JP2019197037A - Optical type tactile sensor - Google Patents

Optical type tactile sensor Download PDF

Info

Publication number
JP2019197037A
JP2019197037A JP2018092639A JP2018092639A JP2019197037A JP 2019197037 A JP2019197037 A JP 2019197037A JP 2018092639 A JP2018092639 A JP 2018092639A JP 2018092639 A JP2018092639 A JP 2018092639A JP 2019197037 A JP2019197037 A JP 2019197037A
Authority
JP
Japan
Prior art keywords
light
unit
external force
contact deformation
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018092639A
Other languages
Japanese (ja)
Inventor
アレクサンダー シュミッツ
Schmitz Alexander
アレクサンダー シュミッツ
▲晋▼誠 許
Jincheng Xu
▲晋▼誠 許
ソフォン ソムロア
Sophon Somlor
ソフォン ソムロア
ティト プラドノ トモ
Tito Pradhono Tomo
ティト プラドノ トモ
重樹 菅野
Shigeki Sugano
重樹 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2018092639A priority Critical patent/JP2019197037A/en
Priority to PCT/JP2019/018180 priority patent/WO2019220942A1/en
Publication of JP2019197037A publication Critical patent/JP2019197037A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

To provide an optical type tactile sensor that is miniaturized and highly accurate.SOLUTION: An optical type tactile sensor 10 comprises: a contact deformation part 14 that is composed of elastically deformable light-blocking material; a light source 15 that supplies light to the contact deformation part 14; a light detection unit 16 that detects a change in amount of light from the light source 15 accompanied by elastic deformation of the contact deformation part 14; and a computation processing unit 13 that calculates external force acting on the contact deformation part 14 on the basis of a result of the detection. The contact deformation part 14 is composed of an inner cover 18 that forms a first space S1 in which the light detection unit 16 is stored; and an outer cover 19 that covers the inner cover 18 from the outside in a state separating a second space S2 to which the light from the light source 15 is supplied. The inner cover 18 is provided to be elastically deformable integrally with the outer cover 19, and has partially a translucent part 21 that transmits the light of the second space S2 to the first space S1. In the computation processing unit 13, a size of the external force is obtained based on a state change in amount of light accompanied by a displacement of the translucent part 21 when the external force acts on the contact deformation part 14.SELECTED DRAWING: Figure 1

Description

本発明は、光学式触覚センサに係り、更に詳しくは、比較的簡易な構成で微細な外力の変化の検出をも可能にする光学式触覚センサに関する。   The present invention relates to an optical tactile sensor, and more particularly to an optical tactile sensor that can detect a minute change in external force with a relatively simple configuration.

人間と共存しながら所定の作業をするロボットには、ロボットの周囲の環境中に存在する人や物がロボットに接触した際に、当該接触部分に作用する押圧力やせん断力を検出する触覚センサ等が設けられ、当該触覚センサ等の検出値に基づいて、ロボットの動作制御を行っている。   For robots that co-operate with humans, when a person or object in the environment surrounding the robot comes into contact with the robot, a tactile sensor that detects the pressing force or shear force acting on the contact part And the like, and the operation control of the robot is performed based on the detection value of the touch sensor or the like.

前記触覚センサとしては、外力の付加により変位するマーカをカメラで撮像することで、マーカの変位に基づき外力を算出する光学式触覚センサが知られている。この光学式触覚センサとしては、例えば、特許文献1に示されるように、人や物の接触により外力が付加されるセンサ面と、互いに異なる種類のマーカが内部に設けられた透光性を有する弾性体からなるマーカ層と、センサ面とマーカ層の間に配置され、センサ面に外力が作用した場合に、当該作用部位が外力の大きさに応じた明るさに変化するシート層と、センサ面の反対側に配置され、マーカ層内のマーカ及びシート層を撮影するカメラと、カメラの撮影結果に基づいて、センサ面の力分布を算出する演算部とを備えている。当該演算部では、シート層が明るくなった部位に対向するマーカ層内のマーカについて、当該マーカの移動情報から力分布を算出する。   As the tactile sensor, there is known an optical tactile sensor that calculates an external force based on a marker displacement by imaging a marker that is displaced by the addition of an external force with a camera. As this optical tactile sensor, for example, as shown in Patent Document 1, a sensor surface to which an external force is applied by contact of a person or an object and translucency in which different types of markers are provided inside are provided. A marker layer made of an elastic body, a sheet layer that is disposed between the sensor surface and the marker layer, and when an external force is applied to the sensor surface, the action site changes to brightness according to the magnitude of the external force; and the sensor A camera that is disposed on the opposite side of the surface and captures the marker and sheet layer in the marker layer, and an arithmetic unit that calculates the force distribution on the sensor surface based on the imaging result of the camera. In the calculation unit, the force distribution is calculated from the movement information of the marker for the marker in the marker layer facing the portion where the sheet layer becomes bright.

特開2007−147443号公報JP 2007-147443 A

しかしながら、前記光学式触覚センサにあっては、三次元の力分布を求めるために、マーカ層内に多数のマーカを三次元的に立体配置しなければならない。このことは、センサ全体の厚みが増大し、ロボットに搭載される際のセンサの小型化の阻害となる。また、センサ面に外力が作用する前後での各マーカの追跡が必要であり、しかも、カメラの撮影結果から各マーカの三次元の移動ベクトルを求める際の演算処理が複雑になることから、力分布を算出するための各処理に対する負荷が高くなる。この問題は、微細な外力をも検出可能にするように各マーカのサイズを小さくして高性能化を図る際に顕著となる。   However, in the optical tactile sensor, in order to obtain a three-dimensional force distribution, a large number of markers must be three-dimensionally arranged in the marker layer. This increases the overall thickness of the sensor, and hinders the downsizing of the sensor when mounted on a robot. In addition, it is necessary to track each marker before and after the external force is applied to the sensor surface, and the calculation processing when obtaining the three-dimensional movement vector of each marker from the camera's imaging result becomes complicated. The load on each process for calculating the distribution increases. This problem becomes conspicuous when the size of each marker is reduced to improve performance so that even a fine external force can be detected.

本発明は、このような課題を解決するために案出されたものであり、その目的は、比較的簡易な構成でセンサ全体の小型化を促進するとともに、作用する外力の微小変化でも、簡単な演算処理で、外力の大きさや分布を検出可能となる高性能の光学式触覚センサを提供することにある。   The present invention has been devised in order to solve such a problem. The object of the present invention is to facilitate the downsizing of the entire sensor with a relatively simple configuration, and even with a small change in the applied external force. It is an object of the present invention to provide a high-performance optical tactile sensor that can detect the magnitude and distribution of an external force through simple calculation processing.

前記目的を達成するため、本発明は、主として、外力の作用によって弾性変形可能な遮光性材料からなる接触変形部と、当該接触変形部の内部に形成された空間に光を供給する光源と、前記接触変形部の弾性変形に伴う前記光源からの光量の変化を検出する光検出部と、当該光検出部の検出結果に基づいて、前記接触変形部に作用した外力を算出する演算処理部とを備えた光学式触覚センサにおいて、前記接触変形部は、前記光検出部が収容される第1空間を形成する内側カバーと、当該内側カバーの外側で、前記光源からの光が供給される第2空間となる隙間を隔てた状態で前記内側カバーを覆うように配置された外側カバーとからなり、前記内側カバーは、前記外側カバーに作用した外力により、当該外側カバーと一体的に弾性変形可能に設けられるとともに、前記第2空間の光を前記第1空間に透過させる透光部を部分的に有し、前記演算処理部では、前記接触変形部に外力が作用した際の前記透光部の変位に伴う前記光量の状態変化に基づいて、前記外力の大きさを求める、という構成を採っている。   In order to achieve the above object, the present invention mainly includes a contact deformation part made of a light-shielding material that can be elastically deformed by the action of an external force, a light source that supplies light to a space formed inside the contact deformation part, A light detection unit that detects a change in the amount of light from the light source accompanying elastic deformation of the contact deformation unit, and an arithmetic processing unit that calculates an external force acting on the contact deformation unit based on a detection result of the light detection unit; In the optical tactile sensor, the contact deformation portion includes an inner cover that forms a first space in which the light detection portion is accommodated, and a light that is supplied from the light source outside the inner cover. The outer cover is arranged so as to cover the inner cover with a gap of two spaces therebetween, and the inner cover can be elastically deformed integrally with the outer cover by an external force acting on the outer cover. A translucent part that partially transmits the light in the second space to the first space, and the arithmetic processing unit includes a translucent part of the translucent part when an external force acts on the contact deformation part. A configuration is adopted in which the magnitude of the external force is obtained based on the change in the state of the light amount accompanying the displacement.

本発明によれば、光源から第2空間に供給された光が、内側カバーに部分的に形成された透光部を通じて光検出部を配置した第1空間に透過し、外力の大きさ及び方向に応じ、内側カバーの弾性変形により透光部が変位する。これにより、外力の作用前後において、光検出部での光量の大きさや中心部分に変化が生じ、これらの状態変化に基づいて、前記外力の大きさが三次元的に算出可能となる。このため、マーカをカメラで撮像する従来手法に対し、各マーカの三次元的な移動ベクトルの算出が不要となり、透光部を二次元的に平面に沿って配置するだけで、簡単な演算により、三次元の外力の大きさや分布を求めることができ、且つ、装置全体の小型化、薄型化を図ることができる。更に、透光部のサイズを小さくし、光検出部で微細な検出領域毎に光量の検出を可能にすると、レンズ等を用いることなく、より簡易な構成で微細な外力の大きさや分布の変化を精度よく検出できる。   According to the present invention, the light supplied from the light source to the second space is transmitted to the first space where the light detection unit is disposed through the light transmission part partially formed on the inner cover, and the magnitude and direction of the external force. Accordingly, the translucent portion is displaced by elastic deformation of the inner cover. Thereby, before and after the action of the external force, the magnitude of the light amount in the light detection unit and the central portion change, and the magnitude of the external force can be calculated three-dimensionally based on these state changes. For this reason, it is not necessary to calculate the three-dimensional movement vector of each marker as compared with the conventional method of imaging the marker with a camera, and the translucent part is arranged two-dimensionally along a plane, with a simple calculation. Thus, the size and distribution of the three-dimensional external force can be obtained, and the entire apparatus can be reduced in size and thickness. Furthermore, if the size of the translucent part is reduced and the light detection part can detect the amount of light for each fine detection area, the size and distribution of fine external force can be changed with a simpler structure without using a lens or the like. Can be detected with high accuracy.

本実施形態に係る光学式触覚センサの概略構成図。The schematic block diagram of the optical tactile sensor which concerns on this embodiment. 図1のセンサ本体部分のA−A線に沿う断面図。Sectional drawing which follows the AA line of the sensor main-body part of FIG. 外力が作用した際の前記センサ本体の変形状態の一例を表す概念図。The conceptual diagram showing an example of the deformation | transformation state of the said sensor main body when external force acts. 光検出部の検出領域を説明するための概略平面図。The schematic plan view for demonstrating the detection area | region of a photon detection part. 光検出部の一検出領域での各ピクセルの位置及び検出光量の定義を説明するための概略平面図。The schematic plan view for demonstrating the definition of the position of each pixel and detection light quantity in one detection area of a photon detection part.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1には、本実施形態に係る光学式触覚センサの概略構成図が示されている。この図において、前記光学式触覚センサ10は、所定の電子回路がプリントされた基板11と、当該基板11に載置されるとともに、外力の検知部位となるセンシング部12と、センシング部12に繋がり、センシング部12での検知に基づき、センシング部12に作用した外力の大きさや分布を演算する演算処理部12とからなる。   FIG. 1 shows a schematic configuration diagram of an optical tactile sensor according to the present embodiment. In this figure, the optical tactile sensor 10 is connected to a substrate 11 on which a predetermined electronic circuit is printed, a sensing unit 12 which is placed on the substrate 11 and serves as a detection site for external force, and a sensing unit 12. And an arithmetic processing unit 12 that calculates the magnitude and distribution of the external force acting on the sensing unit 12 based on detection by the sensing unit 12.

前記センシング部12は、外力の作用によって弾性変形可能な遮光性材料からなる接触変形部14と、接触変形部14の内部に光を供給する光源15と、接触変形部14の弾性変形に伴う光源15からの光量の変化を検出する光検出部16とを備えている。   The sensing unit 12 includes a contact deformation unit 14 made of a light-shielding material that can be elastically deformed by the action of an external force, a light source 15 that supplies light to the inside of the contact deformation unit 14, and a light source that accompanies elastic deformation of the contact deformation unit 14. 15 and a light detection unit 16 that detects a change in the amount of light from 15.

前記接触変形部14は、光検出部16が収容される第1空間S1を形成する内側カバー18と、内側カバー18の外側で、光源15からの光が供給される第2空間S2となる隙間を隔てた状態で内側カバー18を覆うように配置された外側カバー19とからなる。   The contact deformation portion 14 includes a gap serving as an inner cover 18 that forms a first space S1 in which the light detection portion 16 is accommodated, and a second space S2 to which light from the light source 15 is supplied outside the inner cover 18. And an outer cover 19 arranged so as to cover the inner cover 18 in a state of being separated from each other.

前記内側カバー18は、特に限定されるものではないが、図1中下端側が開放する平面視方形の中空容器状をなし、遮光性を有するとともに弾性変形可能となっている。また、内側カバー18の図1中上端の頂壁には、図2にも示されるように、多数の孔部21が、縦横方向にそれぞれ同一ピッチとなる規則的な配列状態で部分的に形成されている。これら孔部21は、内側カバー18の内外間で貫通しており、光検出部16に相対配置されている。このため、内側カバー18の外側に位置する第2空間S2からの光が、孔部21を通して内部カバー18の内部空間となる第1空間S1に導入され、当該導入光の光量が、第1空間S1に配置された光検出部16で検出されることになる。なお、内側カバー18は遮光性材料によって形成されていることから、外側の第2空間S2と内側の第1空間S1との間の光の流通は、孔部21を通してのみ行われる。以上により、孔部21は、第2空間S2の光を第1空間S1に透過させる透光部を構成する。   Although the inner cover 18 is not particularly limited, the inner cover 18 has a hollow container shape having a square shape in a plan view opened at the lower end side in FIG. 1 and has light shielding properties and is elastically deformable. Further, as shown in FIG. 2, a large number of holes 21 are partially formed in the top wall at the upper end in FIG. 1 of the inner cover 18 in a regular arrangement state having the same pitch in the vertical and horizontal directions. Has been. These holes 21 penetrate between the inside and outside of the inner cover 18 and are disposed relative to the light detection unit 16. For this reason, light from the second space S2 located outside the inner cover 18 is introduced into the first space S1 that is the inner space of the inner cover 18 through the hole 21, and the amount of the introduced light is changed to the first space. It will be detected by the light detection unit 16 arranged in S1. Since the inner cover 18 is formed of a light-shielding material, the light flow between the outer second space S2 and the inner first space S1 is performed only through the hole 21. As described above, the hole portion 21 constitutes a light transmitting portion that transmits the light in the second space S2 to the first space S1.

なお、前記透光部としては、本実施形態の孔部21に限定されるものではなく、例えば、遮光性を有する内側カバー18を部分的に透光性材料によって形成する等、同様の作用を奏する限りにおいて、種々の態様を採ることができる。   The translucent portion is not limited to the hole portion 21 of the present embodiment. For example, the light transmitting portion has a similar function such as partially forming the light-shielding inner cover 18 with a translucent material. As long as it plays, various aspects can be taken.

前記外側カバー19は、内側カバー18と同様、図1中下端側が開放する平面視方形の中空容器状をなし、遮光性を有するとともに弾性変形可能となっている。このため、内側カバー18と外側カバー19の間の第2空間Sに照射された光源15からの光は、外側カバー19の外側に漏れずに、内側カバー18に形成された孔部21のみを通じて光検出部16に達することになる。   Similar to the inner cover 18, the outer cover 19 has a hollow container shape with a rectangular shape in a plan view opened at the lower end side in FIG. 1, has a light shielding property and is elastically deformable. For this reason, the light from the light source 15 irradiated to the second space S between the inner cover 18 and the outer cover 19 does not leak to the outside of the outer cover 19, but only through the hole 21 formed in the inner cover 18. The light detection unit 16 is reached.

以上の内側カバー18及び外側カバー19は、図示省略しているが、それらの一部分が繋がっており、人や物が接触可能な接触部位となる外側カバー19の表面に外力が作用すると、その大きさや方向に応じて、外側カバー19とともに内側カバー18が一体的に弾性変形可能になっている。このため、図3に示されるように、外側カバー19への外力Fの作用による内側カバー18の弾性変形に伴い、各孔部21が直交3軸方向に変位可能となる。   Although the inner cover 18 and the outer cover 19 are not shown in the drawing, a part of them is connected. The inner cover 18 can be elastically deformed integrally with the outer cover 19 according to the sheath direction. For this reason, as shown in FIG. 3, the holes 21 can be displaced in the three orthogonal directions along with the elastic deformation of the inner cover 18 due to the action of the external force F on the outer cover 19.

前記光源15は、特に限定されるものではないが、内側カバー18と外側カバー19の間の基板11上の複数位置に設置されたLEDライトによって構成され、内側カバー18と外側カバー19の間の第2空間S2に光を照射可能となっている。   The light source 15 is not particularly limited, and is configured by LED lights installed at a plurality of positions on the substrate 11 between the inner cover 18 and the outer cover 19, and between the inner cover 18 and the outer cover 19. The second space S2 can be irradiated with light.

前記光検出部16は、基板11に電気的に接続されており、特に限定されるものではないが、C−MOSセンサによって構成されている。なお、光検出部16としては、後述するように、所定範囲の検出領域毎に光量を検出可能な限りにおいて、CCD等の他の撮像素子の他に、受光した光量に応じて電気信号を発生する光電変換素子全般を適用することもできる。   The light detection unit 16 is electrically connected to the substrate 11 and is not particularly limited, but is constituted by a C-MOS sensor. As will be described later, the light detection unit 16 generates an electrical signal in accordance with the received light amount in addition to other imaging elements such as a CCD as long as the light amount can be detected for each detection region within a predetermined range. It is also possible to apply general photoelectric conversion elements.

前記演算処理部12は、CPU等の演算処理装置及びメモリやハードディスク等の記憶装置等からなるコンピュータによって構成され、光検出部16の検出結果に基づいて、接触変形部14に作用した直交3軸方向の外力をそれぞれ算出するようになっている。つまり、演算処理部12では、接触変形部14への外力の作用前後で光検出部16により検出された光量の変化に基づき、各方向の外力の大きさ及び分布が演算により求められる。なお、以下の説明において、直交3軸のうち、接触変形部14の表面に沿うせん断方向をx軸方向、y軸方向とし、接触変形部14の表面に直交する押圧方向をz軸方向とする。   The arithmetic processing unit 12 is configured by a computer including an arithmetic processing device such as a CPU and a storage device such as a memory and a hard disk, and the three orthogonal axes that act on the contact deformation unit 14 based on the detection result of the light detection unit 16. The external force in each direction is calculated. That is, the calculation processing unit 12 calculates the magnitude and distribution of the external force in each direction based on the change in the amount of light detected by the light detection unit 16 before and after the action of the external force on the contact deformation unit 14. In the following description, among the three orthogonal axes, the shear direction along the surface of the contact deformation portion 14 is the x-axis direction and the y-axis direction, and the pressing direction orthogonal to the surface of the contact deformation portion 14 is the z-axis direction. .

この演算処理部12は、接触変形部14に対するz軸方向の外力である押圧力の大きさを算出する押圧力演算部23と、接触変形部14に対するx軸方向及びy軸方向の外力であるせん断力を算出するせん断力演算部24とを有している。   The calculation processing unit 12 is a pressing force calculation unit 23 that calculates the magnitude of the pressing force that is an external force in the z-axis direction with respect to the contact deformation unit 14, and an external force in the x-axis direction and the y-axis direction with respect to the contact deformation unit 14. A shearing force calculating unit 24 for calculating the shearing force.

ここでは、各孔部21に対向する光検出部16が、図4に示されるように、複数の検出領域A(q=1,2,・・・,r−1,r)に区分され、検出領域A毎に、押圧力演算部23で押圧力が求められるとともに、せん断力演算部24でせん断力が求められる。 Here, as shown in FIG. 4, the light detection unit 16 facing each hole 21 is divided into a plurality of detection regions A q (q = 1, 2,..., R−1, r). For each detection region A q , the pressing force is calculated by the pressing force calculator 23 and the shear force is calculated by the shear force calculator 24.

これら各検出領域Aは、相対する1個の孔部21が変位する範囲をカバー可能な面積すなわちピクセル数が割り当てられ、当該相対する1個の孔部21それぞれについて、当該孔部21を通過する光の状態変化に伴う光量の分布を検出領域A毎に検出可能となっている。 Each of these detection areas A q is assigned an area that can cover a range in which one opposing hole 21 is displaced, that is, the number of pixels, and each of the one opposing hole 21 passes through the corresponding hole 21. The distribution of the amount of light accompanying the change in the state of the light to be detected can be detected for each detection region Aq .

例えば、模式的に表した図5の構成例の場合、16区分された各検出領域A〜A16それぞれについて、5×5ピクセル分が割り当てられる。そして、検出領域A〜A16それぞれについて、押圧力とせん断力が求められ、接触変形部14に作用した外力の分布が検出領域A単位で特定されることになる。 For example, in the case of the schematic configuration example of FIG. 5, 5 × 5 pixels are allocated to each of the 16 divided detection areas A 1 to A 16 . Then, for each of the detection areas A 1 to A 16 , the pressing force and the shear force are obtained, and the distribution of the external force that has acted on the contact deformation portion 14 is specified in units of the detection area A q .

なお、以下の説明において、検出領域A内の各ピクセル表記に際して、図5に示されるx−y座標系を用い、中央に位置するピクセルを原点とし、x軸における同図中右方を正方向、y軸における同図中下方を正方向とする。更に、x軸座標i、y軸座標jとし、ピクセルの位置をP(i,j)(i=−m,−m+1,0,・・・,m−1,m)(j=−n,−n+1,0,・・・,n−1,n)と表す。なお、図5の例では、i=−2,−1,0,1,2となり、j=−2,−1,0,1,2となる。
また、検出領域A内の各ピクセルP(i,j)でそれぞれ検出される光量をSi,jと表す。
In the following description, when describing each pixel in the detection area A q , the xy coordinate system shown in FIG. 5 is used, the pixel located at the center is set as the origin, and the right side in the figure on the x axis is the right side. The lower direction in the figure on the direction and the y-axis is the positive direction. Further, the x-axis coordinate i and the y-axis coordinate j are set, and the pixel position is P (i, j) (i = −m, −m + 1, 0,..., M−1, m) (j = −n, −n + 1, 0,..., N−1, n). In the example of FIG. 5, i = −2, −1, 0, 1, 2 and j = −2, −1, 0, 1, 2.
Also, it represents the amount of light detected by the respective pixel P (i, j) in the detection area A q S i, and j.

前記押圧力演算部23では、光検出部16の各検出領域Aそれぞれについて、接触変形部14に外力が作用していない基準状態に対し、同一の検出領域A内の各ピクセルP(i,j)で検出された光量Si,jの総和の増大分に基づいて押圧力が求められる。 In the pressing force calculation unit 23, for each detection region A q of the light detection unit 16, each pixel P (i in the same detection region A q with respect to a reference state where no external force is acting on the contact deformation unit 14. , J), the pressing force is obtained based on the increase in the total sum of the light amounts S i, j detected.

具体的に、先ず、光検出部16の各検出領域A(q=1,2,・・・,r−1,r)において、外力作用後に、当該検出領域A内の各ピクセルP(i,j)で検出された光量Si,jの総和SRが求められる。つまり、図5の例では、16区分された各検出領域A〜A16それぞれにおいて、25ピクセル分の光量Si,jの総和SRが求められる。 Specifically, first, the detection areas A q of the light detection unit 16 (q = 1,2, ···, r-1, r) in, after the external force acts, each pixel of the detection area A q P ( The sum SR q of the light amounts S i, j detected in i, j) is obtained. That is, in the example of FIG. 5 , the total sum SR q of the light amounts S i, j for 25 pixels is obtained in each of the 16 divided detection areas A 1 to A 16 .

そして、次式で表すように、外力作用後の光量の総和SRから、予め設定された前記基準状態における同一検出領域Aの光量の総和SBを減算した値に、予め設定されたゲインCを乗じることにより、外力作用前後での光量Si,jの変化に基づいて、各領域Aの押圧力Fzが求められる。

Figure 2019197037
Then, as expressed by the following equation, a preset gain is obtained by subtracting the preset total light quantity SB q of the same detection region A q in the reference state from the total light quantity SR q after the external force action. by multiplying the C, quantity S i before and after external force action, on the basis of a change in j, the pressing force Fz q of each region a q is obtained.
Figure 2019197037

前記せん断力演算部24では、先ず、各検出領域Aそれぞれについて、当該検出領域Aを構成する各ピクセルP(i,j)で検出された光量Si,jを用い、基準状態からの光の中心部分のx軸方向及びy軸方向における移動距離Dx,Dyを求め、当該各移動距離Dx,Dyに応じて、これら各方向のせん断力を求めるようになっている。 In the shearing force calculating unit 24, first, for each of the detection areas A q respectively, the detection area A each pixel constituting the q P (i, j) amount detected by the S i, with j, from the reference state The movement distances Dx and Dy in the x-axis direction and the y-axis direction of the central portion of the light are obtained, and the shear force in these directions is obtained according to the movement distances Dx and Dy.

ここで、x軸方向の移動距離Dxとy軸方向の移動距離Dyは、次式により求められる。なお、各検出領域Aにおいて、前記基準状態では、対応する各孔部21が前記原点となる中央のピクセルP(0,0)に相対するように設定されており、当該中央のピクセルP(0,0)が、基準状態における光の中心部分となる。 Here, the movement distance Dx in the x-axis direction and the movement distance Dy in the y-axis direction are obtained by the following equations. In each detection region Aq , in the reference state, each corresponding hole 21 is set to be opposed to the central pixel P (0, 0) serving as the origin, and the central pixel P ( 0,0) is the central portion of the light in the reference state.

Figure 2019197037
Figure 2019197037

つまり、上式において、x軸方向の移動距離Dxは、検出領域Aの各ピクセルP(i,j)について、検出された光量Si,jに、x軸方向の座標すなわち原点からの離間距離iを乗じた値の総和を、同一の検出領域A内の各ピクセルP(i,j)での光量Si,jの総和SRで除算することで求められる。 That is, in the above equation, the movement distance Dx in the x-axis direction is the distance from the coordinates in the x-axis direction, that is, the origin, to the detected light amount S i, j for each pixel P (i, j) in the detection region A q. The sum of the values obtained by multiplying the distance i is obtained by dividing by the sum SR q of the light amounts S i, j at each pixel P (i, j) in the same detection area A q .

同様に、y軸方向の移動距離Dyは、検出領域Aの各ピクセルP(i,j)について、検出された光量Si,jに、y軸方向の座標すなわち原点からの離間距離jを乗じた値の総和を、同一の検出領域A内の各ピクセルP(i,j)での光量Si,jの総和SRで除算することで求められる。 Similarly, the movement distance Dy in the y-axis direction is obtained by setting the detected light quantity S i, j to the coordinates in the y-axis direction, that is, the separation distance j from the origin, for each pixel P (i, j) in the detection area A q. The sum of the multiplied values is obtained by dividing by the sum SR q of the light amounts S i, j at each pixel P (i, j) in the same detection area A q .

各検出領域Aにおける前記移動距離Dx,Dyについては、前述の算出手法に限定されるものではなく、他の手法を用いて求めても良い。 The moving distance Dx, for Dy in the detection areas A q, is not limited to the calculation method described above, may be obtained using other techniques.

そして、次式により、各検出領域Aにおけるx軸方向のせん断力Fxとy軸方向のせん断力Fyとが求められる。 Then, by the following equation, and the shear force Fy q shear force Fx q and y-axis direction of the x-axis direction in the detection areas A q is obtained.

Figure 2019197037
上式において、K〜K、P〜Pは、予め設定されたゲインである。
Figure 2019197037
In the above equation, K 1 to K 5 and P 1 to P 5 are preset gains.

以上の本実施形態によれば、内側カバー18の図1中上面に沿って多数形成された孔部21による光の透過状態の変化を検知することにより、外側カバー19に作用した外力の押圧力及びせん断力の分布を求めるようになっているため、三次元的に配置された多数のマーカを用いた従来手法とは異なり、簡単な演算で外力の大きさ及び分布を求めることができ、しかも、センサ全体の小型化や薄型化を促進することができる。   According to the above embodiment, the pressing force of the external force acting on the outer cover 19 is detected by detecting the change in the light transmission state by the holes 21 formed in large numbers along the upper surface of the inner cover 18 in FIG. Unlike the conventional method using many markers arranged three-dimensionally, the magnitude and distribution of the external force can be obtained with a simple calculation. Therefore, it is possible to promote downsizing and thinning of the entire sensor.

なお、本発明における装置各部の構成は図示構成例に限定されるものではなく、実質的に同様の作用を奏する限りにおいて、種々の変更が可能である。   The configuration of each part of the apparatus in the present invention is not limited to the illustrated configuration example, and various modifications are possible as long as substantially the same operation is achieved.

10 光学式触覚センサ
13 演算処理部
14 接触変形部
15 光源
16 光検出部
18 内側カバー
19 外側カバー
21 孔部(透光部)
23 押圧力演算部
24 せん断力演算部
検出領域
S1 第1空間
S2 第2空間
DESCRIPTION OF SYMBOLS 10 Optical tactile sensor 13 Operation processing part 14 Contact deformation | transformation part 15 Light source 16 Photodetection part 18 Inner cover 19 Outer cover 21 Hole (translucent part)
23 pressing force calculation unit 24 shearing force calculation unit A q detection area S1 first space S2 second space

Claims (4)

外力の作用によって弾性変形可能な遮光性材料からなる接触変形部と、当該接触変形部の内部に形成された空間に光を供給する光源と、前記接触変形部の弾性変形に伴う前記光源からの光量の変化を検出する光検出部と、当該光検出部の検出結果に基づいて、前記接触変形部に作用した外力を算出する演算処理部とを備えた光学式触覚センサにおいて、
前記接触変形部は、前記光検出部が収容される第1空間を形成する内側カバーと、当該内側カバーの外側で、前記光源からの光が供給される第2空間となる隙間を隔てた状態で前記内側カバーを覆うように配置された外側カバーとからなり、
前記内側カバーは、前記外側カバーに作用した外力により、当該外側カバーと一体的に弾性変形可能に設けられるとともに、前記第2空間の光を前記第1空間に透過させる透光部を部分的に有し、
前記演算処理部では、前記接触変形部に外力が作用した際の前記透光部の変位に伴う前記光量の状態変化に基づいて、前記外力の大きさを求めることを特徴とする光学式触覚センサ。
A contact deformation portion made of a light-shielding material that can be elastically deformed by the action of an external force, a light source that supplies light to a space formed inside the contact deformation portion, and a light source from the light source accompanying the elastic deformation of the contact deformation portion. In an optical tactile sensor comprising: a light detection unit that detects a change in the amount of light; and an arithmetic processing unit that calculates an external force applied to the contact deformation unit based on a detection result of the light detection unit.
The contact deformation part is a state in which a gap is formed between an inner cover that forms a first space in which the light detection part is accommodated and a second space to which light from the light source is supplied outside the inner cover. And an outer cover arranged to cover the inner cover with
The inner cover is provided so as to be elastically deformable integrally with the outer cover by an external force acting on the outer cover, and a translucent portion that partially transmits light in the second space to the first space. Have
In the arithmetic processing unit, the magnitude of the external force is obtained based on a change in the state of the light amount accompanying the displacement of the translucent portion when an external force is applied to the contact deformation portion. .
前記透光部は、所定の平面内の複数箇所で前記光検出部に相対するように設けられ、
前記光検出部は、前記各透光部から前記第1空間に透過した光について、前記接触変形部の変位前後の光量の変化を前記透光部毎に検出可能な検出領域に区分され、
前記演算処理部では、前記検出領域毎に前記外力の大きさを算出し、前記接触変形部に作用した外力の分布を求めることを特徴とする請求項1記載の光学式触覚センサ。
The translucent part is provided to be opposed to the light detection part at a plurality of locations within a predetermined plane,
The light detection unit is divided into detection regions that can detect a change in the amount of light before and after the displacement of the contact deformation unit for each light transmission unit with respect to the light transmitted from the light transmission units to the first space,
The optical tactile sensor according to claim 1, wherein the arithmetic processing unit calculates the magnitude of the external force for each of the detection regions and obtains a distribution of the external force that has acted on the contact deformation unit.
前記演算処理部は、前記接触変形部に対する押圧力を算出する押圧力演算部を有し、
前記押圧力演算部では、前記接触変形部に前記外力が作用していない基準状態に対する前記検出領域内の光量の総和の増大分に基づいて、前記押圧力の大きさを求めることを特徴とする請求項2記載の光学式触覚センサ。
The calculation processing unit includes a pressing force calculation unit that calculates a pressing force with respect to the contact deformation unit,
The pressing force calculation unit obtains the magnitude of the pressing force based on an increase in the total amount of light in the detection region with respect to a reference state in which the external force does not act on the contact deformation unit. The optical tactile sensor according to claim 2.
前記演算処理部は、前記接触変形部に対するせん断力を算出するせん断力演算部を有し、
前記せん断力演算部では、前記接触変形部に前記外力が作用していない基準状態に対する前記検出領域内の光量の中心部分の移動距離に基づいて、前記せん断力の大きさを求めることを特徴とする請求項2記載の光学式触覚センサ。
The calculation processing unit has a shear force calculation unit for calculating a shear force with respect to the contact deformation unit,
The shearing force calculation unit obtains the magnitude of the shearing force based on a moving distance of a central portion of the amount of light in the detection region with respect to a reference state where the external force does not act on the contact deformation unit. The optical tactile sensor according to claim 2.
JP2018092639A 2018-05-12 2018-05-12 Optical type tactile sensor Pending JP2019197037A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018092639A JP2019197037A (en) 2018-05-12 2018-05-12 Optical type tactile sensor
PCT/JP2019/018180 WO2019220942A1 (en) 2018-05-12 2019-05-01 Optical tactile sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018092639A JP2019197037A (en) 2018-05-12 2018-05-12 Optical type tactile sensor

Publications (1)

Publication Number Publication Date
JP2019197037A true JP2019197037A (en) 2019-11-14

Family

ID=68537415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018092639A Pending JP2019197037A (en) 2018-05-12 2018-05-12 Optical type tactile sensor

Country Status (2)

Country Link
JP (1) JP2019197037A (en)
WO (1) WO2019220942A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023177016A1 (en) * 2022-03-14 2023-09-21 울산과학기술원 Apparatus and method for sensing deformation, and pain visualization apparatus using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113551818B (en) * 2021-07-23 2023-03-14 西安建筑科技大学 Measurement method and system based on negative Poisson ratio structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261786B2 (en) * 2007-12-11 2013-08-14 国立大学法人 筑波大学 3D tactile sensor and 3D tactile sensing method
WO2012129410A2 (en) * 2011-03-23 2012-09-27 University Of Southern California Elastomeric optical tactile sensor
WO2014045685A1 (en) * 2012-09-21 2014-03-27 株式会社安川電機 Force sensor and robot having force sensor
US10455951B2 (en) * 2015-02-05 2019-10-29 Mitsui Chemicals, Inc. Cushioning material having sensor, and bed

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023177016A1 (en) * 2022-03-14 2023-09-21 울산과학기술원 Apparatus and method for sensing deformation, and pain visualization apparatus using same
KR20230134311A (en) * 2022-03-14 2023-09-21 울산과학기술원 Deformation sensor and strain sensing method, pain visualization appartus using the same
KR102667746B1 (en) * 2022-03-14 2024-05-22 울산과학기술원 Deformation sensor and strain sensing method, pain visualization appartus using the same

Also Published As

Publication number Publication date
WO2019220942A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
KR102399630B1 (en) Method and apparatus for determining position and orientation of bucket of excavator
Sato et al. Finger-shaped gelforce: sensor for measuring surface traction fields for robotic hand
US7505033B2 (en) Speckle-based two-dimensional motion tracking
JP4206057B2 (en) Force vector reconstruction method using optical tactile sensor
US20120200486A1 (en) Infrared gesture recognition device and method
WO2015037178A1 (en) Posture estimation method and robot
US20090058993A1 (en) Cmos stereo camera for obtaining three-dimensional image
KR20060076293A (en) Optical tactile sensor and method of reconstructing force vector distribution using the sensor
CN110140023B (en) Marker, and attitude estimation method and position/attitude estimation method using same
WO2019220942A1 (en) Optical tactile sensor
CN109716061B (en) Marker and posture estimation method using same
US11976988B2 (en) Force detector and force detection system with layered structure and stress generator
KR20110081990A (en) Sensors, systems and methods for position sensing
Andrussow et al. Minsight: A Fingertip‐Sized Vision‐Based Tactile Sensor for Robotic Manipulation
JP2007147443A (en) Optical touch sensor
EP2787425B1 (en) Optical detection of bending motions of a flexible display
EP4024340A1 (en) System for refining a six degrees of freedom pose estimate of a target object
JP2009285737A (en) Input interface
JP2010044587A (en) Position information output device and position information output method
US20050283307A1 (en) Optical navigation using one-dimensional correlation
JP2010190770A (en) Compound type optical tactile sensor
CN110949271A (en) Operation processing device
CN113624371B (en) High-resolution visual touch sensor based on binocular vision and point cloud generation method
JP2009288033A (en) Optical touch sensor
Yamaguchi et al. Optical skin for robots: Tactile sensing and whole-body vision