JP2019194922A - Surface shape determination device, surface shape determination method, and surface shape determination program - Google Patents

Surface shape determination device, surface shape determination method, and surface shape determination program Download PDF

Info

Publication number
JP2019194922A
JP2019194922A JP2019142279A JP2019142279A JP2019194922A JP 2019194922 A JP2019194922 A JP 2019194922A JP 2019142279 A JP2019142279 A JP 2019142279A JP 2019142279 A JP2019142279 A JP 2019142279A JP 2019194922 A JP2019194922 A JP 2019194922A
Authority
JP
Japan
Prior art keywords
vector
surface shape
straight line
shape determination
inner product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019142279A
Other languages
Japanese (ja)
Other versions
JP6806321B2 (en
Inventor
光一 西浦
Koichi Nishiura
光一 西浦
スマディ ジエン
Jien Sumadi
スマディ ジエン
萌 奥本
Moe Okumoto
萌 奥本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Integral Technology Co Ltd
Original Assignee
Integral Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Integral Technology Co Ltd filed Critical Integral Technology Co Ltd
Priority to JP2019142279A priority Critical patent/JP6806321B2/en
Publication of JP2019194922A publication Critical patent/JP2019194922A/en
Application granted granted Critical
Publication of JP6806321B2 publication Critical patent/JP6806321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a surface shape determination device, a surface shape determination method, and a surface shape determination program that can determine a surface shape of an analytic structure by using an extremely simple technique.SOLUTION: A surface shape determination device, a surface shape determination method, and a surface shape determination program obtains an exterior vector from a normal vector of a first surface and a vector in a tangential direction in which the first surface and a second surface are in contact with each other, obtains an inner product of the exterior vector and a normal vector of the second surface, determines a surface shape of the second surface with respect to the first surface on the basis of the inner product obtained by inner product calculation means, draws a straight line perpendicularly from a connection of the first surface and second surface to an opposing surface, obtains the length of the straight line, and specifies a midpoint of the straight line.SELECTED DRAWING: Figure 10

Description

本発明は、表面を複数の面に区分された解析構造物の隣接する第1面と第2面との間で表面形状を判定する表面形状判定装置、表面形状判定方法、及び表面形状判定プログラムに関する。   The present invention relates to a surface shape determination device, a surface shape determination method, and a surface shape determination program for determining a surface shape between adjacent first and second surfaces of an analysis structure whose surface is divided into a plurality of surfaces. About.

従来から、解析構造物の形状を測定する表面形状測定方法が開示されている(例えば、特許文献1参照)。   Conventionally, a surface shape measuring method for measuring the shape of an analysis structure has been disclosed (for example, see Patent Document 1).

この表面形状測定方法は、解析構造物(被測定対象物)の代表断面の断面線に沿って所定の間隔で配置した複数の測定点の座標を測定し、各測定点の座標に基づいて各測定点を通過する仮想線を作成し、各検証点と仮想線との偏差が所定値以上の場合には、検証点の座標に基づいて仮想線を修正する。さらに、測定点と検証点との間に配置した検証点の座標を測定し、仮想線との偏差が所定値以上の検証点の座標に基づいて仮想線を修正する。上記処理を各測定点間に対して行い、断面線に対する仮想線の偏差を所定値以下とすることが開示されている。   This surface shape measurement method measures the coordinates of a plurality of measurement points arranged at predetermined intervals along the cross-section line of the representative cross section of the analysis structure (object to be measured), and determines each of the measurement points based on the coordinates of each measurement point. A virtual line passing through the measurement point is created, and if the deviation between each verification point and the virtual line is greater than or equal to a predetermined value, the virtual line is corrected based on the coordinates of the verification point. Further, the coordinates of the verification point arranged between the measurement point and the verification point are measured, and the virtual line is corrected based on the coordinates of the verification point whose deviation from the virtual line is a predetermined value or more. It is disclosed that the above processing is performed between the measurement points, and the deviation of the virtual line with respect to the cross-sectional line is set to a predetermined value or less.

特開平5−180652号公報Japanese Patent Laid-Open No. 5-180652

上記特許文献1の開示技術では、所定の間隔で配置した複数の測定点の座標を測定し、各測定点の座標に基づいて各測定点を通過する仮想線を作成し、各検証点と仮想線との偏差が所定値以下になるまで、検証点の座標に基づいて仮想線を修正するといった処理を繰り返すことになる。   In the disclosed technique disclosed in Patent Document 1, the coordinates of a plurality of measurement points arranged at a predetermined interval are measured, and a virtual line passing through each measurement point is created based on the coordinates of each measurement point. Until the deviation from the line becomes a predetermined value or less, the process of correcting the virtual line based on the coordinates of the verification point is repeated.

そのため、高い精度で表面形状を測定できるものの、膨大な処理時間と処理工数とが必要になるといった問題があった。   Therefore, although the surface shape can be measured with high accuracy, there is a problem that enormous processing time and processing man-hours are required.

本発明はかかる問題点を解決すべく創案されたもので、その目的は、極めて簡単な手法を用いて解析構造物の表面形状を判定し得る表面形状判定装置、表面形状判定方法、及び表面形状判定プログラムを提供することにある。   The present invention was devised to solve such problems, and its purpose is to provide a surface shape determination device, a surface shape determination method, and a surface shape that can determine the surface shape of an analytical structure using a very simple method. To provide a judgment program.

上記課題を解決するため、本発明の表面形状判定装置は、表面を複数の面に区分された解析構造物の隣接する第1面と第2面との間で表面形状を判定する表面形状判定装置であって、前記第1面(基準面)の法線ベクトル(面外ベクトル)と、前記第1面と前記第2面とが接する接線方向のベクトルとにより外積ベクトルを求める外積演算手段と、前記外積ベクトルと、前記第2面の法線ベクトル(面外ベクトル)との内積を求める内積演算手段と、前記内積演算手段にて求めた前記内積に基づいて前記第1面に対する前記第2面の表面形状を判定する判定手段と、を備え、前記第1面と前記第2面との接続点から対向面まで垂直に直線を引き、前記直線の長さを求め、前記直線の中間点を特定することを特徴としている。 In order to solve the above-described problems, a surface shape determination apparatus according to the present invention determines a surface shape between a first surface and a second surface that are adjacent to each other in an analysis structure whose surface is divided into a plurality of surfaces. an apparatus, wherein the first surface and the normal vector of the (reference plane) (out-of-plane vector), determining the Risoto product vector by the tangentially of vector in which the first surface and the second surface is in contact and product computation means, based before and Kigai product vector, the inner product calculation means normal vector of the second surface seeking inner product of the (out-of-plane vector), before Symbol in the product obtained by the inner product calculation means Determining means for determining the surface shape of the second surface relative to the first surface, and draws a straight line perpendicularly from the connection point between the first surface and the second surface to the opposing surface, and the length of the straight line The intermediate point of the straight line is specified .

また、本発明の表面形状判定方法は、表面を複数の面に区分された解析構造物の隣接する第1面と第2面との間で表面形状を判定する表面形状判定方法であって、前記第1面(基準面)の法線ベクトル(面外ベクトル)と、前記第1面と前記第2面とが接する接線方向のベクトルとにより外積ベクトルを求める外積演算ステップと、前記外積ベクトルと、前記第2面の法線ベクトル(面外ベクトル)との内積を求める内積演算ステップと、前記内積演算ステップにて求めた前記内積に基づいて前記第1面に対する前記第2面の表面形状を判定する判定ステップと、を含み、前記第1面と前記第2面との接続点から対向面まで垂直に直線を引き、前記直線の長さを求め、前記直線の中間点を特定することを特徴としている。 Further, the surface shape determination method of the present invention is a surface shape determination method for determining a surface shape between adjacent first and second surfaces of an analysis structure whose surface is divided into a plurality of surfaces, a normal vector of the first surface (reference surface) (out-of-plane vector), and the outer product calculating step of obtaining the Risoto product vector by the tangentially of vector in which the first surface and the second surface is in contact, before and Kigai product vector, the inner product calculation step for obtaining the inner product of the normal vector of the second surface (out-of-plane vector), the first surface based on the previous SL in the product obtained by the inner product calculation step wherein the second surface determination step of surface shape, only including, a straight line is drawn perpendicularly to the opposite surface from the connection point between the first surface and the second surface, determine the length of the straight line with respect to, An intermediate point of the straight line is specified .

また、本発明の表面形状判定プログラムは、上記各構成の表面形状判定方法の各ステップを、コンピュータに実行させることを特徴としている。   The surface shape determination program of the present invention is characterized by causing a computer to execute each step of the surface shape determination method of each configuration described above.

本発明によれば、ベクトルの外積と内積に着目することで、隣接する2つの面の表面形状を極めて簡単かつ容易に判定することができる。   According to the present invention, by focusing on the outer product and inner product of vectors, the surface shapes of two adjacent surfaces can be determined very simply and easily.

図1は、本発明の実施の形態に係る表面形状判定装置の機能ブロック図である。FIG. 1 is a functional block diagram of a surface shape determination apparatus according to an embodiment of the present invention. 図2は、面の情報の一例を示す説明図である。FIG. 2 is an explanatory diagram illustrating an example of surface information. 図3は、実施の形態に係る表面形状判定装置による解析構造物の表面形状判定処理の説明図である。Drawing 3 is an explanatory view of the surface shape judging processing of the analysis structure by the surface shape judging device concerning an embodiment. 図4は、実施の形態に係る表面形状判定装置による解析構造物の表面形状判定処理の説明図である。FIG. 4 is an explanatory diagram of the surface shape determination process of the analysis structure by the surface shape determination device according to the embodiment. 図5は、実施の形態に係る表面形状判定装置による解析構造物の表面形状判定処理の説明図である。FIG. 5 is an explanatory diagram of the surface shape determination process of the analysis structure by the surface shape determination device according to the embodiment. 図6は、実施の形態に係る表面形状判定装置による解析構造物の表面形状判定処理の手順を示すフローチャートである。FIG. 6 is a flowchart illustrating the procedure of the surface shape determination process of the analysis structure by the surface shape determination device according to the embodiment. 図7は、判定処理を解析構造物の具体的な形状部分に当てはめたときの処理結果を示す説明図である。FIG. 7 is an explanatory diagram illustrating a processing result when the determination processing is applied to a specific shape portion of the analysis structure. 図8は、判定処理を解析構造物の具体的な形状部分に当てはめたときの処理結果を示す説明図である。FIG. 8 is an explanatory diagram showing a processing result when the determination processing is applied to a specific shape portion of the analysis structure. 図9は、判定処理を解析構造物の具体的な形状部分に当てはめたときの処理結果を示す説明図である。FIG. 9 is an explanatory diagram showing a processing result when the determination processing is applied to a specific shape portion of the analysis structure. 図10は、判定処理を解析構造物の具体的な形状部分に当てはめたときの処理結果を示す説明図である。FIG. 10 is an explanatory diagram illustrating a processing result when the determination processing is applied to a specific shape portion of the analysis structure. 図11は、実施の形態に係る表面形状判定処理の応用例の説明図である。FIG. 11 is an explanatory diagram of an application example of the surface shape determination process according to the embodiment.

以下、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施の形態に係る表面形状判定装置1の機能ブロック図である。   FIG. 1 is a functional block diagram of a surface shape determination apparatus 1 according to an embodiment of the present invention.

この表面形状判定装置1は、表面を複数の面に区分された解析構造物の隣接する第1面と第2面との間で表面形状を判定する装置である。   The surface shape determination device 1 is a device that determines a surface shape between a first surface and a second surface that are adjacent to each other in an analysis structure whose surface is divided into a plurality of surfaces.

具体的に説明すると、この表面形状判定装置1は、CAD等の形状データ(解析構造物の形状モデル)を入力するデータ入力手段11と、入力された解析構造物の表面を複数の面に区分すると共に、各面の情報が登録されたデータベース12とを備えている。   More specifically, the surface shape determination apparatus 1 includes data input means 11 for inputting CAD or other shape data (analytical structure shape model), and the input surface of the analyzed structure is divided into a plurality of surfaces. And a database 12 in which information on each surface is registered.

図2は、面の情報の一例を示す説明図である。この図2に示す面の情報は、後述する図7に示すリブ形状のリブの立ち上がり部分の根元である丸み肉厚部(フィレット)の面f12を例示している。   FIG. 2 is an explanatory diagram illustrating an example of surface information. The surface information shown in FIG. 2 exemplifies the surface f12 of the rounded thick portion (fillet) that is the root of the rising portion of the rib-shaped rib shown in FIG.

データベース12には、各面の情報として、面積a1、各面の外形を構成するラインL1〜L4及びライン数、それぞれのラインL1〜L4の長さ、最大ライン長(この例ではL1(またはL3))、相当ライン幅(=面積a1/最大ライン長L1)の各情報が、各面ごとに登録されている。   In the database 12, as information on each surface, the area a1, the lines L1 to L4 and the number of lines constituting the outer shape of each surface, the length of each line L1 to L4, the maximum line length (in this example, L1 (or L3 )), Each information of the equivalent line width (= area a1 / maximum line length L1) is registered for each surface.

ここで、データベース12に登録された一つの面を第1面(基準面)とし、これに隣接する他の面を第2面とすると、表面形状判定装置1は、第1面(基準面)の法線ベクトル(面外ベクトル)と、第1面と第2面とが接する接線方向のベクトルとにより外積ベクトルを求める外積演算手段13と、求めた外積ベクトルと第2面の法線ベクトル(面外ベクトル)との内積を求める内積演算手段14と、内積演算手段14の演算結果に基づいて第1面に対する第2面の表面形状を判定する判定手段15と、をさらに備えている。   Here, assuming that one surface registered in the database 12 is a first surface (reference surface) and another surface adjacent to the first surface is a second surface, the surface shape determination apparatus 1 has a first surface (reference surface). , The outer product computing means 13 for obtaining the outer product vector from the normal vector (out-of-plane vector) and the vector in the tangential direction where the first surface and the second surface are in contact, and the obtained outer product vector and the normal vector of the second surface ( An inner product calculating means 14 for obtaining an inner product with the out-of-plane vector), and a determining means 15 for determining the surface shape of the second surface relative to the first surface based on the calculation result of the inner product calculating means 14.

次に、上記構成の表面形状判定装置1による解析構造物の表面形状判定処理について、図3乃至図5に示す説明図、及び図6に示すフローチャートを参照して説明する。   Next, the surface shape determination process of the analysis structure by the surface shape determination apparatus 1 having the above configuration will be described with reference to the explanatory diagrams shown in FIGS. 3 to 5 and the flowchart shown in FIG.

外積演算手段13は、データベース12に登録された一つの面を第1面(基準面)F1とし、これに隣接する他の面F2を第2面として、外積演算を行う(ステップS1)。ここで、第1面(基準面)F1は、基本的に平面である。外積演算手段13では、図3乃至図5に示すように、第1面(基準面)F1の法線ベクトル(面外ベクトル)Aと、第1面F1と第2面F2とが接する接線方向のベクトルBとにより外積ベクトルDを求める。   The outer product calculation means 13 performs outer product calculation using one surface registered in the database 12 as a first surface (reference surface) F1 and another surface F2 adjacent thereto as a second surface (step S1). Here, the first surface (reference surface) F1 is basically a flat surface. In the outer product calculation means 13, as shown in FIGS. 3 to 5, the normal vector (out-of-plane vector) A of the first surface (reference surface) F1 and the tangential direction in which the first surface F1 and the second surface F2 are in contact with each other. The outer product vector D is obtained from the vector B of

次に、内積演算手段14は、外積演算手段13で求めた外積ベクトルDと第2面F2の法線ベクトル(面外ベクトル)Cとの内積を求め(ステップS2)、その演算結果を判定手段15に入力する。   Next, the inner product calculation means 14 calculates the inner product of the outer product vector D obtained by the outer product calculation means 13 and the normal vector (out-of-plane vector) C of the second surface F2 (step S2), and determines the calculation result as a determination means. 15

判定手段15は、入力された演算結果に基づいて第1面F1に対する第2面F2の表面形状を判定する。   The determination means 15 determines the surface shape of the second surface F2 with respect to the first surface F1 based on the input calculation result.

具体的には、演算結果がプラスの値であるか否かを判断し(ステップS3)、演算結果がプラスの値を示すときには第2面F2を凹面(図3参照)と判定する(ステップS4)。一方、演算結果がプラスの値でない場合(ステップS3でNoと判断された場合)には、次に、演算結果がマイナスの値であるか否かを判断し(ステップS5)、演算結果がマイナスの値を示すときには第2面F2を凸面(図4参照)と判定する(ステップS6)。さらに、演算結果がマイナスの値でない場合(ステップS5でNoと判断された場合)には、次に演算結果が零の値であるか否かを判断し(ステップS7)、演算結果が零の値を示すときには第2面F2を第1面F1に連続する平面(図5参照)であると判定する(ステップS8)。なお、ステップS7でもNoと判断された場合には、エラー処理(ステップS11)を実行して終了する。   Specifically, it is determined whether or not the calculation result is a positive value (step S3). When the calculation result indicates a positive value, the second surface F2 is determined to be a concave surface (see FIG. 3) (step S4). ). On the other hand, when the calculation result is not a positive value (when it is determined No in step S3), it is next determined whether or not the calculation result is a negative value (step S5), and the calculation result is negative. When the value is indicated, the second surface F2 is determined as a convex surface (see FIG. 4) (step S6). Further, when the calculation result is not a negative value (when it is determined No in step S5), it is next determined whether or not the calculation result is a zero value (step S7), and the calculation result is zero. When the value is indicated, it is determined that the second surface F2 is a plane (see FIG. 5) continuous with the first surface F1 (step S8). If it is also determined No in step S7, error processing (step S11) is executed and the process ends.

この後、全ての面の処理を終了したか否かを確認し(ステップS9)、全ての面の処理を終了していない場合には、ステップS1に戻って処理を繰り返す。一方、全ての面の処理を終了している場合(ステップS9でYesと判断された場合)には、その時点で表面形状の判定処理を終了する。   Thereafter, it is confirmed whether or not the processing of all the surfaces has been completed (step S9). If the processing of all the surfaces has not been completed, the processing returns to step S1 and is repeated. On the other hand, if all the surfaces have been processed (Yes in step S9), the surface shape determination processing ends at that time.

すなわち、本実施の形態では、上記内積演算の結果、隣り合う面が、基準面からみたときに面内に食い込む面は必ずマイナスの値となり、面外に広がる面は必ずプラスの値となることを利用している。   In other words, in the present embodiment, as a result of the inner product calculation, the adjacent surfaces always have a negative value when viewed from the reference surface, and the surface spreading out of the surface always has a positive value. Is used.

最後に、判定手段15は、演算結果がプラスの値を示すときの面の種類を(+)、演算結果がマイナスの値を示すときの面の種類を(−)、演算結果が零の値を示すときの面の種類を(0)で分類し、これらの分類情報をデータベース12の各面の情報に対応させて登録する(ステップS10)。これにより、以後に実施される解析シミュレーション等の処理において、これら(+)、(−)、(0)の組み合わせにより解析構造物の形状を抽出(すなわち、特定)することができる。   Finally, the determination means 15 sets the surface type when the calculation result shows a positive value (+), the type of the surface when the calculation result shows a negative value (−), and the calculation result shows a zero value. Is classified by (0), and the classification information is registered corresponding to the information of each surface of the database 12 (step S10). Thereby, in the process of analysis simulation etc. implemented after that, the shape of an analysis structure can be extracted (namely, identified) by the combination of these (+), (-), (0).

図7乃至図10は、上記の判定処理を解析構造物の具体的な形状部分に当てはめたときの処理結果を例示している。   7 to 10 illustrate processing results when the above determination processing is applied to a specific shape portion of the analysis structure.

図7は、リブ形状に上記の判定処理を当てはめた結果を示しており、リブの立ち上がり部分の根元である丸み肉厚部(フィレット)の面は、内積演算の結果がプラス(+)となり、リブの先端部(端部)の面では、内積演算の結果がマイナス(−)となっている。その結果、図7において、面F11は平面、面F12は凹面、面F13は平面、面F14は凸面、面F15は平面、面F16は凹面、面F17は平面に分類されることになる。   FIG. 7 shows the result of applying the above-described determination processing to the rib shape, and the result of the inner product calculation is plus (+) on the surface of the rounded thick portion (fillet) that is the root of the rising portion of the rib, The result of the inner product calculation is minus (−) on the surface of the tip (end) of the rib. As a result, in FIG. 7, the surface F11 is classified as a plane, the surface F12 is a concave surface, the surface F13 is a plane, the surface F14 is a convex surface, the surface F15 is a plane, the surface F16 is a concave surface, and the surface F17 is a plane.

また、図8は、端部の形状に上記の判定処理を当てはめた結果を示しており、端部の角部分の丸みを帯びた面は、内積演算の結果がマイナス(−)となっている。その結果、図8において、面F21は平面、面F22は凸面、面F23は平面、面F24は凸面、面F25は平面に分類されることになる。   Further, FIG. 8 shows the result of applying the above-described determination processing to the shape of the end portion, and the result of the inner product calculation is minus (−) on the rounded surface of the corner portion of the end portion. . As a result, in FIG. 8, the surface F21 is classified as a plane, the surface F22 as a convex surface, the surface F23 as a plane, the surface F24 as a convex surface, and the surface F25 as a plane.

また、図9は、平面が続く形状に上記の判定処理を当てはめた結果を示している。平面が続く場合には、内積演算の結果も零(0)が続くことなる。その結果、図9において、面F31は平面、面F32は平面、面F33は平面、面F34は平面に分類されることになる。   FIG. 9 shows a result of applying the above-described determination process to a shape in which a plane continues. When the plane continues, the result of the inner product operation also continues with zero (0). As a result, in FIG. 9, the surface F31 is classified as a plane, the surface F32 is classified as a plane, the surface F33 is classified as a plane, and the surface F34 is classified as a plane.

また、図10は、徐変している面(徐変面)を含む形状に上記の判定処理を当てはめた結果を示しており、徐変面は、内積演算の結果がプラス(+)とマイナス(−)となっている。その結果、図10において、面F41は平面、面F42は徐変面(この例では傾斜面)、面F43は平面に分類されることになる。   FIG. 10 shows the result of applying the above-described determination processing to a shape including a gradually changing surface (gradually changing surface), and the result of the inner product calculation is positive (+) and negative in the gradually changing surface. (-). As a result, in FIG. 10, the surface F41 is classified as a plane, the surface F42 is classified as a gradually changing surface (in this example, an inclined surface), and the surface F43 is classified as a plane.

このようにして分類された解析構造物の各面の形状種別の情報は、その後の各種解析シミュレーションに利用される。   Information on the shape type of each surface of the analysis structure classified in this way is used for various subsequent analysis simulations.

すなわち、本実施の形態の表面形状判定装置及び表面形状判定方法及び表面形状判定プログラムによれば、区分された各面の表面形状を、演算結果の演算値のプラス、マイナス、零だけで判定できるので、表面判定処理を簡単かつ極めて高速に行うことが可能となる。   That is, according to the surface shape determination device, the surface shape determination method, and the surface shape determination program of the present embodiment, the surface shape of each of the divided surfaces can be determined only by the calculated value plus, minus, zero. Therefore, it is possible to perform the surface determination process easily and at extremely high speed.

なお、解析構造物の形状モデルとしては、上記のサーフェースモデル以外にも、ソリッドモデルやワイヤーモデル等の各種形状モデルに対しても、本発明の表面形状判定処理を適用することが可能である。   As the shape model of the analysis structure, the surface shape determination process of the present invention can be applied to various shape models such as a solid model and a wire model in addition to the surface model. .

(実施の形態に係る表面形状判定処理の応用例の説明)
例えば図10に示す形状の場合、面F41と面F42との接続点e1、及び面F42と面F43との接続点e2からそれぞれ対向面に垂直に直線L11,L12を引くことで、各接続点e1,e2での距離(解析構造物の厚み)がわかる。従って、これらの情報を利用して、例えば徐変している面F42に対して、その真ん中に中立面(若しくはメッシュ)CF1を貼るといったことを容易に行うことができる。また、面F41の中立面(若しくはメッシュ)CF2をそのまま面F42及び面F43まで延長して貼るような場合でも、面F41から面F43までの解析構造物の形状を事前に特定する必要があるが、本実施の形態の表面形状判定処理を用いることで、このような形状特定を容易に行うことができる。
(Description of application example of surface shape determination processing according to embodiment)
For example, in the case of the shape shown in FIG. 10, by drawing straight lines L11 and L12 perpendicular to the opposing surfaces from the connection point e1 between the surface F41 and the surface F42 and the connection point e2 between the surface F42 and the surface F43, the connection points The distance (thickness of the analysis structure) at e1 and e2 is known. Therefore, by using these pieces of information, for example, a neutral surface (or mesh) CF1 can be attached to the middle of the gradually changing surface F42. Further, even when the neutral surface (or mesh) CF2 of the surface F41 is extended as it is to the surface F42 and the surface F43, the shape of the analysis structure from the surface F41 to the surface F43 needs to be specified in advance. However, such shape specification can be easily performed by using the surface shape determination processing of the present embodiment.

また、図11は、解析構造物を六面体メッシュに分割する場合の簡単な例を示した説明図であり、基準面である面F51の法線ベクトルと、面F51と面F52とが接する接線方向のベクトルとにより外積ベクトルを求め、この外積ベクトルと面F52の法線ベクトルとの内積を求めると、その演算結果はプラスとなる。すなわち、面F51と面F52との接続部分は凹部であることがわかる。従って、この接続点Pから面F52に沿って下方向に(すなわち、面F54と平行に)カット線CL1を引くことで、解析構造物を左右2つの六面体メッシュに分割することができる。また、この接続点Pから面F51に沿って左方向に(すなわち、面F53に平行に)カット線CL2を引くことで、解析構造物を上下2つの六面体メッシュに分割することができる。   FIG. 11 is an explanatory diagram showing a simple example when the analysis structure is divided into hexahedral meshes. The normal vector of the surface F51, which is the reference surface, and the tangential direction in which the surface F51 and the surface F52 are in contact with each other If the outer product vector is obtained from the vector and the inner product of the outer product vector and the normal vector of the surface F52 is obtained, the result of the operation becomes positive. That is, it can be seen that the connecting portion between the surface F51 and the surface F52 is a recess. Therefore, the analysis structure can be divided into two hexahedral meshes on the left and right sides by drawing a cut line CL1 downward from the connection point P along the plane F52 (that is, parallel to the plane F54). Further, by drawing a cut line CL2 from the connection point P to the left along the surface F51 (that is, parallel to the surface F53), the analysis structure can be divided into two upper and lower hexahedral meshes.

なお、上記図10及び図11で示した応用例はほんの一例であり、これらの応用例に限定されるものではない。   Note that the application examples shown in FIGS. 10 and 11 are merely examples, and the present invention is not limited to these application examples.

本発明は、表面形状判定方法を実現するためにコンピュータにより実行されるプログラムを含む。コンピュータは、例えば、表面形状判定装置1の図示しないCPU等であるが、この他にもプログラムを実行し得るデバイスであればどのようなものであってもよい。また、コンピュータは、記録媒体や通信ネットワークを介して取得したプログラムを実行することで、本発明の表面形状判定処理を実施することができる。   The present invention includes a program executed by a computer to realize the surface shape determination method. The computer is, for example, a CPU (not shown) of the surface shape determination apparatus 1, but any other device that can execute a program may be used. The computer can execute the surface shape determination process of the present invention by executing a program acquired via a recording medium or a communication network.

本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲に示すものであって、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   The present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is set forth in the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明は、サーフェースモデルやソリッドモデル、ワイヤーモデル等の各種形状モデルを用いて構造解析を行う解析シミュレーションに関する技術分野全般に寄与するところは大きい。   The present invention greatly contributes to the entire technical field related to analysis simulation in which structural analysis is performed using various shape models such as a surface model, a solid model, and a wire model.

1 表面形状判定装置
11 データ入力手段
12 データベース
13 外積演算手段
14 内積演算手段
15 判定手段
DESCRIPTION OF SYMBOLS 1 Surface shape determination apparatus 11 Data input means 12 Database 13 Outer product calculation means 14 Inner product calculation means 15 Determination means

図2は、面の情報の一例を示す説明図である。この図2に示す面の情報は、後述する図7に示すリブ形状のリブの立ち上がり部分の根元である丸み肉厚部(フィレット)の面12を例示している。 FIG. 2 is an explanatory diagram illustrating an example of surface information. This information plane shown in FIG. 2 illustrates a surface F 12 of the base and is rounded thick portion of the rising portion of the rib of the rib shape shown in FIG. 7 to be described later (fillet).

Claims (9)

表面を複数の面に区分された解析構造物の隣接する第1面と第2面との間で表面形状を判定する表面形状判定装置であって、
前記第1面の法線ベクトルと、前記第1面と前記第2面とが接する接線方向のベクトルとにより外積ベクトルを求める外積演算手段と、
記外積ベクトルと、前記第2面の法線ベクトルとの内積を求める内積演算手段と、
前記内積演算手段にて求めた前記内積に基づいて前記第1面に対する前記第2面の表面形状を判定する判定手段と、
を備え
前記第1面と前記第2面との接続点から対向面まで垂直に直線を引き、前記直線の長さを求め、前記直線の中間点を特定することを特徴とする表面形状判定装置。
A surface shape determination device for determining a surface shape between an adjacent first surface and a second surface of an analysis structure having a surface divided into a plurality of surfaces,
And the normal vector of the first surface, and the outer product calculating means for calculating the Risoto product vector by the tangentially of vector in which the first surface and the second surface is in contact,
Before and Kigai product vector, the inner product calculation means for calculating the inner product of a normal vector of the second surface,
Determination means for determining the surface shape of the second surface to the first surface based on the previous SL in the product obtained by said inner product computing means,
Equipped with a,
A surface shape determination apparatus characterized in that a straight line is drawn perpendicularly from a connection point between the first surface and the second surface to an opposing surface, the length of the straight line is obtained, and an intermediate point of the straight line is specified .
請求項1に記載の表面形状判定装置であって、The surface shape determination device according to claim 1,
前記直線の中間点を通る中立面若しくはメッシュを形成することを特徴とする表面形状判定装置。A surface shape determination apparatus, wherein a neutral plane or a mesh passing through an intermediate point of the straight line is formed.
請求項1に記載の表面形状判定装置であって、The surface shape determination device according to claim 1,
前記外積演算手段は、前記第1面の法線ベクトルと、前記第1面と前記第2面とが接する接線方向のベクトルとにより第1外積ベクトルを求め、かつ、前記第2面の法線ベクトルと、前記第2面と第3面とが接する接線方向のベクトルとにより第2外積ベクトルを求め、The outer product calculation means obtains a first outer product vector from a normal vector of the first surface and a vector in a tangential direction where the first surface and the second surface are in contact, and a normal of the second surface A second outer product vector is obtained from the vector and a tangential vector where the second surface and the third surface are in contact with each other;
前記内積演算手段は、前記第1外積ベクトルと、前記第2面の法線ベクトルとの第1内積を求め、かつ、前記第2外積ベクトルと、前記第3面の法線ベクトルとの第2内積を求め、The inner product calculating means obtains a first inner product of the first outer product vector and a normal vector of the second surface, and a second of the second outer product vector and the normal vector of the third surface. Find inner product,
前記判定手段は、前記内積演算手段にて求めた前記第1内積に基づいて前記第1面に対する前記第2面の表面形状を判定し、かつ、前記内積演算手段にて求めた前記第2内積に基づいて前記第2面に対する前記第3面の表面形状を判定し、The determining means determines the surface shape of the second surface relative to the first surface based on the first inner product obtained by the inner product calculating means, and the second inner product obtained by the inner product calculating means. And determining a surface shape of the third surface with respect to the second surface based on
前記第1面と前記第2面との接続点、及び前記第2面と前記第3面との接続点からそれぞれ対向面まで垂直に第1直線及び第2直線を引き、前記第1直線の長さと前記第2直線の長さとをそれぞれ求め、前記第1直線の中間点とを前記第2直線の中間点とをそれぞれ特定することを特徴とする表面形状判定装置。A first straight line and a second straight line are drawn perpendicularly from the connection point between the first surface and the second surface and from the connection point between the second surface and the third surface to the opposing surface, respectively. A surface shape determination apparatus, wherein a length and a length of the second straight line are respectively obtained, and an intermediate point of the first straight line is specified as an intermediate point of the second straight line.
請求項3に記載の表面形状判定装置であって、The surface shape determination apparatus according to claim 3,
前記第1直線の中間点と前記第2直線の中間点とを通る中立面若しくはメッシュを形成することを特徴とする表面形状判定装置。The surface shape determination apparatus characterized by forming the neutral surface or mesh which passes through the intermediate point of the said 1st straight line, and the intermediate point of the said 2nd straight line.
表面を複数の面に区分された解析構造物の隣接する第1面と第2面との間で表面形状を判定する表面形状判定方法であって、
前記第1面の法線ベクトルと、前記第1面と前記第2面とが接する接線方向のベクトルとにより外積ベクトルを求める外積演算ステップと、
記外積ベクトルと、前記第2面の法線ベクトルとの内積を求める内積演算ステップと、
前記内積演算ステップにて求めた前記内積に基づいて前記第1面に対する前記第2面の表面形状を判定する判定ステップと、
を含み、
前記第1面と前記第2面との接続点から対向面まで垂直に直線を引き、前記直線の長さを求め、前記直線の中間点を特定することを特徴とする表面形状判定方法。
A surface shape determination method for determining a surface shape between adjacent first and second surfaces of an analysis structure whose surface is divided into a plurality of surfaces,
And the normal vector of the first surface, and the outer product calculating step of obtaining the Risoto product vector by the tangentially of vector in which the first surface and the second surface is in contact,
Before and Kigai product vector, the inner product calculation step for obtaining the inner product of the normal vector of the second surface,
A determining step of the surface shape of the second surface to the first surface based on the previous SL in the product obtained by the inner product calculation step,
Only including,
A surface shape determination method , wherein a straight line is drawn perpendicularly from a connection point between the first surface and the second surface to a facing surface, a length of the straight line is obtained, and an intermediate point of the straight line is specified .
請求項5に記載の表面形状判定方法であって、The surface shape determination method according to claim 5,
前記直線の中間点を通る中立面若しくはメッシュを形成することを特徴とする表面形状判定方法。A method for determining a surface shape, comprising forming a neutral surface or a mesh passing through an intermediate point of the straight line.
請求項5に記載の表面形状判定方法であって、The surface shape determination method according to claim 5,
前記外積演算ステップでは、前記第1面の法線ベクトルと、前記第1面と前記第2面とが接する接線方向のベクトルとにより第1外積ベクトルを求め、かつ、前記第2面の法線ベクトルと、前記第2面と第3面とが接する接線方向のベクトルとにより第2外積ベクトルを求め、In the outer product calculation step, a first outer product vector is obtained from a normal vector of the first surface and a vector in a tangential direction where the first surface and the second surface are in contact, and the normal of the second surface A second outer product vector is obtained from the vector and a tangential vector where the second surface and the third surface are in contact with each other;
前記内積演算ステップでは、前記第1外積ベクトルと、前記第2面の法線ベクトルとの第1内積を求め、かつ、前記第2外積ベクトルと、前記第3面の法線ベクトルとの第2内積を求め、In the inner product calculating step, a first inner product of the first outer product vector and the normal vector of the second surface is obtained, and a second of the second outer product vector and the normal vector of the third surface is obtained. Find inner product,
前記判定ステップでは、前記内積演算ステップにて求めた前記第1内積に基づいて前記第1面に対する前記第2面の表面形状を判定し、かつ、前記内積演算ステップにて求めた前記第2内積に基づいて前記第2面に対する前記第3面の表面形状を判定し、In the determining step, a surface shape of the second surface with respect to the first surface is determined based on the first inner product determined in the inner product calculating step, and the second inner product determined in the inner product calculating step. And determining a surface shape of the third surface with respect to the second surface based on
前記第1面と前記第2面との接続点、及び前記第2面と前記第3面との接続点からそれぞれ対向面まで垂直に第1直線及び第2直線を引き、前記第1直線の長さと前記第2直線の長さとをそれぞれ求め、前記第1直線の中間点とを前記第2直線の中間点とをそれぞれ特定することを特徴とする表面形状判定方法。A first straight line and a second straight line are drawn perpendicularly from the connection point between the first surface and the second surface and from the connection point between the second surface and the third surface to the opposing surface, respectively. A surface shape determination method, wherein a length and a length of the second straight line are respectively obtained, and an intermediate point of the first straight line is specified as an intermediate point of the second straight line.
請求項7に記載の表面形状判定方法であって、The surface shape determination method according to claim 7,
前記第1直線の中間点と前記第2直線の中間点とを通る中立面若しくはメッシュを形成することを特徴とする表面形状判定方法。A method for determining a surface shape, comprising forming a neutral plane or a mesh passing through an intermediate point of the first straight line and an intermediate point of the second straight line.
請求項5から請求項8までのいずれか一つに記載の表面形状判定方法の各ステップを、コンピュータに実行させるための表面形状判定プログラム。   The surface shape determination program for making a computer perform each step of the surface shape determination method as described in any one of Claim 5 to 8.
JP2019142279A 2019-08-01 2019-08-01 Surface shape determination device, surface shape determination method, and surface shape determination program Active JP6806321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019142279A JP6806321B2 (en) 2019-08-01 2019-08-01 Surface shape determination device, surface shape determination method, and surface shape determination program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019142279A JP6806321B2 (en) 2019-08-01 2019-08-01 Surface shape determination device, surface shape determination method, and surface shape determination program

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018510186A Division JP6605712B2 (en) 2016-04-07 2016-04-07 Surface shape determination apparatus, surface shape determination method, and surface shape determination program

Publications (2)

Publication Number Publication Date
JP2019194922A true JP2019194922A (en) 2019-11-07
JP6806321B2 JP6806321B2 (en) 2021-01-06

Family

ID=68469038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019142279A Active JP6806321B2 (en) 2019-08-01 2019-08-01 Surface shape determination device, surface shape determination method, and surface shape determination program

Country Status (1)

Country Link
JP (1) JP6806321B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042098A (en) * 2002-07-12 2004-02-12 Toyota Central Res & Dev Lab Inc Forming simulation analysis method
JP2009266111A (en) * 2008-04-28 2009-11-12 Canon Inc Apparatus and method for generating analysis model
JP2010108408A (en) * 2008-10-31 2010-05-13 Toyota Motor Corp Design support device, method and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042098A (en) * 2002-07-12 2004-02-12 Toyota Central Res & Dev Lab Inc Forming simulation analysis method
JP2009266111A (en) * 2008-04-28 2009-11-12 Canon Inc Apparatus and method for generating analysis model
JP2010108408A (en) * 2008-10-31 2010-05-13 Toyota Motor Corp Design support device, method and program

Also Published As

Publication number Publication date
JP6806321B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
CN108717493B (en) Two-dimensional area automatic decomposition method for structured quadrilateral mesh generation
JP6605712B2 (en) Surface shape determination apparatus, surface shape determination method, and surface shape determination program
CN103942837B (en) The direct building method of blade point cloud model cross section curve based on Successive linear programming
WO2016173260A1 (en) Method and apparatus for decomposing three-dimensional model based on generalized cylinders
CN105205841B (en) The ground drawing generating method and system of GIS-Geographic Information System
CN111951399B (en) Track planning method based on voxel curved surface distance field in additive manufacturing
CN107292055B (en) Method for assisting PCB design by establishing mathematical geometric model
CN114861500A (en) Method and system for automatically generating tunnel structure finite element model based on three-dimensional point cloud
JP6806321B2 (en) Surface shape determination device, surface shape determination method, and surface shape determination program
JP6527006B2 (en) Computer-aided resin behavior analyzer
Lin et al. Automated sequence arrangement of 3D point data for surface fitting in reverse engineering
US9087165B2 (en) Automatic extremum detection on a surface mesh of a component
Ko A survey: application of geometric modeling techniques to ship modeling and design
CN107832512A (en) A kind of computational methods of Curvature varying complexity
Wilkinson et al. Approximating urban wind interference
Trinh On reduced models for gravity waves generated by moving bodies
CN106202593B (en) Equidistant curve generation method
Zhang et al. Extracting skeletons of two-manifold triangular mesh surface for planning skeleton-guided five-axis surface inspection path
JP2005044146A (en) Finite element analysis method, program and device
JP2022148420A (en) Learning method of prediction model, prediction model and learning device
JP6727931B2 (en) Hole-covered curved surface generation device and hole-covered curved surface generation program
WO2021024367A1 (en) Shape data processing device, shape data processing method, and shape data processing program
Narabu et al. Automatic manufacturing feature extraction of CAD models for machining
JPH113439A (en) Model generating method for press formation analysis
JP6969757B2 (en) Analysis result data reduction device, analysis result data reduction method and analysis result data reduction program

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201125

R150 Certificate of patent or registration of utility model

Ref document number: 6806321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250