JP2019190427A - Compressor and apparatus using the same - Google Patents

Compressor and apparatus using the same Download PDF

Info

Publication number
JP2019190427A
JP2019190427A JP2018086045A JP2018086045A JP2019190427A JP 2019190427 A JP2019190427 A JP 2019190427A JP 2018086045 A JP2018086045 A JP 2018086045A JP 2018086045 A JP2018086045 A JP 2018086045A JP 2019190427 A JP2019190427 A JP 2019190427A
Authority
JP
Japan
Prior art keywords
crankshaft
shaft support
radial bearing
support portion
flat cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018086045A
Other languages
Japanese (ja)
Inventor
修平 永田
Shuhei Nagata
修平 永田
伸哉 関山
Shinya Sekiyama
伸哉 関山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2018086045A priority Critical patent/JP2019190427A/en
Publication of JP2019190427A publication Critical patent/JP2019190427A/en
Pending legal-status Critical Current

Links

Images

Abstract

To reduce slide losses in a crankshaft with a simple processing.SOLUTION: A compressor includes: a crankshaft 7 freely rotatable and having a substantially cylindrical shape; a radial bearing pivotally supporting the crankshaft and having a hollow cylindrical shape; lubricant supplied to a gap between the crankshaft and the radial bearing; and a planar cut part 7p provided in a region opposite to the radial bearing of the crankshaft.SELECTED DRAWING: Figure 6

Description

本発明は、圧縮機およびこれを用いた機器に関する。   The present invention relates to a compressor and a device using the compressor.

特許文献1は、クランクシャフト7に複数本の微細給油溝7pを設けた密閉型圧縮機を開示している。   Patent Document 1 discloses a hermetic compressor in which a plurality of fine oil supply grooves 7p are provided on a crankshaft 7.

特開2015−7378号公報Japanese Patent Laying-Open No. 2015-7378

特許文献1によれば、微細給油溝7pの溝深さを10μm程度と言及するものの(0036)、それ以上に具体的な形状や加工法については何ら検討していない。しかし、微細給油溝7pの加工はし易いことが望ましく、また、微細給油溝7pの形状、深さ、および幅によって潤滑性能に与える影響が異なるところ、特許文献1はこの点については何ら検討していない。   According to Patent Document 1, although the groove depth of the fine oil supply groove 7p is referred to as about 10 μm (0036), no specific shape or processing method is further studied. However, it is desirable that the fine oil supply groove 7p be easily processed, and the influence on the lubrication performance varies depending on the shape, depth, and width of the fine oil supply groove 7p. Not.

上記事情に鑑みてなされた本発明は、
回転自在で略円筒形状のクランクシャフトと、
該クランクシャフトを軸支する中空円筒形状のラジアル軸受と、
前記クランクシャフト及び前記ラジアル軸受の間の隙間に供給される潤滑油と、
前記クランクシャフトのうち前記ラジアル軸受に対向する領域に設けた平面カット部と、を有する圧縮機である。
The present invention made in view of the above circumstances,
A rotatable, substantially cylindrical crankshaft;
A hollow cylindrical radial bearing that pivotally supports the crankshaft;
Lubricating oil supplied to the gap between the crankshaft and the radial bearing;
It is a compressor which has a plane cut part provided in the field which counters the radial bearing among the crankshafts.

実施例1の圧縮機の縦断面図Longitudinal sectional view of the compressor of Example 1 実施例1の圧縮機の横断面図Cross section of the compressor of Example 1 実施例1の圧縮機のクランクシャフトの側面図Side view of crankshaft of compressor of embodiment 1 実施例1の下側軸支部とその周囲の拡大模式図Example 1 Lower shaft support and enlarged schematic view of the surrounding area 実施例1のクランクシャフトの軸断面図(図4のA−A断面をとり、一の平面カット部に注目したもの。但しラジアル軸受部は不図示)Axial cross-sectional view of the crankshaft of Example 1 (taken along the AA cross section of FIG. 4 and focused on one flat cut portion, but the radial bearing portion is not shown) 図4のA−A断面をとり、ラジアル軸受部とこれに対向する平面カット部を示したものThe AA cross section of FIG. 4 is taken and the radial bearing part and the plane cut part which opposes this are shown. 比較例のクランクシャフトの軸断面図Cross-sectional view of the crankshaft of the comparative example 図7にラジアル軸受を追記したものFigure 7 with radial bearing added 実施例1のクランクシャフトにおいて発生する摺動損失と、比較例のクランクシャフトにおいて発生する摺動損失とを比較したグラフを示す図The figure which shows the graph which compared the sliding loss which generate | occur | produces in the crankshaft of Example 1, and the sliding loss which generate | occur | produces in the crankshaft of a comparative example. 実施例1のクランクシャフトの上側軸支部付近の模式図Schematic diagram near the upper shaft support portion of the crankshaft of Example 1 実施例1のクランクシャフト7がラジアル軸受部内で大きく傾斜したときの模式図Schematic diagram when the crankshaft 7 of the first embodiment is largely inclined in the radial bearing portion

以下、本発明の実施例について添付の図面を参照しつつ説明する。同様の構成要素には同様の符号を付し、同様の説明は繰り返さない。   Embodiments of the present invention will be described below with reference to the accompanying drawings. Similar components are denoted by the same reference numerals, and the same description will not be repeated.

本発明の各種の構成要素は必ずしも個々に独立した存在である必要はなく、一の構成要素が複数の部材から成ること、複数の構成要素が一の部材から成ること、或る構成要素が別の構成要素の一部であること、或る構成要素の一部と他の構成要素の一部とが重複すること、などを許容する。   The various components of the present invention do not necessarily have to be independent of each other. One component is composed of a plurality of members, a plurality of components are composed of one member, and one component is separated from another. And a part of a certain component and a part of another component are allowed to overlap.

[圧縮機50の全体構成]
図1は本実施例の圧縮機50の縦断面図、図2は本実施例の圧縮機50の横断面図である。
圧縮機50は、ステータ5およびロータ6からなる電動要素30と、シリンダ1、ピストン4、コネクティングロッド2、クランクシャフト7からなる圧縮要素20とが密閉容器3内に収納された形をとる。圧縮要素20は電動要素30の上方に位置するよう構成されている。密閉容器3底部には潤滑油35が貯留されている。
[Overall configuration of compressor 50]
FIG. 1 is a longitudinal sectional view of a compressor 50 of this embodiment, and FIG. 2 is a transverse sectional view of the compressor 50 of this embodiment.
The compressor 50 takes a form in which an electric element 30 composed of a stator 5 and a rotor 6 and a compression element 20 composed of a cylinder 1, a piston 4, a connecting rod 2, and a crankshaft 7 are accommodated in an airtight container 3. The compression element 20 is configured to be positioned above the electric element 30. Lubricating oil 35 is stored at the bottom of the sealed container 3.

略円筒状のクランクシャフト7は、中空円筒状のラジアル軸受部1aを貫通して上下方向を軸方向とし、回転自由に設置されている。クランクシャフト7の回転軸から偏心した位置で、クランクシャフト7の上端にはクランクピン7aが接続されている。クランクピン7aに一端が接続し、他端がピストン4と接続したコネクティングロッド2が設けられており、これによりクランクピン7aが偏心回転運動するとピストン4が往復動する。クランクシャフト7の下部にはロータ6が設けられており、ロータ6が回転するとクランクシャフト7が回転し、クランクピン7aが偏心回転する。このような構造により、クランクシャフト7の回転に伴ってピストン4はシリンダ1内を往復運動することとなる。   The substantially cylindrical crankshaft 7 passes through the hollow cylindrical radial bearing portion 1a and is set to freely rotate with the vertical direction as the axial direction. A crankpin 7 a is connected to the upper end of the crankshaft 7 at a position eccentric from the rotation shaft of the crankshaft 7. A connecting rod 2 having one end connected to the crankpin 7a and the other end connected to the piston 4 is provided, whereby the piston 4 reciprocates when the crankpin 7a rotates eccentrically. A rotor 6 is provided below the crankshaft 7. When the rotor 6 rotates, the crankshaft 7 rotates and the crankpin 7a rotates eccentrically. With such a structure, the piston 4 reciprocates in the cylinder 1 as the crankshaft 7 rotates.

[クランクシャフト7]
図3は本実施例のクランクシャフト7の側面図である。クランクシャフト7は、軸方向中央側の小径部7i、軸方向上端側の上側軸支部7m、および軸方向下端側の下側軸支部7nを有する。小径部7iは、上側軸支部7mおよび下側軸支部7nよりも軸径が小さく形成されている。クランクシャフト7が回転してピストン4が往復動すると、ピストン4の流体への作用によってクランクシャフト7に対して径方向の力がはたらく。上側軸支部7mおよび下側軸支部7nはそれぞれ、ラジアル軸受部1aに好ましくは潤滑油35を介して接触し、この力を支える。一方、小径部7iはラジアル軸受部1aとの隙間が比較的大きくなるため、主に、上側軸支部7mと下側軸支部7nとを機械的に接続し、また、潤滑油35の流路としての作用を奏する。
[Crankshaft 7]
FIG. 3 is a side view of the crankshaft 7 of this embodiment. The crankshaft 7 has a small diameter portion 7i on the axial center side, an upper shaft support portion 7m on the upper end side in the axial direction, and a lower shaft support portion 7n on the lower end side in the axial direction. The small diameter portion 7i has a smaller shaft diameter than the upper shaft support portion 7m and the lower shaft support portion 7n. When the crankshaft 7 rotates and the piston 4 reciprocates, a radial force acts on the crankshaft 7 by the action of the piston 4 on the fluid. Each of the upper shaft support portion 7m and the lower shaft support portion 7n is in contact with the radial bearing portion 1a, preferably via the lubricating oil 35, and supports this force. On the other hand, since the gap between the small diameter portion 7i and the radial bearing portion 1a is relatively large, the upper shaft support portion 7m and the lower shaft support portion 7n are mainly mechanically connected, and as a flow path for the lubricating oil 35. Has the effect of.

クランクシャフト7の外周には、下側軸支部7n、小径部7i、および上側軸支部7mにかけて、クランクシャフト7の回転時に、底部に貯留された潤滑油35を上方に汲み上げることが可能なスパイラル溝7dが設けられている。スパイラル溝7dは、クランクシャフト7の回転方向と反対方向に向かうにつれて上方に向かうよう傾斜したリード角を有している。   A spiral groove on the outer periphery of the crankshaft 7 is capable of pumping up the lubricating oil 35 stored at the bottom when the crankshaft 7 rotates over the lower shaft support portion 7n, the small diameter portion 7i, and the upper shaft support portion 7m. 7d is provided. The spiral groove 7d has a lead angle that is inclined upward toward the opposite direction to the rotation direction of the crankshaft 7.

下側軸支部7n、小径部7i、および上側軸支部7mそれぞれとラジアル軸受部1aとの隙間には、圧縮機の運転中、スパイラル溝7dを通じて潤滑油35が導入される。小径部7iとラジアル軸受部1aとの隙間寸法は比較的大きく、大きな油膜圧力は発生しない。一方、下側軸支部7nや上側軸支部7mとラジアル軸受部1aとの隙間寸法は比較的小さく、比較的大きな油膜圧力が発生する。このため、クランクシャフト7に加わるラジアル方向の荷重は、上側軸支部7m、下側軸支部7nにて軸支される。   Lubricating oil 35 is introduced into the gaps between the lower shaft support portion 7n, the small diameter portion 7i, and the upper shaft support portion 7m and the radial bearing portion 1a through the spiral groove 7d during operation of the compressor. The clearance dimension between the small diameter portion 7i and the radial bearing portion 1a is relatively large, and no large oil film pressure is generated. On the other hand, the gap between the lower shaft support portion 7n or the upper shaft support portion 7m and the radial bearing portion 1a is relatively small, and a relatively large oil film pressure is generated. For this reason, the radial load applied to the crankshaft 7 is pivotally supported by the upper shaft support portion 7m and the lower shaft support portion 7n.

潤滑油35の種類にも依るが、概ね、上側軸支部7mおよび下側軸支部7nとラジアル軸受部1aの隙間を数μm〜数十μmにすることで、クランクシャフト7にラジアル荷重が加わると油膜圧力が発生するようにできる。   Although depending on the type of the lubricating oil 35, generally when a radial load is applied to the crankshaft 7 by setting the clearance between the upper shaft support portion 7 m and the lower shaft support portion 7 n and the radial bearing portion 1 a to several μm to several tens μm. An oil film pressure can be generated.

(平面カット部7p)
図4は本実施例の下側軸支部7nとその周囲の拡大模式図である。
(Plane cut part 7p)
FIG. 4 is an enlarged schematic view of the lower shaft support portion 7n of this embodiment and its surroundings.

ラジアル軸受1aに対向する領域である下側軸支部7nには、断面円形の側周面を内径側に向けて凹ませた平面カット部7pが複数配されている。平面カット部7pは、上端が小径部7i側に連通しており、下端がラジアル軸受部1aの下端よりも上方に位置している。     A plurality of flat cut portions 7p are provided in the lower shaft support portion 7n, which is a region facing the radial bearing 1a, in which a side circumferential surface having a circular cross section is recessed toward the inner diameter side. The flat cut portion 7p has an upper end communicating with the small-diameter portion 7i, and a lower end located above the lower end of the radial bearing portion 1a.

平面カット部7pは、クランクシャフト7が回転したときに、潤滑油35が小径部7i側から平面カット部7pに導入される向きに設計されている。すなわち、クランクシャフト7の回転方向と反対方向に向かうにつれて下方向に向かうよう傾斜したリード角θを有して、平面カット部7pは設けられている。リード角θは、図4に例示するように、クランクシャフト7の周方向に延在する仮想の直線を基準(θ=0°)にして、平面カット部7pの端部との間で時計回りに成す角度であり、0°<θ≦90°にすることができる。     The flat cut portion 7p is designed in such a direction that the lubricating oil 35 is introduced into the flat cut portion 7p from the small diameter portion 7i side when the crankshaft 7 rotates. That is, the plane cut portion 7p is provided with a lead angle θ that is inclined downward toward the direction opposite to the rotation direction of the crankshaft 7. As illustrated in FIG. 4, the lead angle θ is clockwise with respect to the end of the flat cut portion 7p with reference to an imaginary straight line extending in the circumferential direction of the crankshaft 7 (θ = 0 °). It can be set to 0 ° <θ ≦ 90 °.

平面カット部7pは、例えば、下側軸支部7nに回転刃具を押付ける除去加工により形成される。平面カット部7pは略平面により構成されるが、加工冶具の精度によっては厳密な平面ではなく、ゆるやかな曲面にて構成され得る。   The flat cut portion 7p is formed, for example, by a removal process of pressing a rotary blade against the lower shaft support portion 7n. The plane cut portion 7p is configured by a substantially plane, but depending on the accuracy of the processing jig, it may be configured by a gently curved surface instead of a strict plane.

加工工程を考えた場合、平面カット部7pの除去形状は回転刃具の押付け量とリード角の2パラメータで決定される。平面カット部7pによる半径方向除去量と、平面カット部7pの弦長さの2つは互いに従属関係にあり、回転刃具押付け量で決定される。一方、後述する比較例のような溝7qは、溝部の深さ、溝幅、リード角の3パラメータで決定され、加工時における回転刃具の制御すべきパラメータが1つ多い。こうした生産加工性の観点においては、後述する比較例よりも本実施例の平面カット部7pの構造の方が加工が簡易であるといえる。   Considering the machining process, the removal shape of the flat cut portion 7p is determined by two parameters of the pressing amount of the rotary blade and the lead angle. The radial removal amount by the flat cut portion 7p and the chord length of the flat cut portion 7p are dependent on each other and are determined by the pressing amount of the rotary blade. On the other hand, the groove 7q as in a comparative example to be described later is determined by three parameters of groove depth, groove width, and lead angle, and has one more parameter to be controlled by the rotary blade during processing. From the viewpoint of production workability, it can be said that the structure of the flat cut portion 7p of this embodiment is easier to process than the comparative example described later.

[潤滑]
相対運動する2固体の間に潤滑油35を供給して潤滑および支持する場合、この相対運動に起因して潤滑油35が運動することで圧力が高まり、2固体の接触を抑制することができる。本明細書では、これに関して特に、「緩やかなくさび効果」と「急峻なくさび効果」とに注目した。
[Lubrication]
When lubricating oil 35 is supplied and supported between two solids that move relative to each other, pressure increases due to movement of lubricating oil 35 due to the relative movement, and contact between the two solids can be suppressed. . In this specification, the “slow wedge effect” and the “steep wedge effect” are particularly noted.

(緩やかなくさび効果)
運動する潤滑油35の流路断面積が減少していき、流路断面積が略0に近付くと、潤滑油35が圧縮されていき大きな圧力(油膜圧力)が発生する(くさび効果)。くさび効果は、例えば、中空円筒状の固定面と、この中空領域に収められた滑らかな円柱状の回転面と、これらの間に配された潤滑油とから成る系を考えると、回転面が固定面から偏心して、回転面と固定面との隙間が次第に狭くなっていく際に生じる。本実施例や比較例のように、回転面(クランクシャフト7)の側周面に凹部を設けた場合であっても、クランクシャフト7の基本的な形状は円柱状であるから、凹部の影響により弱められるものの或る程度のくさび効果は生じると考えられる。この円柱状の回転面と,中空円筒状の固定面とで形成されるくさび効果を本明細書では「緩やかなくさび効果」と呼ぶこととする。これは、回転面と固定面との隙間が緩やかに狭くなることで、比較的広い範囲に油膜圧力が発生するために名付けたものである。
(Slow wedge effect)
When the flow passage cross-sectional area of the moving lubricating oil 35 decreases and the flow passage cross-sectional area approaches 0, the lubricating oil 35 is compressed and a large pressure (oil film pressure) is generated (wedge effect). For example, when considering a system composed of a hollow cylindrical fixed surface, a smooth columnar rotating surface stored in the hollow region, and a lubricating oil disposed between them, the wedge effect is Occurs when the gap between the rotating surface and the fixed surface is gradually narrowed by being eccentric from the fixed surface. Even in the case where the concave portion is provided on the side circumferential surface of the rotating surface (crankshaft 7) as in the present embodiment and the comparative example, the basic shape of the crankshaft 7 is a columnar shape. It is believed that some degree of wedge effect occurs, although it is weakened by. In this specification, the wedge effect formed by the columnar rotating surface and the hollow cylindrical fixed surface is referred to as a “gradual wedge effect”. This is named because the oil film pressure is generated in a relatively wide range because the gap between the rotating surface and the fixed surface is gradually narrowed.

なお、「緩やかなくさび効果」は、回転面(クランクシャフト7)が大きく偏心した状態で大きな効果を発揮する。これは、大きく回転面が偏心するほど、流路断面積の減少具合が大きくなるためである。したがって、高負荷時(ピストン4の圧縮による仕事量が大きく、クランクシャフト7を偏心させようとする力が大きいこと。)ほどそのくさび効果は大きくなる。   The “gradual wedge effect” exhibits a great effect when the rotating surface (crankshaft 7) is greatly decentered. This is because the degree of decrease in the cross-sectional area of the flow path increases as the rotational surface becomes more eccentric. Therefore, the wedge effect increases as the load increases (the amount of work due to compression of the piston 4 is large and the force to decenter the crankshaft 7 is large).

(急峻なくさび効果)
運動する潤滑油35の流路断面積が急峻に減少すると、前述したくさび効果によって、大きな油膜圧力が発生する。本明細書では、流路断面積の減少が急峻である点に鑑み、緩やかなくさび効果と区別し、「急峻なくさび効果」と呼ぶこととする。本実施例や比較例のように、回転面(クランクシャフト7)の側周面に凹部を設けた場合、凹部内の潤滑油35が非凹部に流入する箇所が、流路断面積が急峻に減少する場所であり、「急峻なくさび効果」が発生する場所となる。「急峻なくさび効果」に起因する圧力は、流路断面積が急峻に減少する場所周辺の比較的狭い範囲に発生する。
(Steep and rust effect)
When the flow passage cross-sectional area of the moving lubricating oil 35 is sharply reduced, a large oil film pressure is generated due to the wedge effect described above. In the present specification, in view of the sharp decrease in the channel cross-sectional area, it is distinguished from the gradual wedge effect and referred to as the “steep rust effect”. When the concave portion is provided on the side peripheral surface of the rotating surface (crankshaft 7) as in the present embodiment or the comparative example, the location where the lubricating oil 35 in the concave portion flows into the non-concave portion has a steep channel cross-sectional area. This is a place where the “reduces a rust effect”. The pressure resulting from the “steep rust effect” is generated in a relatively narrow range around the place where the flow path cross-sectional area sharply decreases.

[平面カット部7pによる潤滑の詳細]
後述するように、ステップ状の段差では「急峻なくさび効果」が支配的となり、「緩やかなくさび効果」が減少してしまうが、本実施例の平面カット部7pによれば、流路断面積の滑らかな減少性を維持する空間により、「緩やかなくさび効果」と「急峻なくさび効果」を両立することができる。すなわち、本実施例のような平面カット部7pによれば、バランスに優れた性能を実現できる。
[Details of lubrication by flat cut 7p]
As will be described later, the “steep wedge effect” becomes dominant at the stepped step and the “gradual wedge effect” is reduced. However, according to the flat cut portion 7p of the present embodiment, the flow path cross-sectional area is reduced. With the space that maintains the smooth reduction of, the "slow rust effect" and the "steep rust effect" can both be achieved. That is, according to the flat cut portion 7p as in the present embodiment, it is possible to realize performance with excellent balance.

図5は本実施例のクランクシャフト7の軸断面図(図4のA−A断面視をとり、一の平面カット部7pに注目したもの。但しラジアル軸受部1aは不図示)、図6は図4のA−A断面視をとり、ラジアル軸受部1aとこれに対向する平面カット部7pを示したものである。本実施例の平面カット部7pの表現の仕方は複数考え得るが、例えば次のような説明が可能である。
平面カット部7pは略平面で構成されており、図5に破線で示すような未加工の領域(平面カット部7pの加工前の領域)との接続箇所(接稜線7rと呼ぶ。)2つに稜線(クランクシャフト7の軸断面視で、頂点となる部位をいう。)を持つが、他に持たない。すなわち、一の平面カット部7pに対して、稜線が2つのみ存在する。なお、平面カット部7pの加工が軸方向に沿って行われた場合(リード角θが90°の場合)、稜線は、クランクシャフト7の軸方向に沿って延在することになる。また、平面カット部7pでないカット(例えば後述する比較例のような溝構造7q)の場合、上記の2つの接稜線7r以外の稜線が生じる。この稜線には、横断面視で180°超となるものが少なくとも含まれる(比較例である図7のφ3,φ4参照。「カット後に残存するクランクシャフト部分の角度φ3,φ4」が180°超となっている)。
FIG. 5 is an axial sectional view of the crankshaft 7 of the present embodiment (taken from the AA sectional view of FIG. 4 and focusing on one flat cut portion 7p. However, the radial bearing portion 1a is not shown), FIG. FIG. 4 is a cross-sectional view taken along the line AA of FIG. 4 and shows a radial bearing portion 1a and a flat cut portion 7p facing the radial bearing portion 1a. A plurality of ways of expressing the plane cut portion 7p of this embodiment can be considered, but for example, the following explanation is possible.
The plane cut portion 7p is formed of a substantially flat surface, and has two connection points (referred to as tangent lines 7r) to an unprocessed region (region before processing of the plane cut portion 7p) as shown by a broken line in FIG. Has a ridge line (referred to as a vertex in the axial cross-sectional view of the crankshaft 7), but no other. That is, there are only two ridge lines for one plane cut portion 7p. In addition, when the processing of the plane cut portion 7p is performed along the axial direction (when the lead angle θ is 90 °), the ridge line extends along the axial direction of the crankshaft 7. In the case of a cut other than the flat cut portion 7p (for example, a groove structure 7q as in a comparative example described later), a ridge line other than the two tangent lines 7r is generated. These ridge lines include at least those that exceed 180 ° in a cross sectional view (see φ3 and φ4 in FIG. 7 as a comparative example. “An angle φ3 and φ4 of the crankshaft portion remaining after cutting” exceeds 180 °. )

下側軸支部7nの側周面に、平面カット部7pのみを加工したとすると、横断面視(図4のA−A断面視)の形状は、略凸図形(下側軸支部7n内にとった任意の2点を結ぶ線分は、下側軸支部7n内に存する。)となっている。   If only the plane cut portion 7p is processed on the side peripheral surface of the lower shaft support portion 7n, the shape of the cross-sectional view (AA cross section view of FIG. 4) is substantially convex (inside the lower shaft support portion 7n). The line segment connecting any two points taken is in the lower shaft support 7n.

平面カット部7pは、横断面視で、略直線(加工冶具の精度によってはゆるやかな曲線)である。   The plane cut portion 7p is a substantially straight line (a gentle curve depending on the accuracy of the processing jig) in a cross-sectional view.

(平面カット部7pにおける油膜圧力)
図6に例示するように、クランクシャフト7とラジアル軸受部1aとの間に位置する径方向の隙間7sは、平面カット部7pが配された領域で比較的大きく、それ以外の領域(下側軸支部7nのうち平面カット部7pを除いた部分。)で比較的小さくなる。また、ラジアル軸受部1aが中空円筒形状で、未加工のクランクシャフト7がラジアル軸受部1aの中空部分に配された円筒形状であり、被加工部としての平面カット部7pがA−A断面視略直線状であることから、平面カット部7pのうち中央側の方が隙間7sの寸法が大きく、接稜線7r側の方が隙間7sの寸法が小さい。
(Oil film pressure at the flat cut portion 7p)
As illustrated in FIG. 6, the radial gap 7s located between the crankshaft 7 and the radial bearing portion 1a is relatively large in the region where the flat cut portion 7p is disposed, and the other region (lower side) The portion of the shaft support portion 7n excluding the flat cut portion 7p) becomes relatively small. Further, the radial bearing portion 1a has a hollow cylindrical shape, the unprocessed crankshaft 7 has a cylindrical shape arranged in the hollow portion of the radial bearing portion 1a, and the plane cut portion 7p as a processed portion is taken along the AA cross section. Since the flat cut portion 7p has a substantially straight shape, the center side has a larger size of the gap 7s, and the tangent line 7r side has a smaller size of the gap 7s.

そして、クランクシャフト7が回転方向に回転すると、隙間7sに存在する潤滑油35は、クランクシャフト7の回転速度よりも小さい速度で回転方向へ移動することで、図6の矢印で例示するように、クランクシャフト7表面から観察した場合に反回転方向へ移動する。すなわち、平面カット部7pの幅方向に沿って反回転方向(図6中、右方向)へと力を受ける。すると、接稜線7r(角度φ1側)に近付くにつれて徐々に隙間寸法が小さくなる(流路断面積が減少する)ため、流れが滞ることで潤滑油35の圧力(油膜圧力)が高まる。この現象については、前述した「緩やかなくさび効果」に近いものの、流路断面積の減少具合は平面カット部7pがない場合よりも急峻であるため、「急峻なくさび効果」も含まれる。   When the crankshaft 7 rotates in the rotation direction, the lubricating oil 35 present in the gap 7s moves in the rotation direction at a speed smaller than the rotation speed of the crankshaft 7, and as illustrated by the arrows in FIG. When viewed from the surface of the crankshaft 7, it moves in the counter-rotating direction. That is, a force is received in the counter-rotating direction (right direction in FIG. 6) along the width direction of the flat cut portion 7p. Then, since the gap dimension gradually decreases (the cross-sectional area of the flow path decreases) as it approaches the ridgeline 7r (angle φ1 side), the pressure of the lubricating oil 35 (oil film pressure) increases due to the stagnation of the flow. Although this phenomenon is close to the above-mentioned “gradual wedge effect”, the degree of decrease in the cross-sectional area of the flow path is steeper than in the case where there is no flat cut portion 7p, so the “steep wedge effect” is also included.

また、平面カット部7pはリード角θを持っているため、クランクシャフト7が回転すると、潤滑油35は、回転面であるクランクシャフト7との摩擦力(粘性力)によって軸方向(図6中、紙面直交方向)へと力を受ける。上述の回転方向の力と併せて結果として平面カット部7pの延在方向に沿った力(図4参照)を受けることになるから、潤滑油35の供給量を増加させやすい。   Further, since the flat cut portion 7p has a lead angle θ, when the crankshaft 7 rotates, the lubricating oil 35 is axially directed (in FIG. 6) by the frictional force (viscous force) with the crankshaft 7 that is the rotating surface. , Receiving force in the direction perpendicular to the paper surface). As a result, the force along the extending direction of the flat cut portion 7p (see FIG. 4) is received together with the force in the rotational direction described above, so that the supply amount of the lubricating oil 35 can be easily increased.

また、図4に例示するように平面カット部7pの下端はラジアル軸受部1aの下端より上方に位置しているから、潤滑油35が実線矢印の方向に流れて平面カット部7pの下端に到達すると、平面カット部7pが終端となることで隙間7sが急激に狭まる。こうして流れが滞ることで潤滑油35の圧力(油膜圧力)が高まる。この圧力の増加は、上述の「急峻なくさび効果」に相当する。   Further, as illustrated in FIG. 4, since the lower end of the flat cut portion 7p is located above the lower end of the radial bearing portion 1a, the lubricating oil 35 flows in the direction of the solid arrow and reaches the lower end of the flat cut portion 7p. As a result, the gap 7s is sharply narrowed by the termination of the flat cut portion 7p. As a result of the flow stagnation, the pressure of the lubricating oil 35 (oil film pressure) increases. This increase in pressure corresponds to the “steep wedge effect” described above.

(リード角θの好適な範囲)
平面カット部7pのリード角θは大きくなるにつれて、平面カット流路7s内に潤滑油35を導入しにくくなるため、平面カット部7pの終端部における「急峻なくさび効果」が低下する。
一方、リード角θを小さくすると、平面カット部7pの周方向幅が広くなり、下側軸支部7n表面上に占める平面カット部7pの割合が増大する。平面カット部7pの割合が大きすぎると、下側軸支部7nで発生する(未加工の)「緩やかなくさび効果」の影響が非常に小さなものとなり、負荷増大によりクランクシャフト7がラジアル軸受1aに近付いても(ピストン4の圧縮による仕事量が大きく、クランクシャフト7を偏心させようとする力が大きくなっても)くさび効果の効果が小さいことから十分な圧力が発生せず、油膜破断する虞が増す。
(Suitable range of lead angle θ)
As the lead angle θ of the flat cut portion 7p increases, it becomes difficult to introduce the lubricating oil 35 into the flat cut flow path 7s, so the “steep wedge effect” at the end portion of the flat cut portion 7p decreases.
On the other hand, when the lead angle θ is reduced, the circumferential width of the flat cut portion 7p is widened, and the proportion of the flat cut portion 7p on the surface of the lower shaft support portion 7n is increased. If the ratio of the flat cut portion 7p is too large, the influence of the (unprocessed) “slow rust effect” generated in the lower shaft support portion 7n becomes very small, and the crankshaft 7 is brought into the radial bearing 1a due to an increase in load. Even when approaching (even if the work amount due to compression of the piston 4 is large and the force for decentering the crankshaft 7 is large), the effect of the wedge effect is small, so that sufficient pressure is not generated and the oil film may break. Increase.

そのため、「急峻なくさび効果」と「緩やかなくさび効果」のバランスの観点からは、リード角は20°以上60°以下の範囲に設定することが望ましい。   Therefore, from the viewpoint of the balance between the “steep wedge effect” and the “slow wedge effect”, it is desirable to set the lead angle in the range of 20 ° to 60 °.

(カット量の好適な範囲)
また、平面カット部7pについて、クランクシャフト7の側周面表面からのカット量(図5参照。クランクシャフト7の中心を通る仮想の直線Cについて、「未加工時の側周面(破線)との交点」から「平面カット部7pとの交点」までの距離。)が長すぎると、平面カット部7pの周方向幅が広くなり、リード角が浅い場合と同様の理由で好ましくない。一方、カット量が浅いと隙間7sの寸法が狭くなり、摩擦損失低減効果が小さいし潤滑油35が不足しやすくなる。したがって、カット量は5μm以上25μm以下の範囲に設定することが望ましい。
(Suitable range of cut amount)
Further, regarding the flat cut portion 7p, the amount of cut from the surface of the side surface of the crankshaft 7 (see FIG. 5) For the virtual straight line C passing through the center of the crankshaft 7, If the distance from the “intersection point” to “intersection with the plane cut portion 7p” is too long, the width in the circumferential direction of the plane cut portion 7p becomes wide, which is not preferable for the same reason as when the lead angle is shallow. On the other hand, when the cut amount is shallow, the dimension of the gap 7s becomes narrow, the effect of reducing the friction loss is small, and the lubricating oil 35 tends to be insufficient. Therefore, it is desirable to set the cut amount in the range of 5 μm to 25 μm.

[比較例]
図7は比較例のクランクシャフト7’の軸断面図、図8は図7にラジアル軸受1aを追記したものである。
比較例の溝構造7qは、加工冶具(回転刃具)における2面(刃具先端と刃具側面)以上を用いた除去加工により形成される。よって溝構造7qは、2面以上の略平面で構成されることとなる。例えば三角形断面の溝の場合、除去加工により形成される面は2面であり、図7に例示するような矩形断面の溝7qの場合、除去加工により形成される面は3面となる。よって必然的に溝構造は複数の面で構成されるため、3つ以上の稜線をもつこととなる。
比較例のような溝構造7qによる潤滑は、比較的狭い範囲に油膜圧力を発生させることができる「急峻なくさび効果」が支配的となる。一方「緩やかなくさび効果」は、徐々に軸受隙間が狭まる構造で発生することを考えると、溝構造7q内で「緩やかなくさび効果」は発生しにくい。これは溝構造7q内はほぼ一定溝深さであり、軸受隙間が広いため、流路断面積の減少具合が非常に小さいからである。そのため、溝構造7qを多く設けるほど、「急峻なくさび効果」が増すが、「緩やかなくさび効果」は低下することとなる。
[Comparative example]
FIG. 7 is an axial sectional view of a crankshaft 7 ′ of a comparative example, and FIG. 8 is a diagram in which a radial bearing 1a is added to FIG.
The groove structure 7q of the comparative example is formed by a removal process using two or more surfaces (the blade tool tip and the blade tool side surface) in the processing jig (rotating blade). Therefore, the groove structure 7q is composed of two or more substantially flat surfaces. For example, in the case of a groove having a triangular cross section, there are two surfaces formed by the removal process, and in the case of a groove 7q having a rectangular cross section as illustrated in FIG. 7, there are three surfaces formed by the removal process. Therefore, since the groove structure is inevitably composed of a plurality of surfaces, it has three or more ridge lines.
The lubrication by the groove structure 7q as in the comparative example is dominated by the “steep wedge effect” that can generate the oil film pressure in a relatively narrow range. On the other hand, considering that the “gradual wedge effect” occurs in a structure in which the bearing gap gradually narrows, the “gentle wedge effect” is unlikely to occur in the groove structure 7q. This is because the groove structure 7q has a substantially constant groove depth and a wide bearing gap, so that the reduction in the flow path cross-sectional area is very small. Therefore, as the number of groove structures 7q is increased, the “steep wedge effect” increases, but the “gradual wedge effect” decreases.

(実施例と比較例との対比)
図9は本実施例のクランクシャフト7において発生する摺動損失と、比較例のクランクシャフト7’において発生する摺動損失とを比較したグラフを示す図である。縦軸が摺動損失であり、下側軸支部7nの表面に加工を施さないときの損失を1としている。横軸がクランクシャフト7に加えた負荷荷重を示す。
(Contrast between Example and Comparative Example)
FIG. 9 is a graph showing a comparison between the sliding loss that occurs in the crankshaft 7 of the present embodiment and the sliding loss that occurs in the crankshaft 7 ′ of the comparative example. The vertical axis is the sliding loss, and the loss when the surface of the lower shaft support portion 7n is not processed is 1. The horizontal axis indicates the load applied to the crankshaft 7.

両者を比較すると、概略、溝構造7qの仕様は低負荷領域では摺動損失の低減が実現しているが、高負荷領域では摺動損失が悪化することがわかる。一方、平面カット部7pの仕様は広い負荷領域で摺動損失の低減が実現していることがわかる。このような傾向が得られる理由について説明する。   Comparing the two, it can be seen that, in general, the specification of the groove structure 7q realizes reduction of the sliding loss in the low load region, but the sliding loss is deteriorated in the high load region. On the other hand, it can be seen that the specification of the flat cut portion 7p realizes reduction of sliding loss in a wide load region. The reason why such a tendency is obtained will be described.

上述のように、「緩やかなくさび効果」はクランクシャフト7が大きく偏心した状態で大きな効果を発揮するため、負荷荷重が大きくなるほど「緩やかなくさび効果」は大きくなる。この効果から、高負荷条件において、実施例の方が比較例よりも発生する油膜圧力が高く、軸受負荷能力が大きいものとなる。これは、実施例においては「緩やかなくさび効果」と「急峻なくさび効果」が両立できる構造であるのに対して、比較例では、前述の通り比較的広い範囲に圧力を発生することができる「緩やかなくさび効果」が発生しにくい構造であり、高負荷条件での軸受負荷能力が低いためである。   As described above, since the “gradual wedge effect” exhibits a large effect when the crankshaft 7 is greatly decentered, the “gradual wedge effect” increases as the load increases. From this effect, the oil film pressure generated in the example is higher than that in the comparative example under a high load condition, and the bearing load capacity is large. This is a structure that can achieve both “slow wedge effect” and “steep wedge effect” in the embodiment, whereas the comparative example can generate pressure in a relatively wide range as described above. This is because it has a structure in which the “slow and rust effect” is unlikely to occur, and the bearing load capacity under high load conditions is low.

すると高負荷条件においては実施例の方が比較例よりも下側軸支部7nの油膜厚さを厚くすることができるため、摩擦損失を低く抑えることができ、信頼性の観点からも優れたものにすることができる。   Then, in the high load condition, since the oil film thickness of the lower shaft support portion 7n can be made thicker than the comparative example, the friction loss can be suppressed low, which is excellent from the viewpoint of reliability. Can be.

[上側軸支部7m]
図10は本実施例のクランクシャフト7の上側軸支部7m付近の模式図、図11は本実施例のクランクシャフト7がラジアル軸受部1a内で大きく傾斜したときの模式図である。上側軸支部7mの断面形状はスパイラル溝7d部を除いて円形であるが、その直径はラジアル軸受1aの上端付近で細くなっており、上側軸支部7mの下端と上端とで、断面直径は数μm〜数十μmの差があるよう構成されている。すなわち、側面図でみたときにクランクシャフト7の上側軸支部7mには、上側軸支部傾斜領域7tが存在する。
[Upper shaft support 7m]
FIG. 10 is a schematic view of the crankshaft 7 according to the present embodiment in the vicinity of the upper shaft support portion 7m, and FIG. 11 is a schematic view when the crankshaft 7 of the present embodiment is largely inclined in the radial bearing portion 1a. The upper shaft support 7m has a circular cross section excluding the spiral groove 7d, but its diameter is narrow in the vicinity of the upper end of the radial bearing 1a. It is comprised so that there may be a difference of μm to several tens of μm. That is, when viewed in a side view, the upper shaft support portion 7m of the crankshaft 7 has an upper shaft support portion inclined region 7t.

本実施例のように下側軸支部7nの表面に平面カット部7pを設けた場合、発生する「緩やかなくさび効果」が、未加工時に比して小さい。そのため、大きな負荷がクランクシャフト7に加わると、クランクシャフト7の軸傾斜量が大きくなる場合がある。このとき、クランクシャフト7の負荷が大きく、回転速度が小さいような条件下においては上側軸支部7mとラジアル軸受部1a上端部とが接触しやすくなり、摩擦損失増大の要因となる虞が生じる。   When the plane cut portion 7p is provided on the surface of the lower shaft support portion 7n as in the present embodiment, the “gradual wedge effect” that is generated is smaller than that when it is not processed. Therefore, when a large load is applied to the crankshaft 7, the amount of axial inclination of the crankshaft 7 may increase. At this time, under conditions where the load on the crankshaft 7 is large and the rotational speed is low, the upper shaft support portion 7m and the upper end portion of the radial bearing portion 1a are likely to come into contact with each other, which may cause an increase in friction loss.

本実施例においては、上側軸支部7mに上側軸支部傾斜領域7tが存在するため、上側軸支部7mとラジアル軸受部1a上端部との接触を効果的に回避することができる。クランクシャフト7が軸傾斜した場合、傾斜方向側において、上側軸支部傾斜領域7tとラジアル軸受部1aとが略平行になるため、ラジアル軸受部1a上端部エッジが上側軸支部7mに接触し難い構造となっており、高負荷時においても摩擦損失が低いクランクシャフトを実現することができる。   In the present embodiment, since the upper shaft support portion inclined area 7t exists in the upper shaft support portion 7m, contact between the upper shaft support portion 7m and the upper end portion of the radial bearing portion 1a can be effectively avoided. When the crankshaft 7 is tilted, the upper shaft support portion inclined region 7t and the radial bearing portion 1a are substantially parallel to each other on the tilt direction side, so that the upper end edge of the radial bearing portion 1a is difficult to contact the upper shaft support portion 7m. Therefore, it is possible to realize a crankshaft with low friction loss even at high loads.

以上の通り本実施例によれば、加工が容易であり、摩擦損失が低く、信頼性の高い密閉型圧縮機を提供することが可能となる。なお、平面カット部7pを上側軸支部7mに設け、上側軸支部傾斜領域7tを下側軸支部7nに設けても良い。
本実施例の圧縮機は、冷蔵庫その他の機器に適用可能である。
As described above, according to the present embodiment, it is possible to provide a hermetic compressor that is easy to process, has low friction loss, and high reliability. The flat cut portion 7p may be provided on the upper shaft support portion 7m, and the upper shaft support portion inclined region 7t may be provided on the lower shaft support portion 7n.
The compressor of a present Example is applicable to a refrigerator and other apparatuses.

1 ・・・シリンダ
2 ・・・コネクティングロッド
3 ・・・密閉容器
4 ・・・ピストン
5 ・・・ステータ
6 ・・・ロータ
7 ・・・クランクシャフト
1a・・・ラジアル軸受部
7i・・・小径部
7m・・・上側軸支部
7n・・・下側軸支部
7p・・・平面カット部
7d・・・スパイラル溝
20・・・圧縮要素
30・・・電動要素
35・・・潤滑油
50・・・圧縮機
7q・・・溝構造
DESCRIPTION OF SYMBOLS 1 ... Cylinder 2 ... Connecting rod 3 ... Sealed container 4 ... Piston 5 ... Stator 6 ... Rotor 7 ... Crankshaft 1a ... Radial bearing part 7i ... Small diameter Part 7m: Upper shaft support part 7n: Lower shaft support part 7p: Planar cut part 7d ... Spiral groove 20 ... Compression element 30 ... Electric element 35 ... Lubricating oil 50 ...・ Compressor 7q ・ ・ ・ Groove structure

Claims (8)

回転自在で略円筒形状のクランクシャフトと、
該クランクシャフトを軸支する中空円筒形状のラジアル軸受と、
前記クランクシャフト及び前記ラジアル軸受の間の隙間に供給される潤滑油と、
前記クランクシャフトのうち前記ラジアル軸受に対向する領域に設けた平面カット部と、を有する圧縮機。
A rotatable, substantially cylindrical crankshaft;
A hollow cylindrical radial bearing that pivotally supports the crankshaft;
Lubricating oil supplied to the gap between the crankshaft and the radial bearing;
A compressor having a flat cut portion provided in a region of the crankshaft facing the radial bearing.
前記平面カット部は、稜線を2つのみ有することを特徴とする請求項1に記載の圧縮機。   The compressor according to claim 1, wherein the flat cut portion has only two ridge lines. 前記平面カット部は、前記クランクシャフトのうち該平面カット部が配された領域の横断面形状を、略凸図形にするものであることを特徴とする請求項1又は2に記載の圧縮機。   The compressor according to claim 1, wherein the flat cut portion has a substantially convex shape in a cross-sectional shape of a region of the crankshaft where the flat cut portion is disposed. 前記平面カット部は、横断面視で略直線状であることを特徴とする請求項1乃至3何れか一項に記載の圧縮機。   The compressor according to any one of claims 1 to 3, wherein the flat cut portion is substantially linear in a cross-sectional view. 前記平面カット部は、20°以上60°以下のリード角を有することを特徴とする請求項1乃至4何れか一項に記載の圧縮機。   The compressor according to any one of claims 1 to 4, wherein the flat cut portion has a lead angle of 20 ° or more and 60 ° or less. 前記平面カット部は、5μm以上25μm以下のカット量を有することを特徴とする請求項1乃至5何れか一項に記載の圧縮機。   The compressor according to any one of claims 1 to 5, wherein the flat cut portion has a cut amount of 5 µm to 25 µm. 前記クランクシャフトは、上側軸支部及び下側軸支部で前記ラジアル軸受に軸支され、
前記上側軸支部及び前記下側軸支部の一方に前記平面カット部を有し、
前記上側軸支部及び前記下側軸支部の他方は、前記ラジアル軸受の端部近傍が位置する高さの径が、該高さより前記上側軸支部及び前記下側軸支部の他方の中央側端部の径に比して小さい軸支部傾斜領域を有することを特徴とする請求項1乃至6何れか一項に記載の圧縮機。
The crankshaft is pivotally supported by the radial bearing at an upper pivotal support and a lower pivotal support,
One of the upper shaft support portion and the lower shaft support portion has the flat cut portion,
The other of the upper shaft support portion and the lower shaft support portion has a diameter of a height at which the vicinity of the end portion of the radial bearing is located, and the other central side end portion of the upper shaft support portion and the lower shaft support portion from the height. The compressor according to any one of claims 1 to 6, further comprising a shaft support portion inclined region smaller than the diameter of the shaft support portion.
請求項1乃至7何れか一項に記載の圧縮機を備えた機器。   The apparatus provided with the compressor as described in any one of Claims 1 thru | or 7.
JP2018086045A 2018-04-27 2018-04-27 Compressor and apparatus using the same Pending JP2019190427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018086045A JP2019190427A (en) 2018-04-27 2018-04-27 Compressor and apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018086045A JP2019190427A (en) 2018-04-27 2018-04-27 Compressor and apparatus using the same

Publications (1)

Publication Number Publication Date
JP2019190427A true JP2019190427A (en) 2019-10-31

Family

ID=68387756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018086045A Pending JP2019190427A (en) 2018-04-27 2018-04-27 Compressor and apparatus using the same

Country Status (1)

Country Link
JP (1) JP2019190427A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531109U (en) * 1976-06-23 1978-01-07
JPS61159680U (en) * 1985-03-27 1986-10-03
JPH074355A (en) * 1993-06-17 1995-01-10 Hitachi Ltd Closed type compressor
JPH10288222A (en) * 1997-04-11 1998-10-27 Nippon Sanso Kk Bearing structure with dynamic pressure generating groove for rotary machine
JP2009156098A (en) * 2007-12-25 2009-07-16 Denso Corp Compressor
JP2014105588A (en) * 2012-11-26 2014-06-09 Hitachi Appliances Inc Hermetic type compressor, and refrigerator, freezer, and air conditioner using the same
JP2014199020A (en) * 2013-03-29 2014-10-23 ダイキン工業株式会社 Compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531109U (en) * 1976-06-23 1978-01-07
JPS61159680U (en) * 1985-03-27 1986-10-03
JPH074355A (en) * 1993-06-17 1995-01-10 Hitachi Ltd Closed type compressor
JPH10288222A (en) * 1997-04-11 1998-10-27 Nippon Sanso Kk Bearing structure with dynamic pressure generating groove for rotary machine
JP2009156098A (en) * 2007-12-25 2009-07-16 Denso Corp Compressor
JP2014105588A (en) * 2012-11-26 2014-06-09 Hitachi Appliances Inc Hermetic type compressor, and refrigerator, freezer, and air conditioner using the same
JP2014199020A (en) * 2013-03-29 2014-10-23 ダイキン工業株式会社 Compressor

Similar Documents

Publication Publication Date Title
US20100177997A1 (en) Radial foil bearing with sealing function
JP5995967B2 (en) Sliding parts
RU2736894C1 (en) Damping element of bearing, bearing and element of compressor, equipped with such damping element of bearing, and method of manufacturing of such damping element of bearing
CN106104024B (en) Bearing and scroll fluid machine
EA035325B1 (en) Hybrid dynamic pressure gas radial bearing
JP6288885B2 (en) Bearing device and rotating machine
JP6117108B2 (en) Crankshaft for alternating cooling compressor
JP2019190427A (en) Compressor and apparatus using the same
WO2015125888A1 (en) Rotor and rotary fluid machine
JP6012574B2 (en) Scroll member and scroll type fluid machine
KR100524431B1 (en) Dynamic pressure bearing apparatus
US9574606B2 (en) Thrust bearing for HVAC compressor
JP7258710B2 (en) Compressor and equipment using this
US10801544B2 (en) Tilting pad journal bearing manufacturing method, tilting pad journal bearing, and compressor
US20140321785A1 (en) Auxiliary bearing centering device
US6848829B2 (en) Hydrodynamic bearing arrangement for a spindle motor
JP2009236063A (en) Pump device
JP2007116887A (en) Shaft for motor
KR100782374B1 (en) High Precision Radial Foil Bearing
JP2006329391A (en) Dynamic pressure bearing arrangement
CN114776710B (en) Radial gas bearing device and motor
KR20190129467A (en) Tilting pad bearing
Shchetinin et al. Gas–magnetic bearings in high-speed rotor systems
CN102619730B (en) For the bent axle of alternate type cooling compressor
JP6317932B2 (en) Rolling piston member and rotary fluid machine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20211130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221221

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230104

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230110

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230224

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20230228