理装置、品質関連式生成方法、および品質関連式生成プログラムに関する。   The present invention relates to an information processing apparatus, a quality related expression generation method, and a quality related expression generation program.

製品の製造現場では、作業者により、不良率低減、品質のばらつきの低減などの、製品の品質改善が行われている。品質改善には、製造工程で得られたデータを解析して、製造工程で起きている現象を正確に把握することが重要となる。   At the product manufacturing site, the quality of the product is improved by the worker, such as reducing the defect rate and reducing the variation in quality. In order to improve quality, it is important to analyze data obtained in the manufacturing process and accurately grasp phenomena occurring in the manufacturing process.

データの解析技術としては、例えば重回帰分析により高精度かつ汎用的なモデルを得るため、解析者に依存しない因果関係モデルを求めることができる製造工程分析方法がある。また操業状況の良否に影響の大きい操業因子を入力変数データとして操業評価関数を構築しプロセスの操業状況を評価する操業状況評価装置も考えられている。さらに操業因子と品質の関連性を解析するにあたって操業因子空間を分割する場合に、比較的少ない分割数で精度の高い品質と操業の関連モデルを構築可能とする操業と品質の関連解析装置も考えられている。バッチ同士が互いに紐付けられ、サンプリング周期が異なる変数同士や工程をまたがる変数同士の相関を的確に調べることが可能なデータ解析装置もある。また、製品に新部品が含まれても、どの工程が不良の要因となっているのか、どのパラメータが不良にどれくらい寄与しているのかを簡単に知ることのできる製品品質向上支援システムもある。   As a data analysis technique, for example, there is a manufacturing process analysis method capable of obtaining a causal relationship model independent of an analyst in order to obtain a highly accurate and general-purpose model by multiple regression analysis. In addition, an operation status evaluation apparatus is also considered that constructs an operation evaluation function using an operation factor having a large influence on the quality of the operation status as input variable data and evaluates the operation status of the process. In addition, when analyzing the relevance between operating factors and quality, an operation and quality related analysis device that can build a high-accuracy quality and operating related model with a relatively small number of divisions is also considered when dividing the operating factor space. It has been. There is also a data analysis apparatus that can accurately examine the correlation between variables that are linked to each other and that have different sampling cycles or that span processes. There is also a product quality improvement support system that makes it easy to know which process is causing a failure and which parameter contributes to the failure even if a new part is included in the product.

特開2008−084039号公報JP 2008-084039 A 特開2013−140548号公報JP 2013-140548 A 特開2006−155557号公報JP 2006-155557 A 特開2009−187175号公報JP 2009-187175 A 特開平10−040289号公報Japanese Patent Laid-Open No. 10-040289

しかし、従来の技術では、不良原因や、品質に影響する因子の特定精度が十分ではない。そのため、製品の品質を改善するのに時間がかかる。
1つの側面では、本件は、品質に影響を及ぼしている因子の特定精度を向上させることを目的とする。
However, the conventional technology does not have sufficient accuracy for identifying the cause of defects and factors affecting quality. Therefore, it takes time to improve the quality of the product.
In one aspect, the present case aims to improve the accuracy of identifying factors affecting quality.

1つの案では、以下に示す記憶部と処理部とを有する情報処理装置が提供される。
記憶部は、同種の複数の製品それぞれに対する作業中に物理量を測定した測定値の時間変化を示す測定データと、複数の製品それぞれの品質を表す品質値を含む品質データとを記憶する。処理部は、値が未定の係数を含み、物理量の時間変化を表す複数の候補式を生成する。次に処理部は、生成した複数の候補式それぞれを評価対象とし、測定値に基づき評価対象の候補式の係数の係数値を製品ごとに決定する。次に処理部は、評価対象の候補式の製品ごとの係数値に基づいて、測定値に対する評価対象の候補式の適合度合いを示すマッチング係数を算出する。次に処理部は、評価対象の候補式の製品ごとの係数値と品質値との相関係数を算出する。次に処理部は、評価対象の候補式のマッチング係数と相関係数とに基づいて、評価対象の候補式のスコア値を算出する。そして処理部は、複数の候補式それぞれのスコア値に基づいて、複数の候補式のなかから、複数の製品の品質に関係する係数を含む品質関連式を特定する。
In one proposal, an information processing apparatus having a storage unit and a processing unit described below is provided.
A memory | storage part memorize | stores the measurement data which show the time change of the measured value which measured the physical quantity during the operation | work with respect to each of the same kind of several products, and the quality data containing the quality value showing the quality of each of several products. The processing unit generates a plurality of candidate formulas that include coefficients whose values are undetermined and that represent temporal changes in physical quantities. Next, the processing unit sets each of the plurality of generated candidate formulas as an evaluation target, and determines a coefficient value of a coefficient of the candidate formula to be evaluated for each product based on the measurement value. Next, the processing unit calculates a matching coefficient indicating the degree of matching of the candidate expression to be evaluated with respect to the measurement value, based on the coefficient value for each product of the candidate expression to be evaluated. Next, the processing unit calculates a correlation coefficient between the coefficient value for each product of the candidate formula to be evaluated and the quality value. Next, the processing unit calculates a score value of the candidate expression to be evaluated based on the matching coefficient and the correlation coefficient of the candidate expression to be evaluated. Then, the processing unit identifies a quality-related expression including a coefficient related to the quality of the plurality of products from the plurality of candidate expressions based on the score values of the plurality of candidate expressions.

1態様によれば、品質に影響を及ぼしている因子の特定精度を向上させることができる。   According to one aspect, it is possible to improve the accuracy of identifying a factor that affects quality.

第1の実施の形態に係る情報処理装置の一例を示す図である。It is a figure which shows an example of the information processing apparatus which concerns on 1st Embodiment. 第2の実施の形態のシステム構成例を示す図である。It is a figure which shows the system configuration example of 2nd Embodiment. コンピュータのハードウェアの一構成例を示す図である。It is a figure which shows the example of 1 structure of the hardware of a computer. 品質影響原因を特定するための各機器の機能の一例を示すブロック図である。It is a block diagram which shows an example of the function of each apparatus for specifying a quality influence cause. 製造データ記憶部に格納されているデータの一例を示す図である。It is a figure which shows an example of the data stored in the manufacture data storage part. 数式候補要素記憶部に格納されているデータの一例を示す図である。It is a figure which shows an example of the data stored in the numerical formula candidate element memory | storage part. 理論モデル記憶部に格納されているデータの一例を示す図である。It is a figure which shows an example of the data stored in the theoretical model memory | storage part. 応答特性データ記憶部に格納されているデータの一例を示す図である。It is a figure which shows an example of the data stored in the response characteristic data storage part. 品質影響原因特定処理の手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure of a quality influence cause specific process. 設定された要素に基づく候補モデルの生成例を示す図である。It is a figure which shows the example of a production | generation of the candidate model based on the set element. GPを用いて生成される候補モデルの一例を示す図である。It is a figure which shows an example of the candidate model produced | generated using GP. 交叉による世代進化の一例を示す図である。It is a figure which shows an example of the generation evolution by crossing. 係数値の算出例を示す図である。It is a figure which shows the example of calculation of a coefficient value. マッチング係数の算出例を示す図である。It is a figure which shows the example of calculation of a matching coefficient. 分析結果記憶部に格納されているデータの一例を示す図である。It is a figure which shows an example of the data stored in the analysis result memory | storage part. 係数値と最終真空度との相関分析の一例を示す図である。It is a figure which shows an example of the correlation analysis of a coefficient value and a final vacuum degree. 候補モデルのスコア値の計算例を示す図である。It is a figure which shows the example of calculation of the score value of a candidate model. 計算方法の違いによるスコア値の違いを説明する図である。It is a figure explaining the difference in the score value by the difference in the calculation method. 候補モデルの評価結果が設定された評価結果管理テーブルの一例を示す図である。It is a figure which shows an example of the evaluation result management table in which the evaluation result of the candidate model was set. モデル照合処理の一例を示す図である。It is a figure which shows an example of a model collation process. 理論モデルのフィルタリングの一例を示す図である。It is a figure which shows an example of filtering of a theoretical model. 文字列置換処理の一例を示す図である。It is a figure which shows an example of a character string replacement process. レーベンシュタイン距離の第1の算出例を示す図である。It is a figure which shows the 1st calculation example of Levenshtein distance. レーベンシュタイン距離の第2の算出例を示す図である。It is a figure which shows the 2nd example of calculation of Levenshtein distance. 類似度管理テーブルの一例を示す図である。It is a figure which shows an example of a similarity management table. 品質関連因子の解析結果表示画面の一例を示す図である。It is a figure which shows an example of the analysis result display screen of a quality related factor. スコア値による判定精度を説明する図である。It is a figure explaining the determination precision by a score value. 製品に関する式の構造の第1の例を示す図である。It is a figure which shows the 1st example of the structure of the type | formula regarding a product. 製品に関する式の構造の第2の例を示す図である。It is a figure which shows the 2nd example of the structure of the type | formula regarding a product. 製品に関する式の構造の第3の例を示す図である。It is a figure which shows the 3rd example of the structure of the type | formula regarding a product. 製品に関する式の構造の第4の例を示す図である。It is a figure which shows the 4th example of the structure of the type | formula regarding a product. 第3の実施の形態における品質影響原因特定処理の手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure of the quality influence cause specific process in 3rd Embodiment. 構造評価値の算出例を示す図である。It is a figure which shows the example of calculation of a structure evaluation value. ランキング管理テーブルの一例を示す図である。It is a figure which shows an example of a ranking management table. 候補モデルと理論モデルとの照合例を示す図である。It is a figure which shows the example of collation with a candidate model and a theoretical model. 品質関連因子の解析結果表示画面の一例を示す図である。It is a figure which shows an example of the analysis result display screen of a quality related factor. 基本構造が複数ある場合の品質関連因子の解析結果表示画面の一例を示す図である。It is a figure which shows an example of the analysis result display screen of a quality related factor in case there exist multiple basic structures.

以下、本実施の形態について図面を参照して説明する。なお各実施の形態は、矛盾のない範囲で複数の実施の形態を組み合わせて実施することができる。
〔第1の実施の形態〕
まず、第1の実施の形態について説明する。
Hereinafter, the present embodiment will be described with reference to the drawings. Each embodiment can be implemented by combining a plurality of embodiments within a consistent range.
[First Embodiment]
First, the first embodiment will be described.

図1は、第1の実施の形態に係る情報処理装置の一例を示す図である。第1の実施の形態では、情報処理装置10が、品質関連式生成方法を実施することで、複数の製品の品質に影響をおよぼす因子と製品の特性との関係を示す式(品質関連式)を生成する。例えば情報処理装置10は、品質関連式生成方法の手順が記述された品質関連式生成プログラムを実行することにより、品質関連式生成方法を実施する。   FIG. 1 is a diagram illustrating an example of an information processing apparatus according to the first embodiment. In the first embodiment, the information processing apparatus 10 performs a quality-related expression generation method, thereby indicating a relationship between a factor that affects the quality of a plurality of products and product characteristics (quality-related expression). Is generated. For example, the information processing apparatus 10 executes the quality related expression generation method by executing a quality related expression generation program in which the procedure of the quality related expression generation method is described.

情報処理装置10は、記憶部11と処理部12とを有する。記憶部11は、例えば情報処理装置10が有するメモリ、またはストレージ装置である。処理部12は、例えば情報処理装置10が有するプロセッサ、または演算回路である。   The information processing apparatus 10 includes a storage unit 11 and a processing unit 12. The storage unit 11 is, for example, a memory or a storage device included in the information processing apparatus 10. The processing unit 12 is, for example, a processor or an arithmetic circuit included in the information processing apparatus 10.

記憶部11は、測定データ11aと品質データ11bとを有する。測定データ11aは、同種の複数の製品それぞれに対する作業中に物理量を測定した測定値の時間変化を示すデータである。品質データ11bは、複数の製品それぞれの品質を表す品質値を含むデータである。なお測定データ11a内に品質データ11bが含まれていてもよい。例えば、測定データ11a内の製品ごとの測定値のうちの最良値、または時間経過上の最終値を、品質データ11bにおける品質値としてもよい。   The storage unit 11 includes measurement data 11a and quality data 11b. The measurement data 11a is data indicating a time change of a measurement value obtained by measuring a physical quantity during work for each of a plurality of products of the same type. The quality data 11b is data including a quality value representing the quality of each of a plurality of products. The quality data 11b may be included in the measurement data 11a. For example, the best value among the measurement values for each product in the measurement data 11a or the final value over time may be used as the quality value in the quality data 11b.

処理部12は、まず、値が未定の係数を含み、物理量の時間変化を表す複数の候補式を生成する。例えば処理部12は、複数の候補式を遺伝的プログラミングにより生成する。なお候補式は、物理量の時間変化を定量的に表すモデルの候補である。   First, the processing unit 12 generates a plurality of candidate formulas including coefficients whose values are undetermined and representing temporal changes in physical quantities. For example, the processing unit 12 generates a plurality of candidate expressions by genetic programming. The candidate formula is a model candidate that quantitatively represents the temporal change of the physical quantity.

次に処理部12は、測定データ11aと品質データ11bとに基づいて、生成した複数の候補式それぞれのスコア値を計算する。スコア値の計算手順は以下の通りである。
処理部12は、生成した複数の候補式それぞれを評価対象として順番に選択する。次に処理部12は、測定値に基づき評価対象の候補式の係数の係数値を製品ごとに決定する。例えば処理部12は、最小自乗法により、製品の測定値の変化を最も適確に表すような係数値を決定する。最小自乗法とは、残差の二乗和を最小とするような係数を決定する方法である。
Next, the processing unit 12 calculates a score value for each of the plurality of generated candidate formulas based on the measurement data 11a and the quality data 11b. The procedure for calculating the score value is as follows.
The processing unit 12 sequentially selects each of the plurality of generated candidate expressions as an evaluation target. Next, the processing unit 12 determines the coefficient value of the coefficient of the candidate expression to be evaluated for each product based on the measurement value. For example, the processing unit 12 determines a coefficient value that most accurately represents a change in the measured value of the product by the least square method. The least square method is a method for determining a coefficient that minimizes the sum of squares of residuals.

製品ごとの係数値が決定すると、処理部12は、評価対象の候補式の製品ごとの係数値に基づいて、測定値に対する評価対象の候補式の適合度合いを示すマッチング係数を算出する。例えば処理部12は、評価対象の候補式に製品ごとの係数値を設定して得られる回帰式と製品ごとの測定値との残差を計算し、残差の絶対値の平均をマッチング係数とする。この場合、候補式が測定値に適合しているほど、マッチング係数の値が小さくなる。   When the coefficient value for each product is determined, the processing unit 12 calculates a matching coefficient indicating the degree of matching of the candidate formula for the evaluation target with the measurement value, based on the coefficient value for each product of the candidate formula for the evaluation target. For example, the processing unit 12 calculates a residual between a regression equation obtained by setting a coefficient value for each product in the candidate formula to be evaluated and a measured value for each product, and calculates an average of absolute values of the residuals as a matching coefficient. To do. In this case, the value of the matching coefficient is smaller as the candidate formula is more suitable for the measured value.

次に処理部12は、評価対象の候補式の製品ごとの係数値と品質値との相関係数を算出する。相関係数は、相関関係が大きいほど、絶対値が大きくなる。そこで処理部12は、相関関係が大きいほど値が小さくなるように相関係数を修正した、修正相関係数を求める。例えば処理部12は、「1−相関係数の絶対値」を修正相関係数とする。   Next, the processing unit 12 calculates a correlation coefficient between the coefficient value for each product of the candidate formula to be evaluated and the quality value. The absolute value of the correlation coefficient increases as the correlation increases. Therefore, the processing unit 12 obtains a corrected correlation coefficient by correcting the correlation coefficient so that the value decreases as the correlation increases. For example, the processing unit 12 sets “1−absolute value of correlation coefficient” as the corrected correlation coefficient.

評価対象の候補式のマッチング係数と相関係数とを算出後、処理部12は、マッチング係数と相関係数とに基づいて、評価対象の候補式のスコア値を算出する。例えば処理部12は、評価対象の候補式について、マッチング係数と相関係数に応じた値(修正相関係数)との積を、評価対象の候補式のスコア値とする。評価対象の候補式に複数の係数が含まれる場合、処理部12は、例えば係数それぞれの相関係数の絶対値のうち、大きい方の値に応じた値(修正相関係数)と、マッチング係数との積を、評価対象の候補式のスコア値とする。   After calculating the matching coefficient and correlation coefficient of the candidate expression to be evaluated, the processing unit 12 calculates the score value of the candidate expression to be evaluated based on the matching coefficient and the correlation coefficient. For example, the processing unit 12 sets a product of a matching coefficient and a value corresponding to the correlation coefficient (corrected correlation coefficient) for the evaluation target candidate expression as a score value of the evaluation target candidate expression. When a plurality of coefficients are included in the candidate expression to be evaluated, the processing unit 12, for example, a value (corrected correlation coefficient) corresponding to the larger one of the absolute values of the correlation coefficients of the coefficients, and a matching coefficient Is the score value of the candidate expression to be evaluated.

生成したすべての候補式のスコア値が求まると、処理部12は、複数の候補式それぞれのスコア値に基づいて、複数の候補式のなかから、複数の製品の品質に関係する係数を含む品質関連式を特定する。例えば処理部12は、スコア値が最小の候補式を、品質関連式として特定する。また処理部12は、スコア値が小さい方から所定数の候補式を、品質関連式としてもよい。   When the score values of all the generated candidate expressions are obtained, the processing unit 12 determines the quality including coefficients related to the quality of the plurality of products from the plurality of candidate expressions based on the score values of the plurality of candidate expressions. Identify related expressions. For example, the processing unit 12 specifies a candidate formula having the smallest score value as a quality-related formula. Further, the processing unit 12 may use a predetermined number of candidate formulas as the quality-related formulas from the smaller score values.

さらに処理部12は、複数の製品の理論上の性質を表す複数の理論式のなかから、品質関連式に類似する類似理論式を特定する。そして処理部12は類似理論式に含まれる係数の物理的な意味を出力する。品質関連式に複数の係数が含まれる場合、処理部12は、相関係数の絶対値が最も大きい(修正相関係数の値が最も小さい)係数に対応する、類似理論モデル内の係数の意味を出力する。例えば処理部12は、該当する係数の意味を、モニタなどの画面に表示させる。   Further, the processing unit 12 specifies a similar theoretical formula similar to the quality-related formula from a plurality of theoretical formulas representing the theoretical properties of the plurality of products. Then, the processing unit 12 outputs the physical meaning of the coefficients included in the similar theoretical formula. When the quality-related expression includes a plurality of coefficients, the processing unit 12 means the coefficients in the similar theory model corresponding to the coefficient having the largest absolute value of the correlation coefficient (the smallest value of the corrected correlation coefficient). Is output. For example, the processing unit 12 displays the meaning of the corresponding coefficient on a screen such as a monitor.

このようにして、製品の品質に影響を及ぼす因子を高精度で特定することができる。例えば相関係数だけで品質関連式を特定すると、偶然に相関係数が高い候補式が存在する場合に、その候補式が品質関連式として特定されてしまう。このような候補式は、相関係数が偶然高いだけであるため、この候補式に含まれる係数と、製品の品質とに関係はない。そこで情報処理装置10では、相関係数とマッチング係数とを組み合わせてスコア値を算出している。マッチング係数の値が小さい(計測値に適合している)候補式は、製品の特性を表している。他方、偶然に相関係数が高くなった候補式は、製品の特性と関係が低いため計測値に適合せず、マッチング係数が大きくなる。その結果、偶然に相関係数が高くなった候補式が、品質関連式として誤って特定されることが抑止される。   In this way, factors that affect product quality can be identified with high accuracy. For example, when a quality-related expression is specified only by a correlation coefficient, if there is a candidate expression having a high correlation coefficient by chance, the candidate expression is specified as a quality-related expression. Since such a candidate formula only has a high correlation coefficient by chance, there is no relation between the coefficient included in the candidate formula and the quality of the product. Therefore, the information processing apparatus 10 calculates the score value by combining the correlation coefficient and the matching coefficient. A candidate formula having a small matching coefficient value (applicable to a measured value) represents a characteristic of the product. On the other hand, a candidate expression whose correlation coefficient is increased by chance does not match the measured value because the relationship with the product characteristics is low, and the matching coefficient increases. As a result, it is possible to prevent a candidate formula having a high correlation coefficient from being accidentally specified as a quality-related formula.

製品の品質に関係する品質関連式を正しく特定できることにより、その品質関連式と類似する理論モデルに基づいて、品質に影響を及ぼす因子を高精度に特定することが可能となる。   By correctly specifying a quality-related expression related to the quality of a product, it is possible to specify a factor that affects quality with high accuracy based on a theoretical model similar to the quality-related expression.

なお処理部12は、マッチング係数と相関係数(または修正相関係数)に重みを付けて、スコア値を計算することもできる。重みの値は、例えばユーザが予め情報処理装置10に設定する。例えばユーザは、測定値に多くのノイズが含まれていることが分かっている場合、マッチング係数に対する重みを、相関係数の重みよりも小さくする。処理部12は、評価対象の候補式のマッチング係数と相関係数に応じた値それぞれに重みを乗算または除算し、重みの乗算または除算結果の和を、評価対象の候補式のスコア値とする。例えば処理部12は、品質との関連度が高い候補式ほどスコア値が大きくなるようにスコア値を算出する場合、マッチング係数と相関係数それぞれに重みを乗算する。他方、処理部12は、品質との関連度が高い候補式ほどスコア値が小さくなるようにスコア値を算出する場合、マッチング係数と相関係数それぞれを重みで除算する。   Note that the processing unit 12 can also calculate the score value by weighting the matching coefficient and the correlation coefficient (or the modified correlation coefficient). The weight value is set in the information processing apparatus 10 in advance by the user, for example. For example, when the user knows that a lot of noise is included in the measurement value, the user makes the weight for the matching coefficient smaller than the weight for the correlation coefficient. The processing unit 12 multiplies or divides each of the values according to the matching coefficient and correlation coefficient of the candidate expression to be evaluated by the weight, and uses the weight multiplication or the sum of the division results as the score value of the evaluation target candidate expression. . For example, when calculating the score value so that the candidate value having a higher degree of association with quality has a higher score value, the processing unit 12 multiplies the matching coefficient and the correlation coefficient by a weight. On the other hand, the processing unit 12 divides the matching coefficient and the correlation coefficient by the weight when calculating the score value so that the candidate value having a higher degree of association with quality has a smaller score value.

また処理部12は、複数の候補式間でのマッチング係数と相関係数との順位(ランキング)を決定し、評価対象の候補式のマッチング係数の順位と相関係数の順位とに基づいて、評価対象の候補式のスコア値を計算してもよい。順位に基づいてスコア値を計算することで、マッチング係数や相関係数との大きさ(オーダ)の違いにより、一方の値のみがスコア値に大きく反映してしまうことを抑止できる。例えば相関係数の絶対値は0以上1以下の範囲である。それに対して、マッチング係数は、どのような物理量の測定値なのかによって値の大きさ(オーダ)が変わる。順位に基づいてスコア値を計算すれば、値の大きさ(オーダ)の違いはなくなり、マッチング係数と相関係数とを対等に扱うことができる。   Further, the processing unit 12 determines the ranking (ranking) of the matching coefficient and the correlation coefficient among the plurality of candidate expressions, and based on the ranking of the matching coefficient and the correlation coefficient of the candidate expression to be evaluated, You may calculate the score value of the candidate formula of evaluation object. By calculating the score value based on the rank, it is possible to prevent only one value from being greatly reflected in the score value due to the difference in the magnitude (order) from the matching coefficient or the correlation coefficient. For example, the absolute value of the correlation coefficient is in the range of 0 to 1. On the other hand, the magnitude (order) of the value of the matching coefficient varies depending on what physical quantity is measured. If the score value is calculated based on the rank, there is no difference in the magnitude (order) of the values, and the matching coefficient and the correlation coefficient can be handled equally.

さらに処理部12は、複数の製品の特性に基づく物理量の計算式の基本構造を用いて、より高精度に、品質に影響を及ぼす因子を特定することもできる。例えば処理部12は、基本構造と評価対象の候補式との類似度に基づいて、評価対象の候補式の構造評価値を算出する。そして処理部12は、評価対象の候補式のマッチング係数と相関係数と構造評価値とに基づいて、評価対象の候補式のスコア値を算出する。例えば処理部12は、マッチング係数と相関係数に応じた値(修正相関係数)と構造評価値との積を、スコア値とする。また処理部12は、複数の候補式の間での、マッチング係数と相関係数と構造評価値それぞれの順位(ランキング)に基づいて、スコア値を算出することもできる。   Furthermore, the processing unit 12 can specify a factor that affects quality with higher accuracy by using a basic structure of a physical quantity calculation formula based on characteristics of a plurality of products. For example, the processing unit 12 calculates the structure evaluation value of the candidate expression to be evaluated based on the similarity between the basic structure and the candidate expression to be evaluated. Then, the processing unit 12 calculates a score value of the evaluation target candidate expression based on the matching coefficient, correlation coefficient, and structure evaluation value of the evaluation target candidate expression. For example, the processing unit 12 uses a product of a value (corrected correlation coefficient) corresponding to the matching coefficient and the correlation coefficient and the structure evaluation value as the score value. The processing unit 12 can also calculate a score value based on the ranking (ranking) of each of the matching coefficient, the correlation coefficient, and the structure evaluation value among a plurality of candidate expressions.

基本構造と評価対象の候補式との類似度に応じた構造評価値を、スコア値に反映させることで、基本構造に近い候補式ほど、優良な値のスコア値を得ることができる。これにより、製品の性質を表す式が、複数の関数を含む複雑な式であったとしても、その式の基本構造を予め指定しておくことで、適切な品質関連式を特定することが可能となる。その結果、品質に影響を及ぼす因子を高精度に特定することができる。   By reflecting the structure evaluation value corresponding to the similarity between the basic structure and the candidate expression to be evaluated in the score value, a candidate expression closer to the basic structure can obtain a better score value. As a result, even if the formula that represents the properties of a product is a complex formula that includes multiple functions, it is possible to specify an appropriate quality-related formula by specifying the basic structure of the formula in advance. It becomes. As a result, factors that affect quality can be identified with high accuracy.

〔第2の実施の形態〕
次に第2の実施の形態について説明する。第2の実施の形態は、電子機器組み立てラインのクーリングユニットの品質に影響を及ぼす因子を特定するものである。
[Second Embodiment]
Next, a second embodiment will be described. The second embodiment specifies factors that affect the quality of the cooling unit of the electronic equipment assembly line.

図2は、第2の実施の形態のシステム構成例を示す図である。クーリングユニット1,2,・・・の製造現場には、クーリングユニット1,2,・・・に冷媒を充填するための冷媒充填装置30が設置されている。冷媒充填装置30には、コンピュータ100が接続されている。コンピュータ100は、クーリングユニット1,2,・・・への冷媒充填過程で測定したデータを冷媒充填装置30から取得し、取得したデータに基づいて、クーリングユニット1,2,・・・の品質に影響を及ぼす因子を解析する。   FIG. 2 is a diagram illustrating a system configuration example according to the second embodiment. At the manufacturing site of the cooling units 1, 2,..., A refrigerant filling device 30 for charging the cooling units 1, 2,. A computer 100 is connected to the refrigerant charging device 30. The computer 100 acquires the data measured in the refrigerant filling process of the cooling units 1, 2,... From the refrigerant charging device 30, and based on the acquired data, the quality of the cooling units 1, 2,. Analyze the influencing factors.

例えば作業者は、冷媒充填装置30からチューブで繋がれた冷媒注入カプラ31をクーリングユニット1に接続する。そして作業者が冷媒充填装置30の充填スタートスイッチを押すと、冷媒充填装置30は、接続されたクーリングユニット1内の冷媒注入空間に対する真空引きを行う。冷媒充填装置30は、真空度が規定値以上になると、冷媒注入空間に冷媒を注入する。作業者は、冷媒の注入が完了すると、クーリングユニット1から冷媒注入カプラ31を取り外す。このような一連の作業を各クーリングユニット1,2,・・・に対して行うことで、各クーリングユニット1,2,・・・に冷媒を注入することができる。   For example, the operator connects the refrigerant injection coupler 31 connected by a tube from the refrigerant filling device 30 to the cooling unit 1. When the operator presses the charging start switch of the refrigerant charging device 30, the refrigerant charging device 30 evacuates the refrigerant injection space in the connected cooling unit 1. The refrigerant filling device 30 injects the refrigerant into the refrigerant injection space when the degree of vacuum becomes a specified value or more. When the injection of the refrigerant is completed, the operator removes the refrigerant injection coupler 31 from the cooling unit 1. By performing such a series of operations for each cooling unit 1, 2,..., The refrigerant can be injected into each cooling unit 1, 2,.

なおクーリングユニット1,2,・・・のなかには、冷媒注入空間の真空度が規定値に達しないものが存在する。その場合、冷媒充填装置30は、真空引き失敗と判定する。真空引きに失敗すると、作業者は、クーリングユニット製造ラインを一旦停止し、真空引きに失敗したクーリングユニットに対して再度の真空引きを実施する。   Among the cooling units 1, 2,..., There are those in which the degree of vacuum of the refrigerant injection space does not reach a specified value. In that case, the refrigerant filling device 30 determines that the evacuation has failed. If the evacuation fails, the operator temporarily stops the cooling unit production line, and performs evacuation again on the cooling unit that failed to be evacuated.

このように、真空引きの失敗は、製造ラインの停止要因となり、製造効率を悪化させる。そこで、第2の実施の形態では、コンピュータ100を用いて、真空引きの良否に影響を及ぼす因子を特定する。   Thus, the failure of evacuation becomes a stop factor of the production line and deteriorates the production efficiency. Therefore, in the second embodiment, the computer 100 is used to identify factors that affect the quality of vacuuming.

図3は、コンピュータのハードウェアの一構成例を示す図である。コンピュータ100は、プロセッサ101によって装置全体が制御されている。プロセッサ101には、バス109を介してメモリ102と複数の周辺機器が接続されている。プロセッサ101は、マルチプロセッサであってもよい。プロセッサ101は、例えばCPU(Central Processing Unit)、MPU(Micro Processing Unit)、またはDSP(Digital Signal Processor)である。プロセッサ101がプログラムを実行することで実現する機能の少なくとも一部を、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)などの電子回路で実現してもよい。   FIG. 3 is a diagram illustrating a configuration example of hardware of a computer. The computer 100 is entirely controlled by a processor 101. A memory 102 and a plurality of peripheral devices are connected to the processor 101 via a bus 109. The processor 101 may be a multiprocessor. The processor 101 is, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or a DSP (Digital Signal Processor). At least a part of the functions realized by the processor 101 executing the program may be realized by an electronic circuit such as an ASIC (Application Specific Integrated Circuit) or a PLD (Programmable Logic Device).

メモリ102は、コンピュータ100の主記憶装置として使用される。メモリ102には、プロセッサ101に実行させるOS(Operating System)のプログラムやアプリケーションプログラムの少なくとも一部が一時的に格納される。また、メモリ102には、プロセッサ101による処理に利用する各種データが格納される。メモリ102としては、例えばRAM(Random Access Memory)などの揮発性の半導体記憶装置が使用される。   The memory 102 is used as a main storage device of the computer 100. The memory 102 temporarily stores at least part of an OS (Operating System) program and application programs to be executed by the processor 101. Further, the memory 102 stores various data used for processing by the processor 101. As the memory 102, for example, a volatile semiconductor storage device such as a RAM (Random Access Memory) is used.

バス109に接続されている周辺機器としては、ストレージ装置103、グラフィック処理装置104、入力インタフェース105、光学ドライブ装置106、機器接続インタフェース107およびネットワークインタフェース108がある。   Peripheral devices connected to the bus 109 include a storage device 103, a graphic processing device 104, an input interface 105, an optical drive device 106, a device connection interface 107, and a network interface 108.

ストレージ装置103は、内蔵した記録媒体に対して、電気的または磁気的にデータの書き込みおよび読み出しを行う。ストレージ装置103は、コンピュータの補助記憶装置として使用される。ストレージ装置103には、OSのプログラム、アプリケーションプログラム、および各種データが格納される。なお、ストレージ装置103としては、例えばHDD(Hard Disk Drive)やSSD(Solid State Drive)を使用することができる。   The storage device 103 writes and reads data electrically or magnetically with respect to a built-in recording medium. The storage device 103 is used as an auxiliary storage device of a computer. The storage device 103 stores an OS program, application programs, and various data. For example, an HDD (Hard Disk Drive) or an SSD (Solid State Drive) can be used as the storage device 103.

グラフィック処理装置104には、モニタ21が接続されている。グラフィック処理装置104は、プロセッサ101からの命令に従って、画像をモニタ21の画面に表示させる。モニタ21としては、有機EL(Electro Luminescence)を用いた表示装置や液晶表示装置などがある。   A monitor 21 is connected to the graphic processing device 104. The graphic processing device 104 displays an image on the screen of the monitor 21 in accordance with an instruction from the processor 101. Examples of the monitor 21 include a display device using organic EL (Electro Luminescence) and a liquid crystal display device.

入力インタフェース105には、キーボード22とマウス23とが接続されている。入力インタフェース105は、キーボード22やマウス23から送られてくる信号をプロセッサ101に送信する。なお、マウス23は、ポインティングデバイスの一例であり、他のポインティングデバイスを使用することもできる。他のポインティングデバイスとしては、タッチパネル、タブレット、タッチパッド、トラックボールなどがある。   A keyboard 22 and a mouse 23 are connected to the input interface 105. The input interface 105 transmits signals sent from the keyboard 22 and the mouse 23 to the processor 101. The mouse 23 is an example of a pointing device, and other pointing devices can also be used. Examples of other pointing devices include a touch panel, a tablet, a touch pad, and a trackball.

光学ドライブ装置106は、レーザ光などを利用して、光ディスク24に記録されたデータの読み取りを行う。光ディスク24は、光の反射によって読み取り可能なようにデータが記録された可搬型の記録媒体である。光ディスク24には、DVD(Digital Versatile Disc)、DVD−RAM、CD−ROM(Compact Disc Read Only Memory)、CD−R(Recordable)/RW(ReWritable)などがある。   The optical drive device 106 reads data recorded on the optical disc 24 using laser light or the like. The optical disc 24 is a portable recording medium on which data is recorded so that it can be read by reflection of light. The optical disc 24 includes a DVD (Digital Versatile Disc), a DVD-RAM, a CD-ROM (Compact Disc Read Only Memory), a CD-R (Recordable) / RW (ReWritable), and the like.

機器接続インタフェース107は、コンピュータ100に周辺機器を接続するための通信インタフェースである。例えば機器接続インタフェース107には、メモリ装置25やメモリリーダライタ26を接続することができる。メモリ装置25は、機器接続インタフェース107との通信機能を搭載した記録媒体である。メモリリーダライタ26は、メモリカード27へのデータの書き込み、またはメモリカード27からのデータの読み出しを行う装置である。メモリカード27は、カード型の記録媒体である。   The device connection interface 107 is a communication interface for connecting peripheral devices to the computer 100. For example, the memory device 25 and the memory reader / writer 26 can be connected to the device connection interface 107. The memory device 25 is a recording medium equipped with a communication function with the device connection interface 107. The memory reader / writer 26 is a device that writes data to the memory card 27 or reads data from the memory card 27. The memory card 27 is a card type recording medium.

ネットワークインタフェース108は、ネットワーク20に接続されている。ネットワークインタフェース108は、ネットワーク20を介して、他のコンピュータまたは通信機器との間でデータの送受信を行う。   The network interface 108 is connected to the network 20. The network interface 108 transmits and receives data to and from other computers or communication devices via the network 20.

コンピュータ100は、以上のようなハードウェア構成によって、第2の実施の形態の処理機能を実現することができる。なお、第1の実施の形態に示した装置も、図3に示したコンピュータ100と同様のハードウェアにより実現することができる。   The computer 100 can realize the processing functions of the second embodiment with the above hardware configuration. Note that the apparatus shown in the first embodiment can also be realized by hardware similar to the computer 100 shown in FIG.

コンピュータ100は、例えばコンピュータ読み取り可能な記録媒体に記録されたプログラムを実行することにより、第2の実施の形態の処理機能を実現する。コンピュータ100に実行させる処理内容を記述したプログラムは、様々な記録媒体に記録しておくことができる。例えば、コンピュータ100に実行させるプログラムをストレージ装置103に格納しておくことができる。プロセッサ101は、ストレージ装置103内のプログラムの少なくとも一部をメモリ102にロードし、プログラムを実行する。またコンピュータ100に実行させるプログラムを、光ディスク24、メモリ装置25、メモリカード27などの可搬型記録媒体に記録しておくこともできる。可搬型記録媒体に格納されたプログラムは、例えばプロセッサ101からの制御により、ストレージ装置103にインストールされた後、実行可能となる。またプロセッサ101が、可搬型記録媒体から直接プログラムを読み出して実行することもできる。   The computer 100 implements the processing functions of the second embodiment by executing a program recorded on a computer-readable recording medium, for example. A program describing the processing content to be executed by the computer 100 can be recorded in various recording media. For example, a program to be executed by the computer 100 can be stored in the storage device 103. The processor 101 loads at least a part of the program in the storage apparatus 103 into the memory 102 and executes the program. A program to be executed by the computer 100 can be recorded on a portable recording medium such as the optical disc 24, the memory device 25, and the memory card 27. The program stored in the portable recording medium becomes executable after being installed in the storage apparatus 103 under the control of the processor 101, for example. The processor 101 can also read and execute a program directly from a portable recording medium.

このようなハードウェアのコンピュータ100により、冷媒充填装置30が採取した製造データを解析し、不良品発生の原因である可能性がある因子が特定される。なお、第1の実施の形態に示した情報処理装置10も、コンピュータ100と同様のハードウェアによって実現することができる。   The hardware computer 100 analyzes manufacturing data collected by the refrigerant filling device 30 and identifies factors that may cause defective products. The information processing apparatus 10 shown in the first embodiment can also be realized by hardware similar to the computer 100.

図4は、品質影響原因を特定するための各機器の機能の一例を示すブロック図である。冷媒充填装置30は、製造データ記憶部32と制御部33とを有する。製造データ記憶部32は、クーリングユニット1,2,・・・の製造工程で採取したデータを記憶する。制御部33は、クーリングユニット1,2,・・・に対する真空引き、および冷媒注入を制御する。また制御部33は、真空引きの際に、冷媒注入空間内の真空度を定期的に計測し、計測した真空度の値を製造データ記憶部32に格納する。さらに制御部33は、コンピュータ100からのデータ取得要求に応じて、製造データ記憶部32内の指定されたデータをコンピュータ100に送信する。   FIG. 4 is a block diagram illustrating an example of the function of each device for identifying the cause of quality influence. The refrigerant filling device 30 includes a manufacturing data storage unit 32 and a control unit 33. The manufacturing data storage unit 32 stores data collected in the manufacturing process of the cooling units 1, 2,. The control unit 33 controls evacuation of the cooling units 1, 2,. Further, the controller 33 periodically measures the degree of vacuum in the refrigerant injection space during evacuation, and stores the measured degree of vacuum in the manufacturing data storage unit 32. Further, in response to a data acquisition request from the computer 100, the control unit 33 transmits designated data in the manufacturing data storage unit 32 to the computer 100.

コンピュータ100は、数式候補要素記憶部110、理論モデル記憶部120、応答特性データ取得部130、応答特性データ記憶部140、候補モデル構築部150、データ分析部160、分析結果記憶部170、およびモデル評価部180を有する。   The computer 100 includes a mathematical expression candidate element storage unit 110, a theoretical model storage unit 120, a response characteristic data acquisition unit 130, a response characteristic data storage unit 140, a candidate model construction unit 150, a data analysis unit 160, an analysis result storage unit 170, and a model. An evaluation unit 180 is included.

数式候補要素記憶部110は、真空度の時系列変化を表す数式の構築に使用する演算子などの要素を記憶する。理論モデル記憶部120は、クーリングユニット1,2,・・・の真空引きなどの製造工程で生じる物理現象を表す計算式を、理論モデルとして記憶する。理論モデルは、第1の実施の形態における理論式の一例である。   The mathematical expression candidate element storage unit 110 stores elements such as an operator used to construct a mathematical expression representing a time series change in the degree of vacuum. The theoretical model storage unit 120 stores a calculation formula representing a physical phenomenon that occurs in a manufacturing process such as evacuation of the cooling units 1, 2,... As a theoretical model. The theoretical model is an example of a theoretical formula in the first embodiment.

応答特性データ取得部130は、製造工程の過程で、製造対象製品に対する作業を行った際に、その製品を観測することで得られる物理量の時系列変化を示す応答特性データを取得する。例えば応答特性データ取得部130は、冷媒充填装置30から、クーリングユニット1,2,・・・に対する真空引きの際の真空度の時系列変化を示すデータを、応答特性データとして取得する。応答特性データ取得部130は、取得した応答特性データを、応答特性データ記憶部140に格納する。応答特性データ記憶部140は、応答特性データを記憶する。   The response characteristic data acquisition unit 130 acquires response characteristic data indicating a time-series change of a physical quantity obtained by observing a product when a work is performed on the product to be manufactured in the course of the manufacturing process. For example, the response characteristic data acquisition unit 130 acquires, as response characteristic data, data indicating a time-series change in the degree of vacuum when the cooling units 1, 2,... The response characteristic data acquisition unit 130 stores the acquired response characteristic data in the response characteristic data storage unit 140. The response characteristic data storage unit 140 stores response characteristic data.

候補モデル構築部150は、数式候補要素記憶部110に格納されている要素、またはユーザにより入力された要素を組み合わせて、応答特性データに表されている真空度の時系列変化を表す計算式の候補となる候補モデルを構築する。候補モデルは、第1の実施の形態に示した候補式の一例である。例えば候補モデル構築部150は、遺伝的アルゴリズム(GA:Genetic Algorithm)を用いて、候補モデルを繰り返し構築する。候補モデル構築部150は、候補モデルの構築にGAを用いる場合、遺伝的プログラミング(GP:Genetic Programming)を利用することで、複雑な計算式を、効率的に構築することができる。   The candidate model construction unit 150 combines the elements stored in the mathematical expression candidate element storage unit 110 or the elements input by the user to calculate a time-series change in the degree of vacuum represented in the response characteristic data. Build a candidate model. The candidate model is an example of the candidate formula shown in the first embodiment. For example, the candidate model construction unit 150 repeatedly constructs candidate models using a genetic algorithm (GA). Candidate model construction unit 150 can construct a complex calculation formula efficiently by using genetic programming (GP) when GA is used to construct a candidate model.

データ分析部160は、クーリングユニット1,2,・・・それぞれについて、構築された候補モデルに基づくデータ分析を行う。例えばデータ分析部160は、構築された候補モデルと、クーリングユニット1,2,・・・それぞれの応答特性データとを比較し、候補モデルに含まれる係数値の適切な値を、クーリングユニット1,2,・・・それぞれについて算出する。またデータ分析部160は、係数値が決定した候補モデルと応答特性データとの一致度合いを示すマッチング係数を算出する。データ分析部160は、データ分析結果を、分析結果記憶部170に格納する。分析結果記憶部170は、候補モデルごとの分析結果を記憶する。   The data analysis unit 160 performs data analysis on each of the cooling units 1, 2,. For example, the data analysis unit 160 compares the constructed candidate model with the response characteristic data of each of the cooling units 1, 2,..., And determines an appropriate value of the coefficient value included in the candidate model as the cooling unit 1, 2,... Further, the data analysis unit 160 calculates a matching coefficient indicating the degree of coincidence between the candidate model whose coefficient value is determined and the response characteristic data. The data analysis unit 160 stores the data analysis result in the analysis result storage unit 170. The analysis result storage unit 170 stores an analysis result for each candidate model.

モデル評価部180は、候補モデルに含まれる係数に対応する物理量が、製品の品質(真空引き実行後の最終真空度)に影響を及ぼしている度合いを示すスコア値を計算する。例えばモデル評価部180は、クーリングユニット1,2,・・・ごとのマッチング係数値の平均と、候補モデルに含まれる係数値とに基づいて、スコア値を算出する。候補モデル構築部150がGAまたはGPにより候補モデルを構築する場合、モデル評価部180は、評価した候補モデルのうち、優良なスコア値の候補モデルを候補モデル構築部150に送信する。以下の例では、スコア値は、値が小さいほど優良である。これにより、候補モデル構築部150は、優良なスコア値の候補モデルに基づいて次の世代の候補モデルを構築するといった、GAまたはGPのアルゴリズムに沿った適切な候補モデル構築が可能となる。さらにモデル評価部180は、理論モデルに基づいて、スコア値が閾値未満の候補モデルの係数の物理的な意味を判断する。そして、モデル評価部180は、スコア値が閾値未満の候補モデルの係数の物理的な意味を、品質に影響を及ぼす因子として、モニタ21に表示する。   The model evaluation unit 180 calculates a score value indicating the degree to which the physical quantity corresponding to the coefficient included in the candidate model has an influence on the quality of the product (final vacuum degree after execution of evacuation). For example, the model evaluation unit 180 calculates a score value based on the average of the matching coefficient values for each cooling unit 1, 2,... And the coefficient values included in the candidate model. When the candidate model construction unit 150 constructs a candidate model by GA or GP, the model evaluation unit 180 transmits a candidate model having an excellent score value to the candidate model construction unit 150 among the evaluated candidate models. In the following example, the score value is better as the value is smaller. Thereby, the candidate model construction unit 150 can construct an appropriate candidate model in accordance with the GA or GP algorithm, such as constructing a candidate model for the next generation based on a candidate model having an excellent score value. Further, the model evaluation unit 180 determines the physical meaning of the coefficient of the candidate model whose score value is less than the threshold based on the theoretical model. And the model evaluation part 180 displays the physical meaning of the coefficient of the candidate model whose score value is less than a threshold value on the monitor 21 as a factor affecting quality.

なお、図4に示した各要素間を接続する線は通信経路の一部を示すものであり、図示した通信経路以外の通信経路も設定可能である。また、図4に示した各要素の機能は、例えば、その要素に対応するプログラムモジュールをコンピュータ100に実行させることで実現することができる。   Note that the lines connecting the elements shown in FIG. 4 indicate a part of the communication paths, and communication paths other than the illustrated communication paths can be set. Also, the function of each element shown in FIG. 4 can be realized by causing the computer 100 to execute a program module corresponding to the element, for example.

次に、図5〜図8を参照して、品質影響原因の特定処理に利用するデータについて詳細に説明する。品質影響原因の特定処理に利用するデータのうち、製造データ記憶部32、数式候補要素記憶部110、および理論モデル記憶部120に格納されるデータについては、品質影響原因の特定処理の実行前に用意される。   Next, with reference to FIGS. 5 to 8, data used for quality influence cause identification processing will be described in detail. Of the data used for the quality influence cause identification process, the data stored in the manufacturing data storage unit 32, the formula candidate element storage unit 110, and the theoretical model storage unit 120 are not subjected to the quality influence cause identification process. Be prepared.

図5は、製造データ記憶部に格納されているデータの一例を示す図である。製造データ記憶部32には、例えば製造データ管理テーブル32aが格納されている。製造データ管理テーブル32aには、クーリングユニット1,2,・・・それぞれのユニット番号に対応付けて、品質データと製造データとが設定されている。   FIG. 5 is a diagram illustrating an example of data stored in the manufacturing data storage unit. In the manufacturing data storage unit 32, for example, a manufacturing data management table 32a is stored. In the manufacturing data management table 32a, quality data and manufacturing data are set in association with the unit numbers of the cooling units 1, 2,.

品質データは、対応するクーリングユニットの品質の判定基準を示すデータである。例えば最終真空度が、品質データとして製造データ管理テーブル32aに設定される。なお真空度は、真空引き対象空間の気圧で表され、値が小さいほど真空度が高い。   The quality data is data indicating a criterion for determining the quality of the corresponding cooling unit. For example, the final degree of vacuum is set in the manufacturing data management table 32a as quality data. The degree of vacuum is represented by the atmospheric pressure in the space to be evacuated, and the degree of vacuum is higher as the value is smaller.

製造データには、品質の良否の判定結果と、真空引き経過時間ごとの真空度とが設定されている。判定結果としては、最終真空度が規定値を満たす(最終真空度の値が閾値未満)の場合には、品質良好を示す値「OK」が設定され、最終真空度が規定値を満たさない(最終真空度の値が閾値以上)場合には、品質不良を示す値「NG」が設定される。   In the production data, the quality determination result and the degree of vacuum for each evacuation elapsed time are set. As a determination result, when the final vacuum satisfies the specified value (the final vacuum is less than the threshold value), a value “OK” indicating good quality is set, and the final vacuum does not satisfy the specified value ( When the final vacuum value is equal to or greater than a threshold value, a value “NG” indicating a quality defect is set.

図6は、数式候補要素記憶部に格納されているデータの一例を示す図である。数式候補要素記憶部110には、例えば技術分野のカテゴリごとの数式候補要素リスト111,112,・・・が格納されている。数式候補要素リスト111,112,・・・それぞれには、対応するカテゴリにおける物理量の計算に使用する要素(数式候補要素)のリストが登録されている。数式候補要素には、演算子、関数、変数が含まれる。演算子は、例えば四則演算子である。関数は、例えば三角関数、指数関数、対数関数である。変数には、x,yなどの変数に加え、実数や係数も含まれる。   FIG. 6 is a diagram illustrating an example of data stored in the formula candidate element storage unit. The formula candidate element storage unit 110 stores formula candidate element lists 111, 112,... For each category of the technical field, for example. In each of the formula candidate element lists 111, 112,..., A list of elements (formula candidate elements) used for calculating the physical quantity in the corresponding category is registered. Formula candidate elements include operators, functions, and variables. The operator is, for example, an arithmetic operator. The function is, for example, a trigonometric function, an exponential function, or a logarithmic function. Variables include real numbers and coefficients in addition to variables such as x and y.

このようにカテゴリごとに、該当分野で用いる関数などを予めリストアップしておくことで、適切な候補モデルを効率的に作成することができる。またカテゴリごとの物理量の理論上の計算式は、予め理論モデル記憶部120に登録されている。   As described above, by listing functions used in a corresponding field in advance for each category, an appropriate candidate model can be efficiently created. The theoretical calculation formula of the physical quantity for each category is registered in the theoretical model storage unit 120 in advance.

図7は、理論モデル記憶部に格納されているデータの一例を示す図である。理論モデル記憶部120には、例えば理論モデル管理テーブル121が格納される。理論モデル管理テーブル121の各レコードには、カテゴリ、理論モデル、理論モデルの意味、および係数の意味が設定される。カテゴリは、対応する理論モデルが適用される技術分野である。理論モデルは、該当カテゴリにおける物理量を算出するための計算式である。理論モデルの意味は、理論モデルで算出される物理量の意味である。係数の意味は、理論モデルに含まれる係数の物理的な意味である。例えばカテゴリが「真空排気」である理論モデル「P(x)=a/x」は排気速度の算出式であり、係数「a」は排気抵抗である。   FIG. 7 is a diagram illustrating an example of data stored in the theoretical model storage unit. The theoretical model storage unit 120 stores a theoretical model management table 121, for example. In each record of the theoretical model management table 121, the category, the theoretical model, the meaning of the theoretical model, and the meaning of the coefficient are set. A category is a technical field to which a corresponding theoretical model is applied. The theoretical model is a calculation formula for calculating a physical quantity in a corresponding category. The meaning of the theoretical model is the meaning of the physical quantity calculated by the theoretical model. The meaning of the coefficient is the physical meaning of the coefficient included in the theoretical model. For example, a theoretical model “P (x) = a / x” whose category is “evacuation” is an equation for calculating an exhaust velocity, and a coefficient “a” is an exhaust resistance.

図5〜図7に示したデータが用意された後、品質影響原因の特定処理の前処理として、応答特性データ取得部130が、製造データ記憶部32から製造データを取得する。そして応答特性データ取得部130は、取得した製造データに基づいて、クーリングユニット1,2,・・・それぞれの応答特性データを生成し、応答特性データを応答特性データ記憶部140に格納する。   After the data shown in FIGS. 5 to 7 are prepared, the response characteristic data acquisition unit 130 acquires the manufacturing data from the manufacturing data storage unit 32 as a pre-process of the quality influence cause specifying process. The response characteristic data acquisition unit 130 generates response characteristic data for each of the cooling units 1, 2,... Based on the acquired manufacturing data, and stores the response characteristic data in the response characteristic data storage unit 140.

図8は、応答特性データ記憶部に格納されているデータの一例を示す図である。応答特性データ記憶部140には、クーリングユニット1,2,・・・ごとの応答特性データ141,142,・・・に格納されている。応答特性データ141,142,・・・それぞれには、真空引き開始からの経過時間ごとに真空度が設定されている。応答特性データ141,142,・・・内の最後(経過時間が最大)のレコードの真空度が、該当クーリングユニットの最終真空度である。   FIG. 8 is a diagram illustrating an example of data stored in the response characteristic data storage unit. The response characteristic data storage unit 140 stores response characteristic data 141, 142,... For each cooling unit 1, 2,. In each of the response characteristic data 141, 142,..., The degree of vacuum is set for each elapsed time from the start of evacuation. The vacuum degree of the last record (maximum elapsed time) in the response characteristic data 141, 142,... Is the final vacuum degree of the corresponding cooling unit.

応答特性データ141,142,・・・が生成された後、ユーザからの品質影響原因特定処理の開始指示に応じて、コンピュータ100が品質影響原因特定処理を開始する。以下、品質影響原因特定処理について詳細に説明する。   After the response characteristic data 141, 142,... Are generated, the computer 100 starts the quality influence cause specifying process in response to a start instruction of the quality influence cause specifying process from the user. Hereinafter, the quality influence cause specifying process will be described in detail.

図9は、品質影響原因特定処理の手順の一例を示すフローチャートである。以下、図9に示す処理をステップ番号に沿って説明する。
[ステップS101]候補モデル構築部150は、候補モデルの構築に使用する要素(演算子など)指定入力を受け付ける。例えばユーザは、候補モデルの変数を何にするのか、どのような演算子を使用するのか、どのような関数を使用するのかを指定する入力を行う。ユーザは、個別の要素の指定入力をする代わりに、数式候補要素記憶部110内のいずれかの数式候補要素リストを指定することもできる。数式候補要素リストが指定された場合、候補モデル構築部150は、指定された数式候補要素リストに示される演算子、関数、変数を、候補モデルの構築に使用する要素とする。
FIG. 9 is a flowchart illustrating an example of the procedure of the quality influence cause identification process. In the following, the process illustrated in FIG. 9 will be described in order of step number.
[Step S101] The candidate model construction unit 150 accepts an input for designating an element (such as an operator) used to construct a candidate model. For example, the user performs an input for designating what the variable of the candidate model is, what operator is used, and what function is used. The user can also specify one of the formula candidate element lists in the formula candidate element storage unit 110 instead of inputting individual elements. When the formula candidate element list is designated, the candidate model construction unit 150 uses the operators, functions, and variables shown in the designated formula candidate element list as elements used for construction of the candidate model.

またユーザは、候補モデル構築の終了条件を入力することもできる。例えばユーザは、スコア値の閾値を、終了条件として入力する。候補モデル構築部150は、スコア値の閾値が入力された場合、入力された閾値を終了条件として記憶する。なお候補モデル構築部150は、終了条件とする閾値が入力されなかった場合、例えば、予め設定されている閾値を、終了条件とする。   In addition, the user can input an end condition for constructing the candidate model. For example, the user inputs a score value threshold as an end condition. Candidate model construction part 150 memorizes the inputted threshold as an end condition, when the threshold of score value is inputted. In addition, when the threshold value used as the end condition is not input, the candidate model construction unit 150 sets, for example, a preset threshold value as the end condition.

[ステップS102]候補モデル構築部150は、GPにより、数式候補要素を組み合わせて、候補モデルを構築する。例えば候補モデル構築部150は、GPの第1世代の候補モデルを構築する場合、数式候補要素をランダムに組み合わせて、所定数(例えば10個)の候補モデルを構築する。また候補モデル構築部150は、GPの第2世代以降の候補モデルを構築する場合、既に構築されている候補モデルから、スコア値が良い(例えば値が低い)方から2つの候補モデルを選択する。そして候補モデル構築部150は、選択した候補モデルを親として交叉などの操作を行い、次世代の候補モデルを構築する。   [Step S102] The candidate model construction unit 150 constructs a candidate model by combining mathematical expression candidate elements by GP. For example, when constructing a first generation candidate model of GP, the candidate model construction unit 150 constructs a predetermined number (for example, 10) of candidate models by randomly combining mathematical expression candidate elements. In addition, when building candidate models for the second generation and subsequent generations of the GP, the candidate model building unit 150 selects two candidate models from the already built candidate models with the better score value (for example, the lower value). . Then, the candidate model construction unit 150 constructs a next-generation candidate model by performing an operation such as crossover with the selected candidate model as a parent.

[ステップS103]データ分析部160は、応答特性データ141,142,・・・ごとに、構築された候補モデルに含まれる係数の値を算出する。例えばデータ分析部160は、回帰分析により、応答特性データに適合するような候補モデルの係数の値を算出する。これにより、候補モデルの計算式(回帰式)が確定する。   [Step S103] The data analysis unit 160 calculates the value of the coefficient included in the constructed candidate model for each of the response characteristic data 141, 142,. For example, the data analysis unit 160 calculates the coefficient value of the candidate model that matches the response characteristic data by regression analysis. Thereby, the calculation formula (regression formula) of the candidate model is determined.

[ステップS104]データ分析部160は、構築された候補モデルについて、クーリングユニットごとのマッチング係数を算出する。例えば、マッチング係数は、クーリングユニットの応答特性データと、係数を設定した候補モデルの曲線との残差が少ないほど、小さな値となる。   [Step S104] The data analysis unit 160 calculates a matching coefficient for each cooling unit for the constructed candidate model. For example, the matching coefficient becomes smaller as the residual between the response characteristic data of the cooling unit and the curve of the candidate model in which the coefficient is set is smaller.

[ステップS105]データ分析部160は、候補モデル内の係数ごとに、製品品質(最終真空度)との間の相関分析を行う。相関分析により、構築された候補モデルそれぞれの係数ごとに、相関係数が算出される。相関係数は、−1から+1の範囲の実数である。相関係数は、その絶対値が大きいほど、その係数と最終真空度との相関関係の度合いが高いことを示す。データ分析部160は、例えば「1−相関係数の絶対値」を計算し、計算結果を修正相関係数とする。これにより、相関関係の度合いが高いほど、値が小さくなる修正相関係数が得られる。   [Step S105] The data analysis unit 160 performs a correlation analysis with the product quality (final vacuum degree) for each coefficient in the candidate model. By the correlation analysis, a correlation coefficient is calculated for each coefficient of the constructed candidate model. The correlation coefficient is a real number ranging from −1 to +1. The correlation coefficient indicates that the larger the absolute value, the higher the degree of correlation between the coefficient and the final vacuum degree. The data analysis unit 160 calculates, for example, “1-absolute value of correlation coefficient” and sets the calculation result as a corrected correlation coefficient. As a result, a corrected correlation coefficient having a smaller value as the degree of correlation is higher is obtained.

[ステップS106]モデル評価部180は、候補モデル内の係数ごとの修正相関係数と、候補モデルと応答特性データとの差異を示すマッチング係数とに基づいて、該当候補モデルのスコア値を算出する。   [Step S106] The model evaluation unit 180 calculates the score value of the candidate model based on the corrected correlation coefficient for each coefficient in the candidate model and the matching coefficient indicating the difference between the candidate model and the response characteristic data. .

[ステップS107]モデル評価部180は、候補モデル構築の終了条件が満たされたか否かを判断する。例えばモデル評価部180は、スコア値が閾値未満となる候補モデルが少なくとも1つある場合、終了条件を満たすと判断する。モデル評価部180は、終了条件を満たした場合、処理をステップS108に進める。またモデル評価部180は、終了条件を満たしていなければ、処理をステップS102に進める。なおモデル評価部180は、終了条件を満たしていない場合、例えば最新の世代の候補モデルのうちの、スコア値が高い方から2つの候補モデルを、候補モデル構築部150に送信する。   [Step S107] The model evaluator 180 determines whether or not the candidate model construction end condition is satisfied. For example, the model evaluation unit 180 determines that the end condition is satisfied when there is at least one candidate model whose score value is less than the threshold value. If the end condition is satisfied, the model evaluation unit 180 proceeds with the process to step S108. On the other hand, if the end condition is not satisfied, the model evaluation unit 180 proceeds with the process to step S102. Note that, when the termination condition is not satisfied, the model evaluation unit 180 transmits, for example, two candidate models having the highest score value among the candidate models of the latest generation to the candidate model construction unit 150.

[ステップS108]モデル評価部180は、スコア値が小さい方から所定数の候補モデルについて、理論モデルと照合する。モデル評価部180は、例えば候補モデルと理論モデルとの間の構造の類似度を計算する。そしてモデル評価部180は、候補モデルと類似する理論モデルの係数の意味に基づいて、候補モデルの係数の意味を判断する。   [Step S108] The model evaluation unit 180 collates a predetermined number of candidate models with the smaller score values with the theoretical model. The model evaluation unit 180 calculates the structural similarity between the candidate model and the theoretical model, for example. Then, the model evaluation unit 180 determines the meaning of the coefficient of the candidate model based on the meaning of the coefficient of the theoretical model similar to the candidate model.

[ステップS109]モデル評価部180は、品質影響原因の特定結果を出力する。例えばモデル評価部180は、スコア値が小さい方から所定数の候補モデルの係数の意味を、製品品質に影響を及ぼす要因として、モニタ21に表示する。   [Step S109] The model evaluation unit 180 outputs a result of specifying the cause of quality influence. For example, the model evaluation unit 180 displays on the monitor 21 the meanings of the coefficients of a predetermined number of candidate models from the smaller score values as factors that affect product quality.

このような手順で品質影響原因の特定処理が行われる。以下、品質影響原因の特定処理を、具体的に説明する。
図10は、設定された要素に基づく候補モデルの生成例を示す図である。例えば要素指定入力により、候補モデル構築部150は、要素群41を取得する。要素群41には、候補モデルを構成する要素として、変数「t」、演算子、および関数が含まれる。次に候補モデル構築部150は、GPを用いて、候補モデルの構成要素の組み合わせた計算式42を生成する。例えば「1/t」のような計算式42が生成される。
The process for identifying the cause of quality influence is performed in such a procedure. Hereinafter, the quality influence cause identifying process will be described in detail.
FIG. 10 is a diagram illustrating a generation example of a candidate model based on set elements. For example, the candidate model construction unit 150 acquires the element group 41 by element designation input. The element group 41 includes a variable “t”, an operator, and a function as elements constituting the candidate model. Next, candidate model construction part 150 generates calculation formula 42 which combined the constituent element of a candidate model using GP. For example, a calculation formula 42 such as “1 / t” is generated.

候補モデル構築部150は、生成した計算式42に、例えばゲインとオフセットを示す係数を付与し、得られた計算式を候補モデル43とする。ゲインを表す係数は、例えばGPで生成した計算式全体に、乗算する値を示す係数である。オフセットを示す係数は、変数に加算する値を示す係数である。GPで得られた計算式が「1/t」の場合、候補モデル43は「a/(t+b)」となる。この候補モデル43では、「a」がゲインを示す係数であり、「b」がオフセットを示す係数である。   The candidate model construction unit 150 assigns, for example, a coefficient indicating a gain and an offset to the generated calculation formula 42 and sets the obtained calculation formula as the candidate model 43. The coefficient indicating the gain is a coefficient indicating a value to be multiplied by the entire calculation formula generated by the GP, for example. The coefficient indicating the offset is a coefficient indicating the value to be added to the variable. When the calculation formula obtained by GP is “1 / t”, the candidate model 43 is “a / (t + b)”. In the candidate model 43, “a” is a coefficient indicating gain, and “b” is a coefficient indicating offset.

なお、図10の例では、単純な構造の候補モデル43の例を示しているが、GPを用いることで、複雑な構造の候補モデルを生成することが可能となる。
図11は、GPを用いて生成される候補モデルの一例を示す図である。図11の例では、計算式「{sin(a+(x×y)+b)+In(c×(y×y))}+exp(z)」の候補モデル44が木構造で表されている。木構造の候補モデル44では、要素として指定された要素が木構造のノードとなる。
In the example of FIG. 10, an example of the candidate model 43 having a simple structure is shown, but a candidate model having a complicated structure can be generated by using the GP.
FIG. 11 is a diagram illustrating an example of a candidate model generated using GP. In the example of FIG. 11, the candidate model 44 of the calculation formula “{sin (a + (x × y) + b) + In (c × (y × y))} + exp (z)” is represented by a tree structure. In the tree structure candidate model 44, an element designated as an element becomes a tree structure node.

候補モデル構築部150は、例えば、複数の木構造の一部(部分木)の交叉や突然変異などの操作を行うことで、次世代の候補モデルを構築する。
図12は、交叉による世代進化の一例を示す図である。候補モデル構築部150は、現世代の2つの候補モデル45,46を親として、候補モデル45,46それぞれから部分木45a,46aを特定する。部分木45a,46aは、例えば、ルートノード以外のノードからランダムに選択したノード以下の木構造である。候補モデル構築部150は、候補モデル45,46それぞれから特定した部分木45a,46aを入れ替えた、次世代の2つの候補モデル47,48を生成する。候補モデル47は、候補モデル45から部分木45aを削除し、部分木45aがあった位置に、候補モデル46内の部分木46aと同じ構造の部分木47aを接続した構造となっている。候補モデル48は、候補モデル46から部分木46aを削除し、部分木46aがあった位置に、候補モデル45内の部分木45aと同じ構造の部分木48aを接続した構造となっている。
Candidate model construction unit 150 constructs a next-generation candidate model, for example, by performing operations such as crossing or mutation of a part (subtree) of a plurality of tree structures.
FIG. 12 is a diagram illustrating an example of generational evolution due to crossover. Candidate model construction section 150 specifies subtrees 45a and 46a from candidate models 45 and 46, respectively, with two candidate models 45 and 46 of the current generation as parents. The partial trees 45a and 46a have, for example, a tree structure below a node selected at random from nodes other than the root node. Candidate model construction unit 150 generates two next-generation candidate models 47 and 48 in which partial trees 45a and 46a identified from candidate models 45 and 46 are replaced. The candidate model 47 has a structure in which the partial tree 45a is deleted from the candidate model 45, and the partial tree 47a having the same structure as the partial tree 46a in the candidate model 46 is connected to the position where the partial tree 45a is located. The candidate model 48 has a structure in which the partial tree 46a is deleted from the candidate model 46, and a partial tree 48a having the same structure as the partial tree 45a in the candidate model 45 is connected to the position where the partial tree 46a exists.

候補モデル構築部150は、候補モデル45,46に対して交叉による世代進化を複数回行うことで、所定数の次世代の候補モデルを生成する。例えば候補モデル構築部150が交叉による世代進化を5回行えば、次世代の候補モデルが10個生成される。   The candidate model construction unit 150 generates a predetermined number of next-generation candidate models by performing generation evolution by crossing the candidate models 45 and 46 a plurality of times. For example, if the candidate model construction unit 150 performs generation evolution by crossover five times, ten next-generation candidate models are generated.

候補モデル構築部150は、生成された候補モデルの単純化を行うこともできる。例えば候補モデル構築部150は、候補モデル内に、複数の係数が「a+b」というように加算または減算の部分がある場合、その部分を1つの係数にまとめる。例えば「a+b→a」となる。   The candidate model construction unit 150 can also simplify the generated candidate model. For example, if there is a part of addition or subtraction such that a plurality of coefficients are “a + b” in the candidate model, the candidate model construction unit 150 collects the parts into one coefficient. For example, “a + b → a”.

また候補モデル構築部150は、候補モデル内の複数の項をまとめてもよい。例えば候補モデル構築部150は、候補モデル内の「sin(x)×In(y)+sin(x)×log(z)」という複数の項が含まれる場合、この部分を「sin(x){In(y)+log(z)}」とまとめる。   The candidate model construction unit 150 may collect a plurality of terms in the candidate model. For example, when a plurality of terms “sin (x) × In (y) + sin (x) × log (z)” in the candidate model are included, the candidate model construction unit 150 designates this part as “sin (x) { In (y) + log (z)} ”.

さらに候補モデル構築部150は、候補モデルの不合理関数の有無の検査を行うこともできる。不合理関数とは、数学上許容されない構造の関数である。例えば候補モデル構築部150は、ゼロ割、領域外、変数無し、などの不合理関数の有無を検査する。ゼロ割の関数とは、例えば「sin(x)/0」のように、「0」で除算する関数(分母が「0」の分数)である。領域外の関数とは、「log(−x):x>0」(真数xが整数の場合に対数が定義できる)のように、数学上の定義から外れた変数が設定された関数である。変数なしの関数とは、「cos(a)」(aは係数)のように変数を含まない関数である。変数なしの関数は、例えば1つの係数に置き換えることができる。   Furthermore, the candidate model construction unit 150 can also check for the existence of an irrational function of the candidate model. An irrational function is a function whose structure is not allowed mathematically. For example, the candidate model construction unit 150 checks for the existence of an irrational function such as zero percent, out of region, or no variable. The zero division function is a function that divides by “0” (a fraction whose denominator is “0”), for example, “sin (x) / 0”. A function outside the region is a function in which a variable that is outside the mathematical definition is set, such as “log (−x): x> 0” (a logarithm can be defined when the true number x is an integer). is there. A function without a variable is a function that does not include a variable, such as “cos (a)” (a is a coefficient). A function without variables can be replaced with one coefficient, for example.

候補モデルが構築されると、データ分析部160により、候補モデルの係数値が算出される。
図13は、係数値の算出例を示す図である。データ分析部160は、応答特性データ141,142,・・・それぞれについて、経過時間tごとの真空度pを示す点をプロットしたグラフ51,52,・・・を作成する。そしてデータ分析部160は、グラフ51,52,・・・ごとに、プロットした各点から、係数値を設定した候補モデル43を示す曲線(候補モデル曲線43a)までの距離が小さくなるように、候補モデル43内の係数値を算出する。例えばデータ分析部160は、最小自乗法により、係数値を算出する。これにより、1つの候補モデル43について、クーリングユニットごとの係数値が算出される。
When the candidate model is constructed, the data analysis unit 160 calculates the coefficient value of the candidate model.
FIG. 13 is a diagram illustrating an example of calculating coefficient values. The data analysis unit 160 creates graphs 51, 52,... In which the points indicating the degree of vacuum p for each elapsed time t are plotted for each of the response characteristic data 141, 142,. Then, the data analysis unit 160 reduces the distance from each plotted point to the curve (candidate model curve 43a) indicating the candidate model 43 in which the coefficient value is set for each of the graphs 51, 52,. The coefficient value in the candidate model 43 is calculated. For example, the data analysis unit 160 calculates the coefficient value by the least square method. Thereby, the coefficient value for each cooling unit is calculated for one candidate model 43.

なお図13の例では、候補モデル構築部150は、真空度がほとんど変化していない期間の真空度は無視して、係数値を算出している。係数値を算出後、候補モデル構築部150は、マッチング係数を算出する。   In the example of FIG. 13, the candidate model construction unit 150 calculates the coefficient value while ignoring the degree of vacuum during a period in which the degree of vacuum hardly changes. After calculating the coefficient value, the candidate model construction unit 150 calculates a matching coefficient.

図14は、マッチング係数の算出例を示す図である。データ分析部160は、1つのクーリングユニットについて生成したグラフ51にプロットした点と、候補モデル曲線43aとの残差を計算する。残差は、プロットした点から、候補モデル曲線43aまでの真空度p方向の距離である。データ分析部160は、プロットした点ごとの残差の絶対値の平均を、該当クーリングユニットに関するマッチング係数とする。データ分析部160は、このようなマッチング係数を、クーリングユニット1,2,・・・ごとに算出する。   FIG. 14 is a diagram illustrating a calculation example of the matching coefficient. The data analysis unit 160 calculates a residual between the points plotted on the graph 51 generated for one cooling unit and the candidate model curve 43a. The residual is the distance in the direction of the degree of vacuum p from the plotted point to the candidate model curve 43a. The data analysis unit 160 uses the average of the absolute values of the residuals for each plotted point as a matching coefficient for the corresponding cooling unit. The data analysis unit 160 calculates such a matching coefficient for each cooling unit 1, 2,.

候補モデル構築部150は、係数値とマッチング係数との算出結果を、分析結果記憶部170に格納する。
図15は、分析結果記憶部に格納されているデータの一例を示す図である。分析結果記憶部170内には、例えば候補モデルごとの分析結果管理テーブル171,172,・・・が格納されている。
Candidate model construction unit 150 stores the calculation result of the coefficient value and the matching coefficient in analysis result storage unit 170.
FIG. 15 is a diagram illustrating an example of data stored in the analysis result storage unit. In the analysis result storage unit 170, for example, analysis result management tables 171, 172,... For each candidate model are stored.

分析結果管理テーブル171,172,・・・には、クーリングユニット1,2,・・・それぞれの応答特性データ141,142,・・・に基づく分析結果を示すレコードが登録されている。各レコードには、クーリングユニット1,2,・・・のユニット番号に対応付けて、最終真空度、候補モデルに含まれる各係数の係数値、およびマッチング係数が設定されている。このようにデータ分析部160の分析の結果、構築された候補モデルそれぞれについて、クーリングユニット1,2,・・・ごとの係数値およびマッチング係数が得られる。1つの候補モデルについてクーリングユニット1,2,・・・ごとに算出されたマッチング係数の平均が、その候補モデルのマッチング係数となる。   In the analysis result management tables 171, 172,..., Records indicating analysis results based on the response characteristic data 141, 142,. In each record, the final vacuum, the coefficient value of each coefficient included in the candidate model, and the matching coefficient are set in association with the unit numbers of the cooling units 1, 2,. As a result of the analysis by the data analysis unit 160 as described above, coefficient values and matching coefficients for each cooling unit 1, 2,... Are obtained for each of the constructed candidate models. The average of the matching coefficients calculated for each cooling unit 1, 2,... For one candidate model becomes the matching coefficient of the candidate model.

ここで、候補モデルが、製品品質を適確に表している場合、候補モデルに含まれる係数値は、製品品質に関連する物理現象に影響を及ぼす物理的意味を有していると考えられる。すなわち、候補モデルは自然法則とは関係なしにGPにより生成されたものであるが、候補モデルが製品品質の善し悪しを適確に表しているのであれば、その候補モデルは製品品質に関連する物理現象を表している。その場合、候補モデルを構成する式の構造が物理現象の特徴を表しているとともに、候補モデルに含まれる係数も物理現象の特徴を表している。   Here, when the candidate model accurately represents the product quality, the coefficient value included in the candidate model is considered to have a physical meaning that affects a physical phenomenon related to the product quality. That is, the candidate model is generated by the GP regardless of the natural law, but if the candidate model accurately represents the quality of the product quality, the candidate model is a physical property related to the product quality. It represents a phenomenon. In that case, the structure of the formula that constitutes the candidate model represents the characteristics of the physical phenomenon, and the coefficients included in the candidate model also represent the characteristics of the physical phenomenon.

そこでモデル評価部180は、候補モデルに含まれる係数について、係数値およびマッチング係数に基づいて、製品品質に影響をおよぼす物理現象の特徴を表している度合いを評価する。例えばモデル評価部180は、候補モデルに含まれる係数の係数値と、最終真空度との相関分析を行う。   Therefore, the model evaluation unit 180 evaluates the degree of representing the characteristics of the physical phenomenon that affects the product quality based on the coefficient value and the matching coefficient for the coefficient included in the candidate model. For example, the model evaluation unit 180 performs a correlation analysis between the coefficient value of the coefficient included in the candidate model and the final degree of vacuum.

図16は、係数値と最終真空度との相関分析の一例を示す図である。モデル評価部180は、候補モデルに複数の係数が含まれる場合、係数ごとに相関分析を行い、相関係数を算出する。図16の例では、候補モデル「a/(t+b)」に含まれる2つの係数a,bについて相関係数を算出している。係数aと最終真空度との相関係数は「0.86」、係数bと最終真空度との相関係数は「0.25」となっている。相関係数は、絶対値が大きいほど相関関係が高いため、係数bよりも係数aの方が最終真空度との相関関係が高いことになる。   FIG. 16 is a diagram illustrating an example of correlation analysis between a coefficient value and a final vacuum degree. When the candidate model includes a plurality of coefficients, the model evaluation unit 180 performs correlation analysis for each coefficient and calculates a correlation coefficient. In the example of FIG. 16, correlation coefficients are calculated for two coefficients a and b included in the candidate model “a / (t + b)”. The correlation coefficient between the coefficient a and the final vacuum degree is “0.86”, and the correlation coefficient between the coefficient b and the final vacuum degree is “0.25”. Since the correlation coefficient is higher as the absolute value is larger, the coefficient a has a higher correlation with the final degree of vacuum than the coefficient b.

モデル評価部180は、算出した相関係数に基づいて、相関関係が高いほど小さな値となる修正相関係数を計算する。修正相関係数は、「修正相関係数=1−係数の相関係数の絶対値」で表される。そしてモデル評価部180は、評価結果管理テーブル181に、修正相関係数を設定する。   Based on the calculated correlation coefficient, the model evaluation unit 180 calculates a corrected correlation coefficient that becomes smaller as the correlation is higher. The corrected correlation coefficient is expressed by “corrected correlation coefficient = 1−absolute value of correlation coefficient of coefficient”. The model evaluation unit 180 sets a corrected correlation coefficient in the evaluation result management table 181.

評価結果管理テーブル181には、例えば候補モデルに対応付けて、マッチング係数、係数ごとの修正相関係数、およびスコア値が登録される。評価結果管理テーブル181に登録されているマッチング係数は、例えばクーリングユニット1,2,・・・ごとに算出されたマッチング係数の平均値である。図16に示した段階ではスコア値は未計算のため、候補モデル「a/(t+b)」のスコア値の欄は空欄となっている。   In the evaluation result management table 181, for example, a matching coefficient, a corrected correlation coefficient for each coefficient, and a score value are registered in association with the candidate model. The matching coefficient registered in the evaluation result management table 181 is, for example, an average value of matching coefficients calculated for each cooling unit 1, 2,. Since the score value is not calculated at the stage shown in FIG. 16, the score value column of the candidate model “a / (t + b)” is blank.

モデル評価部180は、評価結果管理テーブル181を、例えばメモリ102に格納する。そしてモデル評価部180は、評価結果管理テーブル181に設定したマッチング係数と、候補モデルの係数ごとの修正相関係数とに基づいて、候補モデルのスコア値を計算する。   The model evaluation unit 180 stores the evaluation result management table 181 in the memory 102, for example. Then, the model evaluation unit 180 calculates the score value of the candidate model based on the matching coefficient set in the evaluation result management table 181 and the modified correlation coefficient for each coefficient of the candidate model.

図17は、候補モデルのスコア値の計算例を示す図である。モデル評価部180は、1つの候補モデルに複数の係数が含まれる場合、修正相関係数の値が小さい方の係数を選択し、選択した係数を、品質関連特徴とする。次にモデル評価部180は、品質関連特徴の修正相関係数とマッチング係数との積を計算する。そしてモデル評価部180は、積の計算結果を、スコア値として評価結果管理テーブル181に設定する。   FIG. 17 is a diagram illustrating a calculation example of the score value of the candidate model. When a plurality of coefficients are included in one candidate model, the model evaluation unit 180 selects a coefficient having a smaller value of the modified correlation coefficient, and uses the selected coefficient as a quality-related feature. Next, the model evaluation unit 180 calculates the product of the modified correlation coefficient of the quality-related feature and the matching coefficient. The model evaluation unit 180 sets the product calculation result in the evaluation result management table 181 as a score value.

これにより、スコア値は、品質関連特徴の修正相関係数の値が小さいほど小さい値となり、マッチング係数の値が小さいほど小さい値となる。なお品質関連特徴の修正相関係数とマッチング係数との和をスコア値とした場合にも、スコア値は、品質関連特徴の修正相関係数の値が小さいほど小さい値となり、マッチング係数の値が小さいほど小さい値となる。しかし、マッチング係数が小さいことと、修正相関係数が小さいこととを両立させる係数を見つけ出すには、品質関連特徴の修正相関係数とマッチング係数との積をスコア値とした方がよい。   Thereby, the score value becomes smaller as the value of the modified correlation coefficient of the quality-related feature becomes smaller, and becomes smaller as the value of the matching coefficient becomes smaller. Even when the sum of the corrected correlation coefficient of the quality-related feature and the matching coefficient is used as the score value, the score value becomes smaller as the value of the corrected correlation coefficient of the quality-related feature is smaller. The smaller the value, the smaller the value. However, in order to find a coefficient that achieves both a small matching coefficient and a small corrected correlation coefficient, it is better to use the product of the corrected correlation coefficient of the quality-related feature and the matching coefficient as a score value.

図18は、計算方法の違いによるスコア値の違いを説明する図である。図18には、評価結果を表す評価結果座標系60を示している。評価結果座標系60の横軸がマッチング係数であり、縦軸が修正相関係数である。評価結果は、第1象限の評価結果領域61のどこかに位置する。スコア値を計算する場合、マッチング係数が最小「0」、かつ修正相関係数が最小「0」の位置(目標位置64)に評価結果があるとき、スコア値が最小(最も優良)となるような計算式を用いるのが適切である。   FIG. 18 is a diagram for explaining a difference in score value due to a difference in calculation method. FIG. 18 shows an evaluation result coordinate system 60 representing the evaluation result. The horizontal axis of the evaluation result coordinate system 60 is a matching coefficient, and the vertical axis is a corrected correlation coefficient. The evaluation result is located somewhere in the evaluation result area 61 of the first quadrant. When calculating the score value, when the evaluation result is at the position (target position 64) where the matching coefficient is the minimum “0” and the corrected correlation coefficient is the minimum “0”, the score value is minimum (excellent). It is appropriate to use a simple calculation formula.

図18では、2つの評価結果62,63を示している。一方の評価結果62は、マッチング係数が「99.9」、修正相関係数が「0.1」である。他方の評価結果63は、マッチング係数が「99.1」、修正相関係数が「0.9」である。   In FIG. 18, two evaluation results 62 and 63 are shown. One evaluation result 62 has a matching coefficient of “99.9” and a corrected correlation coefficient of “0.1”. The other evaluation result 63 has a matching coefficient of “99.1” and a corrected correlation coefficient of “0.9”.

スコア値の計算方法として、2つの係数の和を採ると、いずれの結果もスコア値「100」となり、差が出ない。しかし、評価結果座標系60に評価結果62,63を配置すると分かるように、目標位置64に近いのは、評価結果62の方である。スコア値の計算方法として、2つの係数の積を採用することで、評価結果62の方が、評価結果63よりもスコア値が小さくなる(優良なスコア値となる)。そのためモデル評価部180は、マッチング係数と修正相関係数との積を、スコア値としている。   If the sum of two coefficients is taken as a score value calculation method, the result is a score value “100” and no difference is produced. However, it is the evaluation result 62 that is closer to the target position 64, as can be seen when the evaluation results 62 and 63 are arranged in the evaluation result coordinate system 60. By adopting the product of two coefficients as a score value calculation method, the evaluation result 62 has a smaller score value than the evaluation result 63 (becomes an excellent score value). Therefore, the model evaluation unit 180 uses the product of the matching coefficient and the modified correlation coefficient as the score value.

モデル評価部180は、GPにより繰り返し候補モデルが構築されるごとに、構築された候補モデルそれぞれについて、修正相関係数とスコア値とを計算する。そしてモデル評価部180は、計算結果を評価結果管理テーブル181に設定する。この処理が、候補モデル構築の終了条件が満たされるまで繰り返される。   Each time a repetitive candidate model is constructed by GP, the model evaluation unit 180 calculates a corrected correlation coefficient and a score value for each constructed candidate model. Then, the model evaluation unit 180 sets the calculation result in the evaluation result management table 181. This process is repeated until a candidate model construction end condition is satisfied.

図19は、候補モデルの評価結果が設定された評価結果管理テーブルの一例を示す図である。図19に示すように、候補モデルごとにスコア値が計算される。複数の係数を含む候補モデルの場合、その候補モデルの係数のうち修正相関係数の値が最も小さい係数が、スコア値の算出に用いられた品質関連特徴である。評価結果管理テーブル181に示された候補モデルのうち、スコア値が小さいほど、その候補モデルに含まれる品質関連特徴が、製品品質と関連性が高い。   FIG. 19 is a diagram illustrating an example of an evaluation result management table in which evaluation results of candidate models are set. As shown in FIG. 19, a score value is calculated for each candidate model. In the case of a candidate model including a plurality of coefficients, the coefficient having the smallest value of the modified correlation coefficient among the coefficients of the candidate model is the quality-related feature used for calculating the score value. Among the candidate models shown in the evaluation result management table 181, the smaller the score value, the higher the quality-related features included in the candidate model are related to the product quality.

候補モデルの終了条件が満たされると、モデル評価部180は、候補モデルを理論モデルと照合することで、製品品質と関連性が高い品質関連特徴の意味を調べる。
図20は、モデル照合処理の一例を示す図である。例えば最もスコア値が小さい(評価が良好)候補モデル71の数式が「a/(t+b)」であるものとする。また、この候補モデル71における品質関連特徴が、係数aであるものとする。
When the candidate model termination condition is satisfied, the model evaluation unit 180 collates the candidate model with the theoretical model, thereby examining the meaning of the quality-related feature having high relevance to the product quality.
FIG. 20 is a diagram illustrating an example of the model matching process. For example, it is assumed that the mathematical formula of the candidate model 71 having the smallest score value (good evaluation) is “a / (t + b)”. Further, it is assumed that the quality-related feature in the candidate model 71 is a coefficient a.

モデル評価部180は、該当候補モデル71の数式と、理論モデル管理テーブル121に登録されている理論モデルそれぞれの数式とを照合し、類似する理論モデルを抽出する。図20の例では、理論モデル「P(x)=a/x」が、候補モデル71との類似度が高い。   The model evaluation unit 180 compares the mathematical formula of the candidate model 71 with the mathematical formula of each theoretical model registered in the theoretical model management table 121, and extracts a similar theoretical model. In the example of FIG. 20, the theoretical model “P (x) = a / x” has a high similarity to the candidate model 71.

この場合、モデル評価部180は、類似度が高い理論モデル「P(x)=a/x」における、品質関連特徴に対応する係数「a」の意味「排気抵抗」を、理論モデル管理テーブル121から抽出する。そしてモデル評価部180は、製品品質に排気抵抗が影響を及ぼしていることを、モニタ21に表示する。   In this case, the model evaluation unit 180 indicates the meaning “exhaust resistance” of the coefficient “a” corresponding to the quality-related feature in the theoretical model “P (x) = a / x” having a high similarity. Extract from Then, the model evaluation unit 180 displays on the monitor 21 that the exhaust resistance has an influence on the product quality.

以下、モデル照合処理について詳細に説明する。
モデル評価部180は、モデル照合処理において、まず理論モデルのフィルタリングを行う。フィルタリングは、候補モデルと明らかに類似しない理論モデルを、類似度の計算対象から除外する処理である。
Hereinafter, the model matching process will be described in detail.
The model evaluation unit 180 first filters the theoretical model in the model matching process. Filtering is a process of excluding a theoretical model that is clearly not similar to a candidate model from the calculation target of similarity.

図21は、理論モデルのフィルタリングの一例を示す図である。図21の例では、最も評価の高い候補モデル72の数式が「a×sin(b×x+c)」であるものとする。このとき、モデル評価部180は、まず理論モデルそれぞれの構成を解析する。そして理論モデル構成情報73を生成する。例えばモデル評価部180は、各理論モデルの関数の種類、変数の数、および次数を解析し、判断結果を理論モデル構成情報73に設定する。同様に、モデル評価部180は、候補モデル72についても、関数の種類、変数の数、および次数を解析する。   FIG. 21 is a diagram illustrating an example of filtering of the theoretical model. In the example of FIG. 21, it is assumed that the mathematical formula of the candidate model 72 with the highest evaluation is “a × sin (b × x + c)”. At this time, the model evaluation unit 180 first analyzes the configuration of each theoretical model. Then, theoretical model configuration information 73 is generated. For example, the model evaluation unit 180 analyzes the type of function, the number of variables, and the order of each theoretical model, and sets the determination result in the theoretical model configuration information 73. Similarly, the model evaluation unit 180 also analyzes the type of function, the number of variables, and the order of the candidate model 72.

そしてモデル評価部180は、候補モデル72と、関数の種類、変数の数、および次数のいずれかが不一致の理論モデルを、理論モデル構成情報73から削除する。なおモデル評価部180は、sinとcosのように位相の違いしかない関数は、同じ関数とみなしてもよい。図21の例では、候補モデル72の関数は「sin」である。それに対して、理論モデル構成情報73に示されている理論モデル「a/x」は関数「sin」が含まれていない。そのためモデル評価部180は、理論モデル「a/x」を理論モデル構成情報73から削除し、類似度の計算対象から除外する。また理論モデル「aexp(−bx)」(乗算記号は省略)の関数は「exp」であり、候補モデル72の関数「sin」と異なる。そのためモデル評価部180は、理論モデル「aexp(−bx)」を理論モデル構成情報73から削除し、類似度の計算対象から除外する。   Then, the model evaluation unit 180 deletes from the theoretical model configuration information 73 the candidate model 72 and the theoretical model in which any of the function type, the number of variables, and the order does not match. Note that the model evaluation unit 180 may regard functions such as sin and cos that have only a phase difference as the same function. In the example of FIG. 21, the function of the candidate model 72 is “sin”. On the other hand, the theoretical model “a / x” shown in the theoretical model configuration information 73 does not include the function “sin”. Therefore, the model evaluation unit 180 deletes the theoretical model “a / x” from the theoretical model configuration information 73 and excludes it from the similarity calculation target. The function of the theoretical model “aexp (−bx)” (multiplication symbol is omitted) is “exp”, which is different from the function “sin” of the candidate model 72. Therefore, the model evaluation unit 180 deletes the theoretical model “aexp (−bx)” from the theoretical model configuration information 73 and excludes it from the similarity calculation target.

このようなフィルタリング処理により、類似度の計算対象とする理論モデルが絞り込まれる。次にモデル評価部180は、候補モデルと理論モデルとの文字列の置換を行う。
図22は、文字列置換処理の一例を示す図である。モデル評価部180には、例えば置換ルール74が予め定義されている。置換ルール74には、置換元の要素に対応付けて、置換先の文字列が設定されている。図22の例では、置換元の要素が1文字に置換されるように、置換ルール74が定義されている。
By such a filtering process, the theoretical model to be used for calculating the similarity is narrowed down. Next, the model evaluation unit 180 performs character string replacement between the candidate model and the theoretical model.
FIG. 22 is a diagram illustrating an example of the character string replacement process. In the model evaluation unit 180, for example, a replacement rule 74 is defined in advance. In the replacement rule 74, a replacement destination character string is set in association with the replacement source element. In the example of FIG. 22, the replacement rule 74 is defined so that the replacement source element is replaced with one character.

モデル評価部180は、候補モデルと理論モデルとのそれぞれについて、置換ルール74に従って、文字列を置換する。例えばモデル評価部180は、候補モデル「asin(bx+a)」(乗算記号は省略)の関数「sin」を「f」に置換する。またモデル評価部180は、候補モデル「asin(bx+a)」の係数「a,b」を、「a」に置換する。   The model evaluation unit 180 replaces the character string according to the replacement rule 74 for each of the candidate model and the theoretical model. For example, the model evaluation unit 180 replaces the function “sin” of the candidate model “asin (bx + a)” (the multiplication symbol is omitted) with “f”. In addition, the model evaluation unit 180 replaces the coefficient “a, b” of the candidate model “asin (bx + a)” with “a”.

同様にモデル評価部180は、理論モデルの文字列も置換ルール74に従って置換する。例えば理論文字列「asin(ωt+θ)」(乗算記号は省略)の変数「t」を、「x」に置換している。   Similarly, the model evaluation unit 180 replaces the character string of the theoretical model according to the replacement rule 74. For example, the variable “t” in the theoretical character string “asin (ωt + θ)” (the multiplication symbol is omitted) is replaced with “x”.

次にモデル評価部180は、レーベンシュタイン距離法により、置換後の候補モデルの文字列と、置換後の理論モデルの文字列との類似度を比較する。レーベンシュタイン距離は、例えば二次元の行列を用いて算出することができる。   Next, the model evaluation unit 180 compares the degree of similarity between the character string of the candidate model after replacement and the character string of the theoretical model after replacement by the Levenshtein distance method. The Levenshtein distance can be calculated using, for example, a two-dimensional matrix.

図23は、レーベンシュタイン距離の第1の算出例を示す図である。図23には、置換後の候補モデル「a×f(a×x+a)」と、置換後の理論モデル「a2×f2(x)×g2(x)」とのレーベンシュタイン距離を求める例が示されている。レーベンシュタイン距離算出用の行列75aの1行目と1列目とは、空文字に対応している。各行には、空文字の後に、置換後の候補モデルの文字が先頭から順に対応付けられている。各列には、空文字の後に、置換後の理論モデルの文字が先頭から順に対応付けられている。そして置換後の候補モデルの一文字と置換後の理論モデルの一文字との間の距離が、それらの文字に対応するマスに設定されている。 FIG. 23 is a diagram illustrating a first calculation example of the Levenshtein distance. Figure 23 is a candidate model after substitution "a × f (a × x + a) ", Request Levenshtein distance between the theoretical model after substitution "a 2 × f 2 (x) × g 2 (x) " An example is shown. The first row and the first column of the Levenshtein distance calculation matrix 75a correspond to empty characters. In each line, after the empty character, the character of the candidate model after replacement is associated in order from the top. In each column, after the null character, the character of the theoretical model after replacement is associated in order from the top. The distance between one character of the candidate model after replacement and one character of the theoretical model after replacement is set to a square corresponding to those characters.

一方の文字列の空文字と、他方の文字列のn文字目(nは1以上の整数)との距離はnである。その他のマスには、以下の3つの数字のうちの最も小さい値が設定される。
・自マスの上のマスの数字+1
・自マスの左のマスの数字+1
・自マスの左上のマスの数字+a(aは、自マスの縦と横の文字が等しい場合は「0」であり、異なる場合は「1」である)
このようにして作成された行列75aの右下の角の数字「8」が、置換後の候補モデルと置換後の理論モデルとのレーベンシュタイン距離(最小編集回数)である。
The distance between the empty character of one character string and the nth character (n is an integer of 1 or more) of the other character string is n. For the other cells, the smallest value of the following three numbers is set.
・ Number of square above own square +1
・ Number of left cell of own cell +1
・ Number of upper left cell of own cell + a (a is “0” when the vertical and horizontal characters of the own cell are equal, and “1” when different)
The number “8” in the lower right corner of the matrix 75a created in this way is the Levenshtein distance (minimum number of edits) between the candidate model after replacement and the theoretical model after replacement.

図24は、レーベンシュタイン距離の第2の算出例を示す図である。図24には、置換後の候補モデル「a×f(a×x+a)」と、置換後の理論モデル「a×f(x)」とのレーベンシュタイン距離を求める例が示されている。図24に示すレーベンシュタイン距離算出用の行列75bの右下の角の数字は「4」であり、レーベンシュタイン距離は「4」である。   FIG. 24 is a diagram illustrating a second calculation example of the Levenshtein distance. FIG. 24 shows an example of obtaining the Levenshtein distance between the candidate model “a × f (a × x + a)” after replacement and the theoretical model “a × f (x)” after replacement. The number in the lower right corner of the Levenshtein distance calculation matrix 75b shown in FIG. 24 is “4”, and the Levenshtein distance is “4”.

モデル評価部180は、算出したレーベンシュタイン距離を類似度とする。各論理モデルの類似度を算出すると、モデル評価部180は、各理論モデルの類似度を比較し、類似度が高い順に順位付けを行う。そしてモデル評価部180は、理論モデルの類似度の順位を示す類似度管理テーブルを作成する。   The model evaluation unit 180 uses the calculated Levenstein distance as the similarity. When the similarity of each logical model is calculated, the model evaluation unit 180 compares the similarities of the respective theoretical models and ranks them in descending order of similarity. Then, the model evaluation unit 180 creates a similarity management table indicating the rank order of similarity of the theoretical model.

モデル評価部180は、例えばスコア値が高い方から所定数の候補モデルのそれぞれについて、理論モデルとの類似度を計算し、類似度管理テーブルを作成する。
図25は、類似度管理テーブルの一例を示す図である。図25に示すように、候補モデルごとの類似度管理テーブル76a,76b,・・・が作成される。類似度管理テーブル76a,76b,・・・には、理論モデルに対応付けて、理論モデルの意味、置換後の理論モデル、類似度、および順位が設定されている。モデル評価部180は、作成した類似度管理テーブル76a,76b,・・・を、メモリ102に格納する。
For example, the model evaluation unit 180 calculates the similarity with the theoretical model for each of a predetermined number of candidate models from the highest score value, and creates a similarity management table.
FIG. 25 is a diagram illustrating an example of the similarity management table. As shown in FIG. 25, similarity management tables 76a, 76b,... For each candidate model are created. In the similarity management tables 76a, 76b,..., The meaning of the theoretical model, the replaced theoretical model, the similarity, and the rank are set in association with the theoretical model. The model evaluation unit 180 stores the created similarity management tables 76a, 76b,.

モデル評価部180は、スコア値が低い(評価が高い)候補モデルに対して類似度の高い理論モデルの、品質関連特徴に対応する係数を特定し、その係数を、製品の品質に影響を及ぼす可能性が高い品質関連因子とする。モデル評価部180は、品質関連因子の解析結果をモニタ21に表示する。   The model evaluation unit 180 identifies a coefficient corresponding to a quality-related feature of a theoretical model having a high degree of similarity with a candidate model having a low score value (high evaluation), and the coefficient affects the quality of the product. A quality-related factor with a high probability. The model evaluation unit 180 displays the analysis result of the quality-related factor on the monitor 21.

図26は、品質関連因子の解析結果表示画面の一例を示す図である。解析結果表示画面77には、例えば品質関連因子情報77aが含まれる。品質関連因子情報77aには、候補モデルごとに、類似する理論モデルから求まる品質関連因子が示されている。   FIG. 26 is a diagram illustrating an example of a quality-related factor analysis result display screen. The analysis result display screen 77 includes, for example, quality related factor information 77a. In the quality-related factor information 77a, quality-related factors obtained from similar theoretical models are shown for each candidate model.

例えば品質関連因子情報77aには、スコア値が低い(評価が高い)候補モデルほど上位に示されている。さらに品質関連因子情報77aには、各候補モデルに対応付けて、例えば、類似度が所定値以上の理論モデルのリストが示されている。理論モデルのリストは、類似度が高い理論モデルほど上位に示されている。   For example, in the quality-related factor information 77a, candidate models with lower score values (higher evaluations) are shown higher. Furthermore, in the quality-related factor information 77a, for example, a list of theoretical models having a similarity equal to or higher than a predetermined value is shown in association with each candidate model. In the list of theoretical models, the theoretical models with higher similarity are shown at the top.

品質関連因子情報77aでは、各理論モデルに対応付けて、理論モデルの意味、品質関連因子の意味、候補モデル、品質関連特徴、修正相関係数、およびスコア値が示されている。理論モデルの意味は、理論モデルの物理的な意味であり、理論モデル管理テーブル121から取得された情報である。品質関連因子の意味は、理論モデルに含まれる係数のうち、品質関連特徴の係数に対応する係数の物理的な意味である。例えば、候補モデルにおけるゲインを示す係数が品質関連特徴である場合、理論モデルにおけるゲインに対応する係数(変数または関数に乗算する係数)が、品質関連因子となる。また候補モデルにおけるオフセットを示す係数が品質関連特徴である場合、理論モデルにおけるオフセットに対応する係数(変数に加算または減算する係数)が、品質関連因子となる。各理論モデルに対応付けられた、候補モデル、品質関連特徴、修正相関係数、およびスコア値は、その理論モデルの係数が品質関連因子であると判断した根拠を示す情報である。   In the quality-related factor information 77a, the meaning of the theoretical model, the meaning of the quality-related factor, the candidate model, the quality-related feature, the modified correlation coefficient, and the score value are shown in association with each theoretical model. The meaning of the theoretical model is the physical meaning of the theoretical model and is information acquired from the theoretical model management table 121. The meaning of the quality-related factor is the physical meaning of the coefficient corresponding to the coefficient of the quality-related feature among the coefficients included in the theoretical model. For example, when a coefficient indicating a gain in the candidate model is a quality-related feature, a coefficient corresponding to the gain in the theoretical model (a coefficient to be multiplied by a variable or a function) is a quality-related factor. When the coefficient indicating the offset in the candidate model is a quality-related feature, the coefficient corresponding to the offset in the theoretical model (coefficient added to or subtracted from the variable) is the quality-related factor. The candidate model, quality-related feature, modified correlation coefficient, and score value associated with each theoretical model are information indicating the basis for determining that the coefficient of the theoretical model is a quality-related factor.

ユーザは、解析結果表示画面77を参照することで、製品の品質にどのような物理量が関係しているのかを認識することができる。図26の例では、排気速度に関連する排気抵抗が、製品の品質に影響を及ぼしていることが理解できる。これにより、製品の最終真空度がNG(不良)となったのは、排気抵抗が原因で発生していると予想できる。そのため、ユーザは、例えば、排気抵抗となるユニット配管部品のバラツキを特定し、配管部品を調査する。そしてユーザが、配管曲げ形状、径のバラツキ改善策を施すことにより、最終真空度が目標値に達しない製品の発生を抑止できる。   The user can recognize what physical quantity is related to the quality of the product by referring to the analysis result display screen 77. In the example of FIG. 26, it can be understood that the exhaust resistance related to the exhaust speed affects the quality of the product. Thereby, it can be expected that the final vacuum degree of the product is NG (defective) due to the exhaust resistance. Therefore, for example, the user specifies the variation of the unit piping component that becomes the exhaust resistance, and investigates the piping component. Then, the user can suppress the occurrence of products whose final vacuum does not reach the target value by taking measures to improve the variation in the pipe bending shape and diameter.

しかも第2の実施の形態では、相関係数とマッチング係数とを組み合わせてスコア値を算出しているため、品質に影響する因子に対応する係数を含む候補モデルを、高精度で判定することができる。   Moreover, in the second embodiment, since the score value is calculated by combining the correlation coefficient and the matching coefficient, the candidate model including the coefficient corresponding to the factor affecting the quality can be determined with high accuracy. it can.

図27は、スコア値による判定精度を説明する図である。図27には、3つの候補モデル78a〜78cの解析結果の一例を示す図である。
候補モデル78aは、6次元の式で表されている。このような高次式の候補モデル78aは、高精度で応答特性データに一致させることができる。その結果、マッチング係数は良好な値(小さい値)となる。他方、候補モデル78aの品質関連特徴と製品品質との相関係数は小さく、修正相関係数(1−相関係数の絶対値)の値は大きくなっている。応答特性データを正確に表す候補モデル78aであっても、含まれる係数と製品品質との相関関係が低い場合、その係数が品質に影響する因子を表しているとは言えない。
FIG. 27 is a diagram illustrating determination accuracy based on score values. FIG. 27 is a diagram illustrating an example of analysis results of three candidate models 78a to 78c.
Candidate model 78a is represented by a six-dimensional equation. Such a higher-order candidate model 78a can be matched with the response characteristic data with high accuracy. As a result, the matching coefficient becomes a good value (small value). On the other hand, the correlation coefficient between the quality-related features of the candidate model 78a and the product quality is small, and the value of the corrected correlation coefficient (1-the absolute value of the correlation coefficient) is large. Even if the candidate model 78a accurately represents the response characteristic data, if the correlation between the included coefficient and the product quality is low, it cannot be said that the coefficient represents a factor affecting the quality.

候補モデル78bは、応答特性データにある程度一致しており、良好なマッチング係数が得られている。また候補モデル78bの品質関連特徴と製品品質との相関係数は、候補モデル78aに比べて大きく、修正相関係数の値は小さくなっている。すなわち、候補モデル78bは、マッチング係数と相関係数とが、共に良好な値となっている。   The candidate model 78b matches the response characteristic data to some extent, and a good matching coefficient is obtained. Further, the correlation coefficient between the quality-related features of the candidate model 78b and the product quality is larger than that of the candidate model 78a, and the value of the corrected correlation coefficient is small. That is, in the candidate model 78b, the matching coefficient and the correlation coefficient are both good values.

候補モデル78cは、品質関連特徴と製品品質との相関係数が偶然高くなっており、修正相関係数の値は小さくなっている。相関係数が偶然高くなった場合、相関係数の値は、品質関連特徴と製品品質との因果関係を表すものではない。候補モデル78cは、マッチング係数の値の方が、他の候補モデル78a,78bに比べて高くなっている。   In the candidate model 78c, the correlation coefficient between the quality-related feature and the product quality is accidentally high, and the value of the corrected correlation coefficient is small. When the correlation coefficient is increased by chance, the value of the correlation coefficient does not represent a causal relationship between the quality-related feature and the product quality. The candidate model 78c has a higher matching coefficient value than the other candidate models 78a and 78b.

このような3つの候補モデル78a,78b,78cそれぞれの修正相関係数とマッチング係数との積をスコア値としたことで、相関係数とマッチング係数とが適度に良好な値の候補モデル78bのスコア値が、最も高くなる。すなわち高次式で応答特性データを正確にトレースした候補モデル78aの係数は、品質に影響する因子を表していないため、スコア値が悪く(大きな値)となる。また、相関関係が偶然一致した候補モデル78cは、マッチング係数の値が悪く(大きな値)なることで、誤って良好なスコア値となることが抑止されている。   By using the product of the corrected correlation coefficient and the matching coefficient of each of these three candidate models 78a, 78b, 78c as the score value, the correlation model and the matching coefficient of the candidate model 78b having a reasonably good value are obtained. The score value is the highest. That is, the coefficient of the candidate model 78a obtained by accurately tracing the response characteristic data using the higher-order equation does not represent a factor that affects the quality, and thus the score value is poor (large value). In addition, the candidate model 78c in which the correlations coincided by chance is prevented from erroneously having a good score value due to a poor (large) value of the matching coefficient.

このように、相関係数とマッチング係数とを組み合わせてスコア値を算出することで、品質に影響する因子を表す係数を含む候補モデルを適切に抽出することができる。その結果、該当候補モデルに基づいて、製品の品質に影響する因子を正しく判断することが可能となる。   Thus, by calculating the score value by combining the correlation coefficient and the matching coefficient, it is possible to appropriately extract a candidate model including a coefficient representing a factor that affects quality. As a result, it is possible to correctly determine factors that affect product quality based on the corresponding candidate model.

〔第3の実施の形態〕
次に第3の実施の形態について説明する。第3の実施の形態は、製品の性質に基づいて予め分かっている式の構造を考慮して、スコア値を計算するものである。
[Third Embodiment]
Next, a third embodiment will be described. In the third embodiment, the score value is calculated in consideration of the structure of the formula that is known in advance based on the properties of the product.

製品が複数の要素を含んでいる場合、その製品の性質を表す計算式が複雑となり、第2の実施の形態では、複数の要素のうちのどの要素が製品不良の原因となっているのかが分からない場合がある。そこで、第3の実施の形態では、予め製品性質に応じた式の基本構造を定義しておくことで、製品に複数の要素が含まれる場合であっても、製品品質に影響を及ぼす因子を適確に特定できるようにする。   When the product includes a plurality of elements, the calculation formula representing the property of the product is complicated, and in the second embodiment, which element among the plurality of elements causes the product defect. You may not know. Therefore, in the third embodiment, by defining the basic structure of the formula according to the product properties in advance, even if the product includes a plurality of elements, factors that affect the product quality can be obtained. Ensure that it can be identified accurately.

以下、図28〜図31を参照して、製品の性質に応じた式の構造について説明する。
図28は、製品に関する式の構造の第1の例を示す図である。図28の例では、産業用のロボット81(マニピュレータ)のハンド部分の先端座標の計算式を表している。ロボット81は、複数の関節を有しており、関節の数分の関数fの掛け算によって、ハンド先端座標が求まる。ロボット81が6軸の多関節ロボットであれば、関数fを6回掛け合わせることで、ハンド先端座標が得られる。すなわちハンド先端座標は、基本構造が「f×f×f×f×f×f」の式で表される。
Hereinafter, with reference to FIG. 28 to FIG. 31, the structure of the formula corresponding to the property of the product will be described.
FIG. 28 is a diagram illustrating a first example of a structure of an expression related to a product. In the example of FIG. 28, the calculation formula of the tip coordinate of the hand part of the industrial robot 81 (manipulator) is shown. The robot 81 has a plurality of joints, and the hand tip coordinates are obtained by multiplying the function f corresponding to the number of joints. If the robot 81 is a 6-axis articulated robot, hand tip coordinates can be obtained by multiplying the function f six times. That is, the hand tip coordinates are represented by an expression having a basic structure of “f × f × f × f × f × f”.

図29は、製品に関する式の構造の第2の例を示す図である。図29の例では、ニオブ酸リチウム(LN:Lithium Niobate)変調器82の光出力の計算式を表している。図29に示すLN変調器82の光出力は、基本構造が「(f+f)×f」の式で表される。   FIG. 29 is a diagram illustrating a second example of the structure of formulas related to products. In the example of FIG. 29, a calculation formula for the optical output of a lithium niobate (LN) modulator 82 is shown. The optical output of the LN modulator 82 shown in FIG. 29 is represented by the equation “(f + f) × f” in the basic structure.

図30は、製品に関する式の構造の第3の例を示す図である。図30の例では、電気回路83の電圧Vの計算式を表している。電気回路83には、3つの抵抗R1〜R3が並列接続されており、電圧Vは、基本構造が「f+f+f」の式で表される。   FIG. 30 is a diagram illustrating a third example of the structure of formulas related to products. In the example of FIG. 30, the calculation formula of the voltage V of the electric circuit 83 is represented. In the electric circuit 83, three resistors R1 to R3 are connected in parallel, and the voltage V is expressed by an expression “f + f + f” in the basic structure.

図31は、製品に関する式の構造の第4の例を示す図である。図31の例では、クランク状に曲がった配管84に流れる流体の圧力損失の計算式を表している。図31に示す配管84には、曲がった部分が2箇所あるため、圧力損失は、基本構造が「f×f」の式で表される。   FIG. 31 is a diagram illustrating a fourth example of the structure of formulas related to products. In the example of FIG. 31, the calculation formula of the pressure loss of the fluid which flows into the piping 84 bent in the crank shape is represented. Since the pipe 84 shown in FIG. 31 has two bent portions, the pressure loss is represented by the formula “f × f” in the basic structure.

このように、製品の性質に応じて、算出する物理量の計算式の構造が、予め予測可能である。そこで、第3の実施の形態では、データ分析部160が、候補モデルと、製品に予測される計算式との類似度を計算し、その類似度を構造評価値とする。そして、モデル評価部180は、相関係数、マッチング係数、および構造評価値に基づいて、スコア値を算出する。   Thus, the structure of the calculation formula for the physical quantity to be calculated can be predicted in advance according to the property of the product. Therefore, in the third embodiment, the data analysis unit 160 calculates the similarity between the candidate model and the calculation formula predicted for the product, and uses the similarity as the structure evaluation value. Then, the model evaluation unit 180 calculates a score value based on the correlation coefficient, the matching coefficient, and the structure evaluation value.

以下、第3の実施の形態について、詳細に説明する。
図32は、第3の実施の形態における品質影響原因特定処理の手順の一例を示すフローチャートである。以下、図32に示す処理をステップ番号に沿って説明する。
Hereinafter, the third embodiment will be described in detail.
FIG. 32 is a flowchart illustrating an example of a procedure of quality influence cause identification processing according to the third embodiment. In the following, the process illustrated in FIG. 32 will be described in order of step number.

[ステップS201]候補モデル構築部150は、候補モデルの構築に使用する要素指定入力を受け付ける。例えばユーザは、候補モデルの変数を何にするのか、どのような演算子を使用するのか、どのような関数を使用するのかを指定する入力を行う。ユーザは、個別の要素の指定入力をする代わりに、数式候補要素記憶部110内のいずれかの数式候補要素リストを指定することもできる。数式候補要素リストが指定された場合、候補モデル構築部150は、指定された数式候補要素リストに示される演算子、関数、変数を、候補モデルの構築に使用する要素とする。   [Step S201] The candidate model construction unit 150 receives an element designation input used for construction of a candidate model. For example, the user performs an input for designating what the variable of the candidate model is, what operator is used, and what function is used. The user can also specify one of the formula candidate element lists in the formula candidate element storage unit 110 instead of inputting individual elements. When the formula candidate element list is designated, the candidate model construction unit 150 uses the operators, functions, and variables shown in the designated formula candidate element list as elements used for construction of the candidate model.

またユーザは、対象製品に応じた計算式の基本構造を入力する。例えば製品が6軸のロボット81であえば、ユーザは、基本構造として「f×f×f×f×f×f」を入力する。   The user also inputs the basic structure of the calculation formula corresponding to the target product. For example, if the product is a six-axis robot 81, the user inputs “f × f × f × f × f × f” as the basic structure.

またユーザは、スコア値の計算の基準となる指標(マッチング係数、相関係数、構造評価値)それぞれについての重みを入力する。ユーザは、重要な指標ほど重みの値を大きくする。   Further, the user inputs a weight for each index (matching coefficient, correlation coefficient, structure evaluation value) serving as a reference for calculating the score value. The user increases the weight value for the more important index.

またユーザは、候補モデル構築の終了条件を入力する。例えばユーザは、スコア値の閾値を、終了条件として入力する。ユーザは、構造評価の閾値、マッチング係数の閾値、相関係数の閾値を、終了条件として入力してもよい。この場合、例えば候補モデル構築部150は、構造評価値(類似度)が閾値以下、マッチング係数が閾値以下、および相関係数が閾値以上の候補モデルが検出できた場合、候補モデルの構築を終了する。   Further, the user inputs an end condition for constructing the candidate model. For example, the user inputs a score value threshold as an end condition. The user may input a structural evaluation threshold value, a matching coefficient threshold value, and a correlation coefficient threshold value as termination conditions. In this case, for example, when the candidate model construction unit 150 detects a candidate model having a structure evaluation value (similarity) equal to or lower than a threshold, a matching coefficient equal to or less than a threshold, and a correlation coefficient equal to or greater than the threshold, To do.

候補モデル構築部150は、スコア値の閾値が入力された場合、入力された閾値を終了条件として保持する。なお候補モデル構築部150は、終了条件とする閾値が入力されなかった場合、例えば、予め設定されている閾値を、終了条件とする。   Candidate model construction section 150 holds the input threshold value as an end condition when the threshold value of the score value is input. In addition, when the threshold value used as the end condition is not input, the candidate model construction unit 150 sets, for example, a preset threshold value as the end condition.

[ステップS202]候補モデル構築部150は、GPにより、数式候補要素を組み合わせて、候補モデルを構築する。なお第3の実施の形態では、候補モデル構築部150は、候補モデルに複数の関数が含まれる場合、関数ごとにゲインとオフセットとの係数を設定する。また候補モデル構築部150は、変数に対して乗算する係数も設定する。例えば候補モデル構築部150は、「acos(bt+c)+[dsin(et+f)+g sin(et+f)]×fhsin(et+f)」という候補モデルを構築する。この候補モデルには、係数「a,b,c,d,e,f」が含まれている。   [Step S202] The candidate model construction unit 150 constructs a candidate model by combining mathematical expression candidate elements by GP. Note that in the third embodiment, the candidate model construction unit 150 sets coefficients of gain and offset for each function when the candidate model includes a plurality of functions. Candidate model construction unit 150 also sets a coefficient to be multiplied with the variable. For example, the candidate model construction unit 150 constructs a candidate model of “acos (bt + c) + [dsin (et + f) + g sin (et + f)] × fhsin (et + f)”. This candidate model includes coefficients “a, b, c, d, e, f”.

[ステップS203]データ分析部160は、解析対象の製品から取得した応答特性データごとに、構築された候補モデルに含まれる係数の値を算出する。これにより、候補モデルの計算式が確定する。   [Step S203] The data analysis unit 160 calculates the value of the coefficient included in the constructed candidate model for each response characteristic data acquired from the product to be analyzed. Thereby, the calculation formula of a candidate model is decided.

[ステップS204]データ分析部160は、構築した候補モデルの構造評価値を計算する。例えばデータ分析部160は、構築した候補モデルと、製品の基本構造を示す式との類似度を計算し、類似度を構造評価値とする。   [Step S204] The data analysis unit 160 calculates the structure evaluation value of the constructed candidate model. For example, the data analysis unit 160 calculates the similarity between the constructed candidate model and an expression indicating the basic structure of the product, and uses the similarity as a structure evaluation value.

このときデータ分析部160は、算出した構造評価値を、構造評価値の閾値と比較してもよい。その場合、データ分析部160は、構造評価値が閾値未満であれば、処理をステップS205に進め、構造評価値が閾値以上であれば、ステップS205〜ステップS207の処理をスキップして、処理をステップS208に進める。   At this time, the data analysis unit 160 may compare the calculated structure evaluation value with a threshold value of the structure evaluation value. In that case, if the structure evaluation value is less than the threshold value, the data analysis unit 160 proceeds to step S205. If the structure evaluation value is equal to or greater than the threshold value, the data analysis unit 160 skips steps S205 to S207 and performs processing. Proceed to step S208.

[ステップS205]データ分析部160は、構築された候補モデルについて、製品ごとのマッチング係数を算出する。例えば、マッチング係数は、製品の応答特性データと、係数を設定した候補モデルの曲線との残差が少ないほど、小さな値となる。   [Step S205] The data analysis unit 160 calculates a matching coefficient for each product for the constructed candidate model. For example, the matching coefficient becomes smaller as the residual between the response characteristic data of the product and the curve of the candidate model in which the coefficient is set is smaller.

このときデータ分析部160は、算出したマッチング係数を、マッチング係数の閾値と比較してもよい。その場合、データ分析部160は、マッチング係数が閾値未満であれば、処理をステップS206に進め、マッチング係数が閾値以上であれば、ステップS206〜ステップS207の処理をスキップして、処理をステップS208に進める。   At this time, the data analysis unit 160 may compare the calculated matching coefficient with a threshold value of the matching coefficient. In that case, if the matching coefficient is less than the threshold value, the data analysis unit 160 proceeds to step S206. If the matching coefficient is equal to or greater than the threshold value, the data analysis unit 160 skips the processes in steps S206 to S207 and performs the process in step S208. Proceed to

[ステップS206]データ分析部160は、候補モデル内の係数ごとに、製品品質との間の相関分析を行う。相関分析により、構築された候補モデルそれぞれの係数ごとに、相関係数が算出される。   [Step S206] The data analysis unit 160 performs a correlation analysis with the product quality for each coefficient in the candidate model. By the correlation analysis, a correlation coefficient is calculated for each coefficient of the constructed candidate model.

このときデータ分析部160は、算出した相関係数を、相関係数の閾値と比較してもよい。その場合、データ分析部160は、相関係数が閾値より大きければ、処理をステップS207に進め、相関係数が閾値以下であれば、ステップS207の処理をスキップして、処理をステップS208に進める。   At this time, the data analysis unit 160 may compare the calculated correlation coefficient with a threshold value of the correlation coefficient. In this case, if the correlation coefficient is greater than the threshold, the data analysis unit 160 proceeds to step S207. If the correlation coefficient is equal to or less than the threshold, the data analysis unit 160 skips step S207 and proceeds to step S208. .

[ステップS207]モデル評価部180は、候補モデル内の係数ごとの相関係数と、マッチング係数と、構造評価値とに基づいて、該当候補モデルのスコア値を算出する。
[ステップS208]モデル評価部180は、候補モデル構築の終了条件が満たされたか否かを判断する。例えばモデル評価部180は、構造評価値が閾値未満、マッチング係数が閾値未満であり、相関係数が閾値より大きく、かつスコア値が閾値未満である候補モデルが少なくとも1つある場合、終了条件を満たすと判断する。モデル評価部180は、終了条件を満たした場合、処理をステップS209に進める。またモデル評価部180は、終了条件を満たしていなければ、処理をステップS202に進める。なおモデル評価部180は、終了条件を満たしていない場合、例えば最新の世代の候補モデルのうちの、スコア値が高い方から2つの候補モデルを、候補モデル構築部150に送信する。
[Step S207] The model evaluation unit 180 calculates a score value of the candidate model based on the correlation coefficient for each coefficient in the candidate model, the matching coefficient, and the structure evaluation value.
[Step S208] The model evaluator 180 determines whether or not the candidate model construction end condition is satisfied. For example, if there is at least one candidate model whose structure evaluation value is less than the threshold, matching coefficient is less than the threshold, correlation coefficient is greater than the threshold, and score value is less than the threshold, the model evaluation unit 180 sets the end condition as Judging to meet. If the end condition is satisfied, the model evaluation unit 180 advances the process to step S209. On the other hand, if the end condition is not satisfied, the model evaluation unit 180 proceeds with the process to step S202. Note that, when the termination condition is not satisfied, the model evaluation unit 180 transmits, for example, two candidate models having the highest score value among the candidate models of the latest generation to the candidate model construction unit 150.

[ステップS209]モデル評価部180は、スコア値が小さい方から所定数の候補モデルについて、理論モデルと照合する。モデル評価部180は、例えば候補モデルと理論モデルとの間の構造の類似度を計算する。そしてモデル評価部180は、候補モデルと類似する理論モデルの係数の意味に基づいて、候補モデルの係数の意味を判断する。   [Step S209] The model evaluation unit 180 collates a predetermined number of candidate models with a smaller score value with a theoretical model. The model evaluation unit 180 calculates the structural similarity between the candidate model and the theoretical model, for example. Then, the model evaluation unit 180 determines the meaning of the coefficient of the candidate model based on the meaning of the coefficient of the theoretical model similar to the candidate model.

[ステップS210]モデル評価部180は、品質影響原因の特定結果を出力する。例えばモデル評価部180は、スコア値が小さい方から所定数の候補モデルの係数の意味を、製品品質に影響を及ぼす要因として、モニタ21に表示する。   [Step S210] The model evaluation unit 180 outputs a result of specifying the cause of quality influence. For example, the model evaluation unit 180 displays on the monitor 21 the meanings of the coefficients of a predetermined number of candidate models from the smaller score values as factors that affect product quality.

このような手順で品質影響原因の特定処理が行われる。このように、第3の実施の形態では、構造評価値を用いてスコア値を算出する点が、第2の実施の形態と大きく異なる。
図33は、構造評価値の算出例を示す図である。データ分析部160は、候補モデル91を単純化することで、候補モデル91の計算式の構造(候補モデル構造91a)を生成する。例えばデータ分析部160は、例えば図22に示した文字列置換処理によって候補モデルを単純化する。
The process for identifying the cause of quality influence is performed in such a procedure. Thus, the third embodiment is greatly different from the second embodiment in that the score value is calculated using the structure evaluation value.
FIG. 33 is a diagram illustrating a calculation example of the structure evaluation value. The data analysis unit 160 generates the structure of the calculation formula of the candidate model 91 (candidate model structure 91a) by simplifying the candidate model 91. For example, the data analysis unit 160 simplifies the candidate model by, for example, a character string replacement process shown in FIG.

そしてデータ分析部160は、基本構造90と候補モデル構造91aとの類似度に基づいて、構造評価値を算出する。例えばデータ分析部160は、レーベンシュタイン距離法を用いて、候補モデル構造91aを基本構造90に変換するための最小編集回数(レーベンシュタイン距離)を算出する。データ分析部160は、例えば最小編集回数を基本構造の文字数で除算した値を、構造評価値とする。   The data analysis unit 160 calculates a structure evaluation value based on the similarity between the basic structure 90 and the candidate model structure 91a. For example, the data analysis unit 160 uses the Levenshtein distance method to calculate the minimum number of edits (Levenstein distance) for converting the candidate model structure 91a into the basic structure 90. The data analysis unit 160 sets, for example, a value obtained by dividing the minimum number of edits by the number of characters of the basic structure as the structure evaluation value.

データ分析部160は、例えば算出した構造評価値が、構造評価値の閾値未満の場合、候補モデル91が基本構造90に適合していると判断する。またデータ分析部160は、算出した構造評価値が、構造評価値の閾値以上の場合、候補モデル91が基本構造90に不適合であると判断する。不適合な場合、データ分析部160は、例えば評価結果管理テーブル181(図19参照)の、候補モデル91のレコードに構造不適合フラグを設定する。データ分析部160は、候補モデル91の構造が不適合となった場合、候補モデル91のマッチング係数の算出や相関分析の処理を省略することで、処理の効率化を図ることができる。   For example, when the calculated structure evaluation value is less than the structure evaluation value threshold, the data analysis unit 160 determines that the candidate model 91 is compatible with the basic structure 90. Further, the data analysis unit 160 determines that the candidate model 91 is incompatible with the basic structure 90 when the calculated structure evaluation value is equal to or greater than the structure evaluation value threshold. In the case of incompatibility, the data analysis unit 160 sets a structure incompatibility flag in the record of the candidate model 91 in the evaluation result management table 181 (see FIG. 19), for example. If the structure of the candidate model 91 becomes incompatible, the data analysis unit 160 can improve the efficiency of the process by omitting the calculation of the matching coefficient of the candidate model 91 and the correlation analysis process.

第3の実施の形態では、モデル評価部180は、候補モデルのスコア値を、候補モデル間での指標(構造評価値、マッチング係数、相関係数)ごとの順位(ランキング)に基づいて算出する。候補モデルの指標ごとの順位付けを行い、ランキング管理テーブルに設定する。   In the third embodiment, the model evaluation unit 180 calculates the score value of the candidate model based on the rank (ranking) for each index (structure evaluation value, matching coefficient, correlation coefficient) between candidate models. . Ranking is performed for each index of the candidate model and set in the ranking management table.

図34は、ランキング管理テーブルの一例を示す図である。ランキング管理テーブル92には、候補モデルの個体番号に対応付けて、構造評価値、マッチング係数、相関係数のランキングが設定されている。   FIG. 34 is a diagram illustrating an example of a ranking management table. In the ranking management table 92, rankings of structure evaluation values, matching coefficients, and correlation coefficients are set in association with individual numbers of candidate models.

構造評価値のランキングは、複数の候補モデルを構造評価値で昇順にソートした場合の、各候補モデルの順番である。したがって、構造評価値が最小の候補モデルが、構造評価値のランキング1位となる。   The ranking of the structure evaluation value is the order of each candidate model when a plurality of candidate models are sorted in ascending order by the structure evaluation value. Therefore, the candidate model having the smallest structure evaluation value is ranked first in the structure evaluation value ranking.

マッチング係数のランキングは、複数の候補モデルをマッチング係数で昇順にソートした場合の、各候補モデルの順番である。したがって、マッチング係数が最小の候補モデルが、マッチング係数のランキング1位となる。   The ranking of matching coefficients is the order of candidate models when a plurality of candidate models are sorted in ascending order by matching coefficients. Therefore, the candidate model with the smallest matching coefficient is ranked first in the matching coefficient ranking.

相関係数のランキングは、複数の候補モデルを相関係数で降順にソートした場合の、各候補モデルの順番である。したがって、相関係数が最大の候補モデルが、相関係数のランキング1位となる。   The correlation coefficient ranking is the order of each candidate model when a plurality of candidate models are sorted in descending order by correlation coefficient. Therefore, the candidate model having the largest correlation coefficient is ranked first in the correlation coefficient ranking.

モデル評価部180は、各指標のランキングに重み付けを行い、スコア値を計算する。例えばモデル評価部180は、候補モデルごとに、各指標をその指標の重みで除算し、除算結果の和を、各候補モデルのスコア値とする。スコア値を式で表すと、以下の通りである。
スコア値=(構造評価値ランキング/構造評価値重みWf)+(マッチング係数ランキング/マッチング係数重みWr)+(相関係数ランキング/相関係数重みWc)
モデル評価部180は、算出したスコア値を、ランキング管理テーブル92に設定する。モデル評価部180は、作成したランキング管理テーブル92をメモリ102に格納する。
The model evaluation unit 180 weights the ranking of each index and calculates a score value. For example, the model evaluation unit 180 divides each index by the weight of the index for each candidate model, and sets the sum of the division results as the score value of each candidate model. The score value is expressed as follows.
Score value = (structure evaluation value ranking / structure evaluation value weight Wf) + (matching coefficient ranking / matching coefficient weight Wr) + (correlation coefficient ranking / correlation coefficient weight Wc)
The model evaluation unit 180 sets the calculated score value in the ranking management table 92. The model evaluation unit 180 stores the created ranking management table 92 in the memory 102.

モデル評価部180は、構築した各候補モデルのスコア値を比較し、スコア値が最も高い候補モデルを、最適モデルとして抽出する。そしてモデル評価部180は、最適モデルとして抽出された候補モデルを理論モデルと照合し、品質に影響を及ぼす係数の意味を判断する。   The model evaluation unit 180 compares the score values of the constructed candidate models, and extracts the candidate model having the highest score value as the optimum model. Then, the model evaluation unit 180 compares the candidate model extracted as the optimal model with the theoretical model, and determines the meaning of the coefficient that affects the quality.

図35は、候補モデルと理論モデルとの照合例を示す図である。図35の例では、理論モデル管理テーブル121aには、理論モデルに対応付けて、理論モデルの意味と、理論モデルに含まれる係数と、各係数の意味とが設定されている。   FIG. 35 is a diagram illustrating a collation example between a candidate model and a theoretical model. In the example of FIG. 35, the meaning of the theoretical model, the coefficient included in the theoretical model, and the meaning of each coefficient are set in the theoretical model management table 121a in association with the theoretical model.

モデル評価部180は、例えば最適モデルとして抽出された候補モデル91と理論モデルとを単純化して、レーベンシュタイン距離法を用いて類似度を計算する。そして類似度(最小編集回数)で理論モデルをソートする。次にモデル評価部180は、類似度が高い理論モデル内の係数のうち、候補モデル内の品質関連特徴を示す係数に対応する係数を特定する。そしてモデル評価部180は、特定した係数の意味を、解析結果としてモニタに表示する。   For example, the model evaluation unit 180 simplifies the candidate model 91 extracted as the optimum model and the theoretical model, and calculates the similarity using the Levenshtein distance method. Then, the theoretical models are sorted by similarity (minimum number of edits). Next, the model evaluation unit 180 specifies a coefficient corresponding to a coefficient indicating a quality-related feature in the candidate model among coefficients in the theoretical model having a high similarity. Then, the model evaluation unit 180 displays the meaning of the identified coefficient on the monitor as an analysis result.

図36は、品質関連因子の解析結果表示画面の一例を示す図である。解析結果表示画面93には、順位が高い順(スコア値の低い順)に、理論モデルの式が表示されている。各理論モデルには、その意味と、含まれる係数が対応付けられている。各係数には、その意味、マッチング係数、相関係数、および構造評価値が対応付けられている。理論モデルに含まれる係数のうち、品質関連特徴を示す係数に関する情報は、強調表示されている。   FIG. 36 is a diagram illustrating an example of a quality-related factor analysis result display screen. On the analysis result display screen 93, formulas of theoretical models are displayed in descending order (in descending order of score values). Each theoretical model is associated with its meaning and the included coefficient. Each coefficient is associated with its meaning, matching coefficient, correlation coefficient, and structure evaluation value. Among the coefficients included in the theoretical model, information on the coefficient indicating the quality-related feature is highlighted.

このようにして、予め製品の性質に応じた基本構造を設定しておくことで、基本構造に適合した候補モデルを抽出することができる。
なお、1種の製品に対して複数の基本構造を定義してもよい。例えば製品の物理的な性質が複雑であり、その性質を表す可能性のある基本構造が複数あり、1つの基本構造に限定するのが困難な場合がある。その場合、モデル評価部180は、基本構造ごとに、各候補モデルのスコア値を計算する。そして、モデル評価部180は、基本構造ごとに計算したスコア値が高い候補モデルから順に、類似する理論モデルと、その理論モデル内の係数の意味とを表示する。
In this way, by setting the basic structure according to the property of the product in advance, it is possible to extract a candidate model that matches the basic structure.
A plurality of basic structures may be defined for one type of product. For example, the physical properties of a product are complex, and there are a plurality of basic structures that may represent the properties, and it may be difficult to limit to one basic structure. In that case, the model evaluation unit 180 calculates the score value of each candidate model for each basic structure. Then, the model evaluation unit 180 displays similar theoretical models and the meanings of the coefficients in the theoretical models in order from the candidate model having the highest score value calculated for each basic structure.

図37は、基本構造が複数ある場合の品質関連因子の解析結果表示画面の一例を示す図である。図37の例は、2つの基本構造90a,90bに基づいて、候補モデルごとのスコア値を計算した場合である。モデル評価部180は、候補モデルに類似する理論モデルと基本構造との組に対応するレコードをスコア値で昇順にソートし、解析結果表示画面94に表示する。   FIG. 37 is a diagram showing an example of a quality-related factor analysis result display screen when there are a plurality of basic structures. The example of FIG. 37 is a case where the score value for each candidate model is calculated based on the two basic structures 90a and 90b. The model evaluation unit 180 sorts records corresponding to pairs of theoretical models and basic structures similar to the candidate model in ascending order according to score values, and displays them on the analysis result display screen 94.

解析結果表示画面94では、理論モデルに対応付けて基本構造一致部が表示されている。基本構造一致部には、スコア値の計算元となった基本構造が表示されており、その基本構造内の品質関連特徴とされた係数が強調表示されている。   On the analysis result display screen 94, the basic structure matching part is displayed in association with the theoretical model. In the basic structure matching part, the basic structure from which the score value is calculated is displayed, and the coefficients that are the quality-related features in the basic structure are highlighted.

このようにして、製品の構造を考慮して最適モデルを決定することができ、製品の品質に影響を及ぼす因子を適確に特定することができる。
〔その他の実施の形態〕
第2および第3の実施の形態では、GPにより候補モデルを構築しているが、他の方法で候補モデルを構築してもよい。また候補モデル構築の終了条件として、例えば構築した候補モデルが最大量を超えることや、GPにより構築した候補モデルの世代が、所定の世代に達したことを用いてもよい。
In this way, the optimum model can be determined in consideration of the structure of the product, and factors that affect the quality of the product can be accurately identified.
[Other Embodiments]
In the second and third embodiments, the candidate model is constructed by GP, but the candidate model may be constructed by other methods. In addition, for example, the candidate model construction end condition may be that the constructed candidate model exceeds the maximum amount or that the generation of the candidate model constructed by the GP has reached a predetermined generation.

また第2の実施の形態では、マッチング係数と修正相関係数との積をスコア値としているが、第2の実施の形態においても第3の実施の形態と同様に、マッチング係数と相関係数とのランキングに基づいてスコア値を計算してもよい。   In the second embodiment, the product of the matching coefficient and the modified correlation coefficient is used as the score value. However, in the second embodiment, the matching coefficient and the correlation coefficient are the same as in the third embodiment. The score value may be calculated based on the ranking.

また、候補モデルと理論モデルとの類似度の計算、候補モデルと基本構造との類似度の計算に、レーベンシュタイン距離法以外の方法を用いてもよい。
以上、実施の形態を例示したが、実施の形態で示した各部の構成は同様の機能を有する他のものに置換することができる。また、他の任意の構成物や工程が付加されてもよい。さらに、前述した実施の形態のうちの任意の2以上の構成(特徴)を組み合わせたものであってもよい。
Further, methods other than the Levenshtein distance method may be used for calculating the similarity between the candidate model and the theoretical model and for calculating the similarity between the candidate model and the basic structure.
As mentioned above, although embodiment was illustrated, the structure of each part shown by embodiment can be substituted by the other thing which has the same function. Moreover, other arbitrary structures and processes may be added. Further, any two or more configurations (features) of the above-described embodiments may be combined.

10 情報処理装置
11 記憶部
11a 測定データ
12b 品質データ
12 処理部
DESCRIPTION OF SYMBOLS 10 Information processing apparatus 11 Memory | storage part 11a Measurement data 12b Quality data 12 Processing part

Claims (11)

同種の複数の製品それぞれに対する作業中に物理量を測定した測定値の時間変化を示す測定データと、前記複数の製品それぞれの品質を表す品質値を含む品質データとを記憶する記憶部と、
値が未定の係数を含み、前記物理量の時間変化を表す複数の候補式を生成し、生成した前記複数の候補式それぞれを評価対象とし、前記測定値に基づき前記評価対象の候補式の係数の係数値を製品ごとに決定し、前記評価対象の候補式の製品ごとの係数値に基づいて、前記測定値に対する前記評価対象の候補式の適合度合いを示すマッチング係数を算出し、前記評価対象の候補式の製品ごとの係数値と前記品質値との相関係数を算出し、前記評価対象の候補式の前記マッチング係数と前記相関係数とに基づいて、前記評価対象の候補式のスコア値を算出し、前記複数の候補式それぞれの前記スコア値に基づいて、前記複数の候補式のなかから、前記複数の製品の品質に関係する係数を含む品質関連式を特定する処理部と、
を有する情報処理装置。
A storage unit for storing measurement data indicating a time change of a measurement value obtained by measuring a physical quantity during work for each of a plurality of products of the same type, and quality data including a quality value indicating the quality of each of the plurality of products,
A plurality of candidate formulas including a coefficient whose value is undetermined and representing a temporal change of the physical quantity are generated, each of the generated candidate formulas is set as an evaluation target, and the coefficient of the candidate formula of the evaluation target based on the measurement value A coefficient value is determined for each product, and based on the coefficient value for each product of the evaluation target candidate formula, a matching coefficient indicating the degree of fit of the evaluation target candidate formula with respect to the measurement value is calculated, and the evaluation target A correlation coefficient between the coefficient value of each candidate formula product and the quality value is calculated, and based on the matching coefficient and the correlation coefficient of the evaluation target candidate formula, the score value of the evaluation target candidate formula And a processing unit that identifies a quality-related expression including a coefficient related to the quality of the plurality of products from the plurality of candidate expressions, based on the score value of each of the plurality of candidate expressions,
An information processing apparatus.
前記処理部は、前記評価対象の候補式に製品ごとの係数値を設定して得られる回帰式と製品ごとの前記測定値との残差を計算し、残差の絶対値の平均を前記マッチング係数とする、
請求項1記載の情報処理装置。
The processing unit calculates a residual between a regression equation obtained by setting a coefficient value for each product in the candidate formula to be evaluated and the measured value for each product, and calculates an average of absolute values of residuals as the matching Coefficient
The information processing apparatus according to claim 1.
前記処理部は、前記複数の候補式を遺伝的プログラミングにより生成する、
請求項1または2に記載の情報処理装置。
The processing unit generates the plurality of candidate expressions by genetic programming.
The information processing apparatus according to claim 1 or 2.
前記処理部は、さらに、前記複数の製品の理論上の性質を表す複数の理論式のなかから、前記品質関連式に類似する類似理論式を特定し、前記類似理論式に含まれる係数の物理的な意味を出力する、
請求項1ないし3のいずれかに記載の情報処理装置。
The processing unit further specifies a similar theoretical formula similar to the quality-related formula from a plurality of theoretical formulas representing the theoretical properties of the plurality of products, and determines the physical properties of the coefficients included in the similar theoretical formula. Output meaning,
The information processing apparatus according to claim 1.
前記処理部は、前記評価対象の候補式について、前記マッチング係数と前記相関係数に応じた値との積を、前記評価対象の候補式の前記スコア値とする、
請求項1ないし4のいずれかに記載の情報処理装置。
The processing unit sets, as the score value of the evaluation target candidate expression, a product of the matching coefficient and a value corresponding to the correlation coefficient for the evaluation target candidate expression.
The information processing apparatus according to claim 1.
前記処理部は、前記評価対象の候補式に複数の係数が含まれる場合、前記複数の係数それぞれの前記相関係数のうちの絶対値が大きい方の前記相関係数に応じた値と、前記マッチング係数との積を、前記評価対象の候補式の前記スコア値とする、
請求項5記載の情報処理装置。
When the candidate expression to be evaluated includes a plurality of coefficients, the processing unit has a value corresponding to the correlation coefficient having a larger absolute value of the correlation coefficients of the plurality of coefficients, A product with a matching coefficient is used as the score value of the candidate expression to be evaluated,
The information processing apparatus according to claim 5.
前記処理部は、前記評価対象の候補式の前記マッチング係数と前記相関係数に応じた値それぞれに重みを乗算または除算し、重みの乗算または除算結果の和を、前記評価対象の候補式の前記スコア値とする、
請求項1ないし4のいずれかに記載の情報処理装置。
The processing unit multiplies or divides a value corresponding to each of the matching coefficient and the correlation coefficient of the evaluation target candidate expression, and calculates a sum of weight multiplication or division results of the evaluation target candidate expression. The score value,
The information processing apparatus according to claim 1.
前記処理部は、前記複数の候補式間での前記マッチング係数と前記相関係数との順位を決定し、前記評価対象の候補式の前記マッチング係数の順位と前記相関係数の順位とに基づいて、前記評価対象の候補式の前記スコア値を計算する、
請求項1ないし7のいずれかに記載の情報処理装置。
The processing unit determines the rank of the matching coefficient and the correlation coefficient among the plurality of candidate expressions, and is based on the rank of the matching coefficient and the correlation coefficient of the candidate expression to be evaluated Calculating the score value of the candidate expression to be evaluated,
The information processing apparatus according to claim 1.
前記処理部は、前記複数の製品の特性に基づく前記物理量の計算式の基本構造と、前記評価対象の候補式との類似度に基づいて、前記評価対象の候補式の構造評価値を算出し、前記評価対象の候補式の前記マッチング係数と前記相関係数と前記構造評価値とに基づいて、前記評価対象の候補式の前記スコア値を算出する、
請求項1ないし8のいずれかに記載の情報処理装置。
The processing unit calculates a structure evaluation value of the evaluation target candidate expression based on a similarity between the basic structure of the physical quantity calculation expression based on the characteristics of the plurality of products and the evaluation target candidate expression. Calculating the score value of the evaluation target candidate formula based on the matching coefficient of the evaluation target candidate formula, the correlation coefficient, and the structure evaluation value;
The information processing apparatus according to claim 1.
コンピュータが、
同種の複数の製品それぞれに対する作業中に物理量を測定した測定値の時間変化を示す測定データと、前記複数の製品それぞれの品質を表す品質値を含む品質データとを、記憶部に記憶し、
値が未定の係数を含み、前記物理量の時間変化を表す複数の候補式を生成し、
生成した前記複数の候補式それぞれを評価対象とし、前記測定値に基づき前記評価対象の候補式の係数の係数値を製品ごとに決定し、前記評価対象の候補式の製品ごとの係数値に基づいて、前記測定値に対する前記評価対象の候補式の適合度合いを示すマッチング係数を算出し、前記評価対象の候補式の製品ごとの係数値と前記品質値との相関係数を算出し、前記評価対象の候補式の前記マッチング係数と前記相関係数とに基づいて、前記評価対象の候補式のスコア値を算出し、
前記複数の候補式それぞれの前記スコア値に基づいて、前記複数の候補式のなかから、前記複数の製品の品質に関係する係数を含む品質関連式を特定する、
品質関連式生成方法。
Computer
Stored in the storage unit is measurement data indicating a time change of a measurement value obtained by measuring a physical quantity during work for each of a plurality of products of the same type, and quality data including a quality value indicating the quality of each of the plurality of products,
A plurality of candidate formulas including coefficients whose values are undetermined and representing temporal changes of the physical quantity;
Each of the plurality of generated candidate formulas is to be evaluated, the coefficient value of the candidate formula of the evaluation target is determined for each product based on the measurement value, and based on the coefficient value of each product of the candidate formula of the evaluation target Calculating a matching coefficient indicating the degree of adaptation of the candidate formula of the evaluation target to the measurement value, calculating a correlation coefficient between the quality value and the coefficient value of each product of the candidate formula of the evaluation target, Based on the matching coefficient of the target candidate formula and the correlation coefficient, the score value of the candidate formula of the evaluation target is calculated,
Based on the score value of each of the plurality of candidate formulas, a quality related formula including a coefficient related to the quality of the plurality of products is specified from the plurality of candidate formulas.
Quality related expression generation method.
コンピュータに、
同種の複数の製品それぞれに対する作業中に物理量を測定した測定値の時間変化を示す測定データと、前記複数の製品それぞれの品質を表す品質値を含む品質データとを、記憶部に記憶し、
値が未定の係数を含み、前記物理量の時間変化を表す複数の候補式を生成し、
生成した前記複数の候補式それぞれを評価対象とし、前記測定値に基づき前記評価対象の候補式の係数の係数値を製品ごとに決定し、前記評価対象の候補式の製品ごとの係数値に基づいて、前記測定値に対する前記評価対象の候補式の適合度合いを示すマッチング係数を算出し、前記評価対象の候補式の製品ごとの係数値と前記品質値との相関係数を算出し、前記評価対象の候補式の前記マッチング係数と前記相関係数とに基づいて、前記評価対象の候補式のスコア値を算出し、
前記複数の候補式それぞれの前記スコア値に基づいて、前記複数の候補式のなかから、前記複数の製品の品質に関係する係数を含む品質関連式を特定する、
処理を実行させる品質関連式生成プログラム。
On the computer,
Stored in the storage unit is measurement data indicating a time change of a measurement value obtained by measuring a physical quantity during work for each of a plurality of products of the same type, and quality data including a quality value indicating the quality of each of the plurality of products,
A plurality of candidate formulas including coefficients whose values are undetermined and representing temporal changes of the physical quantity;
Each of the plurality of generated candidate formulas is to be evaluated, the coefficient value of the candidate formula of the evaluation target is determined for each product based on the measurement value, and based on the coefficient value of each product of the candidate formula of the evaluation target Calculating a matching coefficient indicating the degree of adaptation of the candidate formula of the evaluation target to the measurement value, calculating a correlation coefficient between the quality value and the coefficient value of each product of the candidate formula of the evaluation target, Based on the matching coefficient of the target candidate formula and the correlation coefficient, the score value of the candidate formula of the evaluation target is calculated,
Based on the score value of each of the plurality of candidate formulas, a quality related formula including a coefficient related to the quality of the plurality of products is specified from the plurality of candidate formulas.
Quality-related expression generation program that executes processing.
JP2018089122A 2018-05-07 2018-05-07 Information processing device, quality-related expression generation method, and quality-related expression generation program Active JP7144676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018089122A JP7144676B2 (en) 2018-05-07 2018-05-07 Information processing device, quality-related expression generation method, and quality-related expression generation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018089122A JP7144676B2 (en) 2018-05-07 2018-05-07 Information processing device, quality-related expression generation method, and quality-related expression generation program

Publications (2)

Publication Number Publication Date
JP2019197245A true JP2019197245A (en) 2019-11-14
JP7144676B2 JP7144676B2 (en) 2022-09-30

Family

ID=68538478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018089122A Active JP7144676B2 (en) 2018-05-07 2018-05-07 Information processing device, quality-related expression generation method, and quality-related expression generation program

Country Status (1)

Country Link
JP (1) JP7144676B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021199201A1 (en) * 2020-03-30 2021-10-07
WO2021246051A1 (en) * 2020-06-05 2021-12-09 アズビル株式会社 Quality influence factor identification assistance device and method
WO2021245919A1 (en) * 2020-06-05 2021-12-09 日本電信電話株式会社 Feature value presentation device, feature value presentation method, and feature value presentation program
WO2022244420A1 (en) * 2021-05-19 2022-11-24 パナソニックIpマネジメント株式会社 Defect predicting system, defect predicting method, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009230209A (en) * 2008-03-19 2009-10-08 Mitsubishi Chemicals Corp Performance evaluation device for soft sensor
JP2012027683A (en) * 2010-07-23 2012-02-09 Nippon Steel Corp Quality prediction device, quality prediction method, program and computer readable recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009230209A (en) * 2008-03-19 2009-10-08 Mitsubishi Chemicals Corp Performance evaluation device for soft sensor
JP2012027683A (en) * 2010-07-23 2012-02-09 Nippon Steel Corp Quality prediction device, quality prediction method, program and computer readable recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021199201A1 (en) * 2020-03-30 2021-10-07
WO2021199201A1 (en) * 2020-03-30 2021-10-07 日本電気株式会社 Risk evaluation device, risk evaluation method, and program
JP7409484B2 (en) 2020-03-30 2024-01-09 日本電気株式会社 Risk assessment equipment, risk assessment methods and programs
WO2021246051A1 (en) * 2020-06-05 2021-12-09 アズビル株式会社 Quality influence factor identification assistance device and method
WO2021245919A1 (en) * 2020-06-05 2021-12-09 日本電信電話株式会社 Feature value presentation device, feature value presentation method, and feature value presentation program
WO2022244420A1 (en) * 2021-05-19 2022-11-24 パナソニックIpマネジメント株式会社 Defect predicting system, defect predicting method, and program

Also Published As

Publication number Publication date
JP7144676B2 (en) 2022-09-30

Similar Documents

Publication Publication Date Title
JP7144676B2 (en) Information processing device, quality-related expression generation method, and quality-related expression generation program
KR101917006B1 (en) Semiconductor Manufacturing Yield Prediction System and Method based on Machine Learning
JP4239932B2 (en) production management system
CN109240901B (en) Performance analysis method, performance analysis device, storage medium, and electronic apparatus
AU2020203862B2 (en) Artificial intelligence (ai) based predictions and recommendations for equipment
CN110334816B (en) Industrial equipment detection method, device, equipment and readable storage medium
JP6895816B2 (en) Abnormality diagnosis device, abnormality diagnosis method and abnormality diagnosis program
JP7140567B2 (en) Design proposal generator
KR20190072652A (en) Information processing apparatus and information processing method
CN114118224A (en) Neural network-based system-wide remote measurement parameter anomaly detection system
CN112907026A (en) Comprehensive evaluation method based on editable mesh index system
A Shepherd et al. How well does your phylogenetic model fit your data?
CN115392592A (en) Storage product parameter configuration recommendation method, device, equipment and medium
CN110162743A (en) A kind of data administering method based on k neighborhood nonlinear state Eq algorithm
JP6458157B2 (en) Data analysis apparatus and analysis method
JP2013168020A (en) State prediction method for process
US11042786B2 (en) Learning processing device, data analysis device, analytical procedure selection method, and recording medium
Akinode et al. Algorithms for Reducing Cut Sets in Fault Tree Analysis
JP6924168B2 (en) KPI tree creation support system and KPI tree creation support method
JP2017224185A (en) Bug contamination probability calculation program and bug contamination probability calculation method
US20210397598A1 (en) Data management method, data management system and program
KR20210051886A (en) Method for auto configuration of distribution equipment health index table
Wang et al. Requirements management for the incremental development model
CN110263811A (en) A kind of equipment running status monitoring method and system based on data fusion
US20240005259A1 (en) Index modeling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220829

R150 Certificate of patent or registration of utility model

Ref document number: 7144676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150