JP2019191564A - Charging member, method for manufacturing charging member, electrophotographic device, and process cartridge - Google Patents

Charging member, method for manufacturing charging member, electrophotographic device, and process cartridge Download PDF

Info

Publication number
JP2019191564A
JP2019191564A JP2019032936A JP2019032936A JP2019191564A JP 2019191564 A JP2019191564 A JP 2019191564A JP 2019032936 A JP2019032936 A JP 2019032936A JP 2019032936 A JP2019032936 A JP 2019032936A JP 2019191564 A JP2019191564 A JP 2019191564A
Authority
JP
Japan
Prior art keywords
charging member
domain
matrix
rubber
elastic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019032936A
Other languages
Japanese (ja)
Other versions
JP7229811B2 (en
Inventor
匠 古川
Takumi Furukawa
匠 古川
渡辺 宏暁
Hiroaki Watanabe
宏暁 渡辺
健哉 寺田
Kenya Terada
健哉 寺田
友水雄也
Yuya Tomomizu
雄也 友水
俊光 中澤
Toshimitsu Nakazawa
俊光 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US16/372,834 priority Critical patent/US10558136B2/en
Priority to EP19167753.3A priority patent/EP3557329B1/en
Priority to CN201980026477.8A priority patent/CN112005173B/en
Priority to PCT/JP2019/016297 priority patent/WO2019203225A1/en
Priority to PCT/JP2019/016300 priority patent/WO2019203227A1/en
Priority to CN201980026338.5A priority patent/CN112020678B/en
Priority to PCT/JP2019/016347 priority patent/WO2019203238A1/en
Priority to CN201980026610.XA priority patent/CN112020679B/en
Priority to EP19789241.7A priority patent/EP3783440A4/en
Priority to CN201910308526.9A priority patent/CN110389508B/en
Priority to PCT/JP2019/016693 priority patent/WO2019203321A1/en
Priority to CN201980026505.6A priority patent/CN111989622B/en
Publication of JP2019191564A publication Critical patent/JP2019191564A/en
Priority to US17/070,712 priority patent/US11112748B2/en
Priority to US17/070,995 priority patent/US11307509B2/en
Priority to US17/072,463 priority patent/US11385559B2/en
Priority to US17/072,206 priority patent/US11175602B2/en
Priority to US17/496,402 priority patent/US11397388B2/en
Priority to US17/806,015 priority patent/US11640122B2/en
Application granted granted Critical
Publication of JP7229811B2 publication Critical patent/JP7229811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electrophotography Configuration And Component (AREA)

Abstract

To provide a charging member that achieves high stability of electric potential even when a difference in peripheral velocity between a body to be charged and the charging member is large.SOLUTION: The charging member comprises a conductive support and a single-layer elastic layer as a surface layer. The elastic layer has domains containing carbon black and rubber, and a matrix having a higher electrical resistance than that of the domains and containing rubber. The surface of the charging member is formed of the surface of the matrix and surfaces of the domains and has a plurality of concave parts. The domains are present at the bottom parts of the concave parts and exposed to the surface of the charging member only at the bottom parts of the concave parts. The volume resistivity of the elastic layer is 1×10or more and 1×10Ω cm or less. When a current value when a DC voltage of 80 V is applied between the conductive support and the surface of the matrix is A1, and a current value when a DC voltage of 80 V is applied between the conductive support and the surfaces of the domains is A2, A2 is 20 times or more of A1.SELECTED DRAWING: Figure 1

Description

本発明は帯電部材、帯電部材の製造方法、電子写真装置およびプロセスカートリッジに関する。   The present invention relates to a charging member, a method for manufacturing the charging member, an electrophotographic apparatus, and a process cartridge.

接触帯電用の帯電部材として、特許文献1は、イオン導電性ゴムを含むマトリックスと、ブタジエン骨格を有するゴムとカーボンブラックとを含む電子導電性ゴム材料からなるドメインと、を含み、かつ、該ブタジエン骨格を有するゴムが、特定の原子団で末端変性されてなるものである、導電性ゴム弾性体からなる弾性層を備えた帯電部材を開示している。   As a charging member for contact charging, Patent Document 1 includes a matrix containing an ion conductive rubber, a domain made of an electronic conductive rubber material containing a rubber having a butadiene skeleton and carbon black, and the butadiene Disclosed is a charging member having an elastic layer made of a conductive rubber elastic body, in which rubber having a skeleton is terminal-modified with a specific atomic group.

特開2012−163954号公報JP 2012-163554 A

本発明者らは、特許文献1に係る帯電部材は、帯電部材の電気抵抗の電圧依存性や周囲環境依存性のさらなる低減に、有効であることを確認した。
一方、近年、帯電部材と、該帯電部材と接触配置されている、電子写真感光体の如き被帯電体とを独立に駆動させて、帯電部材と被帯電体との周速差を大きくすることによって、電子写真画像形成工程における帯電部材の汚れのさらなる抑制を図る電子写真画像形成方法が提案されている。
The inventors of the present invention have confirmed that the charging member according to Patent Document 1 is effective for further reducing the voltage dependency and ambient environment dependency of the electrical resistance of the charging member.
On the other hand, in recent years, a charging member and an object to be charged such as an electrophotographic photosensitive member arranged in contact with the charging member are independently driven to increase a peripheral speed difference between the charging member and the object to be charged. Thus, an electrophotographic image forming method for further suppressing contamination of the charging member in the electrophotographic image forming process has been proposed.

しかしながら、被帯電体と帯電部材との周速差を大きくした場合、被帯電体の表面電位が一定の値に収束しない場合があった。   However, when the difference in peripheral speed between the charged body and the charging member is increased, the surface potential of the charged body may not converge to a constant value.

本発明の一態様は、被帯電体と帯電部材との周速差が大きい場合にも電位の安定性が高い帯電部材の提供に向けたものである。
また、本発明の他の態様は、被帯電体と帯電部材との周速差が大きい場合にも電位の安定性が高い帯電部材の製造方法の提供に向けたものである。
さらに、本発明の他の態様は、高品位な電子写真画像を形成することのできる電子写真装置の提供に向けたものである。
さらにまた、本発明の他の態様は、高品位な電子写真画像の形成に資するプロセスカートリッジの提供に向けたものである。
One embodiment of the present invention is directed to providing a charging member having high potential stability even when the peripheral speed difference between the charged body and the charging member is large.
Another aspect of the present invention is directed to providing a method for producing a charging member having high potential stability even when the peripheral speed difference between the member to be charged and the charging member is large.
Furthermore, another aspect of the present invention is directed to providing an electrophotographic apparatus capable of forming a high-quality electrophotographic image.
Furthermore, another aspect of the present invention is directed to providing a process cartridge that contributes to the formation of high-quality electrophotographic images.

本発明の一態様によれば、導電性支持体と弾性層とを有する帯電部材であって、弾性層は、単層で構成された帯電部材の表面層であり、かつ、カーボンブラックおよびゴムを含むドメインと、ドメインよりも高い電気抵抗を有する、ゴムを含むマトリックスと、を含み、帯電部材の表面は、マトリックスの表面と、ドメインの表面とで構成され、複数個の凹部を有し、ドメインは凹部の底部に存在し、かつ、凹部の底部においてのみ帯電部材の表面に露出しており、弾性層の体積抵抗率は、1×10Ωcm以上1×10Ωcm以下であり、
導電性支持体と、帯電部材の表面を構成するマトリックスの表面に接触させた原子間力顕微鏡(AFM)のカンチレバーと、の間に80Vの直流電圧を印加した際の電流値をA1とし、
導電性支持体と、帯電部材の表面を構成するドメインの表面に接触させたAFMのカンチレバーと、の間に80Vの直流電圧を印加した際の電流値をA2としたとき、A2が、A1の20倍以上である帯電部材が提供される。
According to one aspect of the present invention, there is provided a charging member having a conductive support and an elastic layer, the elastic layer being a surface layer of the charging member composed of a single layer, and comprising carbon black and rubber. And a matrix containing rubber having a higher electric resistance than the domain, and the surface of the charging member is composed of the surface of the matrix and the surface of the domain, and has a plurality of recesses. Is present on the surface of the charging member only at the bottom of the recess, and the volume resistivity of the elastic layer is 1 × 10 5 Ωcm or more and 1 × 10 8 Ωcm or less,
A1 is a current value when a DC voltage of 80 V is applied between the conductive support and the cantilever of an atomic force microscope (AFM) in contact with the surface of the matrix constituting the surface of the charging member;
When the current value when a direct current voltage of 80 V is applied between the conductive support and the AFM cantilever in contact with the surface of the domain constituting the surface of the charging member is A2, A2 is A1 A charging member that is 20 times or more is provided.

また、本発明の他の態様によれば、電子写真感光体と、該電子写真感光体を帯電可能に配置されている帯電部材とを具備している電子写真装置であって、該帯電部材が、上記の帯電部材である電子写真装置が提供される。   According to another aspect of the present invention, there is provided an electrophotographic apparatus comprising: an electrophotographic photosensitive member; and a charging member disposed so as to be capable of charging the electrophotographic photosensitive member. An electrophotographic apparatus as the above-described charging member is provided.

さらに、本発明の他の態様によれば、電子写真装置の本体に着脱可能であるプロセスカートリッジであって、電子写真感光体と、該電子写真感光体を帯電可能に配置されている帯電部材とを具備し、該帯電部材が、上記の帯電部材であるプロセスカートリッジが提供される。   Furthermore, according to another aspect of the present invention, there is provided a process cartridge that can be attached to and detached from the main body of the electrophotographic apparatus, the electrophotographic photosensitive member, and a charging member that is disposed so that the electrophotographic photosensitive member can be charged. And a process cartridge in which the charging member is the above-described charging member.

さらにまた、本発明の他の態様によれば、帯電部材の製造方法であって、該帯電部材は、導電性支持体と弾性層とを有し、該弾性層は、単層で構成された該帯電部材の表面層であり、かつ、カーボンブラックおよびゴムを含むドメインと、ゴムを含み該ドメインよりも高い電気抵抗を有するマトリックスと、を含み、該帯電部材の表面は、該マトリックスの表面と、該ドメインの表面とで構成され、複数個の凹部を有し、該ドメインは、該凹部の底部に存在し、かつ、該凹部の底部においてのみ該帯電部材の表面に露出しており、
(A)カーボンブラックおよびゴムを含み、該ドメインとなるカーボンマスターバッチを調製する工程、
(B)該カーボンマスターバッチと、該マトリックスとなるゴム組成物と、を混練して、ドメイン・マトリックス構造を有するゴム組成物を調製する工程、および
(C)該ドメイン・マトリックス構造を有するゴム組成物を、クロスヘッドから芯金と共に押し出して、該芯金の周囲を、該ドメイン・マトリックス構造を有するゴム組成物で被覆する工程を有し、
該カーボンマスターバッチのダイスウェル値をDS(d)とし、該マトリックスとなるゴム組成物のダイスウェル値をDS(m)としたときに、ダイスウェル値の比DS(m)/DS(d)を、1.0よりも大きくする帯電部材の製造方法が提供される。
Furthermore, according to another aspect of the present invention, there is provided a method for producing a charging member, wherein the charging member has a conductive support and an elastic layer, and the elastic layer is formed of a single layer. A surface layer of the charging member, and including a domain containing carbon black and rubber, and a matrix containing rubber and having a higher electric resistance than the domain, and the surface of the charging member includes a surface of the matrix The surface of the domain, and having a plurality of recesses, the domain is present at the bottom of the recess, and is exposed to the surface of the charging member only at the bottom of the recess,
(A) a step of preparing a carbon masterbatch comprising carbon black and rubber and serving as the domain;
(B) a step of kneading the carbon masterbatch and a rubber composition to be the matrix to prepare a rubber composition having a domain / matrix structure; and (C) a rubber composition having the domain / matrix structure. A step of extruding an object together with a core from a crosshead, and coating the periphery of the core with a rubber composition having the domain matrix structure,
When the die swell value of the carbon master batch is DS (d) and the die swell value of the rubber composition as the matrix is DS (m), the ratio of the die swell values DS (m) / DS (d) There is provided a method of manufacturing a charging member that has a value larger than 1.0.

本発明の一態様によれば、被帯電体と帯電部材との周速差が大きい場合にも電位の安定性が高い帯電部材を得ることができる。
また、本発明の他の態様によれば、被帯電体と帯電部材との周速差が大きい場合にも電位の安定性が高い帯電部材の製造方法を得ることができる。さらに、本発明の他の態様によれば、高品位な電子写真画像を形成することのできる電子写真装置を得ることができる。さらにまた、本発明の他の態様によれば、高品位な電子写真画像の形成に資するプロセスカートリッジを得ることができる。
According to one embodiment of the present invention, a charging member having high potential stability can be obtained even when the peripheral speed difference between the charged body and the charging member is large.
In addition, according to another aspect of the present invention, it is possible to obtain a method for manufacturing a charging member with high potential stability even when the peripheral speed difference between the charged body and the charging member is large. Furthermore, according to another aspect of the present invention, an electrophotographic apparatus capable of forming a high-quality electrophotographic image can be obtained. Furthermore, according to another aspect of the present invention, a process cartridge that contributes to the formation of a high-quality electrophotographic image can be obtained.

マトリックス・ドメイン構造のゴム組成物を示す模式図である。It is a schematic diagram which shows the rubber composition of a matrix domain structure. 帯電ローラの構成を示す模式的断面図である。FIG. 3 is a schematic cross-sectional view illustrating a configuration of a charging roller. クロスヘッド押出装置の概略構成を示す図である。It is a figure which shows schematic structure of a crosshead extrusion apparatus. AFMにより帯電ローラの電流測定する装置の概略構成を示す図である。It is a figure which shows schematic structure of the apparatus which measures the electric current of a charging roller by AFM. 表面電位を測定する装置の概略構成を示す図である。It is a figure which shows schematic structure of the apparatus which measures surface potential. AFMによる凹部の深さの測定結果の一例を示す図である。It is a figure which shows an example of the measurement result of the depth of the recessed part by AFM. 電子写真装置の構成を示す図である。It is a figure which shows the structure of an electrophotographic apparatus. プロセスカートリッジの構成を示す図である。It is a figure which shows the structure of a process cartridge. マトリックス・ドメイン構造のゴム組成物(球状樹脂粒子含有)を示す模式図である。It is a schematic diagram which shows the rubber composition (spherical resin particle containing) of a matrix domain structure.

本発明者らは、特許文献1に係る帯電部材を、被帯電体との周速差が大きい電子写真画像形成プロセスに用いた場合における、被帯電体の表面電位が一定の値に収束しない理由を検討した。
その結果、当該電子写真画像形成プロセスにおいては、帯電部材と被帯電体との接触部において、帯電部材から被帯電体に電荷注入が生じるためであると考えられる。すなわち、電荷注入に伴って、被帯電体の表面電位が一定の値に収束することなく、被帯電体が回転して帯電部材とこすれ合うたびに被帯電体の表面電位が上昇し、被帯電体の表面電位が安定しないものと考えられる。
Reasons why the surface potential of the charged body does not converge to a constant value when the charging member according to Patent Document 1 is used in an electrophotographic image forming process having a large peripheral speed difference from the charged body. It was investigated.
As a result, in the electrophotographic image forming process, it is considered that charge injection occurs from the charging member to the charged body at the contact portion between the charging member and the charged body. That is, with the charge injection, the surface potential of the charged body does not converge to a constant value and the surface potential of the charged body increases every time the charged body rotates and rubs against the charging member. It is thought that the surface potential of the body is not stable.

そこで、本発明者らは、帯電部材のカーボンブラックを含むドメインが被帯電体に接触して、被帯電体に電荷が注入される現象を抑制し得る帯電部材の構成を検討した。
その結果、電子導電性のドメインが、被帯電体に対して接触しにくくした構成の帯電部材が、上記の目的の達成に有効であることを見出した。
すなわち、本発明の一態様に係る帯電部材は、導電性支持体と弾性層とを有し、該弾性層は、単層で構成された該帯電部材の表面層であり、かつ、カーボンブラックおよびゴムを含むドメインと、ゴムを含み該ドメインよりも高い電気抵抗を有するマトリックスと、を含む。
Accordingly, the present inventors have studied a configuration of a charging member that can suppress a phenomenon in which a domain containing carbon black of the charging member contacts the member to be charged and charges are injected into the member to be charged.
As a result, it has been found that a charging member having a structure in which an electronically conductive domain is less likely to come into contact with an object to be charged is effective in achieving the above object.
That is, the charging member according to one embodiment of the present invention includes a conductive support and an elastic layer, and the elastic layer is a surface layer of the charging member formed of a single layer, and carbon black and A domain including rubber and a matrix including rubber and having a higher electric resistance than the domain are included.

該帯電部材の表面は、該マトリックスの表面と、該ドメインの表面とで構成され、複数個の凹部を有し、該ドメインは、該凹部の底部に存在し、かつ、該凹部の底部においてのみ該帯電部材の表面に露出している。
該弾性層の体積抵抗率は、1×10Ωcm以上1×10Ωcm以下である。
また、該導電性支持体と、該帯電部材の表面を構成する該マトリックスの表面に接触させた原子間力顕微鏡のカンチレバーと、の間に80Vの直流電圧を印加した際の電流値をA1とし、
該導電性支持体と、該帯電部材の表面を構成する該ドメインの表面に接触させた原子間力顕微鏡のカンチレバーと、の間に80Vの直流電圧を印加した際の電流値をA2としたとき、A2が、A1の20倍以上である。
The surface of the charging member is composed of the surface of the matrix and the surface of the domain, and has a plurality of recesses, and the domain is present at the bottom of the recess and only at the bottom of the recess. It is exposed on the surface of the charging member.
The volume resistivity of the elastic layer is 1 × 10 5 Ωcm or more and 1 × 10 8 Ωcm or less.
In addition, the current value when a DC voltage of 80 V is applied between the conductive support and the cantilever of the atomic force microscope in contact with the surface of the matrix constituting the surface of the charging member is A1. ,
When the current value when an AC voltage of 80 V is applied between the conductive support and the cantilever of the atomic force microscope brought into contact with the surface of the domain constituting the surface of the charging member is A2. , A2 is 20 times or more of A1.

本態様に係る帯電部材においては、ドメインとマトリックスの電気抵抗を所定の比にして、表面に露出したドメインを凹部とする。これによって、導電粒子であるカーボンブラックはドメインの凹部に存在するので、帯電部材と被帯電体との接触部における、カーボンブラックから被帯電体への電荷移動が防止できる。また、ドメインがマトリックスに覆われた表面に比べ、本態様に係る帯電部材においては、放電による帯電均一性も維持される。なぜなら、放電点となるドメインが、帯電部材の表面の一部を構成しているからである。   In the charging member according to this aspect, the electrical resistance between the domain and the matrix is set to a predetermined ratio, and the domain exposed on the surface is defined as a recess. As a result, since carbon black, which is a conductive particle, exists in the concave portion of the domain, it is possible to prevent charge transfer from the carbon black to the charged body at the contact portion between the charging member and the charged body. Further, in the charging member according to this aspect, the charging uniformity due to the discharge is maintained as compared with the surface where the domain is covered with the matrix. This is because the domain serving as the discharge point constitutes a part of the surface of the charging member.

以下、本発明の好適な実施の形態について説明する。尚、以下、特に帯電部材の一例として、ローラ形状の帯電部材(以降、「帯電ローラ」ともいう)について述べるが、本発明に係る帯電部材の形状は、ローラ形状のみに限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described. Hereinafter, a roller-shaped charging member (hereinafter also referred to as a “charging roller”) will be described as an example of the charging member, but the shape of the charging member according to the present invention is not limited to the roller shape. .

図2に、本態様の導電性ゴム弾性体を使用した一例として、帯電ローラ2の模式図を示す。帯電ローラ2は、芯金21とその外周に設けられた弾性層22から構成されている。この弾性層22は、被帯電体と接する表面層としての役割も兼ねている。   FIG. 2 shows a schematic diagram of the charging roller 2 as an example using the conductive rubber elastic body of this embodiment. The charging roller 2 includes a cored bar 21 and an elastic layer 22 provided on the outer periphery thereof. This elastic layer 22 also serves as a surface layer in contact with the member to be charged.

弾性層は図1(a)に示す様に、カーボンブラックおよびゴムを含むドメイン11と、該ドメインよりも高い電気抵抗を有する、ゴムを含むマトリックス12とからなるマトリックス・ドメイン構造を構築している。図1(a)は、帯電部材の被帯電体に接する面に平行な方向に切断した断面図である。一方、図1(b)は、帯電部材の被帯電体に接する面に垂直な方向に切断した断面図である。図1(b)中の13は被帯電体と接する帯電部材の表面側を示しており、14は帯電部材の表面に存在する凹部の底部に存在するドメインである。図1(c)は、帯電部材の表面近傍の俯瞰図である。図1(a)から図1(c)に示すように、本願発明に係る帯電部材の表面は、マトリックスとドメインとで構成され、複数個の凹部を有し、その凹部の底部にのみドメインは露出している。   As shown in FIG. 1A, the elastic layer has a matrix-domain structure composed of a domain 11 containing carbon black and rubber, and a matrix 12 containing rubber having a higher electrical resistance than the domain. . FIG. 1A is a cross-sectional view taken along a direction parallel to the surface of the charging member that contacts the member to be charged. On the other hand, FIG. 1B is a cross-sectional view cut in a direction perpendicular to the surface of the charging member that contacts the member to be charged. In FIG. 1B, reference numeral 13 denotes the surface side of the charging member in contact with the member to be charged, and reference numeral 14 denotes a domain existing at the bottom of the concave portion existing on the surface of the charging member. FIG. 1C is an overhead view of the vicinity of the surface of the charging member. As shown in FIGS. 1 (a) to 1 (c), the surface of the charging member according to the present invention is composed of a matrix and a domain, and has a plurality of recesses, and the domain is only at the bottom of the recesses. Exposed.

ドメインはマトリックスよりも抵抗が低く、弾性層内の導電性や被帯電体との放電に寄与する一方、凹部に存在するので、被帯電体への電荷の注入は抑制される。また、マトリックスはドメインよりも抵抗が高いので、被帯電体と接触はするものの電荷の注入は少ない。この効果を得るための電気特性は、弾性層の体積抵抗とAFMで測定したドメイン部とマトリックス部の電流値の比にて表す。   The domain has a lower resistance than the matrix and contributes to the electrical conductivity in the elastic layer and the discharge with the charged body, while being present in the recess, the injection of charge into the charged body is suppressed. In addition, since the matrix has a higher resistance than the domain, it is in contact with the member to be charged, but there is little injection of charge. The electrical characteristics for obtaining this effect are represented by the ratio of the volume resistance of the elastic layer and the current value of the domain part and the matrix part measured by AFM.

すなわち、導電性支持体と、帯電部材の表面を構成するマトリックスの表面に接触させたAFMのカンチレバーと、の間に80Vの直流電圧を印加した際の電流値をA1とし、導電性支持体と、帯電部材の表面を構成するドメインの表面に接触させたAFMのカンチレバーと、の間に80Vの直流電圧を印加した際の電流値をA2としたとき、A2が、A1の20倍以上であることが好ましい。
帯電部材として、適切な体積抵抗を有している前提で、弾性層の表面におけるドメイン部から流れる電流値がマトリックス部から流れる電流値の20倍以上であることで、被帯電体へのマトリックス部からの電荷の注入が抑制されること、および、ドメイン部からの十分な放電による被帯電体の帯電が両立する。
That is, the current value when a direct current voltage of 80 V is applied between the conductive support and the AFM cantilever brought into contact with the surface of the matrix constituting the surface of the charging member is A1, and the conductive support and When the current value when a direct current voltage of 80 V is applied between the AFM cantilever and the surface of the domain constituting the surface of the charging member is A2, A2 is 20 times or more of A1. It is preferable.
As a charging member, on the premise of having an appropriate volume resistance, the current value flowing from the domain portion on the surface of the elastic layer is 20 times or more the current value flowing from the matrix portion, so that Inhibition of the injection of charges from the substrate and charging of the object to be charged by sufficient discharge from the domain part are compatible.

被帯電体の表面電位が一定の値に収束しないことで電子写真画像の濃度がプロセス方向で変わってしまうことや、帯電部材の汚れムラに対応して電荷注入に差が生まれることで画像ムラになるなどの画像弊害が起こることは、電荷注入が抑制されることにより防止され、電位の安定性の高い帯電部材とすることができる。   If the surface potential of the object to be charged does not converge to a certain value, the density of the electrophotographic image changes in the process direction, and the difference in charge injection corresponding to the unevenness of the charging member contamination causes image unevenness. Occurrence of image defects such as becoming is prevented by suppressing charge injection, and a charging member with high potential stability can be obtained.

ドメインの体積分率は、弾性層の体積を基準として、5体積%以上25体積%以下が好ましい。5体積%以上であれば、マトリックスの導電性を高くせずとも帯電部材として必要な放電を得ることができる。一方、ドメインの体積分率が25体積%以下であれば、ドメイン同士が連結および近づきすぎることにより、注入電位が高くなることを抑制できる。また、抵抗が低くなり過放電が起こることを抑制できる。さらに、ドメインの体積分率は、10体積%以上から20体積%以下であることがより好ましい。   The volume fraction of the domain is preferably 5% by volume or more and 25% by volume or less based on the volume of the elastic layer. If the volume is 5% by volume or more, it is possible to obtain a discharge necessary as a charging member without increasing the conductivity of the matrix. On the other hand, if the volume fraction of the domains is 25% by volume or less, it is possible to suppress the injection potential from being increased due to the domains being connected and brought too close together. In addition, it is possible to suppress the occurrence of overdischarge due to low resistance. Further, the volume fraction of the domain is more preferably 10% by volume to 20% by volume.

弾性層におけるドメインの数は、一片10μmの立方体中に1個以上500個以下であることが好ましい。ちなみに、上記のドメインの数および体積分率において、おおよそのドメインの直径は、0.5μmから5μm程度となる。ドメインの数が500個以下であることで、ドメイン同士が連結および近づきすぎることにより、注入電位が高くなることを抑制できる。また、抵抗が低くなり過放電が起こることを抑制できる。一方、ドメイン数が1個以上であることで、ドメインが少ないことに起因してマトリックスの導電性を高くする必要が生じ、注入電位が高くなることを抑制できる。また、抵抗が高くなり放電不足が起こることを抑制できる。   The number of domains in the elastic layer is preferably 1 or more and 500 or less in a 10 μm cube. Incidentally, in the above-mentioned number of domains and volume fraction, the approximate domain diameter is about 0.5 μm to 5 μm. When the number of domains is 500 or less, it is possible to suppress an increase in injection potential due to the domains being connected and approached too much. In addition, it is possible to suppress the occurrence of overdischarge due to low resistance. On the other hand, when the number of domains is one or more, it is necessary to increase the conductivity of the matrix due to the small number of domains, and it is possible to suppress an increase in injection potential. Moreover, it can suppress that resistance becomes high and discharge shortage occurs.

底部にドメインが露出した凹部の深さは、1.0μm以上4.0μm以下であることが好ましい。1.0μm以上であることで帯電部材が被帯電体と当接した状態にて、ドメインと被帯電体が接触することが抑制されるため好ましい。一方、4.0μm以下であることで、凹部に汚れが付着した場合にも、静電的に被帯電体側に汚れを戻し得る。   The depth of the concave portion where the domain is exposed at the bottom is preferably 1.0 μm or more and 4.0 μm or less. It is preferable that the thickness is 1.0 μm or more because the contact between the domain and the member to be charged is suppressed while the charging member is in contact with the member to be charged. On the other hand, when the thickness is 4.0 μm or less, even when dirt is attached to the concave portion, the dirt can be electrostatically returned to the charged body side.

(弾性層の材料)
ドメインは電子導電性ゴム材料からなる。電子導電性ゴム材料とは、例えば、それ自体は導電性を示さないバインダーポリマーに、カーボンブラックを分散して電気抵抗を調整したものを含む。
(Material of elastic layer)
The domain is made of an electronically conductive rubber material. The electronically conductive rubber material includes, for example, a material in which carbon black is dispersed in a binder polymer that does not exhibit electrical conductivity to adjust electric resistance.

バインダーポリマーとしては、従来から帯電部材の導電性弾性層、例えば電子写真装置用の帯電ローラの導電性弾性層に用いられている、ブタジエンゴム、アクリロニトリルブタジエンゴム、イソプレンゴム、クロロプレンゴム、スチレン−ブタジエンゴム、エチレン−プロピレンゴム、ポリノルボルネンゴム、エピクロルヒドリンゴム等を含むゴム組成物が好適に用いられる。   As the binder polymer, butadiene rubber, acrylonitrile butadiene rubber, isoprene rubber, chloroprene rubber, styrene-butadiene, which are conventionally used for conductive elastic layers of charging members, for example, conductive elastic layers of charging rollers for electrophotographic apparatuses, are used. A rubber composition containing rubber, ethylene-propylene rubber, polynorbornene rubber, epichlorohydrin rubber or the like is preferably used.

ドメインに配合されるカーボンブラックの種類については、ドメインに導電性を付与することができる導電性カーボンブラックであれば特に限定されるものではない。具体的には、例えば、ガスファーネスブラック、オイルファーネスブラック、サーマルブラック、ランプブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。   The type of carbon black blended in the domain is not particularly limited as long as it is a conductive carbon black that can impart conductivity to the domain. Specific examples include gas furnace black, oil furnace black, thermal black, lamp black, acetylene black, and ketjen black.

さらに、ドメインを形成するゴム組成物には、必要に応じて、ゴムの配合剤として一般に用いられている充填剤、加工助剤、架橋助剤、架橋促進剤、架橋促進助剤、架橋遅延剤、軟化剤、分散剤、着色剤等を添加してもよい。   Further, in the rubber composition forming the domain, if necessary, a filler, a processing aid, a crosslinking aid, a crosslinking accelerator, a crosslinking accelerator, a crosslinking retarder generally used as a rubber compounding agent , Softeners, dispersants, colorants and the like may be added.

マトリックスはカーボンブラックの如き導電粒子を含まず、ドメインよりも高い電気抵抗を有する。マトリックスに含まれるバインダーポリマーとしては、従来から帯電部材の導電性弾性層、例えば電子写真装置用の帯電ローラの導電性弾性層に用いられている、ブタジエンゴム、イソプレンゴム、クロロプレンゴム、スチレン−ブタジエンゴム、エチレン−プロピレンゴム、ポリノルボルネンゴム、エピクロルヒドリンゴム等を含むゴム組成物が好適に用いられる。   The matrix does not contain conductive particles such as carbon black and has a higher electrical resistance than the domain. Examples of the binder polymer contained in the matrix include butadiene rubber, isoprene rubber, chloroprene rubber, and styrene-butadiene, which are conventionally used for conductive elastic layers of charging members, for example, conductive elastic layers of charging rollers for electrophotographic apparatuses. A rubber composition containing rubber, ethylene-propylene rubber, polynorbornene rubber, epichlorohydrin rubber or the like is preferably used.

上記のマトリックスを構成するゴム組成物には、弾性層の抵抗を帯電部材として好適な中抵抗域(例えば、1.0×105Ω〜1.0×108Ω)に調整するため、ブリードアウトしない程度にイオン導電剤を配合してもよい。ただし、イオン導電剤を配合したマトリックスは電荷注入が大きくなる傾向になるため、最小限にすることが好ましい。 The rubber composition constituting the above matrix has a bleed in order to adjust the resistance of the elastic layer to a middle resistance range suitable for a charging member (for example, 1.0 × 10 5 Ω to 1.0 × 10 8 Ω). You may mix | blend an ion conductive agent to such an extent that it does not out. However, it is preferable to minimize the matrix containing the ionic conductive agent because charge injection tends to increase.

かかるイオン導電剤としては、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カルシウム等の無機イオン物質;ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、オクタデシルトリメチルアンモニウムクロライド、ドデシルトリメチルアンモニウムクロライド、ヘキサデシルトリメチルアンモニウムクロライド、トリオクチルプロピルアンモニウムブロミド、変性脂肪族ジメチルエチルアンモニウムエトサルフェート等の陽イオン性界面活性剤;ラウリルベタイン、ステアリルベタイン、ジメチルアルキルラウリルベタイン等の両性イオン界面活性剤;過塩素酸テトラエチルアンモニウム、過塩素酸テトラブチルアンモニウム、過塩素酸トリメチルオクタデシルアンモニウム等の第四級アンモニウム塩;トリフルオロメタンスルホン酸リチウム等の有機酸リチウム塩を例示することができる。   Examples of the ionic conductive agent include inorganic ionic substances such as lithium perchlorate, sodium perchlorate, and calcium perchlorate; lauryl trimethyl ammonium chloride, stearyl trimethyl ammonium chloride, octadecyl trimethyl ammonium chloride, dodecyl trimethyl ammonium chloride, hexadecyl trimethyl. Cationic surfactants such as ammonium chloride, trioctylpropylammonium bromide, modified aliphatic dimethylethylammonium ethosulphate; amphoteric surfactants such as lauryl betaine, stearyl betaine, dimethylalkyl lauryl betaine; tetraethylammonium perchlorate, Quaternary ammonia such as tetrabutylammonium perchlorate and trimethyloctadecylammonium perchlorate Umushio; it can be exemplified organic acid lithium salts of lithium trifluoromethanesulfonate and the like.

上記の様なイオン導電剤の配合量は、例えば、ゴム組成物の100質量部に対して0.5質量部以上5.0質量部以下である。
また、マトリックスを形成するゴム組成物には、例えば、粒子径が1μm〜90μmの範囲にある球状粒子を添加してもよい。具体的には例えば、フェノール樹脂粒子、シリコーン樹脂粒子、ポリアクリロニトリル樹脂粒子、ポリスチレン樹脂粒子、ポリウレタン樹脂粒子、ナイロン樹脂粒子、ポリエチレン樹脂粒子、ポリプロピレン樹脂粒子、アクリル樹脂粒子、シリカ粒子、及びアルミナ粒子から選ばれる少なくとも一つの球状粒子が挙げられる。このようなゴム組成物を用いることにより、弾性層の外表面が、球状粒子に由来する凸部を有する帯電部材とすることができる。
The amount of the ion conductive agent as described above is, for example, 0.5 parts by mass or more and 5.0 parts by mass or less with respect to 100 parts by mass of the rubber composition.
Further, for example, spherical particles having a particle diameter in the range of 1 μm to 90 μm may be added to the rubber composition forming the matrix. Specifically, for example, from phenol resin particles, silicone resin particles, polyacrylonitrile resin particles, polystyrene resin particles, polyurethane resin particles, nylon resin particles, polyethylene resin particles, polypropylene resin particles, acrylic resin particles, silica particles, and alumina particles There may be mentioned at least one spherical particle selected. By using such a rubber composition, it is possible to provide a charging member in which the outer surface of the elastic layer has convex portions derived from spherical particles.

図9は、本発明の一態様に係る帯電部材であって、弾性層22が、球状粒子15を含み、弾性層22の外表面が、球状粒子15に由来する凸部を有する帯電部材の説明図である。具体的には、図9は、弾性層22の球状粒子15に由来する凸部901が形成されている部分を、弾性層の厚み方向に切断したときの断面図および凸部901の外表面の部分拡大図である。図9に示すように、球状粒子15に由来する凸部901の外表面は、複数個の凹部を有し、ドメイン11は、凹部の底部においてのみ露出している。そのため、たとえ、外表面に球状粒子15に由来する凸部901が存在していても、導電性のドメインが、不図示の被帯電体と直接接触しにくい。そのため、帯電部材からの被帯電体への電荷注入が有意に抑制され、その結果、被帯電体の帯電電位が、より一層安定化する。   FIG. 9 illustrates a charging member according to one embodiment of the present invention, in which the elastic layer 22 includes spherical particles 15 and the outer surface of the elastic layer 22 includes convex portions derived from the spherical particles 15. FIG. Specifically, FIG. 9 is a cross-sectional view of the elastic layer 22 where the convex portions 901 derived from the spherical particles 15 are formed in the thickness direction of the elastic layer and the outer surface of the convex portions 901. It is a partial enlarged view. As shown in FIG. 9, the outer surface of the convex part 901 derived from the spherical particles 15 has a plurality of concave parts, and the domain 11 is exposed only at the bottom part of the concave part. Therefore, even if the convex portion 901 derived from the spherical particles 15 is present on the outer surface, the conductive domain is difficult to directly contact with an object to be charged (not shown). Therefore, charge injection from the charging member to the member to be charged is significantly suppressed, and as a result, the charged potential of the member to be charged is further stabilized.

一般に、弾性層の材料として、非相溶系のポリマーブレンドを用いた場合、そのマトリックス・ドメイン構造は、各々のポリマー粘度やブレンド条件にもよるが、組成比が大きなゴム組成物および粘度の低いゴム組成物がマトリックスになる傾向がある。従って、ドメインの体積分率は5体積%以上25体積%以下を要する。その結果、安定したドメインの形成が可能となり、導電性ゴム組成物全体のマトリックス・ドメイン構造が安定する。   In general, when an incompatible polymer blend is used as the material of the elastic layer, the matrix domain structure depends on the polymer viscosity and blending conditions, but the rubber composition with a large composition ratio and the rubber with a low viscosity are used. The composition tends to be a matrix. Therefore, the volume fraction of the domain requires 5% by volume or more and 25% by volume or less. As a result, a stable domain can be formed, and the matrix domain structure of the entire conductive rubber composition is stabilized.

さらに、安定したマトリックス・ドメイン構造を出現させる為には、ムーニー粘度計を用いた100℃でのML1+4の値において、ドメインの粘度がマトリックスの粘度に比べ高く、その粘度差は5ポイント以上60ポイント以下であることがさらに好ましい。   Furthermore, in order to make a stable matrix-domain structure appear, in the value of ML1 + 4 at 100 ° C. using a Mooney viscometer, the viscosity of the domain is higher than the viscosity of the matrix, and the viscosity difference is 5 points or more and 60 points. More preferably, it is as follows.

(導電性の支持体)
導電性支持体は、導電性を有し、表面層等を支持可能であって、かつ、帯電部材としての、典型的には帯電ローラとしての強度を維持し得るものであればよい。
(Conductive support)
The conductive support is not particularly limited as long as it has conductivity, can support the surface layer, etc., and can maintain strength as a charging member, typically as a charging roller.

<帯電部材の製造方法>
本発明の一態様に係る帯電部材の製造方法の一例として、製造工程が簡略であるという観点から有効な方法を説明する。その製造方法は、下記工程(A)〜(D)を含む。
(A)カーボンブラックおよびゴムを含む、ドメイン形成用のカーボンマスターバッチ(CMB)を調製する工程;
(B)マトリックスとなるゴム組成物を調製する工程;
(C)該カーボンマスターバッチと該ゴム組成物とを混練して、ドメイン・マトリックス構造を有するゴム組成物を調製する工程;
(D)該マトリックス・ドメイン構造を有するゴム組成物を、クロスヘッドから芯金と共に押し出して、該芯金の周囲を、該マトリックス・ドメイン構造を有するゴム組成物で被覆する工程。
<Method for manufacturing charging member>
As an example of a method for manufacturing a charging member according to an aspect of the present invention, a method that is effective from the viewpoint that the manufacturing process is simple will be described. The manufacturing method includes the following steps (A) to (D).
(A) a step of preparing a carbon masterbatch (CMB) for domain formation containing carbon black and rubber;
(B) a step of preparing a rubber composition to be a matrix;
(C) a step of kneading the carbon master batch and the rubber composition to prepare a rubber composition having a domain / matrix structure;
(D) A step of extruding the rubber composition having a matrix domain structure together with a core metal from a crosshead, and coating the periphery of the core metal with the rubber composition having the matrix domain structure.

図3は、クロスヘッド押出し成形機3の概略構成図である。クロスヘッド押出し成形機3は、芯金31の全周にわたって未加硫ゴム組成物32を均等に被覆して、中心に芯金31が入った未加硫ゴムローラ33を製造するための装置である。   FIG. 3 is a schematic configuration diagram of the crosshead extrusion molding machine 3. The crosshead extrusion molding machine 3 is an apparatus for producing an unvulcanized rubber roller 33 in which the core metal 31 is placed in the center by uniformly coating the unvulcanized rubber composition 32 over the entire circumference of the core metal 31. .

クロスヘッド押出し成形機3には、芯金31と未加硫ゴム組成物32が送り込まれるクロスヘッド34と、クロスヘッド34に芯金31を送り込む搬送ローラ35と、クロスヘッド34に未加硫ゴム組成物32を送り込むシリンダ36と、が設けられている。   The cross head extrusion molding machine 3 includes a cross head 34 to which the core metal 31 and the unvulcanized rubber composition 32 are fed, a conveying roller 35 for feeding the core metal 31 to the cross head 34, and an unvulcanized rubber to the cross head 34. And a cylinder 36 for feeding the composition 32.

搬送ローラ35は、複数本の芯金31を軸方向に連続的にクロスヘッド34に送り込む。シリンダ36は内部にスクリュ37を備え、スクリュ37の回転により未加硫ゴム組成物32をクロスヘッド34内に送り込む。   The transport roller 35 continuously feeds a plurality of core bars 31 to the cross head 34 in the axial direction. The cylinder 36 includes a screw 37 inside, and the unvulcanized rubber composition 32 is fed into the cross head 34 by the rotation of the screw 37.

芯金31は、クロスヘッド34内に送り込まれると、シリンダ36からクロスヘッド内に送り込まれた未加硫ゴム組成物32に全周を覆われる。そして、芯金31は、クロスヘッド34の出口のダイス38から、表面に未加硫ゴム組成物32が被覆された未加硫ゴムローラ33として送り出される。   When the metal core 31 is fed into the cross head 34, the entire circumference is covered with the unvulcanized rubber composition 32 fed into the cross head from the cylinder 36. The cored bar 31 is fed out from a die 38 at the outlet of the crosshead 34 as an unvulcanized rubber roller 33 whose surface is coated with an unvulcanized rubber composition 32.

ここで、工程(A)で調製されるカーボンマスターバッチのダイスウェル値をDS(d)および工程(B)で調製されるゴム組成物のダイスウェル値をDS(m)としたとき、ダイスウェル値の比DS(m)/DS(d)が1.0より大きい。このことにより、本態様に係る帯電部材を形成することができる。
ダイスウェル値について説明する。ゴムをダイスの押出機を用いて押し出すと、押出機内では、圧力が加わっていることにより圧縮されていたゴムが、押出口から押し出されたことにより圧力が解放され、押し出されたゴムは膨張し、その厚みが、ダイスの押出口の隙間のサイズよりも厚くなる。ダイスウェル値は、押出口から押し出されたときのゴムの膨張の程度を表す指標である。
Here, when the die swell value of the carbon master batch prepared in the step (A) is DS (d) and the die swell value of the rubber composition prepared in the step (B) is DS (m), the die swell The value ratio DS (m) / DS (d) is greater than 1.0. Thus, the charging member according to this aspect can be formed.
The die swell value will be described. When the rubber is extruded using a die extruder, the rubber that has been compressed due to pressure being applied is released from the extrusion port, and the extruded rubber expands within the extruder. The thickness becomes larger than the size of the gap between the extrusion ports of the die. The die swell value is an index representing the degree of rubber expansion when extruded from the extrusion port.

本態様に係る帯電部材の製造方法においては、DS(m)/DS(d)>1.0なる関係を満たすドメイン形成用のカーボンマスターバッチとマトリックス形成用のゴム組成物とを混合して、マトリックス・ドメイン構造を有するゴム組成物を調製する。次いで、クロスヘッドの押出口から、このマトリックス・ドメイン構造を有するゴム組成物をスウェルさせつつ押し出す。そうすると、マトリックスの膨張率が、ドメインの膨張率よりも大きいため、押し出されたゴム層の表面に存在しているドメインの周囲のマトリックスが盛り上がり、その結果として、表面に凹部を有し、かつ、凹部の底部にドメインが存在してなる未加硫ゴム組成物の層が形成される。上記DS(m)/DS(d)は、本態様に係る表面層の構成をより容易に形成するためには、1.1以上とすることが好ましい。   In the method for producing a charging member according to this aspect, a carbon masterbatch for domain formation that satisfies the relationship DS (m) / DS (d)> 1.0 and a rubber composition for matrix formation are mixed, A rubber composition having a matrix domain structure is prepared. Next, the rubber composition having the matrix domain structure is extruded from the crosshead extrusion port while swelling. Then, since the expansion coefficient of the matrix is larger than the expansion coefficient of the domain, the matrix around the domain existing on the surface of the extruded rubber layer is raised, and as a result, the surface has a recess, and A layer of an unvulcanized rubber composition in which a domain is present at the bottom of the recess is formed. The DS (m) / DS (d) is preferably 1.1 or more in order to more easily form the structure of the surface layer according to this aspect.

ドメイン形成用のカーボンマスターバッチおよびマトリックス形成用のゴム組成物のダイスウェル値は、例えば、添加するフィラー種や量で調整することができる。具体的には、フィラーの添加量の増加によって、ダイスウェル値は小さくなる。また、フィラーとして、カーボンブラックやシリカの如きゴムの補強効果の高いフィラーや、ベントナイト、グラファイトの如き鱗片状のフィラーを用いた場合、炭酸カルシウムを用いた場合と比較してダイスウェル値は小さくなる。   The die swell value of the carbon masterbatch for domain formation and the rubber composition for matrix formation can be adjusted by, for example, the filler type and amount to be added. Specifically, the die swell value decreases as the amount of filler added increases. In addition, when a filler having a high reinforcing effect of rubber such as carbon black or silica, or a flaky filler such as bentonite or graphite is used as the filler, the die swell value is smaller than that when calcium carbonate is used. .

前記工程(C)における、ドメインとなるCMBと、マトリックスとなる未加硫ゴム組成物と、を混練して、マトリックス・ドメイン構造を有する未加硫ゴム組成物とする方法としては、例えば、下記(i)及び(ii)に記載した方法を挙げることができる。
(i)ドメインとなるCMB、および、マトリックスとなる未加硫ゴム組成物のそれぞれを、バンバリーミキサーや加圧式ニーダーといった密閉型混合機を使用して混合した後に、オープンロールの様な開放型の混合機を使用して、ドメインとなるCMBとマトリックスとなる未加硫ゴム組成物と加硫剤や加硫促進剤といった原料とを混練して一体とする方法。
(ii)ドメインとなるCMBを、バンバリーミキサーや加圧式ニーダーといった密閉型混合機を使用して混合した後に、ドメインとなるCMBとマトリックスとなる未加硫ゴム組成物の原材料を密閉型混合機にて混合した後に、オープンロールの様な開放型の混合機を使用して加硫剤や加硫促進剤といった原料を混練して一体とする方法。
In the step (C), as a method of kneading the CMB as a domain and the unvulcanized rubber composition as a matrix to obtain an unvulcanized rubber composition having a matrix / domain structure, for example, The method described in (i) and (ii) can be mentioned.
(I) After each of CMB as a domain and an unvulcanized rubber composition as a matrix are mixed using a closed mixer such as a Banbury mixer or a pressure kneader, an open type such as an open roll is mixed. A method in which a CMB as a domain, an unvulcanized rubber composition as a matrix, and raw materials such as a vulcanizing agent and a vulcanization accelerator are kneaded and integrated using a mixer.
(Ii) After the CMB as the domain is mixed using a closed mixer such as a Banbury mixer or a pressure kneader, the raw material of the uncured rubber composition as the matrix and the CMB as the matrix is mixed into the closed mixer. After mixing, the raw materials such as a vulcanizing agent and a vulcanization accelerator are kneaded and integrated using an open type mixer such as an open roll.

前記工程(D)表面に凹部を有し、凹部の底部にドメインが存在してなる未加硫ゴム組成物の層は、その後、工程(E)としての加硫工程を経て、本態様に係る表面層とすることができる。加熱方法の具体例としては、ギアオーブンによる熱風炉加熱、遠赤外線による加熱加硫、加硫缶による水蒸気加熱などを挙げることができる。中でも熱風炉加熱や遠赤外線加熱は、連続生産に適しているため好ましい。   The layer of the unvulcanized rubber composition having a concave portion on the surface of the step (D) and having a domain at the bottom of the concave portion is then subjected to a vulcanization step as the step (E), and this aspect It can be a surface layer. Specific examples of the heating method include hot blast furnace heating with a gear oven, heating vulcanization with far infrared rays, and steam heating with a vulcanizing can. Of these, hot stove heating and far infrared heating are preferable because they are suitable for continuous production.

上記の方法によって形成されてなる、凹部の底部にドメインが存在する表面形状をより良く維持するためには、得られた帯電ローラの表面の研磨は行わないことが好ましい。従って、本態様に係る帯電ローラの弾性層の外形形状を、クラウン形状にする場合には、クロスヘッドからの芯金の押出速度および未加硫ゴム組成物の押出速度を制御することにより、未加硫ゴム層の外径形状をクラウン形状に成形することが好ましい。なお、クラウン形状とは、弾性層の芯金の長手方向の中央部の外径が、端部の外径よりも大きい形状をいう。   In order to better maintain the surface shape formed by the above method and having a domain at the bottom of the recess, it is preferable not to polish the surface of the obtained charging roller. Therefore, when the outer shape of the elastic layer of the charging roller according to the present embodiment is made to be a crown shape, by controlling the extrusion speed of the core metal from the cross head and the extrusion speed of the unvulcanized rubber composition, It is preferable to shape the outer diameter shape of the vulcanized rubber layer into a crown shape. The crown shape refers to a shape in which the outer diameter of the central portion of the elastic layer in the longitudinal direction is larger than the outer diameter of the end portion.

具体的には、芯金31の搬送ローラ35による芯金送り速度と、シリンダ36からの未加硫ゴム組成物送り速度との相対比を変化させる。このとき、シリンダ36からクロスヘッド34への未加硫ゴム組成物32の送り速度は一定とする。芯金31の送り速度と未加硫ゴム組成物32の送り速度の比によって、未加硫ゴム組成物32の肉厚が決定される。これにより、研磨を行うことなく、弾性層をクラウン形状とすることができる。   Specifically, the relative ratio between the core metal feed speed of the core metal 31 by the conveying roller 35 and the unvulcanized rubber composition feed speed from the cylinder 36 is changed. At this time, the feed rate of the unvulcanized rubber composition 32 from the cylinder 36 to the cross head 34 is constant. The thickness of the unvulcanized rubber composition 32 is determined by the ratio between the feed speed of the core metal 31 and the feed speed of the unvulcanized rubber composition 32. Thereby, an elastic layer can be made into a crown shape, without grind | polishing.

加硫ゴムローラの両端部の加硫ゴム組成物は、後の別工程にて除去され、加硫ゴムローラが完成する。したがって、完成した加硫ゴムローラは芯金の両端部が露出している。
表面層には、紫外線や電子線を照射することによる表面処理を行ってもよい。
The vulcanized rubber composition at both ends of the vulcanized rubber roller is removed in a separate process later to complete the vulcanized rubber roller. Therefore, both ends of the core metal are exposed in the completed vulcanized rubber roller.
The surface layer may be subjected to a surface treatment by irradiation with ultraviolet rays or electron beams.

(電子写真装置)
本発明の一態様に係る帯電部材は、レーザープリンターの如き電子写真装置、および、その電子写真装置に着脱可能なプロセスカートリッジに用いることができる。
(Electrophotographic equipment)
The charging member according to one embodiment of the present invention can be used for an electrophotographic apparatus such as a laser printer and a process cartridge that can be attached to and detached from the electrophotographic apparatus.

図7に、本発明の一態様に係る電子写真装置の概略断面図を示す。被帯電体としての電子写真感光体(以降、「感光体」と略)71は、導電性支持体71bと、導電性支持体71b上に形成した感光層71aとからなり、円筒形状を有する。そして、軸71cを中心に図上時計周りに所定の周速度をもって駆動される。   FIG. 7 is a schematic cross-sectional view of an electrophotographic apparatus according to one embodiment of the present invention. An electrophotographic photosensitive member (hereinafter abbreviated as “photosensitive member”) 71 as a member to be charged includes a conductive support 71b and a photosensitive layer 71a formed on the conductive support 71b, and has a cylindrical shape. Then, it is driven with a predetermined peripheral speed in the clockwise direction in the figure around the shaft 71c.

帯電ローラ72は感光体71に接触配置されて感光体71を所定の電位に帯電する。帯電ローラ72は、芯金72aと、芯金72a上に形成した弾性層72bとからなり、芯金72aの両端部を不図示の押圧手段で感光体71に押圧されており、感光体71の駆動に伴い従動回転する。電源73で摺擦電極73aにより、芯金72aの所定の直流電圧が印加されることで、感光体71が所定の電位に帯電される。   The charging roller 72 is placed in contact with the photoconductor 71 to charge the photoconductor 71 to a predetermined potential. The charging roller 72 includes a cored bar 72a and an elastic layer 72b formed on the cored bar 72a. Both ends of the cored bar 72a are pressed against the photoconductor 71 by a pressing unit (not shown). Followed by driving. The photoconductor 71 is charged to a predetermined potential by applying a predetermined DC voltage of the cored bar 72a by the rubbing electrode 73a by the power source 73.

帯電された感光体71は、次いで露光手段74により、その周面に目的の画像情報に対応した静電潜像が形成される。その静電潜像は、次いで、現像部材75により、トナー画像として順次に可視像化される。このトナー画像は、転写材77に順次転写されていく。転写材77は不図示の給紙手段部から感光体71の回転と同期取りされて適正なタイミングをもって感光体71と転写手段76との間の転写部へ搬送される。転写手段76は転写ローラであり、転写材77の裏からトナーと逆極性の帯電を行うことで感光体71側のトナー画像が転写材77に転写される。表面にトナー画像の転写を受けた転写材77は、感光体71から分離されて不図示の定着手段へ搬送されてトナーが定着され、画像形成物として出力される。像転写後の感光体71の周面は、弾性ブレードに代表されるクリーニング部材78によって感光体71の表面に残留しているトナーなどが除去される。クリーニングされた感光体71の周面は次のサイクルの電子写真画像形成プロセスに移る。   The charged photoreceptor 71 then forms an electrostatic latent image corresponding to target image information on its peripheral surface by the exposure means 74. The electrostatic latent image is then sequentially visualized as a toner image by the developing member 75. The toner images are sequentially transferred to the transfer material 77. The transfer material 77 is conveyed from a sheet feeding unit (not shown) to the transfer unit between the photoconductor 71 and the transfer unit 76 at an appropriate timing in synchronization with the rotation of the photoconductor 71. The transfer unit 76 is a transfer roller, and the toner image on the photoconductor 71 side is transferred to the transfer material 77 by charging from the back of the transfer material 77 with a polarity opposite to that of the toner. The transfer material 77 that has received the transfer of the toner image on the surface is separated from the photoreceptor 71 and conveyed to a fixing means (not shown) to fix the toner, and is output as an image formed product. The toner remaining on the surface of the photoreceptor 71 is removed from the peripheral surface of the photoreceptor 71 after the image transfer by a cleaning member 78 represented by an elastic blade. The cleaned peripheral surface of the photoreceptor 71 moves to the electrophotographic image forming process of the next cycle.

本発明の一態様に係る帯電部材(帯電ローラ)は、小径化に伴う帯電ローラの撓みの増加により、クラウン形状の中央と端部の外径差が増大する場合や、帯電ローラと被帯電体を独立に駆動して周速差を設け、摺擦により、帯電ローラの汚れを防止する場合といった、被帯電体と帯電部材に周速差が大きい場合にも好適に用いることができる。   The charging member (charging roller) according to one embodiment of the present invention is used when the difference in outer diameter between the center and the end of the crown shape increases due to an increase in the deflection of the charging roller as the diameter decreases, or when the charging roller and the object to be charged Can be suitably used even when there is a large difference in peripheral speed between the charged object and the charging member, such as when the charging roller is prevented from being soiled by rubbing to provide a peripheral speed difference.

<プロセスカートリッジ>
本発明の一態様に係るプロセスカートリッジを図8に示す。当該プロセスカートリッジは、電子写真装置に着脱可能である。当該プロセスカートリッジは、電子写真感光体81、電子写真感光体81を帯電可能に配置された帯電ローラ80、現像ローラ82及びクリーニング部材83を具備している。そして、帯電ローラ80として、本発明の一態様に係る帯電部材を用いている。
<Process cartridge>
FIG. 8 shows a process cartridge according to one embodiment of the present invention. The process cartridge is detachable from the electrophotographic apparatus. The process cartridge includes an electrophotographic photosensitive member 81, a charging roller 80 arranged to be able to charge the electrophotographic photosensitive member 81, a developing roller 82, and a cleaning member 83. As the charging roller 80, the charging member according to one embodiment of the present invention is used.

〔実施例1〕
<カーボンマスターバッチ(CMB)1の調製>
下記の表1に記載のカーボンマスターバッチ(CMB)原料を表1に示す配合量で混合してCMB1を調製した。混合機は、6リットル加圧ニーダー(製品名:TD6−15MDX、トーシン社製)を用いた。混合条件は、充填率70vol%、ブレード回転数30rpm、16分間とした。
[Example 1]
<Preparation of carbon masterbatch (CMB) 1>
CMB1 was prepared by mixing the carbon masterbatch (CMB) raw materials shown in Table 1 below in the blending amounts shown in Table 1. As the mixer, a 6-liter pressure kneader (product name: TD6-15MDX, manufactured by Toshin Co., Ltd.) was used. The mixing conditions were a filling rate of 70 vol%, a blade rotation speed of 30 rpm, and 16 minutes.

Figure 2019191564
Figure 2019191564

<CMBのダイスウェルの算出>
上記で調製したCMB1について、以下の方法によってダイスウェルの値(DS(d))を算出した。
すなわち、ダイスウェルの測定は、キャピラリーレオメーター(商品名:キャピログラフ1D型、株式会社東洋精機製)を用い、JIS K 7199:1999に準拠して行う。
キャピラリー長:10mm、キャピラリー直径D:2mm、炉体径:9.55mm、ロードセルタイプ:20kN、測定温度=80℃にて測定した。ダイスウェルとしては、ピストンスピード:100mm/分(剪断速度:1.52×10)において押し出されたストランドの直径R[mm]を測定し、ダイスウェルDS=R/Dとして算出した。
<Calculation of CMB die swell>
For the CMB1 prepared above, the die swell value (DS (d)) was calculated by the following method.
That is, the die swell is measured using a capillary rheometer (trade name: Capillograph 1D type, manufactured by Toyo Seiki Co., Ltd.) in accordance with JIS K 7199: 1999.
Capillary length: 10 mm, capillary diameter D: 2 mm, furnace body diameter: 9.55 mm, load cell type: 20 kN, measurement temperature = 80 ° C. As the die swell, the diameter R [mm] of the extruded strand was measured at a piston speed of 100 mm / min (shear rate: 1.52 × 10 2 ), and calculated as die swell DS = R / D.

<A練りゴム組成物形成用原料1のダイスウェル値の算出>
A練りゴム組成物の原料として、表2に記載の材料を用意した。
これらの材料を表2に記載の配合量で混合した。混合機は、6リットル加圧ニーダー(製品名:TD6−15MDX、トーシン社製)を用いた。混合条件は、充填率70vol%、ブレード回転数30rpm、16分間とした。得られた混合物について、CMBのダイスウェルの算出方法と同様にして、当該混合物のダイスウェルの値(DS(m))を算出した。
<Calculation of die swell value of raw material 1 for kneaded rubber composition formation>
The materials listed in Table 2 were prepared as raw materials for the kneaded rubber composition.
These materials were mixed in the amounts shown in Table 2. As the mixer, a 6-liter pressure kneader (product name: TD6-15MDX, manufactured by Toshin Co., Ltd.) was used. The mixing conditions were a filling rate of 70 vol%, a blade rotation speed of 30 rpm, and 16 minutes. With respect to the obtained mixture, the die swell value (DS (m)) of the mixture was calculated in the same manner as the CMB die swell calculation method.

Figure 2019191564
Figure 2019191564

<未加硫ゴム組成物1の調製>
上記CMB1に対して、表2に示す原料を加えて混練することにより、A練りゴム組成物を得た。混合機は、6リットル加圧ニーダー(製品名:TD6−15MDX、トーシン社製)を用いた。混合条件は、充填率70vol%、ブレード回転数30rpm、16分間とした。
得られたA練りゴム組成物に、表3に示す原料を加えてさらに混練することにより、B練りゴム組成物としての未加硫ゴム組成物1を得た。混合機は、ロール径12インチ(0.30m)のオープンロールを用いた。混合条件は、前ロール回転数10rpm、後ロール回転数8rpmで、ロール間隙2mmとして合計20回左右の切り返しを行った後、ロール間隙を0.5mmとして10回薄通しを行った。
<Preparation of unvulcanized rubber composition 1>
A kneaded rubber composition was obtained by adding the raw materials shown in Table 2 to the CMB1 and kneading them. As the mixer, a 6-liter pressure kneader (product name: TD6-15MDX, manufactured by Toshin Co., Ltd.) was used. The mixing conditions were a filling rate of 70 vol%, a blade rotation speed of 30 rpm, and 16 minutes.
The raw material shown in Table 3 was added to the obtained A kneaded rubber composition and further kneaded to obtain an unvulcanized rubber composition 1 as a B kneaded rubber composition. As the mixer, an open roll having a roll diameter of 12 inches (0.30 m) was used. The mixing conditions were a front roll rotation speed of 10 rpm and a rear roll rotation speed of 8 rpm, and after turning left and right a total of 20 times with a roll gap of 2 mm, thinning was performed 10 times with a roll gap of 0.5 mm.

Figure 2019191564
Figure 2019191564

(CMB1の体積分率の算出)
CMB1の体積分率の測定は、CMB1の比重および配合質量部、未加硫ゴム組成物1の比重および配合質量部から、下記計算式(1)に従って計算した。
計算式(1)
CMB1の体積分率(%)=((CMB1の配合質量部)/(CMB1の比重))/((未加硫ゴム組成物1の質量部)/(未加硫ゴム組成物1の比重))×100
(Calculation of volume fraction of CMB1)
The measurement of the volume fraction of CMB1 was calculated according to the following calculation formula (1) from the specific gravity and blending part of CMB1 and the specific gravity and blending part of unvulcanized rubber composition 1.
Formula (1)
CMB1 volume fraction (%) = ((CMB1 blending mass part) / (CMB1 specific gravity)) / ((unvulcanized rubber composition 1 mass part) / (unvulcanized rubber composition 1 specific gravity) ) × 100

比重の測定は電子比重計(商品名:EW−300SG;アルファーミラージュ社製)を用いた。また比重の測定は、CMB1および未加硫ゴム組成物1から各々3枚の測定用試験片(縦1cm、横1cm、厚み2mm)を調製し、各々の測定用試験片を用いて比重を測定し、得られた結果の平均値をCMB1および未加硫ゴム組成物1の比重として上記の計算に用いた。   The specific gravity was measured using an electronic hydrometer (trade name: EW-300SG; manufactured by Alpha Mirage). The specific gravity was measured by preparing three test specimens (1 cm long, 1 cm wide, 2 mm thick) from CMB1 and unvulcanized rubber composition 1 and measuring the specific gravity using each test specimen. The average value of the obtained results was used as the specific gravity of CMB1 and unvulcanized rubber composition 1 in the above calculation.

(加硫ゴム層の成形)
まず、加硫ゴム層を接着する接着層を有する芯金を得るため、次の操作を行った。すなわち、直径6mm、長さ252mmの円柱形の導電性芯金(鋼製、表面はニッケルメッキ)の軸方向の中央部222mmに導電性加硫接着剤(商品名:メタロックU−20;東洋化学研究所製)を塗布し、80℃で30分間乾燥した。
(Molding of vulcanized rubber layer)
First, in order to obtain a metal core having an adhesive layer for adhering the vulcanized rubber layer, the following operation was performed. In other words, a conductive vulcanizing adhesive (trade name: METALOC U-20; Toyo Chemical Co., Ltd.) is attached to the central portion 222 mm in the axial direction of a cylindrical conductive core bar (made of steel, surface is nickel-plated) having a diameter of 6 mm and a length of 252 mm. (Manufactured by Laboratory) and dried at 80 ° C. for 30 minutes.

この接着層を有する芯金に、上記で調製した未加硫ゴム組成物1をクロスヘッド押出成型機にて被覆し、クラウン形状の未加硫ゴムローラを得た。成型温度は100℃、スクリュ回転数は10rpmとして、芯金の送り速度を変えながら成型した。クロスヘッド押出成型機のダイス内径は8.4mmに対し、未加硫ゴムローラが太くなるように成形し、未加硫ゴムローラの軸方向の中央の外径は8.6mm、端部の外径は8.5mmであった。   The unvulcanized rubber composition 1 prepared above was coated on the metal core having the adhesive layer with a crosshead extrusion molding machine to obtain a crown-shaped unvulcanized rubber roller. The molding temperature was 100 ° C., the screw rotation speed was 10 rpm, and molding was performed while changing the feed rate of the cored bar. The die inside diameter of the crosshead extrusion molding machine is 8.4mm, and the unvulcanized rubber roller is molded thicker. The outer diameter of the unvulcanized rubber roller in the axial direction is 8.6mm, and the outer diameter of the end is It was 8.5 mm.

その後、電気炉にて温度160℃で40分間加熱して未加硫ゴム組成物1の層を加硫して加硫ゴム層とした。加硫ゴム層の両端部を切断し、軸方向の長さを232mmとして、加硫ゴムローラとした。   Thereafter, the unvulcanized rubber composition 1 layer was vulcanized by heating in an electric furnace at a temperature of 160 ° C. for 40 minutes to obtain a vulcanized rubber layer. Both ends of the vulcanized rubber layer were cut, and the length in the axial direction was set to 232 mm to obtain a vulcanized rubber roller.

(押出後の加硫ゴム層の電子線照射)
得られた加硫ゴムローラの表面に電子線を照射して、弾性層(表面層)の表面に硬化された領域を有する帯電ローラ1を得た。電子線の照射には、最大加速電圧150kV・最大電子電流40mAの電子線照射装置(岩崎電気株式会社製)を用い、照射時には窒素を充填した。電子線の照射条件は加速電圧:150kV、電子電流:35mA、線量:1323kGy、処理速度:1m/min、酸素濃度:100ppmであった。
(Electron beam irradiation of the vulcanized rubber layer after extrusion)
The surface of the obtained vulcanized rubber roller was irradiated with an electron beam to obtain a charging roller 1 having a cured region on the surface of the elastic layer (surface layer). For the electron beam irradiation, an electron beam irradiation apparatus (manufactured by Iwasaki Electric Co., Ltd.) having a maximum acceleration voltage of 150 kV and a maximum electron current of 40 mA was used, and nitrogen was filled during irradiation. The electron beam irradiation conditions were acceleration voltage: 150 kV, electron current: 35 mA, dose: 1323 kGy, processing speed: 1 m / min, and oxygen concentration: 100 ppm.

(ドメインの有無の確認、およびドメイン数の測定)
帯電ローラから、厚さ1mmの弾性層の切片を切り出した。この切片をリンタングステン酸5%水溶液に15分浸漬し、次いで、当該切片を取り出し、純水で洗浄し、更に室温(25℃)で乾燥させた。このようにして得た染色された切片をFIB−SEMを用いてマトリックス・ドメイン構造の観察をした。具体的には、FIB−SEM(商品名:デュアルビームSEM Helios600、FEI社製)を用いた。具体的な測定手法を以下に示す。
(Confirmation of domain existence and measurement of the number of domains)
A slice of the elastic layer having a thickness of 1 mm was cut out from the charging roller. This section was immersed in a 5% aqueous solution of phosphotungstic acid for 15 minutes, and then the section was taken out, washed with pure water, and further dried at room temperature (25 ° C.). The stained sections thus obtained were observed for matrix domain structure using FIB-SEM. Specifically, FIB-SEM (trade name: Dual Beam SEM Helios 600, manufactured by FEI) was used. A specific measurement method is shown below.

帯電ローラ表面に対して垂直にカッターの刃を当て、x軸方向(ローラ長手方向)および、y軸方向(x軸に直交するローラの横断面における円形断面の接線方向)1mm角の切片を切り出した。切り出した切片をFIB−SEM装置を用い、加速電圧10kV、倍率1000倍で、z方向(xy面に直行するローラ表面に対する法線方向)から観察を行った。次に、ガリウムイオンビームを用いイオンビーム電流量20nAで、z方向に100nm間隔で表面から10μmの深さまで計100枚の断面像を撮影した。この断面像から3次元再構成して得られた3次元像からドメイン・マトリックス構造の有無とドメイン数を数えた。ドメイン数を数える際に画像の境界に一部分が存在するドメインについては、除外し、かつ、ドメインの体積に相当する真球の直径が200μm以上となるドメインの数を数えた。   Cut the blade of the cutter perpendicularly to the surface of the charging roller and cut out 1 mm square sections in the x-axis direction (roller longitudinal direction) and the y-axis direction (tangential direction of the circular cross section of the cross section of the roller perpendicular to the x axis) It was. The cut sections were observed from the z direction (normal direction with respect to the roller surface perpendicular to the xy plane) at an acceleration voltage of 10 kV and a magnification of 1000 using a FIB-SEM apparatus. Next, a total of 100 cross-sectional images were taken from the surface to a depth of 10 μm from the surface at an interval of 100 nm in the z direction using a gallium ion beam with an ion beam current amount of 20 nA. The presence / absence of a domain / matrix structure and the number of domains were counted from a three-dimensional image obtained by three-dimensional reconstruction from the cross-sectional image. When counting the number of domains, the domain having a part at the boundary of the image was excluded, and the number of domains having a true sphere diameter of 200 μm or more corresponding to the volume of the domain was counted.

(体積抵抗率)
帯電ローラの弾性層をカミソリにて切出し、かまぼこ状のゴムの切片を得た。このゴムの切断面の体積抵抗率を4端子4探針法で測定した。測定の条件としては抵抗率計(商品名:ロレスタGP、三菱化学アナリテック社製)にて、23℃/50%RH(相対湿度)の環境下で、印加電圧90V、荷重10N、ピン間距離1.0mm、ピン先0.04R、バネ圧250gとした。体積抵抗率は4.7×10Ωcmであった。
(Volume resistivity)
The elastic layer of the charging roller was cut out with a razor to obtain a semi-cylindrical piece of rubber. The volume resistivity of the cut surface of this rubber was measured by a 4-terminal 4-probe method. The measurement conditions were a resistivity meter (trade name: Loresta GP, manufactured by Mitsubishi Chemical Analytech Co., Ltd.) in an environment of 23 ° C / 50% RH (relative humidity), applied voltage 90V, load 10N, distance between pins. 1.0 mm, pin tip 0.04R, and spring pressure 250 g. The volume resistivity was 4.7 × 10 5 Ωcm.

(AFMによる凹部の深さと電流値の測定)
帯電部材の表面形状、および、凹部の底部にドメインが存在していることの確認、および、ドメインとマトリックスの電流値は、原子間力顕微鏡(AFM)(Easy Scan2、Nanosurf社)を用いて、広がり抵抗モードによって測定した測定値を採用することができる。図4に導電性測定装置の構成図を示す。帯電ローラ41の導電性基体に直流電源(PL−650−0.1、松定プレシジョン株式会社)44を接続して80Vを印加し、表面層にはカンチレバー42の自由端を接触させ、AFM本体43を通して電流像を得る。測定の条件は、カンチレバー:ANSCM−PC、動作モード:広がり抵抗、測定環境:大気中、セットポイント:20nN、P−ゲイン:3000、I−ゲイン:600、D−ゲイン:0、ティップ電圧:3V、画像幅:100μm、線数:256とした。
(Measurement of recess depth and current value by AFM)
The surface shape of the charging member, the confirmation of the presence of the domain at the bottom of the concave portion, and the current value of the domain and the matrix were measured using an atomic force microscope (AFM) (Easy Scan2, Nanosurf) Measurement values measured in the spreading resistance mode can be adopted. FIG. 4 shows a configuration diagram of the conductivity measuring apparatus. A DC power supply (PL-650-0.1, Matsusada Precision Co., Ltd.) 44 is connected to the conductive base of the charging roller 41, and 80V is applied. The free end of the cantilever 42 is brought into contact with the surface layer, and the AFM main body A current image is obtained through 43. Measurement conditions are: cantilever: ANSCM-PC, operation mode: spreading resistance, measurement environment: in the atmosphere, set point: 20 nN, P-gain: 3000, I-gain: 600, D-gain: 0, tip voltage: 3V Image width: 100 μm, number of lines: 256.

事前に、走査電子顕微鏡(SEM)(商品名:S−3700N、株式会社日立ハイテクノロジーズ製)によって帯電部材の表面を観察したドメイン・マトリックス構造の組成像とAFM測定の形状像と電流像の位置合わせをしながら、ドメインとマトリックスの凹部の深さと電流値の測定を行う。SEMによる組成像の測定条件としては、鮮明な像を得られるよう調整する範囲で特に限定は無いが、真空度:高真空、信号:BSE(COMPO)、加速電圧:15kV、WD:5mmで測定することができる。   The composition image of the domain matrix structure, the shape image of the AFM measurement, and the position of the current image obtained by observing the surface of the charging member with a scanning electron microscope (SEM) (trade name: S-3700N, manufactured by Hitachi High-Technologies Corporation) in advance While matching, the depth of the concave portions of the domain and the matrix and the current value are measured. The measurement conditions of the composition image by SEM are not particularly limited as long as it is adjusted so that a clear image can be obtained, but the measurement is performed at a vacuum degree: high vacuum, signal: BSE (COMPO), acceleration voltage: 15 kV, WD: 5 mm. can do.

このAFM測定時に形状像と電流像を同時に取得する。形状像のSEMによって得られた組成像のうちドメインの部分をAFMの形状像から抽出する。図6は、AFMの形状像のラインプロファイルであり、61は抽出したドメイン部を示す。このドメイン部の高さ方向Zの平均値をドメイン部以外の部分の平均値から引いた値を凹部の深さとした。凹部の深さは、2.0μmであった。   A shape image and a current image are simultaneously acquired during the AFM measurement. Of the composition image obtained by SEM of the shape image, a domain portion is extracted from the AFM shape image. FIG. 6 is a line profile of an AFM shape image, and 61 indicates an extracted domain part. The value obtained by subtracting the average value in the height direction Z of the domain part from the average value of the part other than the domain part was defined as the depth of the recess. The depth of the recess was 2.0 μm.

また、凹部の深さを算出するときに抽出したドメインの電流値の平均値をA2とした。一方、ドメイン部以外の部分をマトリックスとして、その電流値の平均値をA1とした。A2/A1が大きいほど、マトリックスに比べてドメインの電気抵抗が低いことを示す。A2/A1は、97であった。   In addition, the average value of the current values of the domains extracted when calculating the depth of the recesses was A2. On the other hand, a portion other than the domain portion was used as a matrix, and the average value of the current values was A1. It shows that the electrical resistance of a domain is low compared with a matrix, so that A2 / A1 is large. A2 / A1 was 97.

(電荷の注入性の評価)
作製した帯電ローラを、電子写真装置(商品名:LBP7200C キヤノン株式会社製、A4紙縦出力用、)の被帯電体(OPCドラム)と当接させ、帯電ローラと被帯電体を独立に駆動できる治具(図5)に組み込み、電荷の注入性を評価した。30℃/80%RH(相対湿度)の環境下で、帯電ローラ51に−500V印加し、被帯電体52の回転速度180mm/sec、帯電ローラの回転速度200mm/secとして、表面電位計53(model370、トレックジャパン株式会社)で電位を測定した。そして、電圧を印加して被帯電体回転1周目の表面電位の平均値を電荷の注入による電位とした。印加電圧を−500Vとしたのは、放電による帯電がほとんど起こらず、注入による電位の変化を計測するためである。
(Evaluation of charge injection properties)
The charging roller thus produced is brought into contact with an object to be charged (OPC drum) of an electrophotographic apparatus (trade name: LBP7200C manufactured by Canon Inc., for A4 paper vertical output), and the charging roller and the object to be charged can be driven independently. It was incorporated into a jig (FIG. 5) and the charge injection property was evaluated. In an environment of 30 ° C./80% RH (relative humidity), −500 V is applied to the charging roller 51, the rotation speed of the charged body 52 is 180 mm / sec, and the rotation speed of the charging roller is 200 mm / sec. model 370, Trek Japan Co., Ltd.). Then, a voltage was applied, and the average value of the surface potential on the first rotation of the charged body was taken as the potential due to charge injection. The reason why the applied voltage was set to -500 V is to measure the change in the potential due to the injection with almost no charging due to the discharge.

〔実施例2〜13〕
<CMB2〜CMB13の調製>
表4に記載の材料を、表4に示す配合量にて用いた以外は、CMB1と同様にしてCMB2〜CMB13を調製した。また、CMB1と同様にしてダイスウェル値を算出した。
[Examples 2 to 13]
<Preparation of CMB2 to CMB13>
CMB2 to CMB13 were prepared in the same manner as CMB1 except that the materials shown in Table 4 were used in the blending amounts shown in Table 4. The die swell value was calculated in the same manner as CMB1.

Figure 2019191564
Figure 2019191564

<A練りゴム組成物形成用原料2〜13のダイスウェル値の算出>
表5に記載の材料を表5に記載の配合量にて用いた以外は、実施例1と同様にしてA練りゴム組成物形成用原料のダイスウェル値を算出した。
<Calculation of die swell values of raw materials 2 to 13 for forming the kneaded rubber composition>
The die swell value of the raw material for forming the kneaded rubber composition A was calculated in the same manner as in Example 1 except that the materials shown in Table 5 were used in the amounts shown in Table 5.

Figure 2019191564
Figure 2019191564

<未加硫ゴム組成物2〜13の調製および帯電ローラ2〜13の作製>
上記CMB2〜CMB13およびA練りゴム組成物形成用原料2〜13を用いた以外は、実施例1に係る未加硫ゴム組成物1と同様にして、未加硫ゴム組成物2〜13を調製した。
そして、未加硫ゴム組成物2〜13を用いた以外は、実施例1と同様にして帯電ローラ2〜13を作製し、評価した。
<Preparation of Unvulcanized Rubber Compositions 2-13 and Production of Charging Rollers 2-13>
The unvulcanized rubber compositions 2 to 13 were prepared in the same manner as the unvulcanized rubber composition 1 according to Example 1, except that the CMB2 to CMB13 and the raw material 2 to 13 for kneading the rubber composition were used. did.
And the charging rollers 2-13 were produced and evaluated similarly to Example 1 except having used the unvulcanized rubber compositions 2-13.

〔比較例1〜2〕
<A練りゴム組成物形成用原料14〜15のダイスウェル値の算出>
表6に記載の材料を表6に記載の配合量にて用いた以外は、実施例1と同様にしてA練りゴム組成物形成用原料14〜15のダイスウェル値を算出した。
[Comparative Examples 1-2]
<Calculation of die swell value of raw materials 14 to 15 for kneaded rubber composition formation>
Except having used the material of Table 6 by the compounding quantity of Table 6, it carried out similarly to Example 1, and calculated the die swell value of raw materials 14-15 for A kneaded rubber composition formation.

Figure 2019191564
Figure 2019191564

<未加硫ゴム組成物14〜15の調製および帯電ローラ14〜15の作製>
上記A練りゴム組成物形成用原料14〜15を用いた以外は、実施例5に係る未加硫ゴム組成物5と同様にして、未加硫ゴム組成物14〜15を調製した。未加硫ゴム組成物14〜15を用いた以外は、実施例1と同様にして帯電ローラ14〜15を作製し、評価した。
<Preparation of Unvulcanized Rubber Compositions 14-15 and Production of Charging Rollers 14-15>
Unvulcanized rubber compositions 14 to 15 were prepared in the same manner as the unvulcanized rubber composition 5 according to Example 5 except that the raw materials 14 to 15 for forming the A kneaded rubber composition were used. Except for using unvulcanized rubber compositions 14-15, charging rollers 14-15 were prepared and evaluated in the same manner as in Example 1.

〔比較例3〕
実施例1の工程において、(加硫ゴム層の成形)後(押出後の加硫ゴム層の電子線照射)前の加硫ゴムローラの加硫ゴム層の表面をプランジカットの研磨方式の研磨機で研磨し、端部直径8.3mm、中央部直径8.5mmのクラウン形状とした。研磨工程の後に、実施例1の(押出後の加硫ゴム層の電子線照射)工程を行うこと以外は、実施例1と同様の方法で帯電ローラ16を作製し、同様に評価した。
[Comparative Example 3]
In the process of Example 1, the surface of the vulcanized rubber layer of the vulcanized rubber roller before (molding of the vulcanized rubber layer) (before irradiation of the vulcanized rubber layer after extrusion) is polished with a plunge cut. And a crown shape having an end diameter of 8.3 mm and a center diameter of 8.5 mm was obtained. A charging roller 16 was prepared in the same manner as in Example 1 except that the step of Example 1 (electron beam irradiation of the vulcanized rubber layer after extrusion) of Example 1 was performed after the polishing step, and evaluation was performed in the same manner.

〔比較例4〕
実施例1の工程における、(加硫ゴム層の成形)を押出ではなく型で成形し、端部直径8.5mm、中央部直径8.6mmのクラウン形状とした以外は、実施例1と同様の方法で帯電ローラ17を作製し、同様に評価した。
型の成形条件は、割型とプレス機を用い、加圧:10MPa、温度:160℃、時間:40分とした。
[Comparative Example 4]
In the process of Example 1, (molding of the vulcanized rubber layer) was molded by a mold instead of extrusion, and was the same as in Example 1 except that the crown shape had an end diameter of 8.5 mm and a center diameter of 8.6 mm. The charging roller 17 was produced by the method described above and evaluated in the same manner.
The molding conditions of the mold were a split mold and a press machine, pressurization: 10 MPa, temperature: 160 ° C., and time: 40 minutes.

〔比較例5〕
実施例1の工程における、(カーボンマスターバッチの調製)を行わず、(未加硫ゴム組成物の調製)において、NBRとSBRとカーボンブラックを含むA練り原料を同時に混練した以外は、実施例1と同様の方法で帯電ローラ18を作製し、同様に評価した。
[Comparative Example 5]
Example 1 except that (preparation of carbon masterbatch) in the step of Example 1 was not carried out, but (preparation of unvulcanized rubber composition), and kneaded material containing NBR, SBR, and carbon black was kneaded at the same time. The charging roller 18 was produced by the same method as in No. 1 and evaluated in the same manner.

実施例1〜13および比較例1〜5の評価結果を表7および表8に示す。

Figure 2019191564
Figure 2019191564
The evaluation results of Examples 1 to 13 and Comparative Examples 1 to 5 are shown in Table 7 and Table 8.
Figure 2019191564
Figure 2019191564

〔実施例14〕
実施例1の<未加硫ゴム組成物1の調製>において、CMB1、及び表2に示す原料、及び、球状アクリル樹脂粒子(商品名:テクポリマーMBX−20、粒子径20μm、積水化成品工業社製)を、配合量にして10質量追加した。それ以外は、実施例1と同様にして、帯電ローラ19を作成し、評価した。
球状アクリル樹脂粒子は、架橋されているのでマトリックスを構成するNBRとは相溶しない。
なお、球状アクリル樹脂粒子は電気絶縁性であるため、ゴムを含みドメインよりも高い電気抵抗を有するマトリックスの一部として扱い、ドメインの体積分率を算出し、DS(m)/DS(d)、ドメインの数、及び、A2/A1を測定した。
Example 14
In <Preparation of Unvulcanized Rubber Composition 1> in Example 1, CMB1 and the raw materials shown in Table 2 and spherical acrylic resin particles (trade name: Techpolymer MBX-20, particle diameter 20 μm, Sekisui Plastics Co., Ltd.) 10 mass) was added as a blending amount. Other than that, the charging roller 19 was prepared and evaluated in the same manner as in Example 1.
Since the spherical acrylic resin particles are crosslinked, they are not compatible with NBR constituting the matrix.
Since the spherical acrylic resin particles are electrically insulative, they are treated as part of a matrix containing rubber and having a higher electrical resistance than the domain, and the volume fraction of the domain is calculated as DS (m) / DS (d) The number of domains and A2 / A1 were measured.

〔実施例15〕
実施例1の<未加硫ゴム組成物1の調製>において、CMB1および表2に示す原料に加え、球状ウレタン樹脂粒子(商品名:アートパールC-400透明、粒子径20μm、根上化学工業社製)を、配合量にして10質量部追加した。それ以外は、実施例1と同様にして帯電ローラ21を作成し、評価した。
球状ウレタン樹脂粒子は、架橋されているため、マトリックスを構成するNBRとは相溶しない。
なお、球状ウレタン樹脂粒子は電気絶縁性であるため、実施例14と同様に、ゴムを含みドメインよりも高い電気抵抗を有するマトリックスの一部として扱い、ドメインの体積分率を算出し、DS(m)/DS(d)、ドメインの数、及び、A2/A1を測定した。
Example 15
In <Preparation of unvulcanized rubber composition 1> in Example 1, in addition to the raw materials shown in CMB1 and Table 2, spherical urethane resin particles (trade name: Art Pearl C-400, transparent, particle diameter 20 μm, Negami Chemical Industry Co., Ltd.) Product) was added in an amount of 10 parts by mass. Other than that, the charging roller 21 was prepared and evaluated in the same manner as in Example 1.
Since the spherical urethane resin particles are crosslinked, they are not compatible with NBR constituting the matrix.
Since the spherical urethane resin particles are electrically insulating, as in Example 14, it is treated as part of a matrix containing rubber and having a higher electrical resistance than the domain, and the volume fraction of the domain is calculated, DS ( m) / DS (d), number of domains, and A2 / A1 were measured.

〔実施例16〕
実施例14は実施例1と同じく電子線照射している。この電子線照射の代わりに、以下の条件で紫外線照射をするように工程を入れ替える以外は、実施例14と同様に、帯電ローラ21を作成し、評価した。
紫外線照射は低圧水銀ランプ(商品名:GLQ500US/11、東芝ライテック社製)を用いて、帯電ローラを回転させながら均一に照射した。紫外線の光量は、254nmのセンサーにおける感度で8000mJ/cmになるようにした。
Example 16
In Example 14, as in Example 1, the electron beam was irradiated. Instead of this electron beam irradiation, a charging roller 21 was prepared and evaluated in the same manner as in Example 14 except that the process was changed so that ultraviolet irradiation was performed under the following conditions.
Ultraviolet irradiation was performed uniformly using a low-pressure mercury lamp (trade name: GLQ500US / 11, manufactured by Toshiba Lighting & Technology Co., Ltd.) while rotating the charging roller. The amount of ultraviolet light was set to 8000 mJ / cm 2 with a sensitivity of a sensor of 254 nm.

〔実施例17〕
実施例15は実施例1と同じく電子線照射している。電子線照射の代わりに、以下の条件で紫外線照射をするように工程を入れ替える以外は、実施例15と同様に、帯電ローラ22を作成し、評価した。
紫外線照射は低圧水銀ランプ(商品名:GLQ500US/11、東芝ライテック社製)を用いて、帯電ローラを回転させながら均一に照射した。紫外線の光量は、254nmのセンサーにおける感度で8000mJ/cmになるようにした。
Example 17
In Example 15, as in Example 1, the electron beam was irradiated. Instead of electron beam irradiation, a charging roller 22 was prepared and evaluated in the same manner as in Example 15 except that the process was changed so that ultraviolet irradiation was performed under the following conditions.
Ultraviolet irradiation was performed uniformly using a low-pressure mercury lamp (trade name: GLQ500US / 11, manufactured by Toshiba Lighting & Technology Co., Ltd.) while rotating the charging roller. The amount of ultraviolet light was set to 8000 mJ / cm 2 with a sensitivity of a sensor of 254 nm.

〔実施例18〕
球状ポリエチレン樹脂粒子マスターバッチPE−MB1を以下のようにして調製した。
原材料として、表9に記載の材料を用意した。これらの材料を表9に記載の配合量で混合して、球状ポリエチレン樹脂粒子マスターバッチPE−MB1を得た。
混合機は、6リットル加圧ニーダー(商品名:TD6−15MDX、トーシン社製)を用いた。混合条件は、充填率:50vol%、ブレード回転数10rpm、5分間とした。混合時の最大到達温度は、80℃であり、ポリエチレンの融点である120℃よりも十分に低い値であった。

Figure 2019191564
Example 18
A spherical polyethylene resin particle master batch PE-MB1 was prepared as follows.
The materials listed in Table 9 were prepared as raw materials. These materials were mixed in the blending amounts shown in Table 9 to obtain spherical polyethylene resin particle master batch PE-MB1.
As the mixer, a 6 liter pressure kneader (trade name: TD6-15MDX, manufactured by Toshin Co., Ltd.) was used. The mixing conditions were filling rate: 50 vol%, blade rotation speed 10 rpm, and 5 minutes. The maximum temperature reached during mixing was 80 ° C., which was a value sufficiently lower than 120 ° C., which is the melting point of polyethylene.
Figure 2019191564

実施例1で調製した未加硫ゴム組成物1に対して、上記で調製した球状ポリエチレン樹脂粒子マスターバッチPE−MB1を配合量にして14.3質量部添加して、オープンロールで混練し、未加硫ゴム組成物16を調製した。
オープンロール混練時の未加硫ゴム組成物16の最大到達温度は92℃であった。
球状ポリエチレン樹脂粒子は、溶融温度以下で混練しているのでマトリックスのNBRとは相溶しない。
なお、球状ポリエチレン樹脂粒子は電気絶縁性であるため、ゴムを含みドメインよりも高い電気抵抗を有するマトリックスの一部として扱い、ドメインの体積分率を算出し、DS(m)/DS(d)、ドメインの数、A2/A1を測定した。
未加硫ゴム組成物1に変えて未加硫ゴム組成物16を用いた以外は、実施例1と同様にして帯電ローラ23を作成し、評価した。
For the unvulcanized rubber composition 1 prepared in Example 1, 14.3 parts by mass of the spherical polyethylene resin particle master batch PE-MB1 prepared above was added in an amount, and kneaded with an open roll. Unvulcanized rubber composition 16 was prepared.
The maximum reached temperature of the unvulcanized rubber composition 16 during open roll kneading was 92 ° C.
Since the spherical polyethylene resin particles are kneaded at a melting temperature or lower, they are not compatible with the matrix NBR.
Since the spherical polyethylene resin particles are electrically insulative, they are treated as part of a matrix containing rubber and having a higher electrical resistance than the domain, and the volume fraction of the domain is calculated as DS (m) / DS (d) The number of domains, A2 / A1, was measured.
A charging roller 23 was prepared and evaluated in the same manner as in Example 1 except that the unvulcanized rubber composition 16 was used instead of the unvulcanized rubber composition 1.

実施例14〜18の評価結果を表10に示す。

Figure 2019191564
Table 10 shows the evaluation results of Examples 14 to 18.
Figure 2019191564

実施例1〜18の中では、一定の体積抵抗率を満たす帯電部材において、A2/A1が大きく、ドメイン数が少なく、ドメインの体積分率が少なく、凹部が深いほど注入電位が低い傾向が見られた。実施例10はイオン導電性のヒドリンゴムを使用しており、接触による電荷移動がNBRに比べておこりやすく、注入電位が5Vであった。実施例11はドメインの体積分率が少ないため、マトリックスの導電性が高い必要があり、それに起因して接触による電荷移動が起こりやすく、注入電位が9Vであった。実施例12は、ドメインの体積分率が多いため、ドメイン間の距離が近づくことによる電界集中が起こり、電荷移動がおこりやすくなるため、注入電位が6Vであった。実施例13は、ドメインの数が多いため、ドメイン同士が連なることによる電界集中が起こり、電荷移動がおこりやすくなるため、注入電位が7Vであった。   Among Examples 1 to 18, in the charging member satisfying a certain volume resistivity, A2 / A1 is large, the number of domains is small, the volume fraction of domains is small, and the deeper the concave portion, the lower the injection potential. It was. In Example 10, ion conductive hydrin rubber was used, charge transfer due to contact was more likely to occur than NBR, and the injection potential was 5V. In Example 11, since the volume fraction of domains was small, the conductivity of the matrix had to be high, and as a result, charge transfer due to contact was likely to occur, and the injection potential was 9V. In Example 12, since the volume fraction of the domains was large, electric field concentration occurred due to the distance between the domains approaching, and charge transfer was likely to occur, so the injection potential was 6V. In Example 13, since the number of domains was large, electric field concentration occurred due to the domains being connected to each other, and charge transfer was likely to occur, so the injection potential was 7V.

比較例1〜2は、一定の体積抵抗率を満たす帯電部材において、A2/A1が小さく注入電位それぞれ、22Vと25Vになった。また、比較例3は、研磨成形のためドメインが凹部にのみ存在する表面形状にはならず、注入電位が27Vになった。同じく比較例4は、型成形のためドメインが凹部にのみ存在する表面形状にはならず、注入電位が32Vになった。比較例5は、ドメイン・マトリックス構造を有さず、カーボンブラックは弾性層に一様に存在していた。そのため、注入電位が38Vになった。   In Comparative Examples 1 and 2, in the charging member satisfying a certain volume resistivity, A2 / A1 was small, and the injection potentials were 22 V and 25 V, respectively. In Comparative Example 3, the surface shape was not such that the domain was present only in the recess due to polishing molding, and the injection potential was 27V. Similarly, Comparative Example 4 did not have a surface shape in which the domain was present only in the recess because of molding, and the injection potential was 32V. Comparative Example 5 did not have a domain matrix structure, and carbon black was uniformly present in the elastic layer. Therefore, the injection potential was 38V.

11‥‥カーボンブラックとゴムを含むドメイン
12‥‥ドメインよりも高い電気抵抗を有するマトリックス
13‥‥弾性層の表面
14‥‥弾性層の表面の凹部に露出したドメイン
11 Domain including carbon black and rubber 12 Matrix having higher electric resistance than domain 13 Surface of elastic layer 14 Domain exposed in recess of surface of elastic layer

Claims (8)

導電性支持体と弾性層とを有する帯電部材であって、
該弾性層は、単層で構成された該帯電部材の表面層であり、
かつ、カーボンブラックおよびゴムを含むドメインと、ゴムを含み該ドメインよりも高い電気抵抗を有するマトリックスと、を含み、
該帯電部材の表面は、該マトリックスの表面と、該ドメインの表面とで構成され、複数個の凹部を有し、
該ドメインは、該凹部の底部に存在し、かつ、該凹部の底部においてのみ該帯電部材の表面に露出しており、
該弾性層の体積抵抗率は、1×10Ωcm以上1×10Ωcm以下であり、
該導電性支持体と、該帯電部材の表面を構成する該マトリックスの表面に接触させた原子間力顕微鏡のカンチレバーと、の間に80Vの直流電圧を印加した際の電流値をA1とし、
該導電性支持体と、該帯電部材の表面を構成する該ドメインの表面に接触させた原子間力顕微鏡のカンチレバーと、の間に80Vの直流電圧を印加した際の電流値をA2としたとき、A2が、A1の20倍以上であることを特徴とする帯電部材。
A charging member having a conductive support and an elastic layer,
The elastic layer is a surface layer of the charging member composed of a single layer,
And a domain containing carbon black and rubber, and a matrix containing rubber and having a higher electrical resistance than the domain,
The surface of the charging member is composed of the surface of the matrix and the surface of the domain, and has a plurality of recesses,
The domain is present at the bottom of the recess, and is exposed on the surface of the charging member only at the bottom of the recess,
The elastic layer has a volume resistivity of 1 × 10 5 Ωcm to 1 × 10 8 Ωcm,
A1 is a current value when a DC voltage of 80 V is applied between the conductive support and the cantilever of the atomic force microscope brought into contact with the surface of the matrix constituting the surface of the charging member;
When the current value when an AC voltage of 80 V is applied between the conductive support and the cantilever of the atomic force microscope brought into contact with the surface of the domain constituting the surface of the charging member is A2. , A2 is 20 times or more of A1.
前記弾性層の体積を基準として、前記ドメインの体積分率が5体積%以上25体積%以下である請求項1に記載の帯電部材。   The charging member according to claim 1, wherein the volume fraction of the domain is 5% by volume or more and 25% by volume or less based on the volume of the elastic layer. 前記弾性層における一片10μmの立方体中に存在する前記ドメインの数が、1個以上500個以下である請求項1または2に記載の帯電部材。   The charging member according to claim 1, wherein the number of the domains existing in a 10 μm cube in the elastic layer is 1 or more and 500 or less. 電子写真感光体と、該電子写真感光体を帯電可能に配置されている帯電部材とを具備している電子写真装置であって、該帯電部材が、請求項1〜3のいずれか一項に記載の帯電部材であることを特徴とする電子写真装置。   An electrophotographic apparatus comprising: an electrophotographic photosensitive member; and a charging member arranged to be able to charge the electrophotographic photosensitive member, wherein the charging member is according to any one of claims 1 to 3. An electrophotographic apparatus comprising the charging member described above. 電子写真装置の本体に着脱可能であるプロセスカートリッジであって、
電子写真感光体と、該電子写真感光体を帯電可能に配置されている帯電部材とを具備し、該帯電部材が、請求項1〜3のいずれか一項に記載の帯電部材である、ことを特徴とするプロセスカートリッジ。
A process cartridge that is removable from the main body of the electrophotographic apparatus,
It comprises an electrophotographic photosensitive member and a charging member arranged to be able to charge the electrophotographic photosensitive member, and the charging member is the charging member according to any one of claims 1 to 3. Process cartridge characterized by.
帯電部材の製造方法であって、
該帯電部材は、導電性支持体と弾性層とを有し、
該弾性層は、単層で構成された該帯電部材の表面層であり、
かつ、カーボンブラックおよびゴムを含むドメインと、ゴムを含み該ドメインよりも高い電気抵抗を有するマトリックスと、を含み、
該帯電部材の表面は、該マトリックスの表面と、該ドメインの表面とで構成され、複数個の凹部を有し、
該ドメインは、該凹部の底部に存在し、かつ、該凹部の底部においてのみ該帯電部材の表面に露出しており、
該製造方法は、下記工程(A)〜(C)を有し:
(A)カーボンブラックおよびゴムを含み、該ドメインとなるカーボンマスターバッチを調製する工程、
(B)該カーボンマスターバッチと、該マトリックスとなるゴム組成物と、を混練して、ドメイン・マトリックス構造を有するゴム組成物を調製する工程、および
(C)該ドメイン・マトリックス構造を有するゴム組成物を、クロスヘッドから芯金と共に押し出して、該芯金の周囲を、該ドメイン・マトリックス構造を有するゴム組成物で被覆する工程、
該カーボンマスターバッチのダイスウェル値をDS(d)とし、該マトリックスとなるゴム組成物のダイスウェル値をDS(m)としたときに、ダイスウェル値の比DS(m)/DS(d)が、1.0よりも大きいことを特徴とする帯電部材の製造方法。
A method for manufacturing a charging member, comprising:
The charging member has a conductive support and an elastic layer,
The elastic layer is a surface layer of the charging member composed of a single layer,
And a domain containing carbon black and rubber, and a matrix containing rubber and having a higher electrical resistance than the domain,
The surface of the charging member is composed of the surface of the matrix and the surface of the domain, and has a plurality of recesses,
The domain is present at the bottom of the recess, and is exposed on the surface of the charging member only at the bottom of the recess,
The production method includes the following steps (A) to (C):
(A) a step of preparing a carbon masterbatch comprising carbon black and rubber and serving as the domain;
(B) a step of kneading the carbon masterbatch and a rubber composition to be the matrix to prepare a rubber composition having a domain / matrix structure; and (C) a rubber composition having the domain / matrix structure. A step of extruding an object together with a core bar from a cross head, and coating the periphery of the core bar with a rubber composition having the domain matrix structure;
When the die swell value of the carbon master batch is DS (d) and the die swell value of the rubber composition as the matrix is DS (m), the ratio of the die swell values DS (m) / DS (d) Is larger than 1.0, The manufacturing method of the charging member characterized by the above-mentioned.
前記DS(m)/DS(d)が、1.1以上である請求項6に記載の帯電部材の製造方法。   The method for manufacturing a charging member according to claim 6, wherein the DS (m) / DS (d) is 1.1 or more. 前記弾性層の体積抵抗率は、1×10Ωcm以上1×10Ωcm以下であり、
前記導電性支持体と、前記帯電部材の表面を構成する該マトリックスの表面に接触させた原子間力顕微鏡のカンチレバーと、の間に80Vの直流電圧を印加した際の電流値をA1とし、
該導電性支持体と該帯電部材の表面を構成する前記ドメインの表面に接触させた原子間力顕微鏡のカンチレバーと、の間に80Vの直流電圧を印加した際の電流値をA2としたとき、A2が、A1の20倍以上である請求項6に記載の帯電部材の製造方法。
The volume resistivity of the elastic layer is 1 × 10 5 Ωcm or more and 1 × 10 8 Ωcm or less,
A1 is a current value when a DC voltage of 80 V is applied between the conductive support and the cantilever of the atomic force microscope brought into contact with the surface of the matrix constituting the surface of the charging member;
When the current value when applying a direct current voltage of 80 V between the conductive support and the cantilever of the atomic force microscope brought into contact with the surface of the domain constituting the surface of the charging member is A2, The method for manufacturing a charging member according to claim 6, wherein A2 is 20 times or more of A1.
JP2019032936A 2018-04-18 2019-02-26 Charging member, method for manufacturing charging member, electrophotographic apparatus, and process cartridge Active JP7229811B2 (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
US16/372,834 US10558136B2 (en) 2018-04-18 2019-04-02 Charging member, manufacturing method of charging member, electrophotographic apparatus, and process cartridge
EP19167753.3A EP3557329B1 (en) 2018-04-18 2019-04-08 Charging member, manufacturing method of charging member, electrophotographic apparatus, and process cartridge
CN201980026477.8A CN112005173B (en) 2018-04-18 2019-04-16 Conductive member, process cartridge, and image forming apparatus
PCT/JP2019/016297 WO2019203225A1 (en) 2018-04-18 2019-04-16 Conductive member, process cartridge, and electrophotographic image forming device
PCT/JP2019/016300 WO2019203227A1 (en) 2018-04-18 2019-04-16 Conductive member, process cartridge, and image forming device
CN201980026338.5A CN112020678B (en) 2018-04-18 2019-04-16 Conductive member, process cartridge, and electrophotographic image forming apparatus
PCT/JP2019/016347 WO2019203238A1 (en) 2018-04-18 2019-04-16 Electroconductive member and method for manufacturing same, process cartridge, and electrophotographic image formation device
CN201980026610.XA CN112020679B (en) 2018-04-18 2019-04-16 Conductive member, process for producing the same, process cartridge, and electrophotographic image forming apparatus
EP19789241.7A EP3783440A4 (en) 2018-04-18 2019-04-16 Conductive member, process cartridge, and image forming device
CN201910308526.9A CN110389508B (en) 2018-04-18 2019-04-17 Charging member, method of manufacturing charging member, electrophotographic apparatus, and process cartridge
PCT/JP2019/016693 WO2019203321A1 (en) 2018-04-18 2019-04-18 Developing member, process cartridge, and electrophotography apparatus
CN201980026505.6A CN111989622B (en) 2018-04-18 2019-04-18 Developing member, process cartridge, and electrophotographic apparatus
US17/070,712 US11112748B2 (en) 2018-04-18 2020-10-14 Developing member, process cartridge and electrophotographic apparatus
US17/070,995 US11307509B2 (en) 2018-04-18 2020-10-15 Electro-conductive member, method for producing same, process cartridge and electrophotographic image forming apparatus
US17/072,463 US11385559B2 (en) 2018-04-18 2020-10-16 Electroconductive member, process cartridge, and image forming apparatus
US17/072,206 US11175602B2 (en) 2018-04-18 2020-10-16 Electroconductive member, process cartridge, and electrophotographic image forming apparatus
US17/496,402 US11397388B2 (en) 2018-04-18 2021-10-07 Process for producing an electrophotographic electroconductive member
US17/806,015 US11640122B2 (en) 2018-04-18 2022-06-08 Electroconductive member, process cartridge, and image forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018079952 2018-04-18
JP2018079952 2018-04-18

Publications (2)

Publication Number Publication Date
JP2019191564A true JP2019191564A (en) 2019-10-31
JP7229811B2 JP7229811B2 (en) 2023-02-28

Family

ID=68390210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019032936A Active JP7229811B2 (en) 2018-04-18 2019-02-26 Charging member, method for manufacturing charging member, electrophotographic apparatus, and process cartridge

Country Status (1)

Country Link
JP (1) JP7229811B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075371A1 (en) * 2019-10-18 2021-04-22 キヤノン株式会社 Conductive member, manufacturing method thereof, process cartridge, and electrophotographic image forming device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081763A (en) * 1998-09-04 2000-03-21 Canon Inc Electrifying member, electrifying method, electrifying device, image forming device and process cartridge
JP2010134452A (en) * 2008-10-31 2010-06-17 Canon Inc Charging roller, process cartridge, and electrophotographic device
JP2011022410A (en) * 2009-07-16 2011-02-03 Fuji Xerox Co Ltd Conductive member, charging device, process cartridge, and image forming device
JP2012118322A (en) * 2010-12-01 2012-06-21 Canon Inc Charging roller and method for manufacturing the same
JP2012163954A (en) * 2011-01-21 2012-08-30 Canon Inc Conductive rubber elastic material, charging member and electrophotographic device
JP2017072833A (en) * 2015-10-08 2017-04-13 キヤノン株式会社 Conductive member for electrophotography, manufacturing method thereof, process cartridge, and electrophotographic device
JP6180272B2 (en) * 2013-09-20 2017-08-16 キヤノン株式会社 Charging member, method for manufacturing the same, process cartridge, and electrophotographic apparatus
JP2018077470A (en) * 2016-10-31 2018-05-17 キヤノン株式会社 Charging member, process cartridge, electrophotographic image forming apparatus, and method for manufacturing charging member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081763A (en) * 1998-09-04 2000-03-21 Canon Inc Electrifying member, electrifying method, electrifying device, image forming device and process cartridge
JP2010134452A (en) * 2008-10-31 2010-06-17 Canon Inc Charging roller, process cartridge, and electrophotographic device
JP2011022410A (en) * 2009-07-16 2011-02-03 Fuji Xerox Co Ltd Conductive member, charging device, process cartridge, and image forming device
JP2012118322A (en) * 2010-12-01 2012-06-21 Canon Inc Charging roller and method for manufacturing the same
JP2012163954A (en) * 2011-01-21 2012-08-30 Canon Inc Conductive rubber elastic material, charging member and electrophotographic device
JP6180272B2 (en) * 2013-09-20 2017-08-16 キヤノン株式会社 Charging member, method for manufacturing the same, process cartridge, and electrophotographic apparatus
JP2017072833A (en) * 2015-10-08 2017-04-13 キヤノン株式会社 Conductive member for electrophotography, manufacturing method thereof, process cartridge, and electrophotographic device
JP2018077470A (en) * 2016-10-31 2018-05-17 キヤノン株式会社 Charging member, process cartridge, electrophotographic image forming apparatus, and method for manufacturing charging member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075371A1 (en) * 2019-10-18 2021-04-22 キヤノン株式会社 Conductive member, manufacturing method thereof, process cartridge, and electrophotographic image forming device
US11619890B2 (en) 2019-10-18 2023-04-04 Canon Kabushiki Kaisha Electro-conductive member, manufacturing method thereof, process cartridge, and electrophotographic image forming apparatus

Also Published As

Publication number Publication date
JP7229811B2 (en) 2023-02-28

Similar Documents

Publication Publication Date Title
CN110389508B (en) Charging member, method of manufacturing charging member, electrophotographic apparatus, and process cartridge
CN105652620B (en) Electrophotography component, handle box and image forming apparatus
US10012924B2 (en) Electrophotographic electro-conductive member having a dual rubber elastic layer, method of producing the same, process cartridge, and electrophotographic apparatus
US11378910B2 (en) Process cartridge and image forming apparatus
CN103003755B (en) Charging member, its production method and electronic photographing device
US11307509B2 (en) Electro-conductive member, method for producing same, process cartridge and electrophotographic image forming apparatus
JP3639773B2 (en) Semiconductive rubber composition, charging member, electrophotographic apparatus, process cartridge
CN106896667A (en) Charging member and electronic photographing device
WO2021075371A1 (en) Conductive member, manufacturing method thereof, process cartridge, and electrophotographic image forming device
CN110874034B (en) Developing roller, electrophotographic process cartridge, and electrophotographic image forming apparatus
JP7229811B2 (en) Charging member, method for manufacturing charging member, electrophotographic apparatus, and process cartridge
JP2007163574A (en) Conductive rubber roller
JP2022076465A (en) Electrifying roller, process cartridge, and electrophotographic image forming apparatus
JP7225005B2 (en) Conductive member and manufacturing method thereof, process cartridge and electrophotographic image forming apparatus
CN102323729A (en) Powder feed roll of double-layer structure and manufacturing method thereof
US11556073B2 (en) Electroconductive elastic body, electrophotographic member, process cartridge, and electrophotographic image-forming apparatus
JP5744603B2 (en) Charging member, process cartridge, and electrophotographic apparatus
CN112020679A (en) Conductive member, process for producing the same, process cartridge, and electrophotographic image forming apparatus
JP2021067744A (en) Image forming apparatus
JP2021067729A (en) Image forming apparatus
JP2010255714A (en) Electroconductive roll for electrophotographic apparatus
JP2010262160A (en) Conductive rubber roller
JP2011221130A (en) Conductive material
JPH07140759A (en) Electrifying member and its production
CN104145220A (en) Charging member, electrophotographic device, and process cartridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20220630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230215

R151 Written notification of patent or utility model registration

Ref document number: 7229811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151