JP2019190794A5 - - Google Patents

Download PDF

Info

Publication number
JP2019190794A5
JP2019190794A5 JP2018087044A JP2018087044A JP2019190794A5 JP 2019190794 A5 JP2019190794 A5 JP 2019190794A5 JP 2018087044 A JP2018087044 A JP 2018087044A JP 2018087044 A JP2018087044 A JP 2018087044A JP 2019190794 A5 JP2019190794 A5 JP 2019190794A5
Authority
JP
Japan
Prior art keywords
refrigerant
stage
section
inlet side
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018087044A
Other languages
Japanese (ja)
Other versions
JP6939691B2 (en
JP2019190794A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2018087044A priority Critical patent/JP6939691B2/en
Priority claimed from JP2018087044A external-priority patent/JP6939691B2/en
Priority to PCT/JP2019/016802 priority patent/WO2019208428A1/en
Publication of JP2019190794A publication Critical patent/JP2019190794A/en
Publication of JP2019190794A5 publication Critical patent/JP2019190794A5/ja
Application granted granted Critical
Publication of JP6939691B2 publication Critical patent/JP6939691B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

上記目的を達成するため、請求項1に記載の発明は、冷媒を圧縮して吐出する圧縮機(11)と、圧縮機から吐出された冷媒を放熱させる放熱器(12)と、放熱器にて放熱した冷媒を減圧させる高段側減圧部(14a)と、高段側減圧部にて減圧された冷媒を蒸発させる高段側蒸発器(15)と、放熱器にて放熱した冷媒を減圧させる低段側減圧部(14c)と、低段側減圧部にて減圧された冷媒を蒸発させる低段側蒸発器(18)と、放熱器の下流側の冷媒の流れを分岐して、分岐された一方の冷媒を高段側蒸発器の冷媒入口側へ流出させるとともに、分岐された他方の冷媒を低段側蒸発器の冷媒入口側へ流出させる分岐部(13a)と、冷媒を減圧させるノズル部(16a)から噴射される噴射冷媒の吸引作用によって、低段側蒸発器から流出した冷媒を冷媒吸引口(16c)から吸引し、噴射冷媒と冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させて圧縮機の吸入口側へ流出させる昇圧部(16d)を有するエジェクタ(16)と、を備え、
さらに、低段側蒸発器へ流入する冷媒のエンタルピを低下させるエンタルピ調整部(14b、17)を備え
エンタルピ調整部は、冷媒の気液を分離する気液分離部(17)および気液分離部へ流入する冷媒を減圧させる分離器側減圧部(14b)を有し、放熱器の冷媒出口は、分岐部の流入口側に接続されており、分岐部の一方の流出口は、高段側減圧部の入口側に接続されており、高段側蒸発器の冷媒出口は、ノズル部の入口側に接続されており、分岐部の他方の流出口は、分離器側減圧部の入口側に接続されており、気液分離部の気相冷媒出口は、ノズル部の入口側に接続されており、気液分離部の液相冷媒出口は、前記低段側減圧部の入口側に接続されているエジェクタ式冷凍サイクルである。
In order to achieve the above object, the invention according to claim 1 provides a compressor (11) for compressing and discharging a refrigerant, a radiator (12) for radiating the refrigerant discharged from the compressor, and a radiator. High pressure side decompression unit (14a) for decompressing the heat radiated refrigerant, high pressure side evaporator (15) for evaporating the refrigerant decompressed by the high pressure side decompression unit, and pressure reduction for the heat radiated refrigerant The low-stage side decompression section (14c), the low-stage side evaporator (18) for evaporating the refrigerant decompressed by the low-stage side decompression section, and the refrigerant flow on the downstream side of the radiator are branched to branch. The refrigerant is depressurized with a branch portion (13a) that allows one of the separated refrigerants to flow out to the refrigerant inlet side of the high-stage evaporator and the other branched refrigerant to flow out to the refrigerant inlet side of the low-stage evaporator. By the suction action of the injection refrigerant injected from the nozzle portion (16a), the refrigerant flowing out from the low-stage evaporator is sucked from the refrigerant suction port (16c), and the injection refrigerant and the suction refrigerant sucked from the refrigerant suction port are separated. An ejector (16) having a pressurizing unit (16d) for pressurizing the mixed refrigerant to flow to the suction port side of the compressor,
Furthermore, an enthalpy adjustment unit (14b, 17) for reducing the enthalpy of the refrigerant flowing into the low-stage evaporator is provided ,
The enthalpy adjusting section has a gas-liquid separating section (17) for separating the gas-liquid of the refrigerant and a separator-side depressurizing section (14b) for depressurizing the refrigerant flowing into the gas-liquid separating section, and the refrigerant outlet of the radiator is It is connected to the inlet side of the branch part, one outlet of the branch part is connected to the inlet side of the high-stage pressure reducing part, and the refrigerant outlet of the high-stage evaporator is the inlet side of the nozzle part. And the other outlet of the branch portion is connected to the inlet side of the separator-side decompression portion, and the gas-phase refrigerant outlet of the gas-liquid separation portion is connected to the inlet side of the nozzle portion. The liquid-phase refrigerant outlet of the gas-liquid separator is an ejector-type refrigeration cycle connected to the inlet side of the low-stage pressure reducing section .

すなわち、請求項1に記載の発明によれば、低段側冷却能力Δh_le×G_leの減少を招くことなく、成績係数(COP)を向上することのできるエジェクタ式冷凍サイクルを提供することができる。
また、請求項2に記載の発明は、冷媒を圧縮して吐出する圧縮機(11)と、圧縮機から吐出された冷媒を放熱させる放熱器(12)と、放熱器にて放熱した冷媒を減圧させる高段側減圧部(14a)と、高段側減圧部にて減圧された冷媒を蒸発させる高段側蒸発器(15)と、放熱器にて放熱した冷媒を減圧させる低段側減圧部(14c)と、低段側減圧部にて減圧された冷媒を蒸発させる低段側蒸発器(18)と、放熱器の下流側の冷媒の流れを分岐して、分岐された一方の冷媒を高段側蒸発器の冷媒入口側へ流出させるとともに、分岐された他方の冷媒を低段側蒸発器の冷媒入口側へ流出させる分岐部(13a)と、冷媒を減圧させるノズル部(16a)から噴射される噴射冷媒の吸引作用によって、低段側蒸発器から流出した冷媒を冷媒吸引口(16c)から吸引し、噴射冷媒と冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させて圧縮機の吸入口側へ流出させる昇圧部(16d)を有するエジェクタ(16)と、を備え、
さらに、低段側蒸発器へ流入する冷媒のエンタルピを低下させるエンタルピ調整部(14b、17)を備え、
エンタルピ調整部は、冷媒の気液を分離する気液分離部(17)および気液分離部へ流入する冷媒を減圧させる分離器側減圧部(14b)を有し、放熱器の冷媒出口は、高段側減圧部の入口側に接続されており、高段側減圧部の出口は、分岐部の流入口側に接続されており、分岐部の一方の流出口は、高段側蒸発器の冷媒入口側に接続されており、高段側蒸発器の冷媒出口は、ノズル部の入口側に接続されており、分岐部の他方の流出口は、分離器側減圧部(14b)の入口側に接続されており、気液分離部の気相冷媒出口は、ノズル部の入口側に接続されており、気液分離部の液相冷媒出口は、低段側減圧部の入口側に接続されているエジェクタ式冷凍サイクルである。
これによれば、請求項1に記載の発明と同様の効果を得ることができる。
また、請求項4に記載の発明は、冷媒を圧縮して吐出する圧縮機(11)と、圧縮機から吐出された冷媒を放熱させる放熱器(12)と、放熱器にて放熱した冷媒を減圧させる高段側減圧部(14a)と、高段側減圧部にて減圧された冷媒を蒸発させる高段側蒸発器(15)と、放熱器にて放熱した冷媒を減圧させる低段側減圧部(14c)と、低段側減圧部にて減圧された冷媒を蒸発させる低段側蒸発器(18)と、放熱器の下流側の冷媒の流れを分岐して、分岐された一方の冷媒を高段側蒸発器の冷媒入口側へ流出させるとともに、分岐された他方の冷媒を低段側蒸発器の冷媒入口側へ流出させる分岐部(13a)と、冷媒を減圧させるノズル部(16a)から噴射される噴射冷媒の吸引作用によって、低段側蒸発器から流出した冷媒を冷媒吸引口(16c)から吸引し、噴射冷媒と冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させて圧縮機の吸入口側へ流出させる昇圧部(16d)を有するエジェクタ(16)と、を備え、
さらに、低段側蒸発器へ流入する冷媒のエンタルピを低下させるエンタルピ調整部(14b、17)を備え、
エンタルピ調整部は、冷媒の気液を分離する気液分離部(17)および気液分離部へ流入する冷媒を減圧させる分離器側減圧部(14b)を有し、放熱器の冷媒出口は、分岐部の流入口側に接続されており、分岐部の一方の流出口は、高段側減圧部の入口側に接続されており、高段側蒸発器の冷媒出口は、圧縮機の吸入口側に接続されており、分岐部の他方の流出口は、分離器側減圧部の入口側に接続されており、気液分離部の気相冷媒出口は、ノズル部の入口側に接続されており、気液分離部の液相冷媒出口は、低段側減圧部の入口側に接続されているエジェクタ式冷凍サイクルである。
これによれば、請求項1に記載の発明と同様の効果を得ることができる。
また、請求項5に記載の発明は、冷媒を圧縮して吐出する圧縮機(11)と、圧縮機から吐出された冷媒を放熱させる放熱器(12)と、放熱器にて放熱した冷媒を減圧させる高段側減圧部(14a)と、高段側減圧部にて減圧された冷媒を蒸発させる高段側蒸発器(15)と、放熱器にて放熱した冷媒を減圧させる低段側減圧部(14c)と、低段側減圧部にて減圧された冷媒を蒸発させる低段側蒸発器(18)と、放熱器の下流側の冷媒の流れを分岐して、分岐された一方の冷媒を高段側蒸発器の冷媒入口側へ流出させるとともに、分岐された他方の冷媒を低段側蒸発器の冷媒入口側へ流出させる分岐部(13a)と、冷媒を減圧させるノズル部(16a)から噴射される噴射冷媒の吸引作用によって、低段側蒸発器から流出した冷媒を冷媒吸引口(16c)から吸引し、噴射冷媒と冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させて圧縮機の吸入口側へ流出させる昇圧部(16d)を有するエジェクタ(16)と、を備え、
さらに、低段側蒸発器へ流入する冷媒のエンタルピを低下させるエンタルピ調整部(14b、17)を備え、
エンタルピ調整部は、冷媒の気液を分離する気液分離部(17)および気液分離部へ流入する冷媒を減圧させる分離器側減圧部(14b)を有し、放熱器の冷媒出口は、高段側減圧部の入口側に接続されており、高段側減圧部の出口は、分岐部の流入口側に接続されており、分岐部の一方の流出口は、高段側蒸発器の冷媒入口側に接続されており、高段側蒸発器の冷媒出口は、圧縮機の吸入口側に接続されており、分岐部の他方の流出口は、分離器側減圧部の入口側に接続されており、気液分離部の気相冷媒出口は、ノズル部の入口側に接続されており、気液分離部の液相冷媒出口は、低段側減圧部の入口側に接続されているエジェクタ式冷凍サイクルである。
これによれば、請求項1に記載の発明と同様の効果を得ることができる。
That is, according to the invention described in claim 1, it is possible to provide the ejector refrigeration cycle capable of improving the coefficient of performance (COP) without inducing a decrease in the low-stage side cooling capacity Δh_le×G_le.
Further, the invention according to claim 2 includes a compressor (11) for compressing and discharging the refrigerant, a radiator (12) for radiating the refrigerant discharged from the compressor, and a refrigerant radiating the heat by the radiator. High-stage decompression section (14a) for decompressing, high-stage evaporator (15) for evaporating the refrigerant decompressed by the high-stage decompression section, and low-stage decompression for decompressing the refrigerant radiated by a radiator Part (14c), a low-stage side evaporator (18) for evaporating the refrigerant decompressed in the low-stage side decompression part, and a refrigerant flow on the downstream side of the radiator, and one of the branched refrigerants (13a) for causing the refrigerant to flow out to the refrigerant inlet side of the high-stage side evaporator, and the other branched refrigerant to flow out to the refrigerant inlet side of the low-stage side evaporator, and a nozzle section (16a) for depressurizing the refrigerant. By the suction action of the injection refrigerant injected from the refrigerant, the refrigerant flowing out from the low-stage evaporator is sucked from the refrigerant suction port (16c), and the pressure of the mixed refrigerant of the injection refrigerant and the suction refrigerant sucked from the refrigerant suction port is increased. And an ejector (16) having a pressurizing unit (16d) for flowing out to the suction port side of the compressor,
Furthermore, an enthalpy adjustment unit (14b, 17) for reducing the enthalpy of the refrigerant flowing into the low-stage evaporator is provided,
The enthalpy adjusting section has a gas-liquid separating section (17) for separating the gas-liquid of the refrigerant and a separator-side depressurizing section (14b) for depressurizing the refrigerant flowing into the gas-liquid separating section, and the refrigerant outlet of the radiator is It is connected to the inlet side of the high-stage depressurizing section, the outlet of the high-stage depressurizing section is connected to the inlet side of the branching section, and one outlet of the branching section is connected to the high-stage side evaporator. It is connected to the refrigerant inlet side, the refrigerant outlet of the high-stage evaporator is connected to the inlet side of the nozzle section, and the other outlet of the branch section is the inlet side of the separator-side decompression section (14b). The gas-phase refrigerant outlet of the gas-liquid separator is connected to the inlet side of the nozzle section, and the liquid-phase refrigerant outlet of the gas-liquid separator is connected to the inlet side of the low-stage pressure reducing section. It is an ejector type refrigeration cycle.
According to this, the same effect as that of the invention described in claim 1 can be obtained.
In the invention according to claim 4, the compressor (11) for compressing and discharging the refrigerant, the radiator (12) for radiating the refrigerant discharged from the compressor, and the refrigerant radiating the heat by the radiator are provided. High-stage decompression section (14a) for decompressing, high-stage evaporator (15) for evaporating the refrigerant decompressed by the high-stage decompression section, and low-stage decompression for decompressing the refrigerant radiated by a radiator Part (14c), a low-stage side evaporator (18) for evaporating the refrigerant decompressed in the low-stage side decompression part, and a refrigerant flow on the downstream side of the radiator, and one of the branched refrigerants (13a) for causing the refrigerant to flow out to the refrigerant inlet side of the high-stage side evaporator, and the other branched refrigerant to flow out to the refrigerant inlet side of the low-stage side evaporator, and a nozzle section (16a) for depressurizing the refrigerant. By the suction action of the injection refrigerant injected from the refrigerant, the refrigerant flowing out from the low-stage evaporator is sucked from the refrigerant suction port (16c), and the pressure of the mixed refrigerant of the injection refrigerant and the suction refrigerant sucked from the refrigerant suction port is increased. And an ejector (16) having a pressurizing unit (16d) for flowing out to the suction port side of the compressor,
Furthermore, an enthalpy adjustment unit (14b, 17) for reducing the enthalpy of the refrigerant flowing into the low-stage evaporator is provided,
The enthalpy adjusting section has a gas-liquid separating section (17) for separating the gas-liquid of the refrigerant and a separator-side depressurizing section (14b) for depressurizing the refrigerant flowing into the gas-liquid separating section, and the refrigerant outlet of the radiator is It is connected to the inlet side of the branch, one outlet of the branch is connected to the inlet of the high-stage decompression section, and the refrigerant outlet of the high-stage evaporator is the inlet of the compressor. Side, the other outlet of the branching portion is connected to the inlet side of the separator-side depressurizing portion, the gas-phase refrigerant outlet of the gas-liquid separating portion is connected to the inlet side of the nozzle portion. The liquid-phase refrigerant outlet of the gas-liquid separator is an ejector-type refrigeration cycle connected to the inlet side of the low-stage pressure reducing section.
According to this, the same effect as that of the invention described in claim 1 can be obtained.
Further, the invention according to claim 5 includes a compressor (11) for compressing and discharging the refrigerant, a radiator (12) for radiating the refrigerant discharged from the compressor, and a refrigerant radiating the heat by the radiator. High-stage decompression section (14a) for decompressing, high-stage evaporator (15) for evaporating the refrigerant decompressed by the high-stage decompression section, and low-stage decompression for decompressing the refrigerant radiated by a radiator Part (14c), a low-stage side evaporator (18) for evaporating the refrigerant decompressed in the low-stage side decompression part, and a refrigerant flow on the downstream side of the radiator, and one of the branched refrigerants (13a) for causing the refrigerant to flow out to the refrigerant inlet side of the high-stage side evaporator, and the other branched refrigerant to flow out to the refrigerant inlet side of the low-stage side evaporator, and a nozzle section (16a) for depressurizing the refrigerant. By the suction action of the injection refrigerant injected from the refrigerant, the refrigerant flowing out from the low-stage evaporator is sucked from the refrigerant suction port (16c), and the pressure of the mixed refrigerant of the injection refrigerant and the suction refrigerant sucked from the refrigerant suction port is increased. And an ejector (16) having a pressurizing unit (16d) for flowing out to the suction port side of the compressor,
Furthermore, an enthalpy adjustment unit (14b, 17) for reducing the enthalpy of the refrigerant flowing into the low-stage evaporator is provided,
The enthalpy adjusting section has a gas-liquid separating section (17) for separating the gas-liquid of the refrigerant and a separator-side depressurizing section (14b) for depressurizing the refrigerant flowing into the gas-liquid separating section, and the refrigerant outlet of the radiator is It is connected to the inlet side of the high-stage depressurizing section, the outlet of the high-stage depressurizing section is connected to the inlet side of the branching section, and one outlet of the branching section is connected to the high-stage side evaporator. It is connected to the refrigerant inlet side, the refrigerant outlet of the high-stage evaporator is connected to the suction inlet side of the compressor, and the other outlet of the branching part is connected to the inlet side of the separator-side depressurizing part. The gas-phase refrigerant outlet of the gas-liquid separation section is connected to the inlet side of the nozzle section, and the liquid-phase refrigerant outlet of the gas-liquid separation section is connected to the inlet side of the low-stage pressure reducing section. It is an ejector type refrigeration cycle.
According to this, the same effect as that of the invention described in claim 1 can be obtained.

分岐部13aにて分岐された他方の冷媒は、分離器側膨張弁14bへ流入して等エンタルピ的に減圧される(図6の6点→i6点)。この際、分離器側膨張弁14bの絞り開度は、第1実施形態と同様に、気液分離器17内の冷媒圧力が高段側蒸発器15の冷媒出口側の冷媒圧力よりも高い範囲で、高段側蒸発器15の冷媒出口側の冷媒圧力に近づくように調整される。以降の作動は、第1実施形態と同様である。 The other refrigerant branched at the branch portion 13a is equal is enthalpy depressurize flows into separator side expansion valve 14b (c 6 points in FIG. 6 → i6 points). At this time, the throttle opening of the separator-side expansion valve 14b is in a range where the refrigerant pressure in the gas-liquid separator 17 is higher than the refrigerant pressure on the refrigerant outlet side of the high-stage evaporator 15, as in the first embodiment. Thus, the pressure is adjusted so as to approach the refrigerant pressure on the refrigerant outlet side of the high-stage side evaporator 15. Subsequent operations are the same as in the first embodiment.

分岐部13aにて分岐された他方の冷媒は、分離器側膨張弁14bへ流入して等エンタルピ的に減圧される(図10の10点→i10点)。この際、分離器側膨張弁14bの絞り開度は、第3実施形態と同様に、COPが極大値(ピーク値)に近づくように調整される。以降の作動は、第1実施形態と同様である。 The other refrigerant branched at the branch portion 13a, the separation-side etc. are enthalpy depressurize flows into the expansion valve 14b (c 10 points in FIG. 10 → i10 points). At this time, the throttle opening degree of the separator-side expansion valve 14b is adjusted so that COP approaches the maximum value (peak value), as in the third embodiment. Subsequent operations are the same as in the first embodiment.

Claims (5)

冷媒を圧縮して吐出する圧縮機(11)と、
前記圧縮機から吐出された冷媒を放熱させる放熱器(12)と、
前記放熱器にて放熱した冷媒を減圧させる高段側減圧部(14a)と、
前記高段側減圧部にて減圧された冷媒を蒸発させる高段側蒸発器(15)と、
前記放熱器にて放熱した冷媒を減圧させる低段側減圧部(14c)と、
前記低段側減圧部にて減圧された冷媒を蒸発させる低段側蒸発器(18)と、
前記放熱器の下流側の冷媒の流れを分岐して、分岐された一方の冷媒を前記高段側蒸発器の冷媒入口側へ流出させるとともに、分岐された他方の冷媒を前記低段側蒸発器の冷媒入口側へ流出させる分岐部(13a)と、
冷媒を減圧させるノズル部(16a)から噴射される噴射冷媒の吸引作用によって、前記低段側蒸発器から流出した冷媒を冷媒吸引口(16c)から吸引し、前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させて前記圧縮機の吸入口側へ流出させる昇圧部(16d)を有するエジェクタ(16)と、を備え、
さらに、前記低段側蒸発器へ流入する冷媒のエンタルピを低下させるエンタルピ調整部(14b、17)を備え
前記エンタルピ調整部は、冷媒の気液を分離する気液分離部(17)および前記気液分離部へ流入する冷媒を減圧させる分離器側減圧部(14b)を有し、
前記放熱器の冷媒出口は、前記分岐部の流入口側に接続されており、
前記分岐部の一方の流出口は、前記高段側減圧部の入口側に接続されており、
前記高段側蒸発器の冷媒出口は、前記ノズル部の入口側に接続されており、
前記分岐部の他方の流出口は、前記分離器側減圧部の入口側に接続されており、
前記気液分離部の気相冷媒出口は、前記ノズル部の入口側に接続されており、
前記気液分離部の液相冷媒出口は、前記低段側減圧部の入口側に接続されているエジェクタ式冷凍サイクル。
A compressor (11) for compressing and discharging the refrigerant,
A radiator (12) for radiating the refrigerant discharged from the compressor,
A high-stage pressure reducing section (14a) for reducing the pressure of the refrigerant radiated by the radiator,
A high-stage evaporator (15) for evaporating the refrigerant decompressed in the high-stage depressurization section,
A low-stage pressure reducing section (14c) for reducing the pressure of the refrigerant radiated by the radiator,
A low-stage evaporator (18) for evaporating the refrigerant decompressed by the low-stage depressurization section,
The flow of the refrigerant on the downstream side of the radiator is branched to allow one of the branched refrigerants to flow out to the refrigerant inlet side of the high-stage evaporator, and the other branched refrigerant to the low-stage evaporator. A branch portion (13a) for flowing to the refrigerant inlet side of
By the suction action of the injection refrigerant injected from the nozzle portion (16a) for depressurizing the refrigerant, the refrigerant flowing out from the low-stage evaporator is sucked from the refrigerant suction port (16c), and the injection refrigerant and the refrigerant suction port are sucked. An ejector (16) having a pressurizing section (16d) for pressurizing a mixed refrigerant with the sucked suction refrigerant to flow to the suction port side of the compressor,
Furthermore, an enthalpy adjustment unit (14b, 17) for reducing the enthalpy of the refrigerant flowing into the low-stage evaporator is provided ,
The enthalpy adjusting section has a gas-liquid separating section (17) for separating the gas-liquid of the refrigerant and a separator-side depressurizing section (14b) for depressurizing the refrigerant flowing into the gas-liquid separating section,
The refrigerant outlet of the radiator is connected to the inlet side of the branch portion,
One of the outlets of the branch section is connected to the inlet side of the high-stage pressure reducing section,
The refrigerant outlet of the high-stage evaporator is connected to the inlet side of the nozzle portion,
The other outlet of the branch portion is connected to the inlet side of the separator-side pressure reducing portion,
The gas-phase refrigerant outlet of the gas-liquid separation unit is connected to the inlet side of the nozzle unit,
An ejector-type refrigeration cycle in which a liquid-phase refrigerant outlet of the gas-liquid separation unit is connected to an inlet side of the low-stage pressure reducing unit .
冷媒を圧縮して吐出する圧縮機(11)と、
前記圧縮機から吐出された冷媒を放熱させる放熱器(12)と、
前記放熱器にて放熱した冷媒を減圧させる高段側減圧部(14a)と、
前記高段側減圧部にて減圧された冷媒を蒸発させる高段側蒸発器(15)と、
前記放熱器にて放熱した冷媒を減圧させる低段側減圧部(14c)と、
前記低段側減圧部にて減圧された冷媒を蒸発させる低段側蒸発器(18)と、
前記放熱器の下流側の冷媒の流れを分岐して、分岐された一方の冷媒を前記高段側蒸発器の冷媒入口側へ流出させるとともに、分岐された他方の冷媒を前記低段側蒸発器の冷媒入口側へ流出させる分岐部(13a)と、
冷媒を減圧させるノズル部(16a)から噴射される噴射冷媒の吸引作用によって、前記低段側蒸発器から流出した冷媒を冷媒吸引口(16c)から吸引し、前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させて前記圧縮機の吸入口側へ流出させる昇圧部(16d)を有するエジェクタ(16)と、を備え、
さらに、前記低段側蒸発器へ流入する冷媒のエンタルピを低下させるエンタルピ調整部(14b、17)を備え
前記エンタルピ調整部は、冷媒の気液を分離する気液分離部(17)および前記気液分離部へ流入する冷媒を減圧させる分離器側減圧部(14b)を有し、
前記放熱器の冷媒出口は、前記高段側減圧部の入口側に接続されており、
前記高段側減圧部の出口は、前記分岐部の流入口側に接続されており、
前記分岐部の一方の流出口は、前記高段側蒸発器の冷媒入口側に接続されており、
前記高段側蒸発器の冷媒出口は、前記ノズル部の入口側に接続されており、
前記分岐部の他方の流出口は、前記分離器側減圧部(14b)の入口側に接続されており、
前記気液分離部の気相冷媒出口は、前記ノズル部の入口側に接続されており、
前記気液分離部の液相冷媒出口は、前記低段側減圧部の入口側に接続されているエジェクタ式冷凍サイクル。
A compressor (11) for compressing and discharging the refrigerant,
A radiator (12) for radiating the refrigerant discharged from the compressor,
A high-stage pressure reducing section (14a) for reducing the pressure of the refrigerant radiated by the radiator,
A high-stage evaporator (15) for evaporating the refrigerant decompressed in the high-stage depressurization section,
A low-stage pressure reducing section (14c) for reducing the pressure of the refrigerant radiated by the radiator,
A low-stage evaporator (18) for evaporating the refrigerant decompressed by the low-stage depressurization section,
The flow of the refrigerant on the downstream side of the radiator is branched to allow one of the branched refrigerants to flow out to the refrigerant inlet side of the high-stage evaporator, and the other branched refrigerant to the low-stage evaporator. A branch portion (13a) for flowing to the refrigerant inlet side of
By the suction action of the injection refrigerant injected from the nozzle portion (16a) for depressurizing the refrigerant, the refrigerant flowing out from the low-stage evaporator is sucked from the refrigerant suction port (16c), and the injection refrigerant and the refrigerant suction port are sucked. An ejector (16) having a pressurizing section (16d) for pressurizing a mixed refrigerant with the sucked suction refrigerant to flow to the suction port side of the compressor,
Furthermore, an enthalpy adjustment unit (14b, 17) for reducing the enthalpy of the refrigerant flowing into the low-stage evaporator is provided ,
The enthalpy adjusting section has a gas-liquid separating section (17) for separating the gas-liquid of the refrigerant and a separator-side depressurizing section (14b) for depressurizing the refrigerant flowing into the gas-liquid separating section,
The radiator outlet of the radiator is connected to the inlet side of the high-stage pressure reducing section,
The outlet of the high-stage pressure reducing section is connected to the inlet side of the branch section,
One of the outlets of the branch portion is connected to the refrigerant inlet side of the high-stage side evaporator,
The refrigerant outlet of the high-stage evaporator is connected to the inlet side of the nozzle portion,
The other outlet of the branch portion is connected to the inlet side of the separator-side pressure reducing portion (14b),
The gas-phase refrigerant outlet of the gas-liquid separation unit is connected to the inlet side of the nozzle unit,
An ejector-type refrigeration cycle in which a liquid-phase refrigerant outlet of the gas-liquid separation unit is connected to an inlet side of the low-stage pressure reducing unit .
前記分離器側減圧部は、前記気液分離部内の冷媒の圧力が前記高段側蒸発器(15)の出口側の冷媒の圧力に近づくように絞り開度を調整するものである請求項またはに記載のエジェクタ式冷凍サイクル。 The separator-side vacuum unit, according to claim 1 in which adjusting the opening aperture approaches the pressure of the refrigerant on the outlet side of the gas-liquid separator pressure within the higher-stage evaporator of the refrigerant (15) Alternatively, the ejector-type refrigeration cycle described in 2 . 冷媒を圧縮して吐出する圧縮機(11)と、
前記圧縮機から吐出された冷媒を放熱させる放熱器(12)と、
前記放熱器にて放熱した冷媒を減圧させる高段側減圧部(14a)と、
前記高段側減圧部にて減圧された冷媒を蒸発させる高段側蒸発器(15)と、
前記放熱器にて放熱した冷媒を減圧させる低段側減圧部(14c)と、
前記低段側減圧部にて減圧された冷媒を蒸発させる低段側蒸発器(18)と、
前記放熱器の下流側の冷媒の流れを分岐して、分岐された一方の冷媒を前記高段側蒸発器の冷媒入口側へ流出させるとともに、分岐された他方の冷媒を前記低段側蒸発器の冷媒入口側へ流出させる分岐部(13a)と、
冷媒を減圧させるノズル部(16a)から噴射される噴射冷媒の吸引作用によって、前記低段側蒸発器から流出した冷媒を冷媒吸引口(16c)から吸引し、前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させて前記圧縮機の吸入口側へ流出させる昇圧部(16d)を有するエジェクタ(16)と、を備え、
さらに、前記低段側蒸発器へ流入する冷媒のエンタルピを低下させるエンタルピ調整部(14b、17)を備え
前記エンタルピ調整部は、冷媒の気液を分離する気液分離部(17)および前記気液分離部へ流入する冷媒を減圧させる分離器側減圧部(14b)を有し、
前記放熱器の冷媒出口は、前記分岐部の流入口側に接続されており、
前記分岐部の一方の流出口は、前記高段側減圧部の入口側に接続されており、
前記高段側蒸発器の冷媒出口は、前記圧縮機の吸入口側に接続されており、
前記分岐部の他方の流出口は、前記分離器側減圧部の入口側に接続されており、
前記気液分離部の気相冷媒出口は、前記ノズル部の入口側に接続されており、
前記気液分離部の液相冷媒出口は、前記低段側減圧部の入口側に接続されているエジェクタ式冷凍サイクル。
A compressor (11) for compressing and discharging the refrigerant,
A radiator (12) for radiating the refrigerant discharged from the compressor,
A high-stage pressure reducing section (14a) for reducing the pressure of the refrigerant radiated by the radiator,
A high-stage evaporator (15) for evaporating the refrigerant decompressed in the high-stage depressurization section,
A low-stage pressure reducing section (14c) for reducing the pressure of the refrigerant radiated by the radiator,
A low-stage evaporator (18) for evaporating the refrigerant decompressed by the low-stage depressurization section,
The flow of the refrigerant on the downstream side of the radiator is branched to allow one of the branched refrigerants to flow out to the refrigerant inlet side of the high-stage evaporator, and the other branched refrigerant to the low-stage evaporator. A branch portion (13a) for flowing to the refrigerant inlet side of
By the suction action of the injection refrigerant injected from the nozzle portion (16a) for depressurizing the refrigerant, the refrigerant flowing out from the low-stage evaporator is sucked from the refrigerant suction port (16c), and the injection refrigerant and the refrigerant suction port are sucked. An ejector (16) having a pressurizing section (16d) for pressurizing a mixed refrigerant with the sucked suction refrigerant to flow to the suction port side of the compressor,
Furthermore, an enthalpy adjustment unit (14b, 17) for reducing the enthalpy of the refrigerant flowing into the low-stage evaporator is provided ,
The enthalpy adjusting section has a gas-liquid separating section (17) for separating the gas-liquid of the refrigerant and a separator-side depressurizing section (14b) for depressurizing the refrigerant flowing into the gas-liquid separating section,
The refrigerant outlet of the radiator is connected to the inlet side of the branch portion,
One of the outlets of the branch section is connected to the inlet side of the high-stage pressure reducing section,
The refrigerant outlet of the high-stage side evaporator is connected to the suction side of the compressor,
The other outlet of the branch portion is connected to the inlet side of the separator-side pressure reducing portion,
The gas-phase refrigerant outlet of the gas-liquid separation unit is connected to the inlet side of the nozzle unit,
An ejector-type refrigeration cycle in which a liquid-phase refrigerant outlet of the gas-liquid separation unit is connected to an inlet side of the low-stage pressure reducing unit .
冷媒を圧縮して吐出する圧縮機(11)と、
前記圧縮機から吐出された冷媒を放熱させる放熱器(12)と、
前記放熱器にて放熱した冷媒を減圧させる高段側減圧部(14a)と、
前記高段側減圧部にて減圧された冷媒を蒸発させる高段側蒸発器(15)と、
前記放熱器にて放熱した冷媒を減圧させる低段側減圧部(14c)と、
前記低段側減圧部にて減圧された冷媒を蒸発させる低段側蒸発器(18)と、
前記放熱器の下流側の冷媒の流れを分岐して、分岐された一方の冷媒を前記高段側蒸発器の冷媒入口側へ流出させるとともに、分岐された他方の冷媒を前記低段側蒸発器の冷媒入口側へ流出させる分岐部(13a)と、
冷媒を減圧させるノズル部(16a)から噴射される噴射冷媒の吸引作用によって、前記低段側蒸発器から流出した冷媒を冷媒吸引口(16c)から吸引し、前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させて前記圧縮機の吸入口側へ流出させる昇圧部(16d)を有するエジェクタ(16)と、を備え、
さらに、前記低段側蒸発器へ流入する冷媒のエンタルピを低下させるエンタルピ調整部(14b、17)を備え
前記エンタルピ調整部は、冷媒の気液を分離する気液分離部(17)および前記気液分離部へ流入する冷媒を減圧させる分離器側減圧部(14b)を有し、
前記放熱器の冷媒出口は、前記高段側減圧部の入口側に接続されており、
前記高段側減圧部の出口は、前記分岐部の流入口側に接続されており、
前記分岐部の一方の流出口は、前記高段側蒸発器の冷媒入口側に接続されており、
前記高段側蒸発器の冷媒出口は、前記圧縮機の吸入口側に接続されており、
前記分岐部の他方の流出口は、前記分離器側減圧部の入口側に接続されており、
前記気液分離部の気相冷媒出口は、前記ノズル部の入口側に接続されており、
前記気液分離部の液相冷媒出口は、前記低段側減圧部の入口側に接続されているエジェクタ式冷凍サイクル。
A compressor (11) for compressing and discharging the refrigerant,
A radiator (12) for radiating the refrigerant discharged from the compressor,
A high-stage pressure reducing section (14a) for reducing the pressure of the refrigerant radiated by the radiator,
A high-stage evaporator (15) for evaporating the refrigerant decompressed in the high-stage depressurization section,
A low-stage pressure reducing section (14c) for reducing the pressure of the refrigerant radiated by the radiator,
A low-stage evaporator (18) for evaporating the refrigerant decompressed by the low-stage depressurization section,
The flow of the refrigerant on the downstream side of the radiator is branched to allow one of the branched refrigerants to flow out to the refrigerant inlet side of the high-stage evaporator, and the other branched refrigerant to the low-stage evaporator. A branch portion (13a) for flowing to the refrigerant inlet side of
By the suction action of the injection refrigerant injected from the nozzle portion (16a) for depressurizing the refrigerant, the refrigerant flowing out from the low-stage evaporator is sucked from the refrigerant suction port (16c), and the injection refrigerant and the refrigerant suction port are sucked. An ejector (16) having a pressurizing section (16d) for pressurizing a mixed refrigerant with the sucked suction refrigerant to flow to the suction port side of the compressor,
Furthermore, an enthalpy adjustment unit (14b, 17) for reducing the enthalpy of the refrigerant flowing into the low-stage evaporator is provided ,
The enthalpy adjusting section has a gas-liquid separating section (17) for separating the gas-liquid of the refrigerant and a separator-side depressurizing section (14b) for depressurizing the refrigerant flowing into the gas-liquid separating section,
The radiator outlet of the radiator is connected to the inlet side of the high-stage pressure reducing section,
The outlet of the high-stage pressure reducing section is connected to the inlet side of the branch section,
One of the outlets of the branch portion is connected to the refrigerant inlet side of the high-stage side evaporator,
The refrigerant outlet of the high-stage side evaporator is connected to the suction side of the compressor,
The other outlet of the branch portion is connected to the inlet side of the separator-side pressure reducing portion,
The gas-phase refrigerant outlet of the gas-liquid separation unit is connected to the inlet side of the nozzle unit,
An ejector-type refrigeration cycle in which a liquid-phase refrigerant outlet of the gas-liquid separation unit is connected to an inlet side of the low-stage pressure reducing unit .
JP2018087044A 2018-04-27 2018-04-27 Ejector type refrigeration cycle Active JP6939691B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018087044A JP6939691B2 (en) 2018-04-27 2018-04-27 Ejector type refrigeration cycle
PCT/JP2019/016802 WO2019208428A1 (en) 2018-04-27 2019-04-19 Ejector-type refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018087044A JP6939691B2 (en) 2018-04-27 2018-04-27 Ejector type refrigeration cycle

Publications (3)

Publication Number Publication Date
JP2019190794A JP2019190794A (en) 2019-10-31
JP2019190794A5 true JP2019190794A5 (en) 2020-08-06
JP6939691B2 JP6939691B2 (en) 2021-09-22

Family

ID=68295287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018087044A Active JP6939691B2 (en) 2018-04-27 2018-04-27 Ejector type refrigeration cycle

Country Status (2)

Country Link
JP (1) JP6939691B2 (en)
WO (1) WO2019208428A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102388766B1 (en) * 2019-11-18 2022-04-22 제주대학교 산학협력단 Refrigeration device using ejector
DE102022115627A1 (en) 2022-06-23 2023-12-28 HTM Automotive GmbH Control system, method for controlling a thermometer management system of a vehicle, computer-readable storage medium and vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3931899B2 (en) * 2004-02-18 2007-06-20 株式会社デンソー Ejector cycle
JP2007057156A (en) * 2005-08-24 2007-03-08 Calsonic Kansei Corp Refrigeration cycle
JP5419901B2 (en) * 2011-01-17 2014-02-19 三菱電機株式会社 Refrigeration cycle apparatus, flow path switching apparatus, and flow path switching method
JP5681549B2 (en) * 2011-04-13 2015-03-11 高砂熱学工業株式会社 Refrigeration cycle method
JP6277869B2 (en) * 2014-05-30 2018-02-14 株式会社デンソー Ejector refrigeration cycle
JP6589537B2 (en) * 2015-10-06 2019-10-16 株式会社デンソー Refrigeration cycle equipment

Similar Documents

Publication Publication Date Title
JP2015224861A5 (en)
JP2015064194A5 (en)
KR100884804B1 (en) Refrigerant cycle device
Baek et al. Effects of vapor injection techniques on the heating performance of a CO2 heat pump at low ambient temperatures
JP2016121858A5 (en)
KR101558307B1 (en) Decompression device and refrigeration cycle device
EP1757875A3 (en) Supercritical refrigeration cycle system
CN107407507A (en) Ejector-type kind of refrigeration cycle
US10508848B2 (en) Refrigeration cycle apparatus
CN106574811B (en) Turbo refrigerator
EP2988074B1 (en) Air conditioner
WO2015015752A1 (en) Ejector
US9816738B2 (en) Ejector
JP2016176675A5 (en)
JP2009221883A (en) Ejector device and vapor compression refrigeration cycle using ejector device
JP2019190794A5 (en)
JP4042637B2 (en) Ejector cycle
KR102303676B1 (en) Ejector and Cooling Apparatus having the same
AU2017238687A1 (en) Refrigerating cycle apparatus
CN113124581B (en) Turbo refrigerator
CN110418899A (en) Compressor sucking piping, compression unit and refrigeration machine
JP2018185066A5 (en)
JP2002022295A (en) Ejector cycle
US20090229306A1 (en) Vapor compression refrigerating cycle apparatus
JP2019039633A (en) Refrigeration cycle device