JP2019193513A - Hydraulic power generation system interconnection system - Google Patents

Hydraulic power generation system interconnection system Download PDF

Info

Publication number
JP2019193513A
JP2019193513A JP2018086834A JP2018086834A JP2019193513A JP 2019193513 A JP2019193513 A JP 2019193513A JP 2018086834 A JP2018086834 A JP 2018086834A JP 2018086834 A JP2018086834 A JP 2018086834A JP 2019193513 A JP2019193513 A JP 2019193513A
Authority
JP
Japan
Prior art keywords
power
generator
rectifier
control
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018086834A
Other languages
Japanese (ja)
Other versions
JP7191544B2 (en
Inventor
水谷 政敏
Masatoshi Mizutani
政敏 水谷
伊藤 隆志
Takashi Ito
隆志 伊藤
寛太 木村
Kanta Kimura
寛太 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2018086834A priority Critical patent/JP7191544B2/en
Priority to PCT/JP2019/017778 priority patent/WO2019208728A1/en
Priority to CN201980028037.6A priority patent/CN112020808A/en
Priority to KR1020207031328A priority patent/KR20210003771A/en
Publication of JP2019193513A publication Critical patent/JP2019193513A/en
Application granted granted Critical
Publication of JP7191544B2 publication Critical patent/JP7191544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a hydraulic power generation system interconnection system that includes a function unit for system interconnection for which a general-purpose item can be used to enable cost reduction while securing quality.SOLUTION: A hydraulic power generation system interconnection system comprises a hydraulic turbine 1, a power generator 3, a rectifier 15, a power conditioner 8 capable of interconnecting with a system 9, and a controller 4. The power conditioner 8 is an integrated general-purpose item, for example, a power conditioner for photovoltaic power generation. The hydraulic power generation system interconnection system may comprise a consumption resistance device 7 and fail-safe control means 23.SELECTED DRAWING: Figure 2

Description

この発明は、小水力発電装置等の水力発電装置を交流商用電力の系統に連系する水力発電系統連系システムに関する。   The present invention relates to a hydroelectric power generation system interconnection system in which a hydroelectric power generation apparatus such as a small hydropower generation apparatus is linked to an AC commercial power system.

水力発電装置は流水が持つ運動エネルギーを発電に利用するシステムである。主な構成は、水の流れを受け回転する水車、水車と連結され回転エネルギーを電気エネルギーに変換する発電機、発電機の出力及び水車を制御する制御装置から構成される。発電機より取り出す最適な電力は、流速により変化するため、制御装置は、流速あるいは水車の回転速度あるいは発電機の発電電圧を計測し、発電機より取り出す最適な電力を決定し、発電機の電力量と最適値が一致するように制御する。   A hydroelectric generator is a system that uses the kinetic energy of running water for power generation. The main configuration includes a water wheel that rotates in response to a flow of water, a generator that is connected to the water wheel to convert rotational energy into electric energy, a power generator output, and a control device that controls the water wheel. Since the optimum power to be extracted from the generator varies depending on the flow velocity, the control device measures the flow velocity, the rotation speed of the turbine or the generated voltage of the generator, determines the optimum power to be extracted from the generator, and determines the generator power. Control so that the quantity and the optimum value match.

水力発電した電力を交流商用電力の系統(以下単に「系統」と称する場合がある)に連系して売電する系統連系システムは、発電機の出力が最大になる様、最大効率トルク、回転速度制御をする為、同期発電機と、同期発電機専用の発電機制御手段(発電機制御ドライバ)及び出力電圧制御手段(系統連系インバータ)で構成されており、同期発電機に合わせた専用設計の機器とされている。   A grid-connected system that sells power generated by hydroelectric power linked to an AC commercial power grid (hereinafter sometimes simply referred to as “grid”) has a maximum efficiency torque so that the output of the generator is maximized. In order to control the rotational speed, it consists of a synchronous generator, a generator control means (generator control driver) dedicated to the synchronous generator, and an output voltage control means (system-connected inverter). It is a specially designed device.

例えば図4に示すように、水力発電装置の発電機51の3相交流の出力を直流に変換する電力変換回路52、その制御手段である発電機制御手段53と、直流を系統54に応じた交流電力に変換するインバータ55およびその出力電圧制御手段56からなる系統連系インバータとで系統連系システムが構成されている(例えば、特許文献1)。   For example, as shown in FIG. 4, the power conversion circuit 52 that converts the output of the three-phase alternating current of the generator 51 of the hydroelectric generator into direct current, the generator control means 53 that is the control means, and the direct current according to the system 54 A grid interconnection system is constituted by a grid interconnection inverter composed of an inverter 55 that converts AC power and its output voltage control means 56 (for example, Patent Document 1).

特開2007−6553号公報JP 2007-6553 A

従来の系統連系水力発電システムの構成は、同期発電機、同期発電機専用の発電機制御手段(発電機制御ドライバ)及び出力電圧制御手段(系統連系インバータ)で構成されており、発電機に合わせた専用設計の機器である為、機器が高額となる。
そのため、農業用水や工業用水等の用水路等に設置される小発電電力の発電装置、いわゆる小水力発電装置では、システム全体における系統連系のための電気系の機器が占めるコストの割合が多くなり、不経済である。
The configuration of a conventional grid-connected hydroelectric power generation system includes a synchronous generator, a generator control means (generator control driver) dedicated to the synchronous generator, and an output voltage control means (system-connected inverter). Because it is a specially designed device tailored to the equipment, the equipment is expensive.
Therefore, in the power generation device for small power generation installed in irrigation channels such as agricultural water and industrial water, so-called small hydroelectric power generation device, the ratio of the cost occupied by electrical equipment for grid connection in the entire system increases. It is uneconomical.

この発明は上記課題を解消するものであり、その目的は、系統連系のための手段に汎用品が使用できて、品質を確保しながら、コスト低下が図れる水力発電系統連系システムを提供することである。   SUMMARY OF THE INVENTION The present invention solves the above problems, and an object of the present invention is to provide a hydroelectric power grid interconnection system in which a general-purpose product can be used as a means for grid interconnection, and the cost can be reduced while ensuring quality. That is.

この発明の水力発電系統連系システムは、水車1と、水車1の回転エネルギーを電気エネルギーに変換する発電機3と、この発電機3の発電電力を直流電力に変換する整流器15と、この整流器15で整流した直流電力を系統9に連系可能な交流電力に変換するパワーコンディショナ8と、前記発電機3の負荷を調整して前記水車1の回転数を制御する制御装置4とを備え、
前記パワーコンディショナ8が、一体の汎用品であることを特徴とする。
The hydropower system interconnection system of the present invention includes a water turbine 1, a generator 3 that converts rotational energy of the water turbine 1 into electric energy, a rectifier 15 that converts the generated power of the generator 3 into DC power, and the rectifier 15 includes a power conditioner 8 that converts the DC power rectified in 15 into AC power that can be connected to the grid 9, and a control device 4 that controls the rotational speed of the water turbine 1 by adjusting the load of the generator 3. ,
The power conditioner 8 is an integral general-purpose product.

この構成によると、発電機3の負荷の調整により水車1の回転数を変える制御は、パワーコンディショナ8とは別に設けた前段の制御装置4およびパワーコンディショナ8の最大電力点制御(MPPT制御)等で行い、制御装置4にて交流/直流変換制御を行うことで直流に変換した発電電力をパワーコンディショナ8に供給するようにしたため、汎用のパワーコンディショナ8を用いることが可能となる。
このように、発電電力を系統9に連系する機器に、一体の汎用品のパワーコンディショナ8をそのまま利用するため、品質を確保しながら、専用設計の機器を用いる場合に比べて安価な水力発電システムを提供する事が可能となる。
なお、この明細書で言う「汎用品」は、特定の機種の発電装置に専用に設計されたものではなく、入力が処理可能な電力、電圧の範囲であり、かつ連系する系統9の電圧および周波数が適合すれば、適用できる機器であることを言う。また、「一体の汎用品」は、全ての構成部品が共通の筐体に組み込まれ、一つの物として取扱可能な汎用品を言う。
According to this configuration, the control for changing the rotation speed of the water turbine 1 by adjusting the load of the generator 3 is performed by controlling the maximum power point control (MPPT control) of the control device 4 and the power conditioner 8 provided separately from the power conditioner 8. ) And the like, and the generated power converted into direct current is supplied to the power conditioner 8 by performing the AC / DC conversion control in the control device 4, so that the general-purpose power conditioner 8 can be used. .
In this way, since the integrated general-purpose power conditioner 8 is used as it is for the equipment that links the generated power to the grid 9, it is cheaper than the case of using a specially designed equipment while ensuring quality. It is possible to provide a power generation system.
The “general-purpose product” referred to in this specification is not designed exclusively for a specific type of power generator, but is a range of power and voltage that can be processed by the input, and the voltage of the grid 9 that is connected. And if the frequency is matched, it means that the device is applicable. An “integrated general-purpose product” refers to a general-purpose product in which all components are incorporated in a common housing and can be handled as a single object.

前記パワーコンディショナ8は、前記パワーコンディショナ8が、太陽光発電の系統9への連系向けの汎用品であってもよい。すなわち、太陽電池セルが組み合わせられた太陽電池パネルを系統9に連系するパワーコンディショナ8であってもよい。
太陽光発電は普及が進んでおり、系統連系用のパワーコンディショナ8につき、量産効果によって安価で品質の良いものが多く市販されている。このような市販のパワーコンディショナ8を用いることで、より一層安価で高品質の水力発電系統連系システムを構築することができる。
The power conditioner 8 may be a general-purpose product for connection to the solar power generation system 9. That is, the power conditioner 8 which connects the solar cell panel with which the photovoltaic cell was combined with the system | strain 9 may be sufficient.
Photovoltaic power generation is spreading, and many power conditioners 8 for grid interconnection are commercially available at low cost and high quality due to mass production effects. By using such a commercially available power conditioner 8, it is possible to construct an even more inexpensive and high-quality hydropower system interconnection system.

この発明において、前記整流器15が、前記整流器15が、整流を行う整流機能部15aと、前記発電機3の発電電力の前記整流機能部15aへの入力をオンオフするスイッチ機能部14とを有するものであってもよい。
発電電力を整流する整流器15にオンオフするスイッチ機能を持っていれば、発電機3と系統9とを切り離すことができて、水車1の高速回転や系統9の停電等により生じる過電圧電力への対応が容易となる。
In the present invention, the rectifier 15 includes a rectification function unit 15a that rectifies the rectifier 15 and a switch function unit 14 that turns on and off the input of the power generated by the generator 3 to the rectification function unit 15a. It may be.
If the rectifier 15 for rectifying the generated power has a switch function for turning it on and off, the generator 3 and the system 9 can be disconnected, and it is possible to cope with overvoltage power caused by high-speed rotation of the turbine 1 or power failure of the system 9. Becomes easier.

この発明において、前記発電機3と前記パワーコンディショナ8との間に接続され過電圧電力を抵抗によって吸収する消費抵抗装置と、前記発電機3の発電電力が設定電圧以上の過電圧になった時に前記発電機3の発電電力に発生する過電圧電力を前記消費抵抗装置に吸収させる消費抵抗制御手段とを備えていてもよい。
このように消費抵抗装置およびその消費抵抗制御手段を備えていると、水車1の高速回転や系統9の停電等により生じる過電圧電力を吸収することができ、この水力発電系統連系システムを構成する機器の過電圧による劣化や損傷を防止することができる。
In the present invention, a consumption resistance device connected between the generator 3 and the power conditioner 8 and absorbing overvoltage power by resistance, and when the generated power of the generator 3 becomes an overvoltage higher than a set voltage, Consumption resistance control means for causing the consumption resistance device to absorb overvoltage power generated in the power generated by the generator 3 may be provided.
When the consumption resistance device and the consumption resistance control means are provided in this way, it is possible to absorb the overvoltage power generated by the high speed rotation of the water turbine 1 or the power failure of the system 9, and this hydraulic power system interconnection system is configured. Degradation and damage due to overvoltage of the equipment can be prevented.

この発明において、前記発電機3の前記整流器15で整流された電圧を計測する電圧検出手段と、
前記発電機3の前記整流器15で整流された電流を計測する電流検出手段17と、
前記発電機3の前記整流器15で整流された電圧を計測する電圧検出手段18と、
前記発電機3の発電電力の周波数から前記発電機3の回転数を検出する回転数検出手段19と、
前記電圧検出手段18、前記電流検出手段17、および前記回転数検出手段19が検出した電圧、電流、および回転数、並びに前記パワーコンディショナ8が出力する起動、停止、および異常信号から、定められた保護作動条件を充足する場合に、前記発電機3の前記整流器15への入力遮断および前記発電機3に備えられた制動手段(10)の制動のいずれか一方または両方を行わせるフェールセーフ制御手段23を有する構成であってもよい。
このようなフェールセーフ制御手段23を有することで、この水力発電系統連系システムを構成する機器の前記過電圧による劣化や損傷をより一層良好に防止することができる。
In this invention, voltage detection means for measuring the voltage rectified by the rectifier 15 of the generator 3;
Current detection means 17 for measuring the current rectified by the rectifier 15 of the generator 3;
Voltage detection means 18 for measuring the voltage rectified by the rectifier 15 of the generator 3;
Rotational speed detection means 19 for detecting the rotational speed of the generator 3 from the frequency of the generated power of the generator 3;
It is determined from the voltage, current, and rotation speed detected by the voltage detection means 18, the current detection means 17, and the rotation speed detection means 19, and the start, stop, and abnormal signals output from the power conditioner 8. Fail-safe control for performing either one or both of shutting off the input to the rectifier 15 of the generator 3 and braking of the braking means (10) provided in the generator 3 when the protection operation condition is satisfied. The structure which has the means 23 may be sufficient.
By having such a fail-safe control means 23, it is possible to prevent the deterioration and damage due to the overvoltage of the devices constituting this hydroelectric power generation system interconnection system even better.

この発明の水力発電系統連系システムは、水車と、水車の回転エネルギーを電気エネルギーに変換する発電機と、この発電機の発電電力を直流電力に変換する整流器と、この整流器で整流した直流電力を系統に連系可能な交流電力に変換するパワーコンディショナと、前記発電機の負荷を調整して前記水車の回転数を制御する制御装置とを備え、前記パワーコンディショナが、一体の汎用品であるため、品質を確保しながらコスト低下を図ることができる。   The hydropower system interconnection system of the present invention includes a water turbine, a generator that converts rotational energy of the water wheel into electric energy, a rectifier that converts the generated power of the generator into DC power, and DC power that is rectified by the rectifier. A power conditioner that converts AC into AC power that can be connected to the grid, and a control device that controls the rotational speed of the water turbine by adjusting the load of the generator, and the power conditioner is an integrated general-purpose product Therefore, it is possible to reduce the cost while ensuring the quality.

この発明の一実施形態に係る水力発電系統連系システムの概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the hydroelectric power system interconnection system which concerns on one Embodiment of this invention. 同水力発電系統連系システムの具体例のブロック図である。It is a block diagram of the specific example of the same hydroelectric power generation system interconnection system. 同水力発電系統連系システムに用いた太陽光発電用のパワーコンディショナの概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the power conditioner for solar power generation used for the same hydroelectric power system connection system. 従来例の電気回路図である。It is an electric circuit diagram of a conventional example.

この発明の一実施形態を図1ないし図3と共に説明する。図1に示す水力発電機は、水車1が水平軸型(プロペラ型)の水力発電機の例である。水車1は、農業用水、工業用水等の水路、または上下水道等に設置される比較的に小型の水車である。水の運動エネルギーにより水車1が回転し、水車1の主軸1aが発電機3を回転させる。水車1と発電機3とで水力発電装置2が構成される。水力発電装置2には、水車1または発電機3を制動する電磁ブレーキ10等の制動手段が設けられている。
発電機3は、制御装置4およびパワーコンディショナ8を介して系統9に接続される。系統9は、交流商用電力系統であり、例えば100Vまたは200Vで50または60Hzの低電圧配線である。
前記水車1、発電機3、制御装置4、およびパワーコンディショナ8により水力発電系統連系システムが構成される。
An embodiment of the present invention will be described with reference to FIGS. The hydroelectric generator shown in FIG. 1 is an example of a hydroelectric generator in which the hydraulic turbine 1 is a horizontal axis type (propeller type). The water wheel 1 is a relatively small water wheel installed in a waterway such as agricultural water, industrial water, or water and sewage. The water wheel 1 is rotated by the kinetic energy of water, and the main shaft 1 a of the water wheel 1 rotates the generator 3. A hydroelectric generator 2 is constituted by the turbine 1 and the generator 3. The hydroelectric generator 2 is provided with braking means such as an electromagnetic brake 10 that brakes the water turbine 1 or the generator 3.
The generator 3 is connected to the system 9 via the control device 4 and the power conditioner 8. The system 9 is an AC commercial power system, for example, 100V or 200V, 50 or 60 Hz low voltage wiring.
The water turbine 1, the generator 3, the control device 4, and the power conditioner 8 constitute a hydroelectric power system interconnection system.

発電機3は、永久磁石を使用した三相同期発電機であり、主軸1aにカップリング(図示せず)等で締結されている。必要に応じて主軸1aと発電機3の間に増速機(図示せず)が設けられる。発電機3に負荷を接続して出力をとると、水車1に発電機3からトルクがかかり、水車1の回転が制動される。負荷を重くすると水車1の回転速度は遅くなり、負荷を軽くすると水車1の回転速度は速くなる。発電機3の負荷として制御装置4およびパワーコンディショナ8、系統9が接続されている。   The generator 3 is a three-phase synchronous generator using a permanent magnet, and is fastened to the main shaft 1a by a coupling (not shown) or the like. A speed increaser (not shown) is provided between the main shaft 1a and the generator 3 as necessary. When a load is connected to the generator 3 and an output is taken, torque is applied to the turbine 1 from the generator 3, and the rotation of the turbine 1 is braked. When the load is increased, the rotation speed of the water turbine 1 is decreased. When the load is decreased, the rotation speed of the water turbine 1 is increased. A control device 4, a power conditioner 8, and a system 9 are connected as a load of the generator 3.

制御装置4およびパワーコンディショナ8は、水路の流速に応じて発電機3のトルクを増減させ水車1が最適な回転数で回転するように制御する。水路の流速は、流速計25で検出する。流速に代え、または流速と併用して、水車1の回転数、または発電機3の回転数に応じて発電機3のトルクを増減させるようにしてもよい。発電機3の回転数は発電電力の周波数から検出してもよい。水車1の回転数と発電機3の回転数とは定まった関係にあり、いずれか一方が検出できれば他方は演算で分かる。   The control device 4 and the power conditioner 8 increase or decrease the torque of the generator 3 in accordance with the flow velocity of the water channel so as to control the water turbine 1 to rotate at an optimum rotational speed. The flow velocity of the water channel is detected by an anemometer 25. Instead of the flow rate or in combination with the flow rate, the torque of the generator 3 may be increased or decreased according to the rotation speed of the water turbine 1 or the rotation speed of the generator 3. The rotational speed of the generator 3 may be detected from the frequency of the generated power. The rotational speed of the water turbine 1 and the rotational speed of the generator 3 are in a fixed relationship, and if one of them can be detected, the other can be found by calculation.

制御装置4は、主回路部6と、この主回路部6を制御する制御回路部5と、消費抵抗装置7とを備える。主回路部6に、発電機3の3相交流電力を直流に変換する整流器15と、その整流した直流を昇圧するDC/DCコンバータ16が設けられている。DC/DCコンバータ16は、例えば、昇圧側となる2次側の電圧が制御入力によって制御可能なものを用いている。   The control device 4 includes a main circuit unit 6, a control circuit unit 5 that controls the main circuit unit 6, and a consumption resistance device 7. The main circuit unit 6 is provided with a rectifier 15 that converts the three-phase AC power of the generator 3 into a direct current and a DC / DC converter 16 that boosts the rectified direct current. The DC / DC converter 16 uses, for example, a voltage that can control the voltage on the secondary side that is the boost side by a control input.

前記パワーコンディショナ8は、系統9に並列接続して連系する装置であり、入力された直流電力を系統9と同等の電圧(少し高い電圧)、周波数、および位相の交流電力に変換する。
このパワーコンディショナ8として、一体の汎用品が用いられている。すなわち、筐体内に構成部品(いずれも図示せず)が収められ一体の機器として取扱可能な汎用品が用いられている。この実施形態では、パワーコンディショナ8として、太陽光発電の発電電力を系統9に連系可能な交流電力に変換する太陽光発電向けに量産されているパワーコンディショナを用いている。
The power conditioner 8 is a device connected in parallel to the grid 9 and converts the input DC power into AC power having a voltage (slightly higher voltage), frequency, and phase equivalent to those of the grid 9.
As this power conditioner 8, an integral general-purpose product is used. That is, a general-purpose product that can be handled as an integrated device in which components (not shown) are housed in a housing is used. In this embodiment, as the power conditioner 8, a power conditioner that is mass-produced for photovoltaic power generation that converts the generated power of the photovoltaic power generation into AC power that can be connected to the grid 9 is used.

図3は、この実施形態に用いる太陽光発電用のパワーコンディショナ8の一例を示す。このパワーコンディショナ8は、DC/DCコンバータ31と、DC/ACインバータ32と、制御手段33とを備える。DC/DCコンバータ31は、入力された直流電力を系統9の電圧に対応する電圧に昇圧させる手段であり、出力電圧が可変である。DC/DCコンバータ31の入力電圧は、このパワーコンディショナ8の本来の用途である太陽電池モジュール36の出力電圧であり、一般的な太陽光発電で系統連系のために出力させる電圧のうちのいずれかの電圧(例えば、単相100/200Vまたは3相200V)とされている。DC/ACインバータ32は、DC/DCコンバータ31から出力された直流電力を、系統9に連系可能な周波数および位相の交流電力に変換する。   FIG. 3 shows an example of a power conditioner 8 for photovoltaic power generation used in this embodiment. The power conditioner 8 includes a DC / DC converter 31, a DC / AC inverter 32, and a control means 33. The DC / DC converter 31 is a means for boosting the input DC power to a voltage corresponding to the voltage of the system 9, and the output voltage is variable. The input voltage of the DC / DC converter 31 is the output voltage of the solar cell module 36 which is the original use of the power conditioner 8, and is the voltage output for grid connection in general solar power generation. One of the voltages (for example, single phase 100 / 200V or three phase 200V) is used. The DC / AC inverter 32 converts the DC power output from the DC / DC converter 31 into AC power having a frequency and phase that can be linked to the system 9.

前記制御手段33は、電力制御部34と最大電力点制御部35とを有する。電力制御部34は、DC/DCコンバータ31およびDC/ACインバータ32に対して基本的な制御を行う。最大電力点制御部35は、山登り法による最大電力点追尾制御(MPPT制御)を行うように、前記電力制御部34に指令を与える。   The control means 33 includes a power control unit 34 and a maximum power point control unit 35. The power control unit 34 performs basic control on the DC / DC converter 31 and the DC / AC inverter 32. The maximum power point control unit 35 gives a command to the power control unit 34 so as to perform maximum power point tracking control (MPPT control) by the hill-climbing method.

MPPT制御につき説明する。太陽電池モジュール36等の発電機器の発電量は、電圧と電流の積で決まるが、発電する電圧と電流は変動する。この変動に対して、最大電力点追尾制御部35によるMPPT制御では、最大の出力が発生するように電圧と電流の組み合わせとなる動作点を常に探し求める。前記電力制御部34は、上記のように最大電力点制御部35で求められた動作点で働くように、DC/DCコンバータ31およびDC/ACインバータ32を制御する。
この実施形態の場合、発電機3の発電電力の変動により、整流されてパワーコンディショナ8に入力される電力の電流、電圧の変動が生じるが、この変動に対して、最大電力点制御部35が上記の機能を果たす。
なお、制御手段33は、最大電力点制御部35を設けずに、例えばパルス幅変調方式で制御をDC/DCコンバータ31およびDC/ACインバータ32を制御する構成であってもよい。
The MPPT control will be described. The amount of power generated by a power generation device such as the solar cell module 36 is determined by the product of the voltage and current, but the generated voltage and current vary. In response to this variation, the MPPT control by the maximum power point tracking control unit 35 always searches for an operating point that is a combination of voltage and current so that the maximum output is generated. The power control unit 34 controls the DC / DC converter 31 and the DC / AC inverter 32 so as to work at the operating point obtained by the maximum power point control unit 35 as described above.
In the case of this embodiment, fluctuations in the current and voltage of the power that is rectified and input to the power conditioner 8 occur due to fluctuations in the generated power of the generator 3, and the maximum power point control unit 35 against these fluctuations. Fulfills the above functions.
The control unit 33 may be configured to control the DC / DC converter 31 and the DC / AC inverter 32 by, for example, a pulse width modulation method without providing the maximum power point control unit 35.

図2は、発電機3とパワーコンディショナ8との間に設けられる前記制御装置4の具体的構成例を示す。主回路部6は、前記整流器1およびDC/DCコンバータ16の他に、AC/DC制御電源13、電流検出手段である電流計17、回転数検出手段19、および電圧検出手段である電圧計18を有する。
前記整流器1は、発電機3の3相交流の発電電力を直流に変換する手段であり、この変換を行う整流機機能部15aと、スイッチ機能部14とを有する。整流機機能部15aは、各相毎に出力の正電位側と負電位側とに位置する2つの半導体スイッング素子(図示せず)が設けられたハーフブリッジ回路からなる。
FIG. 2 shows a specific configuration example of the control device 4 provided between the generator 3 and the power conditioner 8. In addition to the rectifier 1 and the DC / DC converter 16, the main circuit unit 6 includes an AC / DC control power source 13, an ammeter 17 as current detection means, a rotation speed detection means 19, and a voltmeter 18 as voltage detection means. Have
The rectifier 1 is means for converting the three-phase alternating current generated power of the generator 3 into direct current, and includes a rectifier function unit 15 a that performs this conversion, and a switch function unit 14. The rectifier function unit 15a is composed of a half-bridge circuit in which two semiconductor switching elements (not shown) positioned on the positive potential side and the negative potential side of the output are provided for each phase.

スイッチ機能部14は、発電機3から整流機機能部15aに入力される回路を開閉する各相のスイッチング素子(図示せず)で構成される。スイッチ機能部14の各スイッチング素子は、制御入力によって開閉可能な素子である。   The switch function unit 14 includes switching elements (not shown) for each phase that open and close a circuit input from the generator 3 to the rectifier function unit 15a. Each switching element of the switch function unit 14 is an element that can be opened and closed by a control input.

AC/DC制御電源13は、制御装置4を動作させる電源であり、発電機3の発電する交流電力の一部を直流電力に変換し、制御回路部5および消費抵抗装置7に供給する。AC/DC制御電源13の代わりに、電池等の別の電源を用いてもよい。
電流計17は、DC/DCコンバータ16により昇圧された電流の電流値を検出する。電圧計18は、同じく昇圧された電流の電圧値を検出する。つまり、電流計17および電圧計18は、パワーコンディショナ8に入力される電流および電圧を検出する。
回転数検出手段19は、発電電流の周波数から発電機3の回転数を検出する。この検出は、整流器15の整流前の電力に対して行っている。
The AC / DC control power supply 13 is a power supply for operating the control device 4, converts a part of the AC power generated by the generator 3 into DC power, and supplies the DC power to the control circuit unit 5 and the consumption resistance device 7. Instead of the AC / DC control power supply 13, another power supply such as a battery may be used.
The ammeter 17 detects the current value of the current boosted by the DC / DC converter 16. The voltmeter 18 detects the voltage value of the boosted current. That is, the ammeter 17 and the voltmeter 18 detect the current and voltage input to the power conditioner 8.
The rotation speed detection means 19 detects the rotation speed of the generator 3 from the frequency of the generated current. This detection is performed on the power before rectification of the rectifier 15.

消費抵抗装置7は、風車1の回転制御や回路保護等のために、発電機3で発電した電力を消費する手段である。消費抵抗装置7は、この実施形態では、DC/DCコンバータ16とパワーコンディショナ8との間で、正電位側配線と負電位側とを短絡させて電力消費する消費抵抗7aと、この消費抵抗7aに直列接続されたスイッチ7bと、このスイッチ7bを開閉させる消費抵抗制御手段22とで構成される。
消費抵抗装置7の目的は、水力発電システムが発電中に、電力系統の停電時などで系統連系が停止した時、系統負荷が無負荷となり発電機3が高回転、発電電圧が過電圧となったことを消費抵抗制御手段22で判定してスイッチ7bをONして消費抵抗7aで過電圧電力を消費させる事で、太陽光パワーコンディショナ8を保護する事である。通常の状態は、スイッチbがOFF状態である。
The consumption resistance device 7 is means for consuming electric power generated by the generator 3 for rotation control of the windmill 1, circuit protection, and the like. In this embodiment, the consumption resistance device 7 includes a consumption resistance 7a for short-circuiting the positive potential side wiring and the negative potential side between the DC / DC converter 16 and the power conditioner 8, and the consumption resistance 7a. The switch 7b is connected in series to the switch 7a, and the consumption resistance control means 22 is configured to open and close the switch 7b.
The purpose of the consumption resistance device 7 is that when the grid connection is stopped due to a power failure of the power system while the hydroelectric power generation system is generating power, the system load is no load, the generator 3 is at high speed, and the generated voltage is overvoltage. This is to protect the solar power conditioner 8 by determining that the consumption resistance control means 22 and turning on the switch 7b and consuming overvoltage power with the consumption resistance 7a. The normal state is that the switch b is in the OFF state.

前記制御回路部5は、発電制御手段12と、前記電磁ブレーキ10を制御するブレーキ制御手段11と、フェールセーフ制御手段23とを有する。
発電制御手段12は、前記の流速に応じて発電機3のトルクを増減させ水車1が最適な回転数で回転するように制御する手段である。発電制御手段12は、前記流速計25から得られた水路の流速、または前記回転数検出手段19で検出された発電機3の回転数から、定められた制御規則に従って発電機トルクの増減のための制御信号を生成し、DC/DCコンバータの出力電圧を制御する。あるいは、前記制御信号により、前記パワーコンディショナ8における前記電力制御部34に制御させる。
The control circuit unit 5 includes a power generation control unit 12, a brake control unit 11 that controls the electromagnetic brake 10, and a fail-safe control unit 23.
The power generation control means 12 is means for controlling the turbine 1 to rotate at an optimum rotational speed by increasing or decreasing the torque of the generator 3 according to the flow velocity. The power generation control means 12 increases or decreases the generator torque according to a predetermined control rule from the flow velocity of the water channel obtained from the anemometer 25 or the rotation speed of the generator 3 detected by the rotation speed detection means 19. The control signal is generated to control the output voltage of the DC / DC converter. Alternatively, the power control unit 34 in the power conditioner 8 is controlled by the control signal.

この場合に、汎用/太陽光発電用のパワーコンディショナ8のMPPT制御をそのまま改造する事無く利用して、流速での最大電力が取れるよう制御する。同時に、制御装置4にて、フェールセーフ、運転/停止制御などのシステム制御を実施してパワーコンディショナ8でのMPPT制御を以外の制御を実施する。なお、汎用/太陽光発電用のパワーコンディショナ8のMPPT制御を停止させて、制御装置4にてMPPT制御を実施する事としてもよい。   In this case, the MPPT control of the general-purpose / photovoltaic power conditioner 8 is used without modification, and control is performed so that the maximum power at the flow rate can be obtained. At the same time, the control device 4 performs system control such as fail-safe and operation / stop control, and performs control other than MPPT control in the power conditioner 8. Note that the MPPT control of the power conditioner 8 for general purpose / photovoltaic power generation may be stopped and the MPPT control may be performed by the control device 4.

フェールセーフ制御手段23は、前記電圧計18、前記電流計17、および前記回転数検出手段19が検出した電圧、電流、および回転数、並びに前記パワーコンディショナ8が出力する起動、停止、および異常信号から、定められた保護作動条件を充足する場合に、前記発電機3の前記整流器15への入力遮断、および前記発電機1に備えられた制動手段である電磁ブレーキ10の制動のいずれか一方または両方を行わせる。前記保護作動条件は、例えば、前記電圧、電流、および回転数のいずれかが、それぞれにつき定められた閾値を超える場合、および前記パワーコンディショナ8から停止または異常信号が入力されたときとされる。   The fail safe control means 23 is the voltage, current, and rotation speed detected by the voltmeter 18, the ammeter 17, and the rotation speed detection means 19, and the start, stop, and abnormality output by the power conditioner 8. When a predetermined protective operation condition is satisfied from the signal, either the input cutoff to the rectifier 15 of the generator 3 or the braking of the electromagnetic brake 10 which is a braking means provided in the generator 1 is performed. Or do both. The protection operation condition is, for example, when any of the voltage, current, and rotation speed exceeds a threshold value determined for each, and when a stop or abnormal signal is input from the power conditioner 8. .

前記制御装置4とパワーコンディショナ8とは、シリアル通信のLAN通信等による通信手段で接続されている。また、前記制御装置4は、外部の機器とシリアル通信のLAN通信等を行う外部I/O手段21を有している。   The control device 4 and the power conditioner 8 are connected by communication means such as serial communication LAN communication. In addition, the control device 4 includes an external I / O unit 21 that performs serial communication LAN communication with an external device.

この構成によると、発電電力を系統9に連系する機器に、一体の汎用品のパワーコンディショナ8をそのまま利用するため、品質を確保しながら、専用設計の機器を用いる場合に比べて安価な水力発電システムを提供する事が可能となる。
前記パワーコンディショナ8が太陽光発電用のパワーコンディショナ8である場合は、より一層安価で高品質の水力発電系統連系システムを構築することができる。すなわち、太陽光発電は普及が進んでおり、系統連系用のパワーコンディショナにつき、量産効果によって高機能で耐久性、信頼性に優れた安価で品質の良いものが多く市販されている。このような市販のパワーコンディショナを用いることで、より一層安価で高品質の水力発電系統連系システムを構築することができる。
According to this configuration, since the integrated general-purpose power conditioner 8 is used as it is for the equipment that connects the generated power to the grid 9, it is less expensive than the case of using a specially designed equipment while ensuring quality. It is possible to provide a hydroelectric power generation system.
In the case where the power conditioner 8 is a power conditioner 8 for solar power generation, it is possible to construct an even more inexpensive and high quality hydroelectric power grid interconnection system. In other words, solar power generation has been widely spread, and many power conditioners for grid interconnection are commercially available with high functionality, durability, and reliability that are inexpensive and of good quality due to mass production effects. By using such a commercially available power conditioner, it is possible to construct an even more inexpensive and high quality hydropower system interconnection system.

また、この水力発電系統連系システムは、次の各利点が得られる。
発電電力を整流する整流器15にスイッチ機能部14を有しているため、発電機3と系統9とを切り離すことができて、水車1の高速回転や系統9の停電等により生じる過電圧電力への対応が容易となる。
前記消費抵抗装置7およびその消費抵抗制御手段22を備えているため、水車1の高速回転や系統9の停電等により生じる過電圧電力を吸収することができ、この水力発電系統連系システムを構成する機器の過電圧による劣化や損傷を防止することができる。
前記フェールセーフ制御手段23を有するため、この水力発電系統連系システムを構成する機器の過電圧による劣化や損傷をより一層良好に防止することができる。
In addition, this hydropower system interconnection system has the following advantages.
Since the rectifier 15 that rectifies the generated power has the switch function unit 14, the generator 3 and the system 9 can be disconnected, and the overvoltage power generated by the high-speed rotation of the water turbine 1, the power failure of the system 9, etc. Easy to handle.
Since the consumption resistance device 7 and the consumption resistance control means 22 are provided, it is possible to absorb overvoltage power generated by high-speed rotation of the water turbine 1 or a power failure of the system 9, and this hydraulic power system interconnection system is configured. Degradation and damage due to overvoltage of the equipment can be prevented.
Since the fail-safe control means 23 is provided, deterioration and damage due to overvoltage of the devices constituting the hydroelectric power generation system interconnection system can be prevented even better.

以上、実施形態に基づいて本発明を実施するための形態を説明したが、ここで開示した実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   As mentioned above, although the form for implementing this invention based on embodiment was demonstrated, embodiment disclosed here is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1…水車
2…水力発電装置
3…発電機
4…制御装置
5…制御回路部
6…主回路部
7…消費抵抗装置
8…パワーコンディショナ
9…系統
10…電磁ブレーキ
14…スイッチ機能部
15…整流器
15a…整流機機能部
16…DC/DCコンバータ
17…電流計(電流検出手段)
18…電圧計(電圧検出手段)
19…回転数検出手段
23…フェールセーフ制御手段
35…最大電力点制御部
DESCRIPTION OF SYMBOLS 1 ... Turbine 2 ... Hydroelectric power generation device 3 ... Generator 4 ... Control device 5 ... Control circuit unit 6 ... Main circuit unit 7 ... Consumption resistance device 8 ... Power conditioner 9 ... System 10 ... Electromagnetic brake 14 ... Switch function unit 15 ... Rectifier 15a ... Rectifier function unit 16 ... DC / DC converter 17 ... Ammeter (current detection means)
18 ... Voltmeter (voltage detection means)
19 ... Rotational speed detection means 23 ... Fail safe control means 35 ... Maximum power point control section

Claims (5)

水車と、水車の回転エネルギーを電気エネルギーに変換する発電機と、この発電機の発電電力を直流電力に変換する整流器と、この整流器で整流した直流電力を系統に連系可能な交流電力に変換するパワーコンディショナと、前記発電機の負荷を調整して前記水車の回転数を制御する制御装置とを備え、
前記パワーコンディショナが、一体の汎用品であることを特徴とする水力発電系統連系システム。
A turbine, a generator that converts the rotational energy of the turbine into electrical energy, a rectifier that converts the power generated by the generator into DC power, and the DC power rectified by the rectifier is converted into AC power that can be connected to the grid A power conditioner, and a control device for adjusting the load of the generator to control the rotational speed of the water wheel,
The hydropower system interconnection system, wherein the power conditioner is an integrated general-purpose product.
請求項1に記載の水力発電系統連系システムにおいて、前記パワーコンディショナが、太陽光発電の発電電力の系統への連系向けの汎用品である水力発電系統連系システム。   The hydropower system interconnection system according to claim 1, wherein the power conditioner is a general-purpose product for connection to a power generation system of photovoltaic power generation. 請求項1または請求項2に記載の水力発電系統連系システムにおいて、前記整流器が、整流を行う整流機能部と、前記発電機の発電電力の前記整流機能部への入力をオンオフするスイッチ機能部とを有する水力発電系統連系システム。   3. The hydropower system interconnection system according to claim 1, wherein the rectifier includes a rectification function unit that performs rectification, and a switch function unit that turns on / off input of the generated power of the generator to the rectification function unit. And a hydropower system interconnection system. 請求項1ないし請求項3のいずれか1項に記載の水力発電系統連系システムにおいて、前記発電機と前記パワーコンディショナとの間に接続され過電圧電力を抵抗によって吸収する消費抵抗装置と、前記発電機の発電電力が設定電圧以上の過電圧になった時に前記発電機の発電電力に発生する過電圧電力を前記消費抵抗装置に吸収させる消費抵抗制御手段とを備える水力発電系統連系システム。   The hydroelectric power system interconnection system according to any one of claims 1 to 3, wherein the consumption resistance device is connected between the generator and the power conditioner and absorbs overvoltage power by resistance, and A hydroelectric power grid interconnection system comprising consumption resistance control means for causing the consumption resistance device to absorb the overvoltage power generated in the generated power of the generator when the generated power of the generator becomes an overvoltage that is equal to or higher than a set voltage. 請求項1ないし請求項4のいずれか1項に記載の水力発電系統連系システムにおいて、 前記発電機の前記整流器で整流された電圧を計測する電圧検出手段と、
前記発電機の前記整流器で整流された電流を計測する電流検出手段と、
前記電流検出手段で検出した電流を演算する電流演算手段と、
前記発電機の発電電力の周波数から前記発電機の回転数を検出する回転数検出手段と、 前記電圧検出手段、前記電流検出手段、および前記回転数検出手段が検出した電圧、電流、および回転数、並びに前記パワーコンディショナが出力する起動、停止、および異常信号から、定められた保護作動条件を充足する場合に、前記発電機の前記整流器への入力遮断および前記発電機に備えられた制動手段の制動のいずれか一方または両方を行わせるフェールセーフ制御手段とを有する、
水力発電系統連系システム。
The hydroelectric power generation system interconnection system according to any one of claims 1 to 4, wherein a voltage detection unit that measures a voltage rectified by the rectifier of the generator;
Current detection means for measuring the current rectified by the rectifier of the generator;
Current calculating means for calculating the current detected by the current detecting means;
Rotation speed detection means for detecting the rotation speed of the generator from the frequency of the generated power of the generator; Voltage, current, and rotation speed detected by the voltage detection means, the current detection means, and the rotation speed detection means In addition, when a predetermined protective operation condition is satisfied from start, stop, and abnormality signals output from the power conditioner, the input of the generator to the rectifier is shut off and the braking means provided in the generator Fail-safe control means for performing either one or both of braking,
Hydroelectric power system interconnection system.
JP2018086834A 2018-04-27 2018-04-27 Hydroelectric grid connection system Active JP7191544B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018086834A JP7191544B2 (en) 2018-04-27 2018-04-27 Hydroelectric grid connection system
PCT/JP2019/017778 WO2019208728A1 (en) 2018-04-27 2019-04-25 System that interlinks with hydroelectric power generation line
CN201980028037.6A CN112020808A (en) 2018-04-27 2019-04-25 Hydroelectric power generation system connecting system
KR1020207031328A KR20210003771A (en) 2018-04-27 2019-04-25 Hydro power generation system linkage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018086834A JP7191544B2 (en) 2018-04-27 2018-04-27 Hydroelectric grid connection system

Publications (2)

Publication Number Publication Date
JP2019193513A true JP2019193513A (en) 2019-10-31
JP7191544B2 JP7191544B2 (en) 2022-12-19

Family

ID=68391201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018086834A Active JP7191544B2 (en) 2018-04-27 2018-04-27 Hydroelectric grid connection system

Country Status (1)

Country Link
JP (1) JP7191544B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022166358A (en) * 2021-04-21 2022-11-02 三菱電機エンジニアリング株式会社 Grid-connected system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06113447A (en) * 1992-08-27 1994-04-22 Hitachi Ltd Power-system protective and control apparatus
JP2003284392A (en) * 2002-03-27 2003-10-03 Hitachi Ltd Protecting method for power generation water wheel and controller therefor
JP2005229702A (en) * 2004-02-12 2005-08-25 Kansai Electric Power Co Inc:The Method of reducing energy loss in power supply system, and power supply system
JP2007068386A (en) * 2005-08-02 2007-03-15 Shinko Electric Co Ltd Hydroelectric power generator
JP2009207349A (en) * 2008-02-27 2009-09-10 Abb Schweiz Ag Energy system
JP2015080348A (en) * 2013-10-17 2015-04-23 株式会社北陸精機 Hybrid power generation system and excessive rotation suppression method for power generator
JP2018046599A (en) * 2016-09-12 2018-03-22 Ntn株式会社 Hydraulic power generating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06113447A (en) * 1992-08-27 1994-04-22 Hitachi Ltd Power-system protective and control apparatus
JP2003284392A (en) * 2002-03-27 2003-10-03 Hitachi Ltd Protecting method for power generation water wheel and controller therefor
JP2005229702A (en) * 2004-02-12 2005-08-25 Kansai Electric Power Co Inc:The Method of reducing energy loss in power supply system, and power supply system
JP2007068386A (en) * 2005-08-02 2007-03-15 Shinko Electric Co Ltd Hydroelectric power generator
JP2009207349A (en) * 2008-02-27 2009-09-10 Abb Schweiz Ag Energy system
JP2015080348A (en) * 2013-10-17 2015-04-23 株式会社北陸精機 Hybrid power generation system and excessive rotation suppression method for power generator
JP2018046599A (en) * 2016-09-12 2018-03-22 Ntn株式会社 Hydraulic power generating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022166358A (en) * 2021-04-21 2022-11-02 三菱電機エンジニアリング株式会社 Grid-connected system
JP7239632B2 (en) 2021-04-21 2023-03-14 三菱電機エンジニアリング株式会社 Grid-connected system

Also Published As

Publication number Publication date
JP7191544B2 (en) 2022-12-19

Similar Documents

Publication Publication Date Title
US9520819B2 (en) System and method for controlling a power generation system based on a detected islanding event
CA2716157C (en) Wind energy plant having converter control
US8570003B2 (en) Double fed induction generator converter and method for suppressing transient in deactivation of crowbar circuit for grid fault ridethrough
EP2673870B1 (en) Control arrangement and method for regulating the output voltage of a dc source power converter connected to a multi-source dc system
US9548690B2 (en) System and method for adjusting current regulator gains applied within a power generation system
Bhende et al. Novel control of photovoltaic based water pumping system without energy storage
US9641113B2 (en) System and method for controlling a power generation system based on PLL errors
EP3363094A1 (en) Power conversion system and method of operating the same
CA2860009A1 (en) A wind turbine system with dc converter control
WO2019208728A1 (en) System that interlinks with hydroelectric power generation line
US10186996B1 (en) Methods for operating electrical power systems
US8890364B2 (en) Methods and systems for controlling an intra-plant voltage level
US20140145440A1 (en) Variable wind turbine having a power dissipating unit; a method of operating a power dissipating unit in a wind turbine
JP2019193513A (en) Hydraulic power generation system interconnection system
JP6559563B2 (en) Output control device for wind power generation
JP6916293B2 (en) Hydropower grid interconnection system
JP6978161B2 (en) Hydropower system and control method
JP7191543B2 (en) Hydroelectric grid connection system
KR102186857B1 (en) Utility grid interconnection system, power generation controller using the same, and operation method thereof
EP3503381B1 (en) Methods for providing electrical power to wind turbine components
WO2015186232A1 (en) Rotating electric machine system or rotating electric machine system control method
CN105429535A (en) Rotating speed control method and rotating speed control device for miniature wind driven generator
JP4470422B2 (en) Power supply
JP6453107B2 (en) Power generation system
EP4175105A2 (en) System and method for reducing instability in reactive power command of an inverter-based resource

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221207

R150 Certificate of patent or registration of utility model

Ref document number: 7191544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150